research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tris­­(di­methyl­amido-κN)­bis­­(di­methyl­amine-κN)­zirconium(IV) iodide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Mississippi State University, Mississippi State, 39762, USA
*Correspondence e-mail: khollis@chemistry.msstate.edu

Edited by S. Parkin, University of Kentucky, USA (Received 5 August 2015; accepted 11 December 2015; online 1 January 2016)

Zirconium amides have become increasingly popular and useful due to their widespread use as precursors to other zirconium complexes and their use in the production of solid oxide fuel cells (SOFCs). Herein we report the mol­ecular structure of tris­(di­methyl­amido)­bis­(di­methyl­amine)­zirconium(IV) iodide, [Zr(C2H6N)3(C2H7N)2]I. The bond lengths and bond angles are consistent with a slightly distorted trigonal–bipyramidal coordination geometry around the metal atom. N⋯I contacts of 3.6153 (15) and 3.5922 (14) Å are consistent with the presence of N—H⋯I inter­actions. These N—H⋯I inter­actions link the complex cations and iodide anions into extended chains that propagate parallel to the a axis.

1. Chemical context

Zirconium amide complexes are widely used in the synthesis of other zirconium complexes and solid oxide fuel cells (SOFCs). Additionally, many zirconium amide complexes are precatalysts for hydro­amination/cyclization of unactivated amino­alkenes (Luconi et al., 2013[Luconi, L., Rossin, A., Tuci, G., Germain, S., Schulz, E., Hannedouche, J. & Giambastiani, G. (2013). ChemCatChem, 5, 1142-1151.], Manna et al., 2013[Manna, K., Everett, W. C., Schoendorff, G., Ellern, A., Windus, T. L. & Sadow, A. D. (2013). J. Am. Chem. Soc. 135, 7235-7250.] and references therein). Perhaps one of the most well known zirconium amide complexes is tetra­kis­(di­methyl­amido)­zirconium(IV). The title compound serendipitously formed from the reaction of an excess of tetra­kis­(di­methyl­amido)­zirconium(IV) and a bis­(imidazo­l­ium) salt that we routinely perform, as illustrated in the Scheme below.

[Scheme 1]

2. Structural commentary

The zirconium complex has a slightly distorted trigonal–bipyramidal geometry with three dimethamido ligands in equatorial positions and two dimethyamine ligands in axial positions (Fig. 1[link]). Iodide provides a counterbalancing charge for the cationic zirconium complex. The Zr—amine bonds [Zr1—N1 and Zr1—N2, 2.3730 (13) and 2.3695 (14) Å, respectively] are significantly longer than those of the amide ligands [Zr1—N3 2.0249 (14), Zr1—N4 2.0393 (14), and Zr1—N5 2.0389 (14) Å]. The C—N bonds vary little, with the shortest and longest bond being only 0.026 (2) Å different [N1–C2 1.480 (2) and N3—C5 1.454 (2) Å]. The N1—Zr1—N2 angle of 172.83 (5)° and the N1—Zr1—N3 of 94.35 (5)° deviate slightly from the ideal angles of trigonal–bipyramidal geometry. The N3—Zr1—N5, N3—Zr1—N4, and N4—Zr1—N5 angles are close to 120° [116.76 (6), 120.99 (6), and 122.15 (6)°, respectively]. The C—N—Zr angles vary with the smallest and largest angles being almost 20° different [C10—N5—Zr1 135.34 (11) and C1—N1—Zr1 110.52 (10)°]. The amine nitro­gen atoms (N1 and N2) are puckered in the structure [Zr1—N1—C1—C2 −124.71 (15) and Zr1—N2—C3—C4 127.27 (15)°]. This is in contrast to the amide ligands which are essentially coplanar with the metal [Zr1—N3—C5—C6 175.88 (19), Zr1—N4—C7—C8 174.05 (17), and Zr1—N5—C9—C10 −176.79 (17)°]. One amide ligand is twisted out of the plane by roughly 40° [C9—N5—Zr1—N3 −39.10 (13)°].

