research communications
κN)bis(dimethylamine-κN)zirconium(IV) iodide
of tris(dimethylamido-aDepartment of Chemistry, Mississippi State University, Mississippi State, 39762, USA
*Correspondence e-mail: khollis@chemistry.msstate.edu
Zirconium 2H6N)3(C2H7N)2]I. The bond lengths and bond angles are consistent with a slightly distorted trigonal–bipyramidal coordination geometry around the metal atom. N⋯I contacts of 3.6153 (15) and 3.5922 (14) Å are consistent with the presence of N—H⋯I interactions. These N—H⋯I interactions link the complex cations and iodide anions into extended chains that propagate parallel to the a axis.
have become increasingly popular and useful due to their widespread use as precursors to other zirconium complexes and their use in the production of solid oxide fuel cells (SOFCs). Herein we report the molecular structure of tris(dimethylamido)bis(dimethylamine)zirconium(IV) iodide, [Zr(CKeywords: crystal structure; zirconium; amido ligands; iodide; dimethylamine; N—H⋯I interactions.
CCDC reference: 1037746
1. Chemical context
Zirconium amide complexes are widely used in the synthesis of other zirconium complexes and solid oxide fuel cells (SOFCs). Additionally, many zirconium amide complexes are precatalysts for hydroamination/cyclization of unactivated aminoalkenes (Luconi et al., 2013, Manna et al., 2013 and references therein). Perhaps one of the most well known zirconium amide complexes is tetrakis(dimethylamido)zirconium(IV). The title compound serendipitously formed from the reaction of an excess of tetrakis(dimethylamido)zirconium(IV) and a bis(imidazolium) salt that we routinely perform, as illustrated in the Scheme below.
2. Structural commentary
The zirconium complex has a slightly distorted trigonal–bipyramidal geometry with three dimethamido ligands in equatorial positions and two dimethyamine ligands in axial positions (Fig. 1). Iodide provides a counterbalancing charge for the cationic zirconium complex. The Zr—amine bonds [Zr1—N1 and Zr1—N2, 2.3730 (13) and 2.3695 (14) Å, respectively] are significantly longer than those of the amide ligands [Zr1—N3 2.0249 (14), Zr1—N4 2.0393 (14), and Zr1—N5 2.0389 (14) Å]. The C—N bonds vary little, with the shortest and longest bond being only 0.026 (2) Å different [N1–C2 1.480 (2) and N3—C5 1.454 (2) Å]. The N1—Zr1—N2 angle of 172.83 (5)° and the N1—Zr1—N3 of 94.35 (5)° deviate slightly from the ideal angles of trigonal–bipyramidal geometry. The N3—Zr1—N5, N3—Zr1—N4, and N4—Zr1—N5 angles are close to 120° [116.76 (6), 120.99 (6), and 122.15 (6)°, respectively]. The C—N—Zr angles vary with the smallest and largest angles being almost 20° different [C10—N5—Zr1 135.34 (11) and C1—N1—Zr1 110.52 (10)°]. The amine nitrogen atoms (N1 and N2) are puckered in the structure [Zr1—N1—C1—C2 −124.71 (15) and Zr1—N2—C3—C4 127.27 (15)°]. This is in contrast to the amide ligands which are essentially coplanar with the metal [Zr1—N3—C5—C6 175.88 (19), Zr1—N4—C7—C8 174.05 (17), and Zr1—N5—C9—C10 −176.79 (17)°]. One amide ligand is twisted out of the plane by roughly 40° [C9—N5—Zr1—N3 −39.10 (13)°].
3. Supramolecular features
N⋯I contacts of 3.6153 (15) and 3.5922 (14) Å are consistent with the presence of N—H⋯I interactions (Table 1). The `twist' of the second dimethylamido ligand away from the first is consistent with interaction with a symmetry-related I− atom (H2—N2—N1—H1 − 114°; Fig. 2). The N—H⋯I interactions link the complex cations and iodide anions into extended chains that propagate parallel to the a axis.