[Figure 1]
Figure 1
Displacement ellipsoid plot of the title compound. All hydrogens except the amine H atoms have been omitted for clarity. Ellipsoids are shown at the 50% probability level.

3. Supra­molecular features

N⋯I contacts of 3.6153 (15) and 3.5922 (14) Å are consistent with the presence of N—H⋯I inter­actions (Table 1[link]). The `twist' of the second di­methyl­amido ligand away from the first is consistent with inter­action with a symmetry-related I atom (H2—N2—N1—H1 − 114°; Fig. 2[link]). The N—H⋯I inter­actions link the complex cations and iodide anions into extended chains that propagate parallel to the a axis.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯I1i 1.00 2.78 3.5922 (14) 138
N2—H2⋯I1 1.00 2.69 3.6153 (15) 138
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 2]
Figure 2
A packing plot of the unit cell viewed approximately down the b axis, illustrating the N—H⋯I inter­actions (grey dotted lines). All hydrogen atoms except the amine H atoms have been omitted for clarity. Displacement ellipsoids are shown at the 50% probability level.

4. Database survey

The synthesis or crystal structure of tris­(di­methyl­amido)­bis(di­methyl­amine)­zirconium(IV) iodide has not been reported as of 22 April 2015 based on a comprehensive WebCSD and Scifinder Scholar search. Similar compounds have been characterized crystallographically, for example tetra­kis­(di­methyl­amido)­zirconium(IV) and its lithium di­methyl­amido adduct (Chisholm et al., 1988[Chisholm, M. H., Hammond, C. E. & Huffman, J. C. (1988). Polyhedron, 7, 2515-2520.]) and several more zirconium-amide iodide complexes (Lehn & Hoffman, 2002[Lehn, J. M. & Hoffman, D. M. (2002). Inorg. Chem. 41, 4063-4067.]).

5. Synthesis and crystallization

1,3-Bis(3′-hexyl­imidazol-1′-yl)benzene diiodide (301 mg, 0.475 mmol), tetra­kis­(di­methyl­amido)­zirconium(IV) (317 mg, 1.24 mmol) and dry toluene (2.8 mL) were combined in an inert atmosphere of Ar and heated at 383 K for 5 min in a sealed screw-cap vial. While heating, the reaction mixture became homogeneous. Upon cooling to room temperature, an oil formed. The top layer was removed and the oil was washed with toluene (3 × 3 mL). The toluene washings were combined and allowed to sit at room temperature. Colorless crystals formed after 2 months. The mother liquor was deca­nted and the crystals were covered with paratone oil after using a few crystals for 1H NMR spectroscopy. 1H NMR spectra of the samples indicated that 2-[1,3-bis­(3′-hexyl-imidazol-2′-yl­idene)phenyl­ene](di­methyl­amido)­diiodidozirconium(IV) and 2-[1,3-bis­(3′-hexyl-imidazol-2′-yl­idene)phenyl­ene]bis­(di­methyl­amido)iodidozirconium(IV) had crystallized in the form of needles, which were not suitable for single-crystal X-ray diffraction. However, a suitable tablet-shaped crystal of tris­(di­methyl­amido)­bis­(di­methyl­ammine)zirconium(IV) iodide was selected, mounted, and analyzed.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms bonded to C and N atoms were placed at geometrically calculated positions and refined using a riding model: C—H = 0.98, N—H = 1.00 Å; Uiso(H) = 1.5Ueq(C) or 1.2Ueq(N).

Table 2
Experimental details

Crystal data
Chemical formula [Zr(C2H7N)2(C2H6N)3]I
Mr 440.52
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 100
a, b, c (Å) 14.2425 (3), 15.4113 (3), 16.8537 (3)
V3) 3699.31 (12)
Z 8
Radiation type Mo Kα
μ (mm−1) 2.26
Crystal size (mm) 0.2 × 0.1 × 0.1
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Numerical (SADABS; Bruker, 2014[Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.656, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 29665, 3620, 3319
Rint 0.027
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.036, 1.07
No. of reflections 3620
No. of parameters 154
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.34
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS and SHELXL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Tris(dimethylamido-κN)bis(dimethylamine-κN)zirconium(IV) iodide top
Crystal data top
[Zr(C2H6N)3(C2H7N)2]IDx = 1.582 Mg m3
Mr = 440.52Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9970 reflections
a = 14.2425 (3) Åθ = 2.3–26.0°
b = 15.4113 (3) ŵ = 2.26 mm1
c = 16.8537 (3) ÅT = 100 K
V = 3699.31 (12) Å3Tablet, colourless
Z = 80.2 × 0.1 × 0.1 mm
F(000) = 1760
Data collection top
Bruker APEXII CCD
diffractometer
3319 reflections with I > 2σ(I)
φ and ω scansRint = 0.027
Absorption correction: numerical
(SADABS; Bruker, 2014)
θmax = 26.0°, θmin = 2.3°
Tmin = 0.656, Tmax = 0.745h = 1717
29665 measured reflectionsk = 1819
3620 independent reflectionsl = 1820
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.015H-atom parameters constrained
wR(F2) = 0.036 w = 1/[σ2(Fo2) + (0.0158P)2 + 1.6295P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
3620 reflectionsΔρmax = 0.33 e Å3
154 parametersΔρmin = 0.34 e Å3
Special details top