4. Database survey
The synthesis or et al., 1988) and several more zirconium-amide iodide complexes (Lehn & Hoffman, 2002).
of tris(dimethylamido)bis(dimethylamine)zirconium(IV) iodide has not been reported as of 22 April 2015 based on a comprehensive WebCSD and Scifinder Scholar search. Similar compounds have been characterized crystallographically, for example tetrakis(dimethylamido)zirconium(IV) and its lithium dimethylamido adduct (Chisholm5. Synthesis and crystallization
1,3-Bis(3′-hexylimidazol-1′-yl)benzene diiodide (301 mg, 0.475 mmol), tetrakis(dimethylamido)zirconium(IV) (317 mg, 1.24 mmol) and dry toluene (2.8 mL) were combined in an inert atmosphere of Ar and heated at 383 K for 5 min in a sealed screw-cap vial. While heating, the reaction mixture became homogeneous. Upon cooling to room temperature, an oil formed. The top layer was removed and the oil was washed with toluene (3 × 3 mL). The toluene washings were combined and allowed to sit at room temperature. Colorless crystals formed after 2 months. The mother liquor was decanted and the crystals were covered with paratone oil after using a few crystals for 1H NMR spectroscopy. 1H NMR spectra of the samples indicated that 2-[1,3-bis(3′-hexyl-imidazol-2′-ylidene)phenylene](dimethylamido)diiodidozirconium(IV) and 2-[1,3-bis(3′-hexyl-imidazol-2′-ylidene)phenylene]bis(dimethylamido)iodidozirconium(IV) had crystallized in the form of needles, which were not suitable for single-crystal X-ray diffraction. However, a suitable tablet-shaped crystal of tris(dimethylamido)bis(dimethylammine)zirconium(IV) iodide was selected, mounted, and analyzed.
6. Refinement
Crystal data, data collection and structure . H atoms bonded to C and N atoms were placed at geometrically calculated positions and refined using a riding model: C—H = 0.98, N—H = 1.00 Å; Uiso(H) = 1.5Ueq(C) or 1.2Ueq(N).
details are summarized in Table 2Supporting information
CCDC reference: 1037746
10.1107/S2056989015023919/pk2563sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015023919/pk2563Isup2.hkl
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[Zr(C2H6N)3(C2H7N)2]I | Dx = 1.582 Mg m−3 |
Mr = 440.52 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 9970 reflections |
a = 14.2425 (3) Å | θ = 2.3–26.0° |
b = 15.4113 (3) Å | µ = 2.26 mm−1 |
c = 16.8537 (3) Å | T = 100 K |
V = 3699.31 (12) Å3 | Tablet, colourless |
Z = 8 | 0.2 × 0.1 × 0.1 mm |
F(000) = 1760 |
Bruker APEXII CCD diffractometer | 3319 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.027 |
Absorption correction: numerical (SADABS; Bruker, 2014) | θmax = 26.0°, θmin = 2.3° |
Tmin = 0.656, Tmax = 0.745 | h = −17→17 |
29665 measured reflections | k = −18→19 |
3620 independent reflections | l = −18→20 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.015 | H-atom parameters constrained |
wR(F2) = 0.036 | w = 1/[σ2(Fo2) + (0.0158P)2 + 1.6295P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.002 |
3620 reflections | Δρmax = 0.33 e Å−3 |
154 parameters | Δρmin = −0.34 e Å−3 |
Experimental. wR2(int) was 0.0590 before and 0.0411 after absorption correction. The ratio of minimum to maximum transmission is 0.8806. The λ/2 correction factor is 0.00150. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.42535 (13) | 0.59533 (12) | 0.45204 (11) | 0.0250 (4) | |
H1A | 0.4484 | 0.6453 | 0.4219 | 0.037* | |
H1B | 0.4754 | 0.5737 | 0.4867 | 0.037* | |
H1C | 0.4062 | 0.5494 | 0.4153 | 0.037* | |
C2 | 0.30833 (15) | 0.54710 (12) | 0.54677 (12) | 0.0314 (5) | |
H2A | 0.2545 | 0.5655 | 0.5788 | 0.047* | |
H2B | 0.2888 | 0.5010 | 0.5103 | 0.047* | |
H2C | 0.3580 | 0.5253 | 0.5817 | 0.047* | |
C3 | 0.39168 (13) | 0.94138 (11) | 0.64365 (11) | 0.0208 (4) | |
H3A | 0.3892 | 0.9531 | 0.5865 | 0.031* | |
H3B | 0.3277 | 0.9361 | 0.6644 | 0.031* | |
H3C | 0.4240 | 0.9892 | 0.6706 | 0.031* | |
C4 | 0.44722 (13) | 0.84138 (11) | 0.74390 (10) | 0.0210 (4) | |
H4A | 0.4814 | 0.7871 | 0.7531 | 0.031* | |
H4B | 0.4796 | 0.8891 | 0.7709 | 0.031* | |
H4C | 0.3833 | 0.8360 | 0.7648 | 0.031* | |
C5 | 0.23350 (14) | 0.69989 (13) | 0.70093 (11) | 0.0279 (4) | |
H5A | 0.2871 | 0.6622 | 0.7130 | 0.042* | |
H5B | 0.2214 | 0.7383 | 0.7461 | 0.042* | |
H5C | 0.1779 | 0.6642 | 0.6908 | 0.042* | |
C6 | 0.17635 (12) | 0.80851 (13) | 0.61133 (12) | 0.0260 (4) | |
H6A | 0.1921 | 0.8427 | 0.5642 | 0.039* | |
H6B | 0.1204 | 0.7735 | 0.6006 | 0.039* | |
H6C | 0.1639 | 0.8476 | 0.6560 | 0.039* | |
C7 | 0.57938 (12) | 0.68391 (12) | 0.60513 (11) | 0.0222 (4) | |
H7A | 0.5755 | 0.7251 | 0.5609 | 0.033* | |
H7B | 0.6177 | 0.7089 | 0.6477 | 0.033* | |
H7C | 0.6081 | 0.6298 | 0.5867 | 0.033* | |
C8 | 0.48782 (14) | 0.60495 (12) | 0.70102 (11) | 0.0249 (4) | |
H8A | 0.4239 | 0.5941 | 0.7200 | 0.037* | |
H8B | 0.5160 | 0.5503 | 0.6832 | 0.037* | |
H8C | 0.5256 | 0.6294 | 0.7442 | 0.037* | |
C9 | 0.33176 (13) | 0.81902 (12) | 0.42983 (11) | 0.0235 (4) | |
H9A | 0.2804 | 0.7826 | 0.4495 | 0.035* | |
H9B | 0.3103 | 0.8793 | 0.4258 | 0.035* | |
H9C | 0.3515 | 0.7984 | 0.3774 | 0.035* | |
C10 | 0.48868 (13) | 0.86737 (11) | 0.45761 (11) | 0.0233 (4) | |
H10A | 0.5408 | 0.8630 | 0.4954 | 0.035* | |
H10B | 0.5094 | 0.8471 | 0.4054 | 0.035* | |
H10C | 0.4683 | 0.9279 | 0.4537 | 0.035* | |
N1 | 0.34417 (10) | 0.62186 (9) | 0.50068 (8) | 0.0166 (3) | |
H1 | 0.2932 | 0.6412 | 0.4639 | 0.020* | |
N2 | 0.44334 (10) | 0.85934 (9) | 0.65782 (8) | 0.0153 (3) | |
H2 | 0.5094 | 0.8692 | 0.6399 | 0.018* | |
N3 | 0.25455 (10) | 0.75170 (9) | 0.63104 (8) | 0.0180 (3) | |
N4 | 0.48491 (10) | 0.66602 (9) | 0.63514 (8) | 0.0162 (3) | |
N5 | 0.41111 (10) | 0.81422 (9) | 0.48479 (8) | 0.0159 (3) | |
Zr1 | 0.38438 (2) | 0.74109 (2) | 0.58304 (2) | 0.01200 (5) | |
I1 | 0.68609 (2) | 0.92790 (2) | 0.65905 (2) | 0.02035 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0281 (10) | 0.0224 (10) | 0.0244 (10) | 0.0032 (8) | −0.0005 (8) | −0.0092 (8) |
C2 | 0.0509 (14) | 0.0178 (9) | 0.0256 (11) | −0.0139 (9) | −0.0001 (9) | 0.0003 (8) |
C3 | 0.0240 (10) | 0.0157 (8) | 0.0228 (10) | 0.0010 (7) | −0.0006 (8) | −0.0027 (7) |
C4 | 0.0258 (10) | 0.0226 (9) | 0.0146 (9) | −0.0021 (7) | −0.0008 (7) | −0.0024 (7) |
C5 | 0.0300 (11) | 0.0307 (10) | 0.0231 (10) | −0.0020 (8) | 0.0079 (8) | 0.0020 (8) |
C6 | 0.0211 (10) | 0.0283 (10) | 0.0287 (11) | −0.0001 (8) | −0.0007 (8) | −0.0021 (8) |
C7 | 0.0212 (10) | 0.0229 (9) | 0.0224 (10) | 0.0000 (7) | −0.0011 (8) | 0.0017 (7) |
C8 | 0.0322 (11) | 0.0215 (9) | 0.0211 (10) | 0.0050 (8) | −0.0011 (8) | 0.0070 (8) |
C9 | 0.0279 (10) | 0.0207 (9) | 0.0220 (10) | 0.0016 (8) | −0.0057 (8) | 0.0043 (7) |
C10 | 0.0255 (10) | 0.0208 (9) | 0.0236 (10) | −0.0017 (7) | 0.0052 (8) | 0.0063 (7) |
N1 | 0.0209 (8) | 0.0144 (7) | 0.0145 (7) | −0.0017 (6) | −0.0003 (6) | −0.0003 (6) |
N2 | 0.0166 (7) | 0.0154 (7) | 0.0138 (7) | −0.0006 (6) | 0.0009 (6) | −0.0006 (5) |
N3 | 0.0177 (8) | 0.0205 (8) | 0.0157 (7) | −0.0025 (6) | 0.0025 (6) | −0.0022 (6) |
N4 | 0.0202 (8) | 0.0147 (7) | 0.0136 (7) | 0.0011 (6) | −0.0014 (6) | 0.0021 (6) |
N5 | 0.0195 (8) | 0.0137 (7) | 0.0145 (7) | −0.0018 (6) | −0.0005 (6) | 0.0013 (5) |
Zr1 | 0.01412 (9) | 0.01104 (8) | 0.01085 (9) | −0.00094 (6) | 0.00062 (6) | 0.00062 (6) |
I1 | 0.01689 (7) | 0.02028 (7) | 0.02389 (8) | 0.00079 (4) | 0.00159 (4) | 0.00231 (4) |
C1—H1A | 0.9800 | C7—H7A | 0.9800 |
C1—H1B | 0.9800 | C7—H7B | 0.9800 |
C1—H1C | 0.9800 | C7—H7C | 0.9800 |
C1—N1 | 1.475 (2) | C7—N4 | 1.464 (2) |
C2—H2A | 0.9800 | C8—H8A | 0.9800 |
C2—H2B | 0.9800 | C8—H8B | 0.9800 |
C2—H2C | 0.9800 | C8—H8C | 0.9800 |
C2—N1 | 1.480 (2) | C8—N4 | 1.456 (2) |
C3—H3A | 0.9800 | C9—H9A | 0.9800 |
C3—H3B | 0.9800 | C9—H9B | 0.9800 |
C3—H3C | 0.9800 | C9—H9C | 0.9800 |
C3—N2 | 1.482 (2) | C9—N5 | 1.463 (2) |
C4—H4A | 0.9800 | C10—H10A | 0.9800 |
C4—H4B | 0.9800 | C10—H10B | 0.9800 |
C4—H4C | 0.9800 | C10—H10C | 0.9800 |
C4—N2 | 1.478 (2) | C10—N5 | 1.450 (2) |
C5—H5A | 0.9800 | N1—H1 | 1.0000 |
C5—H5B | 0.9800 | N1—Zr1 | 2.3730 (13) |
C5—H5C | 0.9800 | N2—H2 | 1.0000 |
C5—N3 | 1.454 (2) | N2—Zr1 | 2.3695 (14) |
C6—H6A | 0.9800 | N3—Zr1 | 2.0249 (14) |
C6—H6B | 0.9800 | N4—Zr1 | 2.0393 (14) |
C6—H6C | 0.9800 | N5—Zr1 | 2.0389 (14) |
C6—N3 | 1.455 (2) | ||
H1A—C1—H1B | 109.5 | N4—C8—H8B | 109.5 |
H1A—C1—H1C | 109.5 | N4—C8—H8C | 109.5 |
H1B—C1—H1C | 109.5 | H9A—C9—H9B | 109.5 |
N1—C1—H1A | 109.5 | H9A—C9—H9C | 109.5 |
N1—C1—H1B | 109.5 | H9B—C9—H9C | 109.5 |
N1—C1—H1C | 109.5 | N5—C9—H9A | 109.5 |
H2A—C2—H2B | 109.5 | N5—C9—H9B | 109.5 |
H2A—C2—H2C | 109.5 | N5—C9—H9C | 109.5 |
H2B—C2—H2C | 109.5 | H10A—C10—H10B | 109.5 |
N1—C2—H2A | 109.5 | H10A—C10—H10C | 109.5 |
N1—C2—H2B | 109.5 | H10B—C10—H10C | 109.5 |
N1—C2—H2C | 109.5 | N5—C10—H10A | 109.5 |
H3A—C3—H3B | 109.5 | N5—C10—H10B | 109.5 |
H3A—C3—H3C | 109.5 | N5—C10—H10C | 109.5 |
H3B—C3—H3C | 109.5 | C1—N1—C2 | 110.24 (14) |
N2—C3—H3A | 109.5 | C1—N1—H1 | 107.9 |
N2—C3—H3B | 109.5 | C1—N1—Zr1 | 110.52 (10) |
N2—C3—H3C | 109.5 | C2—N1—H1 | 107.9 |
H4A—C4—H4B | 109.5 | C2—N1—Zr1 | 112.27 (11) |
H4A—C4—H4C | 109.5 | Zr1—N1—H1 | 107.9 |
H4B—C4—H4C | 109.5 | C3—N2—H2 | 106.8 |
N2—C4—H4A | 109.5 | C3—N2—Zr1 | 113.23 (10) |
N2—C4—H4B | 109.5 | C4—N2—C3 | 109.66 (13) |
N2—C4—H4C | 109.5 | C4—N2—H2 | 106.8 |
H5A—C5—H5B | 109.5 | C4—N2—Zr1 | 113.04 (10) |
H5A—C5—H5C | 109.5 | Zr1—N2—H2 | 106.8 |
H5B—C5—H5C | 109.5 | C5—N3—C6 | 110.95 (14) |
N3—C5—H5A | 109.5 | C5—N3—Zr1 | 117.87 (12) |
N3—C5—H5B | 109.5 | C6—N3—Zr1 | 131.02 (12) |
N3—C5—H5C | 109.5 | C7—N4—Zr1 | 112.94 (10) |
H6A—C6—H6B | 109.5 | C8—N4—C7 | 111.04 (14) |
H6A—C6—H6C | 109.5 | C8—N4—Zr1 | 135.64 (12) |
H6B—C6—H6C | 109.5 | C9—N5—Zr1 | 113.45 (11) |
N3—C6—H6A | 109.5 | C10—N5—C9 | 111.11 (14) |
N3—C6—H6B | 109.5 | C10—N5—Zr1 | 135.34 (11) |
N3—C6—H6C | 109.5 | N2—Zr1—N1 | 172.83 (5) |
H7A—C7—H7B | 109.5 | N3—Zr1—N1 | 94.35 (5) |
H7A—C7—H7C | 109.5 | N3—Zr1—N2 | 92.81 (5) |
H7B—C7—H7C | 109.5 | N3—Zr1—N4 | 120.99 (6) |
N4—C7—H7A | 109.5 | N3—Zr1—N5 | 116.76 (6) |
N4—C7—H7B | 109.5 | N4—Zr1—N1 | 88.97 (5) |
N4—C7—H7C | 109.5 | N4—Zr1—N2 | 87.62 (5) |
H8A—C8—H8B | 109.5 | N5—Zr1—N1 | 89.88 (5) |
H8A—C8—H8C | 109.5 | N5—Zr1—N2 | 86.60 (5) |
H8B—C8—H8C | 109.5 | N5—Zr1—N4 | 122.15 (6) |
N4—C8—H8A | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···I1i | 1.00 | 2.78 | 3.5922 (14) | 138 |
N2—H2···I1 | 1.00 | 2.69 | 3.6153 (15) | 138 |
Symmetry code: (i) x−1/2, −y+3/2, −z+1. |
Acknowledgements
The authors gratefully acknowledge Mississippi State University for financial support.
References
Bruker (2013). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chisholm, M. H., Hammond, C. E. & Huffman, J. C. (1988). Polyhedron, 7, 2515–2520. CSD CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Lehn, J. M. & Hoffman, D. M. (2002). Inorg. Chem. 41, 4063–4067. CSD CrossRef PubMed CAS Google Scholar
Luconi, L., Rossin, A., Tuci, G., Germain, S., Schulz, E., Hannedouche, J. & Giambastiani, G. (2013). ChemCatChem, 5, 1142–1151. CSD CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Manna, K., Everett, W. C., Schoendorff, G., Ellern, A., Windus, T. L. & Sadow, A. D. (2013). J. Am. Chem. Soc. 135, 7235–7250. CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.