Experimental. wR2(int) was 0.0590 before and 0.0411 after absorption correction. The ratio of minimum to maximum transmission is 0.8806. The λ/2 correction factor is 0.00150.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.42535 (13)0.59533 (12)0.45204 (11)0.0250 (4)
H1A0.44840.64530.42190.037*
H1B0.47540.57370.48670.037*
H1C0.40620.54940.41530.037*
C20.30833 (15)0.54710 (12)0.54677 (12)0.0314 (5)
H2A0.25450.56550.57880.047*
H2B0.28880.50100.51030.047*
H2C0.35800.52530.58170.047*
C30.39168 (13)0.94138 (11)0.64365 (11)0.0208 (4)
H3A0.38920.95310.58650.031*
H3B0.32770.93610.66440.031*
H3C0.42400.98920.67060.031*
C40.44722 (13)0.84138 (11)0.74390 (10)0.0210 (4)
H4A0.48140.78710.75310.031*
H4B0.47960.88910.77090.031*
H4C0.38330.83600.76480.031*
C50.23350 (14)0.69989 (13)0.70093 (11)0.0279 (4)
H5A0.28710.66220.71300.042*
H5B0.22140.73830.74610.042*
H5C0.17790.66420.69080.042*
C60.17635 (12)0.80851 (13)0.61133 (12)0.0260 (4)
H6A0.19210.84270.56420.039*
H6B0.12040.77350.60060.039*
H6C0.16390.84760.65600.039*
C70.57938 (12)0.68391 (12)0.60513 (11)0.0222 (4)
H7A0.57550.72510.56090.033*
H7B0.61770.70890.64770.033*
H7C0.60810.62980.58670.033*
C80.48782 (14)0.60495 (12)0.70102 (11)0.0249 (4)
H8A0.42390.59410.72000.037*
H8B0.51600.55030.68320.037*
H8C0.52560.62940.74420.037*
C90.33176 (13)0.81902 (12)0.42983 (11)0.0235 (4)
H9A0.28040.78260.44950.035*
H9B0.31030.87930.42580.035*
H9C0.35150.79840.37740.035*
C100.48868 (13)0.86737 (11)0.45761 (11)0.0233 (4)
H10A0.54080.86300.49540.035*
H10B0.50940.84710.40540.035*
H10C0.46830.92790.45370.035*
N10.34417 (10)0.62186 (9)0.50068 (8)0.0166 (3)
H10.29320.64120.46390.020*
N20.44334 (10)0.85934 (9)0.65782 (8)0.0153 (3)
H20.50940.86920.63990.018*
N30.25455 (10)0.75170 (9)0.63104 (8)0.0180 (3)
N40.48491 (10)0.66602 (9)0.63514 (8)0.0162 (3)
N50.41111 (10)0.81422 (9)0.48479 (8)0.0159 (3)
Zr10.38438 (2)0.74109 (2)0.58304 (2)0.01200 (5)
I10.68609 (2)0.92790 (2)0.65905 (2)0.02035 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0281 (10)0.0224 (10)0.0244 (10)0.0032 (8)0.0005 (8)0.0092 (8)
C20.0509 (14)0.0178 (9)0.0256 (11)0.0139 (9)0.0001 (9)0.0003 (8)
C30.0240 (10)0.0157 (8)0.0228 (10)0.0010 (7)0.0006 (8)0.0027 (7)
C40.0258 (10)0.0226 (9)0.0146 (9)0.0021 (7)0.0008 (7)0.0024 (7)
C50.0300 (11)0.0307 (10)0.0231 (10)0.0020 (8)0.0079 (8)0.0020 (8)
C60.0211 (10)0.0283 (10)0.0287 (11)0.0001 (8)0.0007 (8)0.0021 (8)
C70.0212 (10)0.0229 (9)0.0224 (10)0.0000 (7)0.0011 (8)0.0017 (7)
C80.0322 (11)0.0215 (9)0.0211 (10)0.0050 (8)0.0011 (8)0.0070 (8)
C90.0279 (10)0.0207 (9)0.0220 (10)0.0016 (8)0.0057 (8)0.0043 (7)
C100.0255 (10)0.0208 (9)0.0236 (10)0.0017 (7)0.0052 (8)0.0063 (7)
N10.0209 (8)0.0144 (7)0.0145 (7)0.0017 (6)0.0003 (6)0.0003 (6)
N20.0166 (7)0.0154 (7)0.0138 (7)0.0006 (6)0.0009 (6)0.0006 (5)
N30.0177 (8)0.0205 (8)0.0157 (7)0.0025 (6)0.0025 (6)0.0022 (6)
N40.0202 (8)0.0147 (7)0.0136 (7)0.0011 (6)0.0014 (6)0.0021 (6)
N50.0195 (8)0.0137 (7)0.0145 (7)0.0018 (6)0.0005 (6)0.0013 (5)
Zr10.01412 (9)0.01104 (8)0.01085 (9)0.00094 (6)0.00062 (6)0.00062 (6)
I10.01689 (7)0.02028 (7)0.02389 (8)0.00079 (4)0.00159 (4)0.00231 (4)
Geometric parameters (Å, º) top
C1—H1A0.9800C7—H7A0.9800
C1—H1B0.9800C7—H7B0.9800
C1—H1C0.9800C7—H7C0.9800
C1—N11.475 (2)C7—N41.464 (2)
C2—H2A0.9800C8—H8A0.9800
C2—H2B0.9800C8—H8B0.9800
C2—H2C0.9800C8—H8C0.9800
C2—N11.480 (2)C8—N41.456 (2)
C3—H3A0.9800C9—H9A0.9800
C3—H3B0.9800C9—H9B0.9800
C3—H3C0.9800C9—H9C0.9800
C3—N21.482 (2)C9—N51.463 (2)
C4—H4A0.9800C10—H10A0.9800
C4—H4B0.9800C10—H10B0.9800
C4—H4C0.9800C10—H10C0.9800
C4—N21.478 (2)C10—N51.450 (2)
C5—H5A0.9800N1—H11.0000
C5—H5B0.9800N1—Zr12.3730 (13)
C5—H5C0.9800N2—H21.0000
C5—N31.454 (2)N2—Zr12.3695 (14)
C6—H6A0.9800N3—Zr12.0249 (14)
C6—H6B0.9800N4—Zr12.0393 (14)
C6—H6C0.9800N5—Zr12.0389 (14)
C6—N31.455 (2)
H1A—C1—H1B109.5N4—C8—H8B109.5
H1A—C1—H1C109.5N4—C8—H8C109.5
H1B—C1—H1C109.5H9A—C9—H9B109.5
N1—C1—H1A109.5H9A—C9—H9C109.5
N1—C1—H1B109.5H9B—C9—H9C109.5
N1—C1—H1C109.5N5—C9—H9A109.5
H2A—C2—H2B109.5N5—C9—H9B109.5
H2A—C2—H2C109.5N5—C9—H9C109.5
H2B—C2—H2C109.5H10A—C10—H10B109.5
N1—C2—H2A109.5H10A—C10—H10C109.5
N1—C2—H2B109.5H10B—C10—H10C109.5
N1—C2—H2C109.5N5—C10—H10A109.5
H3A—C3—H3B109.5N5—C10—H10B109.5
H3A—C3—H3C109.5N5—C10—H10C109.5
H3B—C3—H3C109.5C1—N1—C2110.24 (14)
N2—C3—H3A109.5C1—N1—H1107.9
N2—C3—H3B109.5C1—N1—Zr1110.52 (10)
N2—C3—H3C109.5C2—N1—H1107.9
H4A—C4—H4B109.5C2—N1—Zr1112.27 (11)
H4A—C4—H4C109.5Zr1—N1—H1107.9
H4B—C4—H4C109.5C3—N2—H2106.8
N2—C4—H4A109.5C3—N2—Zr1113.23 (10)
N2—C4—H4B109.5C4—N2—C3109.66 (13)
N2—C4—H4C109.5C4—N2—H2106.8
H5A—C5—H5B109.5C4—N2—Zr1113.04 (10)
H5A—C5—H5C109.5Zr1—N2—H2106.8
H5B—C5—H5C109.5C5—N3—C6110.95 (14)
N3—C5—H5A109.5C5—N3—Zr1117.87 (12)
N3—C5—H5B109.5C6—N3—Zr1131.02 (12)
N3—C5—H5C109.5C7—N4—Zr1112.94 (10)
H6A—C6—H6B109.5C8—N4—C7111.04 (14)
H6A—C6—H6C109.5C8—N4—Zr1135.64 (12)
H6B—C6—H6C109.5C9—N5—Zr1113.45 (11)
N3—C6—H6A109.5C10—N5—C9111.11 (14)
N3—C6—H6B109.5C10—N5—Zr1135.34 (11)
N3—C6—H6C109.5N2—Zr1—N1172.83 (5)
H7A—C7—H7B109.5N3—Zr1—N194.35 (5)
H7A—C7—H7C109.5N3—Zr1—N292.81 (5)
H7B—C7—H7C109.5N3—Zr1—N4120.99 (6)
N4—C7—H7A109.5N3—Zr1—N5116.76 (6)
N4—C7—H7B109.5N4—Zr1—N188.97 (5)
N4—C7—H7C109.5N4—Zr1—N287.62 (5)
H8A—C8—H8B109.5N5—Zr1—N189.88 (5)
H8A—C8—H8C109.5N5—Zr1—N286.60 (5)
H8B—C8—H8C109.5N5—Zr1—N4122.15 (6)
N4—C8—H8A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···I1i1.002.783.5922 (14)138
N2—H2···I11.002.693.6153 (15)138
Symmetry code: (i) x1/2, y+3/2, z+1.
 

Acknowledgements

The authors gratefully acknowledge Mississippi State University for financial support.

References

First citationBruker (2013). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChisholm, M. H., Hammond, C. E. & Huffman, J. C. (1988). Polyhedron, 7, 2515–2520.  CSD CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLehn, J. M. & Hoffman, D. M. (2002). Inorg. Chem. 41, 4063–4067.  CSD CrossRef PubMed CAS Google Scholar
First citationLuconi, L., Rossin, A., Tuci, G., Germain, S., Schulz, E., Hannedouche, J. & Giambastiani, G. (2013). ChemCatChem, 5, 1142–1151.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationManna, K., Everett, W. C., Schoendorff, G., Ellern, A., Windus, T. L. & Sadow, A. D. (2013). J. Am. Chem. Soc. 135, 7235–7250.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds