research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of three complexes of zinc chloride with tri-tert-butyl­phosphane

CROSSMARK_Color_square_no_text.svg

aSwiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland, bUniversity of Illinois, School of Chemical Sciences, Box 59-1, 505 South Mathews Avenue, Urbana, Illinois 61801, USA, and cUniversity of Illinois, School of Chemical Sciences, Box 55-5, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
*Correspondence e-mail: aaron.finke@psi.ch

Edited by S. Parkin, University of Kentucky, USA (Received 17 November 2015; accepted 5 December 2015; online 1 January 2016)

Under anhydrous conditions and in the absence of a Lewis-base solvent, a zinc chloride complex with tri-tert-butyl­phosphane as the μ-bridged dimer is formed, viz. di-μ-chlorido-bis­[chlorido­bis­(tri-tert-butyl­phosphane)zinc], [ZnCl4(C12H27P)2], (1), which features a nearly square-shaped (ZnCl)2 cyclic core and whose Cl atoms inter­act weakly with C—H groups on the phosphane ligand. In the presence of THF, monomeric di­chlorido­(tetra­hydro­furan-κO)(tri-tert-butyl­phosphane-κP)zinc, [ZnCl2(C4H8O)(C12H27P)] or [P(tBu3)(THF)ZnCl2], (2), is formed. This slightly distorted tetra­hedral Zn complex has weak C—H⋯Cl inter­actions between the Cl atoms and phosphane and THF C—H groups. Under ambient conditions, the hydrolysed complex tri-tert-butyl­phospho­nium aqua­tri­chlorido­zincate 1,2-di­chloro­ethane monosolvate, (C12H28P)[ZnCl3(H2O)]·C2H4Cl2 or [HPtBu3]+ [(H2O)ZnCl3]·C2H4Cl2, (3), is formed. This complex forms chains of [(H2O)ZnCl3] anions from hydrogen-bonding inter­actions between the water H atoms and Cl atoms that propagate along the b axis.

1. Chemical context

Tri-tert-butyl­phosphane PtBu3 is a bulky, weak Lewis base. It has found considerable utility as a ligand for Pd-catalysed cross couplings (Fu, 2008[Fu, G. C. (2008). Acc. Chem. Res. 41, 1555-1564.]). More recently, its reactivity with bulky Lewis acids to form the so-called `frustrated Lewis pairs' has opened up new avenues of chemical reactivity (Stephan & Erker, 2015[Stephan, D. W. & Erker, G. (2015). Angew. Chem. Int. Ed. 54, 6400-6441.]). Lewis acidic complexes containing zinc have been used as ring-opening polymerization catalysts (Wu et al., 2006[Wu, J., Yu, T.-E., Chen, C.-T. & Lin, C.-C. (2006). Coord. Chem. Rev. 250, 602-626.]). The reactivity of PtBu3 with weak transition metal Lewis acids has been less well explored. The reaction of PtBu3 with ZnCl2 has been reported (Goel & Ogini, 1977[Goel, R. G. & Ogini, W. O. (1977). Inorg. Chem. 16, 1968-1972.]), but without structural characterization. Therein, [(PtBu3)(ZnCl2)] (1) was proposed to exist as the di-μ-chlorido-bridged dimer based on mol­ecular weight measurements. We describe the structure of two complexes of [(PtBu3)(ZnCl2)]: the aforementioned μ-bridged dimer (1), and the monomeric THF complex (2). The complex is sensitive to ambient moisture, and hydrolyses to form the hydrolysis product [HPtBu3]+ [(H2O)ZnCl3]·C2H4Cl2 (3) under ambient conditions from a 1,2-dichloroethane solution. The related compound [HPtBu3]+[(H2O)ZnI3] was reported from the preparation of PtBu3 and ZnI2 in benzene under ambient conditions (Goel & Ogini, 1977[Goel, R. G. & Ogini, W. O. (1977). Inorg. Chem. 16, 1968-1972.]), but no structural data were reported.

2. Structural commentary

Compound (1) is a neutral μ-bridged dimer with one PtBu3 per zinc atom. The asymmetric unit is one half of (1) with the other half related by inversion symmetry (Fig. 1[link]). The coordination sphere of the Zn is filled with two Cl atoms, one of which, Cl1, is μ-bound to both Zn atoms of (1) [Zn1—Cl1 = 2.3703 (13) Å] and the other, Cl2, is bound to only one Zn [Zn1—Cl2 = 2.2133 (14) Å]. The four-membered ring consisting of two Zn1 and two Cl1 is planar. The bond angles are only slightly distorted from the ideal values of 90° [Cl1—Zn1—Cl1i = 90.98 (4), Zn1—Cl1—Zn1i = 89.02 (4)°; symmetry code: (i) −x, −y + 1, −z + 1]. The Zn atom is a distorted tetra­hedron [P1—Zn1—Cl2 = 117.30 (5), P1—Zn1—Cl1 = 112.62 (5)°; τ4 = 0.92 (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.])]. The Zn⋯Zni distance is 3.3189 (10) Å [symmetry code: (i) −x, −y + 1, −z + 1). The Zn—P bond [Zn1—P1 = 2.3859 (13) Å] for (1) is in line with other Zn–tri­alkyl­phosphane complexes.

[Scheme 1]
[Figure 1]
Figure 1
The molecular structure of (1), showing 50% probability ellipsoids for non-H atoms and spheres of arbitrary size for H atoms. The unlabeled atoms are related by the symmetry operator (−x, 1 − y, 1 − z).

Compound (2) is a neutral tetra­hedral Zn complex with two Cl ligands, one PtBu3 ligand, and one THF ligand (Fig. 2[link]). The Zn—P bond length [Zn1—P1 = 2.4167 (9) Å] is in line with other Zn-tri­alkyl­phosphane complexes. The Zn—Cl bond lengths are very similar [Zn1—Cl1 = 2.2370 (13), Zn1—Cl2 = 2.2301 (13) Å]. The Zn environment is slightly distorted tetra­hedral due to the steric influence of the PtBu3 ligand (τ4 = 0.94) (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]).

[Figure 2]
Figure 2
The molecular structure of (2), showing 50% probability ellipsoids for non-H atoms and spheres of arbitrary size for H atoms.

The asymmetric unit of compound (3) (Fig. 3[link]) comprises three [HPtBu3]+ [(H2O)ZnCl3] ion pairs, along with three 1,2-di­chloro­ethane mol­ecules not related by symmetry (Z′ = 3). The three groups are similar in structure, connectivity, and supra­molecular inter­actions; despite this, no additional crystallographic symmetry or twinning was found using PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). The [(H2O)ZnCl3] ion has some inter­esting properties. Two of the three Cl atoms in each [(H2O)ZnCl3] ion are involved in hydrogen bonding with nearby water ligands. The Zn—Cl bonds [Zn1—Cl1 = 2.2690 (10), Zn1—Cl2 = 2.2666 (10), Zn1—Cl3 = 2.2219 (11), Zn2—Cl4 = 2.2203 (11) Å, Zn2—Cl5 = 2.2666 (10) Å, Zn2—Cl6 = 2.2699 (10), Zn3—Cl7 = 2.2199 (11) Å, Zn3—Cl8 = 2.2695 (10), Zn3—Cl9 = 2.2686 (10) Å] are affected significantly by the hydrogen bonding. The Zn—Cl bonds involved in hydrogen bonding are significantly longer (by ca 0.04 Å) than the Zn—Cl bonds not involved in hydrogen bonding. The Zn—OH2 bonds [Zn1—O1 = 2.024 (3), Zn2—O2 = 2.025 (3), Zn3—O3 = 2.028 (3) Å] are all within one s.u. of the average tetra­hedral Zn—OH2 bond length of 2.00 (4) Å. The coordination environments of the Zn atoms in the [(H2O)ZnCl3] anions are all slightly distorted tetra­hedral [τ4(Zn1) = 0.92, τ4(Zn2) = 0.93, τ4(Zn3) = 0.93] (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]). The phospho­nium hydrogen atoms were found in a difference map and restrained to be similar to each other; the average P—H bond length is 1.31 (3) Å. The 1,2-di­chloro­ethane solvent has significantly larger displacement parameters than the other two moieties, indicating disorder. Thus, each solvent mol­ecule was modeled over two discrete positions (see Refinement section).

[Figure 3]
Figure 3
The molecular structure of (3), showing one of the three mol­ecules of the asymmetric unit (Z′ = 3) showing 50% probability ellipsoids for non-H atoms and spheres of arbitrary size for H atoms.

3. Supra­molecular features

Supra­molecular features of (1) form from weak C1—H3C⋯Cl1i inter­actions (Fig. 4[link] and Table 1[link]), which creates layers in the ab plane that stack along the c axis.

Table 1
Hydrogen-bond geometry (Å, °) for (1)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3C⋯Cl1i 0.98 2.88 3.479 (6) 120
Symmetry code: (i) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 4]
Figure 4
The weak H⋯Cl inter­action in (1) with short contact shown in cyan. The second mol­ecule (left) is related to the first by the symmetry operation ([{3\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] + z).

The supra­molecular features of (2) are also based on weak inter­actions. There are weak C15—H15A⋯Cl1ii inter­actions as well as weak C12—H12A⋯Cl21 inter­actions (Fig. 5[link] and Table 2[link]). Together the weak inter­actions, where each Cl atom is an acceptor, create a three-dimensional packing structure.

Table 2
Hydrogen-bond geometry (Å, °) for (2)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯Cl2i 0.98 2.90 3.819 (5) 157
C15—H15A⋯Cl1ii 0.99 2.94 3.747 (5) 140
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+2, -y, z-{\script{1\over 2}}].
[Figure 5]
Figure 5
The weak H⋯Cl inter­actions in (2) with short contacts shown in cyan. The left mol­ecule is related to the middle one by the symmetry operation (2 − x, −y, [{1\over 2}] + z), and the right mol­ecule is related to the middle one by the symmetry operation ([{3\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] + z).

The hydrogen atoms of the water ligands in (3) undergo hydrogen-bonding inter­actions with nearby chloride ligands of the [(H2O)ZnCl3] anion, forming chains that propagate along the b-axis direction (Fig. 6[link] and Table 3[link]). The chains in each layer are staggered by half a unit cell along the b axis. The orientation of the P—H bond relative to the [(H2O)ZnCl3] ion is optimized for steric inter­actions; that is, the P—H hydrogen atom is oriented toward the center of the Zn tetra­hedron surrounded by three Cl atoms, suggesting a nucleophilic-type protonation of the phosphane, with the water ligand pointing away from the P—H bond. Each tert-butyl group is staggered slightly relative to the positions of the Cl atoms. In this arrangement, there are no hydrogen-bonding inter­actions involving the phospho­nium hydrogen. This arrangement also optimizes the ion contact between the phospho­nium cations and [(H2O)ZnCl3] anions. The disorder of the solvent mol­ecules suggests no or at best weak inter­actions between the solvent and hosts; indeed, none can be found.

Table 3
Hydrogen-bond geometry (Å, °) for (3)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1OA⋯Cl2i 0.82 (2) 2.37 (3) 3.107 (3) 150 (4)
O1—H1OB⋯Cl1ii 0.82 (2) 2.27 (2) 3.086 (3) 173 (4)
O2—H2OA⋯Cl9iii 0.82 (2) 2.33 (2) 3.120 (3) 161 (4)
O2—H2OB⋯Cl8iv 0.82 (2) 2.28 (2) 3.095 (3) 177 (4)
O3—H3OA⋯Cl5iii 0.85 (2) 2.30 (2) 3.100 (3) 158 (4)
O3—H3OB⋯Cl6iv 0.83 (2) 2.28 (2) 3.106 (3) 173 (4)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 6]
Figure 6
Chains of the three [(H2O)ZnCl3] ions formed from the hydrogen bonds between Zn—Cl and water ligands in (3), viewed along the a axis, with hydrogen-bond inter­actions shown in cyan. [HPtBu3]+ ions and 1,2-DCE solvent mol­ecules are not shown.

4. Database survey

Zinc chloride-bulky phosphane compounds tend to form ZnCl2-monophosphane complexes. Two closely related compounds include a ZnCl2-phosphane dimer (LUZVEI; Liang et al., 2010[Liang, L.-C., Lee, W.-Y., Tsai, T.-L., Hsu, Y.-L. & Lee, T.-Y. (2010). Dalton Trans. 39, 8748-8758.]), and a ZnCl2-bulky NHC dimer (XONKUI; Fliedel et al., 2014[Fliedel, C., Mameri, M., Dagorne, S. & Avilés, T. (2014). Appl. Organomet. Chem. 28, 504-511.]). In both cases, the mol­ecular geometries are very similar to that of (1). A search of the Cambridge Structural Database (CSD; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) returned 110 dimeric complexes with the general formula [TM(PR3Cl(μ-Cl)]2 (TM = transition metal). Most of these entries are complexes of group 10 metals (Ni, Pd, Pt), but, due to their different electron configuration to Zn, these tend to be mostly planar complexes. As expected, another Group 11 transition metal, Hg, forms similar complexes as Zn; there are 14 entries in the CSD with the formula [Hg(PR3Cl(μ-Cl)]2. Notably similar complexes to (1) include [Hg(P(cyclo­hex­yl)3Cl(μ-Cl)]2 (BULSOQ; Bell et al., 1983[Bell, N. A., Dee, T. D., Goldstein, M. & Nowell, I. W. (1983). Inorg. Chim. Acta, 70, 215-221.]) and [Hg(P(2,5-(OMe)2Ph)3Cl(μ-Cl)]2 (WONKEP; Bell et al., 2000[Bell, N. A., Coles, S. J., Hursthouse, M. B., Light, M. E., Malik, K. A. & Mansor, R. (2000). Polyhedron, 19, 1719-1726.]). Inter­estingly, there are no similar entries in the CSD that contain Cd.

There are three compounds in the CSD with the general formula [(thf)TMCl2]. There is a compound closely related to (2), [ZnCl2(THF)(P(SnMe3)3)] (ASEBUV; Fuhr & Fenske, 2004[Fuhr, O. & Fenske, D. (2004). Z. Anorg. Allg. Chem. 630, 244-246.]). Like (2), it forms from the reaction of ZnCl2 with P(SnMe3)3 in THF. The other two compounds are complexes of Pd (FIRDAN, Cohen et al., 2014[Cohen, O., Grossman, O., Vaccaro, L. & Gelman, D. (2014). J. Organomet. Chem. 750, 13-16.]; UHUDAC, Kim & Verkade, 2003[Kim, Y. & Verkade, J. G. (2003). J. Organomet. Chem. 669, 32-36.]).

Besides Goel's report on the hydrolysis of [(PtBu3)(ZnI2)], there are no other reports on the hydrolysis of zinc-phosphane complexes to form phospho­nium salts. The [(H2O)ZnCl3] ion is relatively uncommon in the CSD: there are 19 entries containing such an ion. However, there is one report of the hydrolysis of a tri­phenyl­phosphinomethyl–ZnCl2 dimer (CORRAD; Pattacini et al., 2009[Pattacini, R., Jie, S. & Braunstein, P. (2009). Chem. Commun. pp. 890-892.]) with water to form [Ph3PMe]+ [(H2O)ZnCl3] (CORQEG; Pattacini et al., 2009[Pattacini, R., Jie, S. & Braunstein, P. (2009). Chem. Commun. pp. 890-892.]). The [(H2O)ZnCl3] ions also form chains similar to (3) arising from hydrogen-bonding inter­actions between the two H atoms of the water ligand with two of the three Cl atoms of the ion. Likewise, the lengthening of the Zn—Cl bond as a result of hydrogen bonding as seen in (3) is also observed here. There are 67 entries in the CSD containing the moiety [HPtBu3]+, none with Zn-containing counter-ions. Most of the counter-ions of [HPtBu3]+ reported therein are anionic tetra­hedral borates arising from frustrated Lewis pair reactivity.

5. Synthesis and crystallization

The synthesis of (1) has been reported (Goel & Ogini, 1977[Goel, R. G. & Ogini, W. O. (1977). Inorg. Chem. 16, 1968-1972.]); the methods reported here are modified from the original report. Crystals of (1) were grown from slow diffusion of pentane into an equimolar solution of ZnCl2 and PtBu3 in (CH2Cl)2 at 243 K under an atmosphere of Ar gas. Crystals of (2) were grown from slow diffusion of pentane into an equimolar solution of ZnCl2 and PtBu3 in THF at 243 K under an atmosphere of Ar gas. Crystals of (3) were grown from slow diffusion of pentane into an equimolar solution of ZnCl2 and PtBu3 in 1,2-di­chloro­ethane (1,2-DCE) at room temperature under ambient conditions.

6. Refinement

Compound (1): A structural model consisting of one-half of (1) was developed. Methyl H atom positions, R—CH3, were optimized by rotation about R–-C bonds with idealized C—H, R—H and H⋯H distances. For all H atoms, Uiso(H) = 1.5Ueq(carrier).

Compound (2): A structural model consisting of the host mol­ecule was developed. The coordinating Cl atoms had elongated anisotropic displacement parameters in one direction; however, splitting the Cl positions did not significantly improve the model so it was removed from the final model. Methyl H atom positions, R—CH3, were optimized by rotation about R—C bonds with idealized C—H, R—H and H⋯H distances. Remaining H atoms were included as riding idealized contributors. Uiso(H) = 1.5Ueq(C) for methyl atoms and 1.2Ueq(carrier) for remaining H atoms. On the basis of 1704 unmerged Friedel opposites, the minor component occupancy of the inversion twin was 0.206 (13) (Flack & Bernardinelli, 2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]).

Compound (3): A structural model consisting of three ion pairs and three 1,2-DCE solvent mol­ecules per asymmetric unit was developed. Methyl H atom positions, R–-CH3, were optimized by rotation about R—C bonds with idealized C—H, R—H and H⋯H distances. Water H atoms and phospho­nium H atoms were identified in a difference Fourier map and refined. Water atom H atoms were restrained (s.u. 0.02) to a bond length of 0.84 Å. Phospho­nium H atoms were restrained to be similar (s.u. 0.01). Remaining H atoms were included as riding idealized contributors. Uiso(H) = 1.5Ueq(C) for methyl atoms and 1.2Ueq(carrier) for remaining H atoms. The 1,2-DCE mol­ecules had significantly larger displacement parameters; thus, these moieties were modeled as disordered over two discrete positions. Enhanced rigid-bond restraints (s.u. 0.004) (Thorn et al., 2012[Thorn, A., Dittrich, B. & Sheldrick, G. M. (2012). Acta Cryst. A68, 448-451.]) were imposed on displacement parameters for all disordered sites and similar displacement amplitudes (s.u. 0.01) were imposed on disordered sites overlapping by less than the sum of van der Waals radii. In addition, the C—Cl bonds in the 1,2-DCE mol­ecules and the C—C bonds were restrained to be similar (s.u. 0.01). The major:minor occupancy factor ratios for the three 1,2-DCE mol­ecules are 0.52 (3):0.48 (3), 0.119 (7):0.881 (7), and 0.38 (3):0.62 (3). Crystal data, data collection and structure refinement details are summarized in Table 4[link].

Table 4
Experimental details

  (1) (2) (3)
Crystal data
Chemical formula [ZnCl4(C12H27P)2] [ZnCl2(C4H8O)(C12H27P)] (C12H28P)[ZnCl3(H2O)]·C2H4Cl2
Mr 677.15 410.68 492.00
Crystal system, space group Orthorhombic, Pbca Orthorhombic, Pna21 Monoclinic, P21/n
Temperature (K) 193 193 123
a, b, c (Å) 14.6408 (16), 12.9891 (14), 16.8190 (18) 26.4580 (11), 8.9281 (4), 8.5790 (4) 25.3722 (5), 8.5841 (2), 32.912 (2)
α, β, γ (°) 90, 90, 90 90, 90, 90 90, 98.909 (7), 90
V3) 3198.5 (6) 2026.53 (16) 7081.7 (6)
Z 4 4 12
Radiation type Mo Kα Mo Kα Cu Kα
μ (mm−1) 1.95 1.55 7.28
Crystal size (mm) 0.22 × 0.18 × 0.09 0.47 × 0.46 × 0.27 0.18 × 0.05 × 0.02
 
Data collection
Diffractometer Bruker APEXII CCD area detector Bruker APEXII CCD area detector Rigaku CCD area detector
Absorption correction Integration (SADABS; Bruker, 2008[Bruker (2008). SADABS and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Integration (SADABS; Bruker, 2008[Bruker (2008). SADABS and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (CrystalClear; Rigaku, 2010[Rigaku (2010). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.846, 0.999 0.580, 0.754 0.354, 0.868
No. of measured, independent and observed [I > 2σ(I)] reflections 32092, 2942, 1836 23933, 3698, 3581 67698, 11604, 7131
Rint 0.169 0.038 0.083
(sin θ/λ)max−1) 0.604 0.603 0.581
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.099, 1.00 0.031, 0.075, 1.14 0.049, 0.142, 0.98
No. of reflections 2942 3698 11604
No. of parameters 154 200 760
No. of restraints 0 1 462
H-atom treatment H-atom parameters constrained H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.44, −0.42 0.69, −0.30 0.51, −0.70
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.206 (18)
Computer programs: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), CrystalClear (Rigaku, 2010[Rigaku (2010). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]), SAINT and XPREP (Bruker, 2005[Bruker (2005). SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SADABS (Bruker, 2008[Bruker (2008). SADABS and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) and TWINABS (Bruker, 2008[Bruker (2008). SADABS and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004) for (1), (2); CrystalClear (Rigaku, 2010) for (3). Cell refinement: SAINT (Bruker, 2005) for (1), (2); CrystalClear (Rigaku, 2010) for (3). Data reduction: SAINT (Bruker, 2005) for (1); SAINT (Bruker, 2005), XPREP (Bruker, 2005), SADABS (Bruker, 2008) and TWINABS (Bruker, 2008) for (2); CrystalClear (Rigaku, 2010) for (3). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Bourhis et al., 2015); software used to prepare material for publication: OLEX2 (Bourhis et al., 2015).

(1) Di-µ-chlorido-bis[chloridobis(tri-tert-butylphosphane)zinc] top
Crystal data top
[ZnCl4(C12H27P)2]Dx = 1.406 Mg m3
Mr = 677.15Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 1388 reflections
a = 14.6408 (16) Åθ = 2.4–18.9°
b = 12.9891 (14) ŵ = 1.95 mm1
c = 16.8190 (18) ÅT = 193 K
V = 3198.5 (6) Å3Block, colourless
Z = 40.22 × 0.18 × 0.09 mm
F(000) = 1424
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2942 independent reflections
Radiation source: Sealed Tube1836 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.169
Detector resolution: 8.33 pixels mm-1θmax = 25.4°, θmin = 2.4°
φ and ω scansh = 1617
Absorption correction: integration
(SADABS; Bruker, 2008)
k = 1515
Tmin = 0.846, Tmax = 0.999l = 2020
32092 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0282P)2 + 3.8822P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2942 reflectionsΔρmax = 0.44 e Å3
154 parametersΔρmin = 0.42 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.01390 (4)0.41919 (4)0.42454 (3)0.02543 (17)
Cl10.07300 (8)0.57038 (9)0.44450 (7)0.0287 (3)
Cl20.12470 (9)0.45042 (10)0.33832 (8)0.0372 (3)
P10.07908 (9)0.27135 (9)0.40137 (7)0.0229 (3)
C10.1263 (4)0.2197 (4)0.4984 (3)0.0340 (13)
C20.1597 (4)0.3112 (4)0.5491 (3)0.0412 (14)
H2A0.18400.28550.59970.062*
H2B0.20780.34820.52040.062*
H2C0.10860.35790.55950.062*
C30.2037 (4)0.1424 (4)0.4882 (3)0.0505 (17)
H3A0.22390.11830.54050.076*
H3B0.18210.08370.45680.076*
H3C0.25490.17540.46060.076*
C40.0504 (4)0.1693 (4)0.5459 (3)0.0464 (16)
H4A0.07330.15090.59880.070*
H4B0.00080.21750.55130.070*
H4C0.02970.10710.51840.070*
C50.1755 (3)0.3087 (4)0.3323 (3)0.0322 (13)
C60.2210 (4)0.2184 (4)0.2886 (3)0.0429 (15)
H6A0.26870.24480.25320.064*
H6B0.24830.17130.32750.064*
H6C0.17500.18150.25730.064*
C70.2506 (4)0.3675 (4)0.3768 (3)0.0457 (15)
H7A0.29510.39440.33860.069*
H7B0.22330.42480.40640.069*
H7C0.28140.32090.41400.069*
C80.1373 (4)0.3861 (4)0.2711 (3)0.0390 (14)
H8A0.18470.40260.23200.059*
H8B0.08450.35570.24400.059*
H8C0.11840.44920.29850.059*
C90.0043 (3)0.1705 (3)0.3523 (3)0.0301 (12)
C100.0439 (4)0.0616 (4)0.3532 (3)0.0405 (14)
H10A0.00250.01500.32500.061*
H10B0.10360.06170.32680.061*
H10C0.05100.03850.40830.061*
C110.0904 (3)0.1705 (4)0.3942 (3)0.0424 (14)
H11A0.13010.11930.36900.064*
H11B0.08250.15330.45050.064*
H11C0.11810.23890.38950.064*
C120.0166 (4)0.2009 (4)0.2653 (3)0.0393 (14)
H12A0.06310.15460.24360.059*
H12B0.03920.27190.26370.059*
H12C0.03930.19560.23350.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0231 (3)0.0292 (3)0.0240 (3)0.0022 (3)0.0020 (3)0.0028 (2)
Cl10.0262 (7)0.0331 (6)0.0267 (7)0.0034 (6)0.0036 (5)0.0036 (5)
Cl20.0343 (8)0.0456 (8)0.0318 (8)0.0039 (6)0.0110 (6)0.0018 (6)
P10.0229 (7)0.0272 (7)0.0185 (7)0.0020 (6)0.0010 (6)0.0017 (5)
C10.043 (3)0.039 (3)0.020 (3)0.013 (3)0.004 (3)0.004 (2)
C20.038 (3)0.059 (4)0.027 (3)0.011 (3)0.010 (3)0.007 (3)
C30.060 (4)0.054 (4)0.038 (4)0.032 (3)0.017 (3)0.005 (3)
C40.070 (4)0.043 (3)0.026 (3)0.004 (3)0.004 (3)0.008 (2)
C50.024 (3)0.039 (3)0.034 (3)0.006 (2)0.008 (3)0.007 (2)
C60.035 (3)0.054 (4)0.040 (3)0.001 (3)0.009 (3)0.012 (3)
C70.028 (3)0.058 (4)0.051 (4)0.007 (3)0.009 (3)0.005 (3)
C80.042 (4)0.044 (3)0.032 (3)0.003 (3)0.010 (3)0.004 (2)
C90.031 (3)0.027 (2)0.032 (3)0.003 (2)0.005 (3)0.006 (2)
C100.049 (4)0.032 (3)0.040 (3)0.005 (3)0.004 (3)0.008 (2)
C110.028 (3)0.047 (3)0.052 (4)0.010 (3)0.006 (3)0.006 (3)
C120.029 (3)0.054 (3)0.035 (3)0.003 (3)0.005 (3)0.015 (3)
Geometric parameters (Å, º) top
Zn1—Cl1i2.3703 (13)C5—C81.544 (7)
Zn1—Cl12.3639 (13)C6—H6A0.9800
Zn1—Cl22.2133 (14)C6—H6B0.9800
Zn1—P12.3859 (13)C6—H6C0.9800
Cl1—Zn1i2.3704 (13)C7—H7A0.9800
P1—C11.894 (5)C7—H7B0.9800
P1—C51.891 (5)C7—H7C0.9800
P1—C91.896 (5)C8—H8A0.9800
C1—C21.543 (7)C8—H8B0.9800
C1—C31.524 (7)C8—H8C0.9800
C1—C41.517 (7)C9—C101.528 (6)
C2—H2A0.9800C9—C111.555 (7)
C2—H2B0.9800C9—C121.546 (7)
C2—H2C0.9800C10—H10A0.9800
C3—H3A0.9800C10—H10B0.9800
C3—H3B0.9800C10—H10C0.9800
C3—H3C0.9800C11—H11A0.9800
C4—H4A0.9800C11—H11B0.9800
C4—H4B0.9800C11—H11C0.9800
C4—H4C0.9800C12—H12A0.9800
C5—C61.536 (7)C12—H12B0.9800
C5—C71.534 (7)C12—H12C0.9800
Cl1—Zn1—Cl1i90.98 (4)C5—C6—H6A109.5
Cl1—Zn1—P1112.62 (5)C5—C6—H6B109.5
Cl1i—Zn1—P1113.96 (5)C5—C6—H6C109.5
Cl2—Zn1—Cl1i109.32 (5)H6A—C6—H6B109.5
Cl2—Zn1—Cl1109.59 (5)H6A—C6—H6C109.5
Cl2—Zn1—P1117.30 (5)H6B—C6—H6C109.5
Zn1—Cl1—Zn1i89.02 (4)C5—C7—H7A109.5
C1—P1—Zn1110.64 (16)C5—C7—H7B109.5
C1—P1—C9109.9 (2)C5—C7—H7C109.5
C5—P1—Zn1108.67 (16)H7A—C7—H7B109.5
C5—P1—C1110.3 (2)H7A—C7—H7C109.5
C5—P1—C9109.9 (2)H7B—C7—H7C109.5
C9—P1—Zn1107.32 (16)C5—C8—H8A109.5
C2—C1—P1108.6 (3)C5—C8—H8B109.5
C3—C1—P1114.1 (4)C5—C8—H8C109.5
C3—C1—C2109.5 (4)H8A—C8—H8B109.5
C4—C1—P1109.9 (4)H8A—C8—H8C109.5
C4—C1—C2105.8 (4)H8B—C8—H8C109.5
C4—C1—C3108.7 (4)C10—C9—P1114.6 (4)
C1—C2—H2A109.5C10—C9—C11109.5 (4)
C1—C2—H2B109.5C10—C9—C12108.7 (4)
C1—C2—H2C109.5C11—C9—P1108.5 (3)
H2A—C2—H2B109.5C12—C9—P1110.5 (3)
H2A—C2—H2C109.5C12—C9—C11104.6 (4)
H2B—C2—H2C109.5C9—C10—H10A109.5
C1—C3—H3A109.5C9—C10—H10B109.5
C1—C3—H3B109.5C9—C10—H10C109.5
C1—C3—H3C109.5H10A—C10—H10B109.5
H3A—C3—H3B109.5H10A—C10—H10C109.5
H3A—C3—H3C109.5H10B—C10—H10C109.5
H3B—C3—H3C109.5C9—C11—H11A109.5
C1—C4—H4A109.5C9—C11—H11B109.5
C1—C4—H4B109.5C9—C11—H11C109.5
C1—C4—H4C109.5H11A—C11—H11B109.5
H4A—C4—H4B109.5H11A—C11—H11C109.5
H4A—C4—H4C109.5H11B—C11—H11C109.5
H4B—C4—H4C109.5C9—C12—H12A109.5
C6—C5—P1115.0 (3)C9—C12—H12B109.5
C6—C5—C8109.6 (4)C9—C12—H12C109.5
C7—C5—P1111.3 (4)H12A—C12—H12B109.5
C7—C5—C6107.7 (4)H12A—C12—H12C109.5
C7—C5—C8105.1 (4)H12B—C12—H12C109.5
C8—C5—P1107.8 (3)
Zn1—P1—C1—C243.7 (4)C1—P1—C9—C12167.1 (3)
Zn1—P1—C1—C3166.1 (4)C5—P1—C1—C276.6 (4)
Zn1—P1—C1—C471.7 (4)C5—P1—C1—C345.8 (5)
Zn1—P1—C5—C6159.6 (3)C5—P1—C1—C4168.0 (3)
Zn1—P1—C5—C777.7 (4)C5—P1—C9—C1077.7 (4)
Zn1—P1—C5—C837.0 (4)C5—P1—C9—C11159.6 (3)
Zn1—P1—C9—C10164.3 (3)C5—P1—C9—C1245.5 (4)
Zn1—P1—C9—C1141.6 (4)C9—P1—C1—C2162.0 (3)
Zn1—P1—C9—C1272.6 (3)C9—P1—C1—C375.6 (4)
C1—P1—C5—C679.0 (4)C9—P1—C1—C446.7 (4)
C1—P1—C5—C743.8 (4)C9—P1—C5—C642.4 (4)
C1—P1—C5—C8158.5 (3)C9—P1—C5—C7165.1 (3)
C1—P1—C9—C1043.9 (4)C9—P1—C5—C880.1 (4)
C1—P1—C9—C1178.8 (4)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3C···Cl1ii0.982.883.479 (6)120
Symmetry code: (ii) x1/2, y1/2, z.
(2) Dichlorido(tetrahydrofuran-κO)(tri-tert-butylphosphane-κP)zinc top
Crystal data top
[ZnCl2(C4H8O)(C12H27P)]Dx = 1.346 Mg m3
Mr = 410.68Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 9968 reflections
a = 26.4580 (11) Åθ = 2.8–27.6°
b = 8.9281 (4) ŵ = 1.55 mm1
c = 8.5790 (4) ÅT = 193 K
V = 2026.53 (16) Å3Block, colourless
Z = 40.47 × 0.46 × 0.27 mm
F(000) = 872
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3698 independent reflections
Radiation source: sealed tube3581 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 8.33 pixels mm-1θmax = 25.4°, θmin = 2.4°
ω and φ scansh = 3131
Absorption correction: integration
(SADABS; Bruker, 2008)
k = 1010
Tmin = 0.580, Tmax = 0.754l = 1010
23933 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0318P)2 + 1.5653P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075(Δ/σ)max = 0.001
S = 1.14Δρmax = 0.69 e Å3
3698 reflectionsΔρmin = 0.30 e Å3
200 parametersAbsolute structure: Refined as an inversion twin.
1 restraintAbsolute structure parameter: 0.206 (18)
Special details top

Experimental. One distinct cell was identified using APEX2 (Bruker, 2004). Six frame series were integrated and filtered for statistical outliers using SAINT (Bruker, 2005) then corrected for absorption by integration using SHELXTL/XPREP V2005/2 (Bruker, 2005) before using SAINT/SADABS (Bruker, 2005) to sort, merge, and scale the combined data. No decay correction was applied.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.88274 (2)0.23668 (4)0.83834 (8)0.02419 (14)
Cl10.95342 (5)0.17357 (16)0.96546 (16)0.0477 (4)
Cl20.81608 (5)0.08915 (12)0.88009 (17)0.0494 (4)
P10.86195 (3)0.49987 (10)0.85327 (14)0.0168 (2)
O10.90182 (12)0.1814 (4)0.6087 (4)0.0266 (7)
C10.91147 (16)0.6144 (5)0.7468 (5)0.0257 (9)
C20.96425 (16)0.5523 (5)0.7851 (6)0.0342 (11)
H2A0.98970.60480.72240.051*
H2B0.96530.44500.76120.051*
H2C0.97140.56750.89600.051*
C30.9103 (2)0.7834 (5)0.7839 (6)0.0357 (12)
H3A0.93520.83550.71900.054*
H3B0.91850.79900.89410.054*
H3C0.87650.82320.76210.054*
C40.9053 (2)0.5948 (6)0.5701 (6)0.0369 (12)
H4A0.93250.64820.51610.055*
H4B0.87260.63580.53760.055*
H4C0.90680.48810.54390.055*
C50.86075 (17)0.5543 (5)1.0665 (5)0.0256 (9)
C60.9152 (2)0.5661 (7)1.1274 (6)0.0414 (15)
H6A0.91470.57781.24100.062*
H6B0.93170.65311.08010.062*
H6C0.93380.47501.10000.062*
C70.8333 (2)0.7020 (6)1.1031 (7)0.0370 (11)
H7A0.83810.72741.21320.055*
H7B0.79710.69051.08150.055*
H7C0.84710.78231.03780.055*
C80.8363 (3)0.4261 (6)1.1571 (6)0.0464 (14)
H8A0.83710.44881.26890.070*
H8B0.85500.33321.13740.070*
H8C0.80120.41401.12330.070*
C90.79715 (16)0.5310 (5)0.7633 (6)0.0292 (10)
C100.7853 (2)0.6937 (6)0.7234 (8)0.0479 (14)
H10A0.75070.70110.68410.072*
H10B0.80890.72890.64320.072*
H10C0.78890.75560.81700.072*
C110.75568 (15)0.4718 (6)0.8714 (7)0.0433 (14)
H11A0.72290.47800.81840.065*
H11B0.75470.53230.96670.065*
H11C0.76280.36720.89830.065*
C120.79414 (19)0.4325 (6)0.6168 (6)0.0356 (12)
H12A0.76110.44560.56720.053*
H12B0.79860.32720.64600.053*
H12C0.82080.46190.54370.053*
C130.86717 (17)0.1097 (6)0.4985 (6)0.0344 (11)
H13A0.84610.18560.44480.041*
H13B0.84460.03840.55300.041*
C140.90056 (19)0.0286 (6)0.3834 (6)0.0390 (12)
H14A0.88530.02810.27800.047*
H14B0.90690.07590.41670.047*
C150.94860 (18)0.1199 (6)0.3865 (6)0.0360 (11)
H15A0.97790.06010.35050.043*
H15B0.94550.21070.32090.043*
C160.95347 (17)0.1599 (6)0.5564 (6)0.0299 (10)
H16A0.97000.07810.61530.036*
H16B0.97340.25280.56970.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0309 (2)0.0208 (2)0.0208 (2)0.00455 (17)0.0058 (3)0.0024 (3)
Cl10.0617 (8)0.0524 (7)0.0288 (6)0.0304 (6)0.0150 (6)0.0030 (6)
Cl20.0564 (7)0.0252 (5)0.0666 (11)0.0062 (5)0.0398 (7)0.0007 (6)
P10.0177 (4)0.0191 (4)0.0138 (5)0.0009 (3)0.0005 (5)0.0008 (5)
O10.0250 (15)0.0374 (17)0.0175 (15)0.0053 (13)0.0032 (13)0.0063 (13)
C10.028 (2)0.027 (2)0.022 (2)0.0059 (18)0.0090 (18)0.0005 (18)
C20.025 (2)0.039 (3)0.039 (3)0.0069 (19)0.0081 (19)0.009 (2)
C30.046 (3)0.027 (2)0.035 (3)0.007 (2)0.007 (2)0.0012 (19)
C40.055 (3)0.033 (3)0.023 (3)0.006 (2)0.011 (2)0.004 (2)
C50.032 (2)0.030 (2)0.014 (2)0.0020 (19)0.0022 (17)0.0040 (18)
C60.044 (3)0.061 (4)0.019 (3)0.013 (3)0.012 (2)0.008 (2)
C70.042 (3)0.035 (3)0.034 (3)0.005 (2)0.004 (2)0.013 (2)
C80.076 (4)0.043 (3)0.020 (2)0.005 (3)0.015 (3)0.003 (2)
C90.018 (2)0.031 (2)0.039 (3)0.0066 (17)0.0133 (19)0.008 (2)
C100.049 (3)0.038 (3)0.056 (4)0.016 (2)0.028 (3)0.003 (3)
C110.020 (2)0.046 (3)0.063 (4)0.0013 (18)0.002 (2)0.021 (3)
C120.032 (2)0.040 (3)0.036 (3)0.003 (2)0.018 (2)0.007 (2)
C130.029 (2)0.047 (3)0.028 (3)0.008 (2)0.0043 (19)0.009 (2)
C140.049 (3)0.039 (3)0.029 (3)0.002 (2)0.001 (2)0.011 (2)
C150.037 (2)0.046 (3)0.025 (3)0.004 (2)0.0101 (19)0.004 (2)
C160.023 (2)0.037 (2)0.029 (3)0.0011 (19)0.0047 (18)0.004 (2)
Geometric parameters (Å, º) top
Zn1—Cl12.2370 (13)C7—H7B0.9800
Zn1—Cl22.2301 (13)C7—H7C0.9800
Zn1—P12.4167 (9)C8—H8A0.9800
Zn1—O12.093 (3)C8—H8B0.9800
P1—C11.896 (4)C8—H8C0.9800
P1—C51.893 (5)C9—C101.525 (7)
P1—C91.900 (4)C9—C111.531 (7)
O1—C131.464 (5)C9—C121.536 (7)
O1—C161.451 (5)C10—H10A0.9800
C1—C21.538 (6)C10—H10B0.9800
C1—C31.543 (6)C10—H10C0.9800
C1—C41.535 (7)C11—H11A0.9800
C2—H2A0.9800C11—H11B0.9800
C2—H2B0.9800C11—H11C0.9800
C2—H2C0.9800C12—H12A0.9800
C3—H3A0.9800C12—H12B0.9800
C3—H3B0.9800C12—H12C0.9800
C3—H3C0.9800C13—H13A0.9900
C4—H4A0.9800C13—H13B0.9900
C4—H4B0.9800C13—C141.510 (7)
C4—H4C0.9800C14—H14A0.9900
C5—C61.535 (7)C14—H14B0.9900
C5—C71.538 (6)C14—C151.510 (7)
C5—C81.528 (7)C15—H15A0.9900
C6—H6A0.9800C15—H15B0.9900
C6—H6B0.9800C15—C161.507 (6)
C6—H6C0.9800C16—H16A0.9900
C7—H7A0.9800C16—H16B0.9900
Cl1—Zn1—P1114.16 (5)H7B—C7—H7C109.5
Cl2—Zn1—Cl1115.72 (6)C5—C8—H8A109.5
Cl2—Zn1—P1112.69 (4)C5—C8—H8B109.5
O1—Zn1—Cl1101.41 (10)C5—C8—H8C109.5
O1—Zn1—Cl2101.70 (9)H8A—C8—H8B109.5
O1—Zn1—P1109.51 (10)H8A—C8—H8C109.5
C1—P1—Zn1109.97 (14)H8B—C8—H8C109.5
C1—P1—C9110.4 (2)C10—C9—P1114.5 (3)
C5—P1—Zn1107.75 (15)C10—C9—C11108.6 (4)
C5—P1—C1109.8 (2)C10—C9—C12110.5 (4)
C5—P1—C9109.9 (2)C11—C9—P1110.5 (3)
C9—P1—Zn1109.02 (14)C11—C9—C12105.1 (4)
C13—O1—Zn1124.0 (3)C12—C9—P1107.2 (3)
C16—O1—Zn1123.3 (3)C9—C10—H10A109.5
C16—O1—C13109.4 (3)C9—C10—H10B109.5
C2—C1—P1109.3 (3)C9—C10—H10C109.5
C2—C1—C3109.1 (4)H10A—C10—H10B109.5
C3—C1—P1114.5 (3)H10A—C10—H10C109.5
C4—C1—P1109.9 (3)H10B—C10—H10C109.5
C4—C1—C2105.5 (4)C9—C11—H11A109.5
C4—C1—C3108.2 (4)C9—C11—H11B109.5
C1—C2—H2A109.5C9—C11—H11C109.5
C1—C2—H2B109.5H11A—C11—H11B109.5
C1—C2—H2C109.5H11A—C11—H11C109.5
H2A—C2—H2B109.5H11B—C11—H11C109.5
H2A—C2—H2C109.5C9—C12—H12A109.5
H2B—C2—H2C109.5C9—C12—H12B109.5
C1—C3—H3A109.5C9—C12—H12C109.5
C1—C3—H3B109.5H12A—C12—H12B109.5
C1—C3—H3C109.5H12A—C12—H12C109.5
H3A—C3—H3B109.5H12B—C12—H12C109.5
H3A—C3—H3C109.5O1—C13—H13A110.7
H3B—C3—H3C109.5O1—C13—H13B110.7
C1—C4—H4A109.5O1—C13—C14105.4 (4)
C1—C4—H4B109.5H13A—C13—H13B108.8
C1—C4—H4C109.5C14—C13—H13A110.7
H4A—C4—H4B109.5C14—C13—H13B110.7
H4A—C4—H4C109.5C13—C14—H14A111.2
H4B—C4—H4C109.5C13—C14—H14B111.2
C6—C5—P1109.3 (3)C13—C14—C15102.8 (4)
C6—C5—C7108.4 (4)H14A—C14—H14B109.1
C7—C5—P1115.2 (3)C15—C14—H14A111.2
C8—C5—P1107.8 (3)C15—C14—H14B111.2
C8—C5—C6106.0 (4)C14—C15—H15A111.3
C8—C5—C7109.8 (4)C14—C15—H15B111.3
C5—C6—H6A109.5H15A—C15—H15B109.2
C5—C6—H6B109.5C16—C15—C14102.5 (4)
C5—C6—H6C109.5C16—C15—H15A111.3
H6A—C6—H6B109.5C16—C15—H15B111.3
H6A—C6—H6C109.5O1—C16—C15104.5 (4)
H6B—C6—H6C109.5O1—C16—H16A110.9
C5—C7—H7A109.5O1—C16—H16B110.9
C5—C7—H7B109.5C15—C16—H16A110.9
C5—C7—H7C109.5C15—C16—H16B110.9
H7A—C7—H7B109.5H16A—C16—H16B108.9
H7A—C7—H7C109.5
Zn1—P1—C1—C242.1 (3)C5—P1—C1—C346.3 (4)
Zn1—P1—C1—C3164.7 (3)C5—P1—C1—C4168.4 (3)
Zn1—P1—C1—C473.2 (3)C9—P1—C1—C2162.4 (3)
Zn1—P1—C5—C675.2 (4)C9—P1—C1—C374.9 (4)
Zn1—P1—C5—C7162.5 (3)C9—P1—C1—C447.1 (4)
Zn1—P1—C5—C839.6 (4)C9—P1—C5—C6166.2 (3)
Zn1—O1—C13—C14154.5 (3)C9—P1—C5—C743.9 (4)
Zn1—O1—C16—C15179.1 (3)C9—P1—C5—C879.1 (4)
O1—C13—C14—C1527.6 (5)C13—O1—C16—C1518.7 (5)
C1—P1—C5—C644.6 (4)C13—C14—C15—C1638.5 (5)
C1—P1—C5—C777.7 (4)C14—C15—C16—O135.4 (5)
C1—P1—C5—C8159.3 (3)C16—O1—C13—C145.7 (5)
C5—P1—C1—C276.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···Cl2i0.982.903.819 (5)157
C15—H15A···Cl1ii0.992.943.747 (5)140
Symmetry codes: (i) x+3/2, y+1/2, z1/2; (ii) x+2, y, z1/2.
(3) Tri-tert-butylphosphonium aquatrichloridozincate 1,2-dichloroethane monosolvate top
Crystal data top
(C12H28P)[ZnCl3(H2O)]·C2H4Cl2F(000) = 3072
Mr = 492.00Dx = 1.384 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54187 Å
a = 25.3722 (5) ÅCell parameters from 2316 reflections
b = 8.5841 (2) Åθ = 23.1–67.3°
c = 32.912 (2) ŵ = 7.28 mm1
β = 98.909 (7)°T = 123 K
V = 7081.7 (6) Å3Needle, colourless
Z = 120.18 × 0.05 × 0.02 mm
Data collection top
Rigaku CCD area-detector
diffractometer
11604 independent reflections
Radiation source: sealed tube7131 reflections with I > 2σ(I)
Focusing graphite monochromatorRint = 0.083
Detector resolution: 22.2222 pixels mm-1θmax = 63.7°, θmin = 6.5°
ω and φ scansh = 2929
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2010)
k = 99
Tmin = 0.354, Tmax = 0.868l = 3738
67698 measured reflections
Refinement top
Refinement on F2462 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0718P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.002
11604 reflectionsΔρmax = 0.51 e Å3
760 parametersΔρmin = 0.70 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.29184 (2)0.04314 (6)0.78814 (2)0.03885 (16)
Cl10.25307 (4)0.14800 (11)0.82087 (3)0.0522 (3)
Cl20.28227 (4)0.27034 (11)0.82132 (3)0.0457 (3)
Cl30.37414 (4)0.00389 (13)0.77610 (3)0.0548 (3)
O10.24204 (11)0.0627 (3)0.73407 (8)0.0445 (7)
H1OA0.2483 (16)0.017 (3)0.7219 (11)0.053*
H1OB0.2458 (16)0.137 (3)0.7191 (10)0.053*
Zn20.71198 (2)0.04606 (6)0.87883 (2)0.03871 (16)
Cl40.63093 (4)0.01180 (13)0.89180 (3)0.0547 (3)
Cl50.71685 (4)0.27780 (11)0.84662 (3)0.0485 (3)
Cl60.75106 (4)0.13977 (11)0.84448 (3)0.0516 (3)
O20.76256 (11)0.0670 (3)0.93254 (8)0.0437 (7)
H2OA0.7606 (16)0.016 (3)0.9446 (11)0.052*
H2OB0.7594 (15)0.146 (3)0.9460 (10)0.052*
Zn30.71002 (2)0.04753 (6)0.54563 (2)0.03781 (16)
Cl70.62855 (4)0.00691 (12)0.55823 (3)0.0513 (3)
Cl80.75010 (4)0.14341 (11)0.51378 (3)0.0474 (3)
Cl90.71658 (4)0.27393 (11)0.51121 (3)0.0453 (3)
O30.75974 (11)0.0739 (3)0.59969 (8)0.0426 (7)
H3OA0.7567 (16)0.010 (3)0.6128 (11)0.051*
H3OB0.7559 (15)0.155 (3)0.6128 (10)0.051*
Cl1B0.0853 (6)0.0049 (19)0.8119 (4)0.059 (2)0.52 (3)
Cl2B0.0469 (4)0.0155 (16)0.7101 (4)0.0494 (17)0.52 (3)
C37B0.1183 (7)0.091 (2)0.7729 (4)0.057 (3)0.52 (3)
H37A0.15630.10810.78420.068*0.52 (3)
H37B0.10190.19300.76490.068*0.52 (3)
C38B0.1147 (5)0.011 (2)0.7355 (4)0.054 (3)0.52 (3)
H38A0.13800.03110.71660.065*0.52 (3)
H38B0.12680.11740.74360.065*0.52 (3)
Cl1A0.0777 (6)0.033 (2)0.8115 (4)0.057 (2)0.48 (3)
Cl2A0.0519 (5)0.058 (2)0.7128 (5)0.058 (2)0.48 (3)
C37A0.1256 (7)0.057 (2)0.7772 (5)0.058 (3)0.48 (3)
H37C0.16220.04720.79250.070*0.48 (3)
H37D0.12200.16240.76450.070*0.48 (3)
C38A0.1159 (5)0.065 (2)0.7445 (5)0.056 (3)0.48 (3)
H38C0.14370.05480.72650.067*0.48 (3)
H38D0.12030.16820.75780.067*0.48 (3)
Cl3B0.95522 (14)0.0663 (5)0.95863 (12)0.0614 (8)0.881 (7)
Cl4B0.9273 (2)0.0185 (7)0.85820 (13)0.0625 (11)0.881 (7)
C39B0.89081 (19)0.0740 (7)0.92710 (18)0.0607 (16)0.881 (7)
H39A0.86290.06440.94490.073*0.881 (7)
H39B0.88640.17670.91330.073*0.881 (7)
C40B0.88298 (18)0.0527 (7)0.89497 (14)0.0564 (15)0.881 (7)
H40A0.84560.05260.88090.068*0.881 (7)
H40B0.89060.15560.90820.068*0.881 (7)
Cl4A0.9330 (16)0.044 (5)0.8654 (10)0.051 (4)0.119 (7)
Cl3A0.9579 (9)0.017 (3)0.9553 (7)0.035 (4)0.119 (7)
C39A0.8883 (10)0.007 (6)0.9349 (10)0.055 (3)0.119 (7)
H39C0.87460.10050.93530.066*0.119 (7)
H39D0.86690.07620.95020.066*0.119 (7)
C40A0.8882 (14)0.064 (5)0.8920 (9)0.057 (3)0.119 (7)
H40C0.89850.17510.89280.068*0.119 (7)
H40D0.85160.05550.87660.068*0.119 (7)
Cl5A0.9498 (6)0.027 (2)0.6225 (4)0.052 (2)0.38 (3)
Cl6A0.9263 (6)0.038 (2)0.5236 (4)0.060 (3)0.38 (3)
C41A0.8869 (6)0.053 (3)0.5893 (6)0.057 (3)0.38 (3)
H41A0.85780.04770.60610.069*0.38 (3)
H41B0.88620.15780.57680.069*0.38 (3)
C42A0.8763 (10)0.064 (3)0.5558 (6)0.060 (3)0.38 (3)
H42A0.84030.04860.53980.072*0.38 (3)
H42B0.87820.17110.56730.072*0.38 (3)
Cl5B0.9580 (3)0.0244 (15)0.6235 (3)0.0596 (16)0.62 (3)
Cl6B0.9182 (4)0.0052 (12)0.5223 (3)0.0643 (18)0.62 (3)
C41B0.8897 (3)0.0012 (19)0.5993 (4)0.058 (2)0.62 (3)
H41C0.86540.04320.61740.069*0.62 (3)
H41D0.88150.11080.59460.069*0.62 (3)
C42B0.8817 (6)0.0858 (19)0.5595 (4)0.062 (3)0.62 (3)
H42C0.84320.08500.54810.075*0.62 (3)
H42D0.89260.19570.56460.075*0.62 (3)
P10.38352 (4)0.01636 (11)0.90951 (3)0.0318 (2)
H1P0.3525 (12)0.005 (3)0.8743 (8)0.038*
C10.39955 (14)0.2288 (4)0.91048 (11)0.0388 (9)
C20.44827 (15)0.2657 (5)0.94268 (12)0.0529 (11)
H2A0.47960.21180.93550.063*
H2B0.44170.23080.96980.063*
H2C0.45470.37840.94330.063*
C30.35169 (14)0.3250 (4)0.92003 (12)0.0477 (10)
H3A0.34490.30060.94790.057*
H3B0.32000.29940.90010.057*
H3C0.35970.43630.91820.057*
C40.40893 (16)0.2786 (5)0.86721 (11)0.0533 (11)
H4A0.41110.39240.86600.064*
H4B0.37930.24190.84680.064*
H4C0.44240.23310.86140.064*
C50.34024 (14)0.0466 (4)0.94810 (10)0.0366 (9)
C60.36314 (16)0.0051 (5)0.99169 (12)0.0508 (11)
H6A0.34000.03181.01090.061*
H6B0.36520.11910.99270.061*
H6C0.39900.03880.99940.061*
C70.33375 (14)0.2249 (4)0.94671 (11)0.0464 (10)
H7A0.36850.27420.95560.056*
H7B0.31980.25750.91860.056*
H7C0.30880.25650.96510.056*
C80.28426 (14)0.0216 (4)0.93549 (12)0.0439 (10)
H8A0.25970.02540.95220.053*
H8B0.27190.00080.90640.053*
H8C0.28540.13460.93980.053*
C90.44243 (13)0.1135 (4)0.90654 (11)0.0362 (9)
C100.47453 (15)0.1455 (5)0.94889 (11)0.0546 (12)
H10A0.50520.21190.94590.065*
H10B0.45180.19850.96610.065*
H10C0.48720.04680.96180.065*
C110.42058 (15)0.2665 (4)0.88554 (12)0.0520 (11)
H11A0.45040.33270.88060.062*
H11B0.39820.24240.85930.062*
H11C0.39930.32150.90340.062*
C120.47862 (14)0.0434 (5)0.87794 (11)0.0480 (11)
H12A0.49480.05280.89010.058*
H12B0.45740.02020.85110.058*
H12C0.50670.11810.87430.058*
P20.61653 (4)0.00937 (11)0.75750 (3)0.0357 (3)
H2P0.6500 (12)0.002 (4)0.7919 (9)0.043*
C130.56962 (15)0.1673 (5)0.76841 (12)0.0480 (11)
C140.52888 (15)0.1050 (5)0.79467 (12)0.0599 (12)
H14A0.50670.19110.80190.072*
H14B0.54790.05760.81980.072*
H14C0.50610.02660.77900.072*
C150.53920 (16)0.2341 (5)0.72847 (12)0.0589 (12)
H15A0.51690.15260.71370.071*
H15B0.56470.27230.71120.071*
H15C0.51650.32040.73490.071*
C160.60288 (16)0.2926 (4)0.79426 (12)0.0555 (12)
H16A0.57900.37160.80290.067*
H16B0.62720.34180.77770.067*
H16C0.62350.24400.81860.067*
C170.58579 (17)0.1869 (5)0.74906 (12)0.0550 (11)
C180.57213 (17)0.2461 (5)0.79071 (12)0.0656 (13)
H18A0.56150.35590.78810.079*
H18B0.54270.18440.79840.079*
H18C0.60350.23550.81200.079*
C190.53501 (17)0.1839 (5)0.71654 (13)0.0711 (14)
H19A0.54400.14660.69030.085*
H19B0.50870.11390.72570.085*
H19C0.52010.28920.71300.085*
C200.62687 (18)0.3035 (4)0.73614 (12)0.0641 (13)
H20A0.65900.30430.75700.077*
H20B0.63640.27170.70960.077*
H20C0.61120.40810.73370.077*
C210.66109 (15)0.0665 (4)0.71933 (11)0.0443 (10)
C220.71302 (15)0.0295 (5)0.72902 (12)0.0494 (11)
H22A0.70490.14030.72430.059*
H22B0.72890.01350.75780.059*
H22C0.73830.00420.71110.059*
C230.67727 (15)0.2390 (4)0.72459 (11)0.0487 (11)
H23A0.70200.26500.70550.058*
H23B0.69470.25710.75290.058*
H23C0.64540.30460.71870.058*
C240.63430 (17)0.0377 (5)0.67480 (12)0.0558 (12)
H24A0.60050.09480.66950.067*
H24B0.62750.07400.67060.067*
H24C0.65790.07380.65580.067*
P30.61839 (4)0.01954 (11)0.42420 (3)0.0311 (2)
H3P0.6475 (12)0.009 (3)0.4597 (8)0.037*
C250.55825 (14)0.1067 (4)0.42541 (11)0.0376 (9)
C260.57715 (15)0.2653 (4)0.44388 (12)0.0525 (11)
H26A0.59900.24950.47080.063*
H26B0.59840.31810.42550.063*
H26C0.54610.32950.44700.063*
C270.52264 (14)0.0382 (5)0.45445 (11)0.0474 (11)
H27A0.49270.10890.45610.057*
H27B0.50890.06320.44400.057*
H27C0.54350.02500.48190.057*
C280.52641 (15)0.1280 (5)0.38235 (11)0.0515 (11)
H28A0.49460.19070.38410.062*
H28B0.54860.18110.36480.062*
H28C0.51570.02580.37060.062*
C290.60386 (14)0.2337 (4)0.42467 (11)0.0370 (9)
C300.65241 (14)0.3281 (4)0.41584 (12)0.0459 (10)
H30A0.65890.30630.38780.055*
H30B0.68390.29850.43550.055*
H30C0.64540.43950.41860.055*
C310.55516 (15)0.2753 (4)0.39264 (12)0.0497 (11)
H31A0.52350.22290.39970.060*
H31B0.56140.24120.36540.060*
H31C0.54960.38830.39250.060*
C320.59471 (15)0.2798 (4)0.46828 (11)0.0493 (11)
H32A0.59050.39300.46970.059*
H32B0.62540.24710.48830.059*
H32C0.56240.22850.47460.059*
C330.66206 (14)0.0426 (4)0.38595 (11)0.0371 (9)
C340.66708 (15)0.2203 (4)0.38602 (11)0.0465 (10)
H34A0.63230.26660.37560.056*
H34B0.67920.25670.41410.056*
H34C0.69300.25130.36830.056*
C350.71849 (14)0.0222 (4)0.39901 (12)0.0415 (10)
H35A0.73000.00180.42830.050*
H35B0.71840.13480.39400.050*
H35C0.74310.02850.38300.050*
C360.63950 (16)0.0148 (5)0.34197 (11)0.0517 (11)
H36A0.66230.02260.32260.062*
H36B0.63860.12890.34160.062*
H36C0.60330.02570.33400.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0415 (3)0.0430 (3)0.0322 (3)0.0021 (2)0.0062 (2)0.0010 (2)
Cl10.0715 (7)0.0485 (6)0.0376 (6)0.0113 (5)0.0117 (5)0.0014 (4)
Cl20.0556 (6)0.0456 (6)0.0373 (5)0.0081 (5)0.0119 (5)0.0038 (4)
Cl30.0462 (6)0.0697 (7)0.0492 (7)0.0127 (5)0.0097 (5)0.0043 (5)
O10.0489 (17)0.048 (2)0.0355 (17)0.0021 (15)0.0033 (14)0.0030 (13)
Zn20.0400 (3)0.0443 (3)0.0320 (3)0.0022 (2)0.0059 (2)0.0003 (2)
Cl40.0430 (6)0.0744 (8)0.0478 (7)0.0118 (5)0.0102 (5)0.0053 (5)
Cl50.0595 (7)0.0472 (6)0.0399 (6)0.0085 (5)0.0115 (5)0.0028 (4)
Cl60.0661 (7)0.0491 (6)0.0405 (6)0.0072 (5)0.0112 (5)0.0030 (5)
O20.0476 (16)0.0423 (19)0.0396 (18)0.0021 (15)0.0012 (13)0.0041 (13)
Zn30.0372 (3)0.0435 (3)0.0331 (3)0.0026 (2)0.0067 (2)0.0004 (2)
Cl70.0412 (6)0.0630 (7)0.0513 (7)0.0091 (5)0.0119 (5)0.0004 (5)
Cl80.0590 (7)0.0461 (6)0.0384 (5)0.0053 (5)0.0120 (5)0.0014 (4)
Cl90.0551 (6)0.0455 (6)0.0376 (5)0.0071 (5)0.0142 (5)0.0028 (4)
O30.0454 (16)0.0445 (19)0.0369 (17)0.0014 (15)0.0029 (13)0.0024 (12)
Cl1B0.065 (4)0.068 (4)0.043 (3)0.003 (3)0.009 (2)0.011 (3)
Cl2B0.039 (2)0.067 (5)0.043 (2)0.005 (2)0.0073 (17)0.000 (3)
C37B0.045 (4)0.073 (6)0.051 (4)0.006 (4)0.004 (4)0.008 (4)
C38B0.040 (4)0.078 (7)0.045 (4)0.002 (4)0.006 (3)0.009 (4)
Cl1A0.056 (3)0.073 (5)0.041 (3)0.004 (3)0.006 (2)0.014 (3)
Cl2A0.049 (3)0.080 (6)0.044 (3)0.009 (3)0.003 (2)0.012 (4)
C37A0.046 (4)0.075 (6)0.052 (4)0.003 (4)0.004 (4)0.004 (4)
C38A0.043 (4)0.072 (6)0.052 (5)0.002 (4)0.010 (4)0.001 (4)
Cl3B0.0523 (11)0.089 (2)0.0457 (12)0.0071 (14)0.0169 (9)0.0158 (14)
Cl4B0.067 (2)0.085 (2)0.0352 (16)0.0038 (14)0.0082 (15)0.0016 (12)
C39B0.043 (3)0.083 (4)0.059 (3)0.005 (3)0.015 (2)0.014 (3)
C40B0.045 (3)0.070 (4)0.054 (3)0.005 (3)0.009 (2)0.007 (2)
Cl4A0.051 (7)0.061 (9)0.040 (9)0.017 (6)0.000 (7)0.007 (7)
Cl3A0.022 (5)0.060 (9)0.021 (5)0.015 (5)0.004 (4)0.027 (5)
C39A0.037 (5)0.076 (6)0.051 (5)0.002 (5)0.003 (5)0.009 (5)
C40A0.044 (5)0.074 (6)0.051 (5)0.003 (5)0.003 (5)0.011 (5)
Cl5A0.044 (4)0.078 (6)0.034 (2)0.016 (3)0.009 (3)0.003 (3)
Cl6A0.049 (3)0.093 (6)0.038 (4)0.005 (4)0.010 (3)0.025 (4)
C41A0.040 (4)0.085 (7)0.049 (5)0.001 (5)0.016 (4)0.007 (5)
C42A0.042 (5)0.087 (6)0.049 (5)0.001 (4)0.004 (4)0.003 (4)
Cl5B0.0352 (17)0.096 (5)0.0475 (15)0.000 (2)0.0064 (12)0.006 (3)
Cl6B0.069 (4)0.079 (3)0.045 (2)0.012 (3)0.0077 (18)0.016 (2)
C41B0.040 (3)0.091 (6)0.042 (4)0.003 (4)0.006 (3)0.005 (4)
C42B0.044 (4)0.090 (5)0.052 (4)0.007 (4)0.002 (3)0.011 (3)
P10.0305 (6)0.0356 (6)0.0302 (6)0.0023 (4)0.0080 (5)0.0020 (4)
C10.037 (2)0.037 (2)0.043 (2)0.0040 (18)0.0054 (18)0.0059 (18)
C20.050 (3)0.048 (3)0.060 (3)0.005 (2)0.008 (2)0.008 (2)
C30.044 (2)0.038 (2)0.062 (3)0.0019 (19)0.009 (2)0.001 (2)
C40.062 (3)0.046 (3)0.055 (3)0.005 (2)0.018 (2)0.006 (2)
C50.042 (2)0.041 (2)0.030 (2)0.0003 (19)0.0141 (18)0.0025 (17)
C60.049 (3)0.066 (3)0.040 (3)0.005 (2)0.013 (2)0.002 (2)
C70.042 (2)0.047 (3)0.053 (3)0.000 (2)0.017 (2)0.0093 (19)
C80.034 (2)0.055 (3)0.045 (3)0.0057 (19)0.014 (2)0.0081 (19)
C90.030 (2)0.040 (2)0.041 (2)0.0006 (17)0.0104 (18)0.0001 (18)
C100.046 (3)0.067 (3)0.051 (3)0.017 (2)0.012 (2)0.007 (2)
C110.047 (3)0.051 (3)0.062 (3)0.002 (2)0.020 (2)0.007 (2)
C120.037 (2)0.061 (3)0.050 (3)0.002 (2)0.018 (2)0.001 (2)
P20.0354 (6)0.0385 (6)0.0332 (6)0.0001 (4)0.0051 (5)0.0025 (4)
C130.043 (2)0.056 (3)0.047 (3)0.009 (2)0.014 (2)0.013 (2)
C140.048 (3)0.075 (3)0.061 (3)0.014 (2)0.024 (2)0.021 (2)
C150.053 (3)0.070 (3)0.056 (3)0.016 (2)0.014 (2)0.016 (2)
C160.070 (3)0.049 (3)0.051 (3)0.015 (2)0.023 (2)0.002 (2)
C170.062 (3)0.047 (3)0.051 (3)0.012 (2)0.007 (2)0.007 (2)
C180.068 (3)0.062 (3)0.063 (3)0.021 (3)0.000 (3)0.012 (2)
C190.071 (3)0.071 (3)0.064 (3)0.025 (3)0.013 (3)0.004 (3)
C200.090 (4)0.039 (3)0.059 (3)0.002 (2)0.003 (3)0.004 (2)
C210.050 (3)0.048 (3)0.037 (2)0.003 (2)0.013 (2)0.0036 (18)
C220.044 (3)0.061 (3)0.045 (3)0.013 (2)0.014 (2)0.000 (2)
C230.048 (3)0.052 (3)0.050 (3)0.004 (2)0.019 (2)0.003 (2)
C240.061 (3)0.067 (3)0.038 (3)0.003 (2)0.003 (2)0.004 (2)
P30.0293 (5)0.0349 (5)0.0297 (6)0.0011 (4)0.0070 (4)0.0016 (4)
C250.035 (2)0.040 (2)0.040 (2)0.0016 (18)0.0122 (18)0.0009 (18)
C260.043 (3)0.052 (3)0.066 (3)0.005 (2)0.022 (2)0.008 (2)
C270.036 (2)0.061 (3)0.048 (3)0.000 (2)0.015 (2)0.002 (2)
C280.042 (2)0.064 (3)0.049 (3)0.013 (2)0.005 (2)0.008 (2)
C290.034 (2)0.034 (2)0.042 (2)0.0028 (17)0.0040 (18)0.0025 (17)
C300.044 (2)0.033 (2)0.061 (3)0.0018 (19)0.010 (2)0.0046 (19)
C310.044 (3)0.048 (3)0.056 (3)0.003 (2)0.004 (2)0.006 (2)
C320.046 (3)0.046 (3)0.058 (3)0.005 (2)0.013 (2)0.004 (2)
C330.035 (2)0.043 (2)0.035 (2)0.0020 (19)0.0113 (18)0.0051 (18)
C340.046 (2)0.044 (3)0.053 (3)0.001 (2)0.018 (2)0.0106 (19)
C350.036 (2)0.045 (2)0.046 (3)0.0022 (19)0.0138 (19)0.0045 (19)
C360.054 (3)0.069 (3)0.033 (2)0.006 (2)0.011 (2)0.001 (2)
Geometric parameters (Å, º) top
Zn1—Cl12.2690 (10)C9—C121.536 (5)
Zn1—Cl22.2666 (10)C10—H10A0.9800
Zn1—Cl32.2219 (11)C10—H10B0.9800
Zn1—O12.024 (3)C10—H10C0.9800
O1—H1OA0.817 (18)C11—H11A0.9800
O1—H1OB0.821 (18)C11—H11B0.9800
Zn2—Cl42.2203 (11)C11—H11C0.9800
Zn2—Cl52.2666 (10)C12—H12A0.9800
Zn2—Cl62.2699 (10)C12—H12B0.9800
Zn2—O22.025 (3)C12—H12C0.9800
O2—H2OA0.822 (18)P2—H2P1.31 (3)
O2—H2OB0.821 (18)P2—C131.875 (4)
Zn3—Cl72.2199 (10)P2—C171.860 (4)
Zn3—Cl82.2695 (10)P2—C211.881 (4)
Zn3—Cl92.2686 (10)C13—C141.542 (5)
Zn3—O32.028 (3)C13—C151.529 (5)
O3—H3OA0.847 (18)C13—C161.539 (5)
O3—H3OB0.833 (18)C14—H14A0.9800
Cl1B—C37B1.797 (7)C14—H14B0.9800
Cl2B—C38B1.793 (6)C14—H14C0.9800
C37B—H37A0.9900C15—H15A0.9800
C37B—H37B0.9900C15—H15B0.9800
C37B—C38B1.496 (7)C15—H15C0.9800
C38B—H38A0.9900C16—H16A0.9800
C38B—H38B0.9900C16—H16B0.9800
Cl1A—C37A1.798 (7)C16—H16C0.9800
Cl2A—C38A1.789 (7)C17—C181.551 (5)
C37A—H37C0.9900C17—C191.542 (5)
C37A—H37D0.9900C17—C201.551 (5)
C37A—C38A1.495 (8)C18—H18A0.9800
C38A—H38C0.9900C18—H18B0.9800
C38A—H38D0.9900C18—H18C0.9800
Cl3B—C39B1.796 (4)C19—H19A0.9800
Cl4B—C40B1.799 (5)C19—H19B0.9800
C39B—H39A0.9900C19—H19C0.9800
C39B—H39B0.9900C20—H20A0.9800
C39B—C40B1.509 (6)C20—H20B0.9800
C40B—H40A0.9900C20—H20C0.9800
C40B—H40B0.9900C21—C221.545 (5)
Cl4A—C40A1.797 (8)C21—C231.538 (5)
Cl3A—C39A1.792 (8)C21—C241.537 (5)
C39A—H39C0.9900C22—H22A0.9800
C39A—H39D0.9900C22—H22B0.9800
C39A—C40A1.493 (9)C22—H22C0.9800
C40A—H40C0.9900C23—H23A0.9800
C40A—H40D0.9900C23—H23B0.9800
Cl5A—C41A1.803 (7)C23—H23C0.9800
Cl6A—C42A1.790 (7)C24—H24A0.9800
C41A—H41A0.9900C24—H24B0.9800
C41A—H41B0.9900C24—H24C0.9800
C41A—C42A1.486 (8)P3—H3P1.31 (3)
C42A—H42A0.9900P3—C251.877 (4)
C42A—H42B0.9900P3—C291.876 (4)
Cl5B—C41B1.803 (6)P3—C331.879 (3)
Cl6B—C42B1.787 (6)C25—C261.537 (5)
C41B—H41C0.9900C25—C271.531 (5)
C41B—H41D0.9900C25—C281.530 (5)
C41B—C42B1.484 (7)C26—H26A0.9800
C42B—H42C0.9900C26—H26B0.9800
C42B—H42D0.9900C26—H26C0.9800
P1—H1P1.31 (3)C27—H27A0.9800
P1—C11.868 (4)C27—H27B0.9800
P1—C51.882 (3)C27—H27C0.9800
P1—C91.879 (3)C28—H28A0.9800
C1—C21.532 (5)C28—H28B0.9800
C1—C31.541 (5)C28—H28C0.9800
C1—C41.540 (5)C29—C301.539 (5)
C2—H2A0.9800C29—C311.537 (5)
C2—H2B0.9800C29—C321.541 (5)
C2—H2C0.9800C30—H30A0.9800
C3—H3A0.9800C30—H30B0.9800
C3—H3B0.9800C30—H30C0.9800
C3—H3C0.9800C31—H31A0.9800
C4—H4A0.9800C31—H31B0.9800
C4—H4B0.9800C31—H31C0.9800
C4—H4C0.9800C32—H32A0.9800
C5—C61.528 (5)C32—H32B0.9800
C5—C71.539 (5)C32—H32C0.9800
C5—C81.533 (5)C33—C341.530 (5)
C6—H6A0.9800C33—C351.534 (5)
C6—H6B0.9800C33—C361.552 (5)
C6—H6C0.9800C34—H34A0.9800
C7—H7A0.9800C34—H34B0.9800
C7—H7B0.9800C34—H34C0.9800
C7—H7C0.9800C35—H35A0.9800
C8—H8A0.9800C35—H35B0.9800
C8—H8B0.9800C35—H35C0.9800
C8—H8C0.9800C36—H36A0.9800
C9—C101.527 (5)C36—H36B0.9800
C9—C111.547 (5)C36—H36C0.9800
Cl2—Zn1—Cl1107.87 (4)C9—C11—H11C109.5
Cl3—Zn1—Cl1116.22 (4)H11A—C11—H11B109.5
Cl3—Zn1—Cl2114.58 (4)H11A—C11—H11C109.5
O1—Zn1—Cl1102.71 (8)H11B—C11—H11C109.5
O1—Zn1—Cl2104.68 (8)C9—C12—H12A109.5
O1—Zn1—Cl3109.53 (8)C9—C12—H12B109.5
Zn1—O1—H1OA103 (3)C9—C12—H12C109.5
Zn1—O1—H1OB118 (3)H12A—C12—H12B109.5
H1OA—O1—H1OB108 (4)H12A—C12—H12C109.5
Cl4—Zn2—Cl5113.92 (4)H12B—C12—H12C109.5
Cl4—Zn2—Cl6115.31 (4)C13—P2—H2P103.5 (14)
Cl5—Zn2—Cl6108.91 (4)C13—P2—C21113.85 (17)
O2—Zn2—Cl4109.43 (8)C17—P2—H2P105.3 (14)
O2—Zn2—Cl5104.91 (8)C17—P2—C13114.82 (19)
O2—Zn2—Cl6103.33 (8)C17—P2—C21114.73 (18)
Zn2—O2—H2OA105 (3)C21—P2—H2P102.7 (14)
Zn2—O2—H2OB116 (3)C14—C13—P2110.9 (3)
H2OA—O2—H2OB116 (4)C15—C13—P2110.9 (3)
Cl7—Zn3—Cl8115.54 (4)C15—C13—C14108.6 (3)
Cl7—Zn3—Cl9114.59 (4)C15—C13—C16111.9 (3)
Cl9—Zn3—Cl8108.37 (4)C16—C13—P2107.5 (3)
O3—Zn3—Cl7109.29 (8)C16—C13—C14106.9 (3)
O3—Zn3—Cl8102.93 (8)C13—C14—H14A109.5
O3—Zn3—Cl9104.98 (8)C13—C14—H14B109.5
Zn3—O3—H3OA105 (3)C13—C14—H14C109.5
Zn3—O3—H3OB116 (3)H14A—C14—H14B109.5
H3OA—O3—H3OB115 (4)H14A—C14—H14C109.5
Cl1B—C37B—H37A109.2H14B—C14—H14C109.5
Cl1B—C37B—H37B109.2C13—C15—H15A109.5
H37A—C37B—H37B107.9C13—C15—H15B109.5
C38B—C37B—Cl1B112.0 (11)C13—C15—H15C109.5
C38B—C37B—H37A109.2H15A—C15—H15B109.5
C38B—C37B—H37B109.2H15A—C15—H15C109.5
Cl2B—C38B—H38A109.8H15B—C15—H15C109.5
Cl2B—C38B—H38B109.8C13—C16—H16A109.5
C37B—C38B—Cl2B109.2 (10)C13—C16—H16B109.5
C37B—C38B—H38A109.8C13—C16—H16C109.5
C37B—C38B—H38B109.8H16A—C16—H16B109.5
H38A—C38B—H38B108.3H16A—C16—H16C109.5
Cl1A—C37A—H37C110.0H16B—C16—H16C109.5
Cl1A—C37A—H37D110.0C18—C17—P2108.1 (3)
H37C—C37A—H37D108.4C18—C17—C20106.4 (3)
C38A—C37A—Cl1A108.6 (12)C19—C17—P2112.0 (3)
C38A—C37A—H37C110.0C19—C17—C18110.0 (3)
C38A—C37A—H37D110.0C19—C17—C20110.2 (4)
Cl2A—C38A—H38C108.4C20—C17—P2110.0 (3)
Cl2A—C38A—H38D108.4C17—C18—H18A109.5
C37A—C38A—Cl2A115.4 (11)C17—C18—H18B109.5
C37A—C38A—H38C108.4C17—C18—H18C109.5
C37A—C38A—H38D108.4H18A—C18—H18B109.5
H38C—C38A—H38D107.5H18A—C18—H18C109.5
Cl3B—C39B—H39A109.0H18B—C18—H18C109.5
Cl3B—C39B—H39B109.0C17—C19—H19A109.5
H39A—C39B—H39B107.8C17—C19—H19B109.5
C40B—C39B—Cl3B112.8 (4)C17—C19—H19C109.5
C40B—C39B—H39A109.0H19A—C19—H19B109.5
C40B—C39B—H39B109.0H19A—C19—H19C109.5
Cl4B—C40B—H40A109.9H19B—C19—H19C109.5
Cl4B—C40B—H40B109.9C17—C20—H20A109.5
C39B—C40B—Cl4B109.0 (5)C17—C20—H20B109.5
C39B—C40B—H40A109.9C17—C20—H20C109.5
C39B—C40B—H40B109.9H20A—C20—H20B109.5
H40A—C40B—H40B108.3H20A—C20—H20C109.5
Cl3A—C39A—H39C111.5H20B—C20—H20C109.5
Cl3A—C39A—H39D111.5C22—C21—P2107.7 (2)
H39C—C39A—H39D109.3C23—C21—P2110.7 (2)
C40A—C39A—Cl3A101 (2)C23—C21—C22106.6 (3)
C40A—C39A—H39C111.5C24—C21—P2111.8 (3)
C40A—C39A—H39D111.5C24—C21—C22110.3 (3)
Cl4A—C40A—H40C109.0C24—C21—C23109.5 (3)
Cl4A—C40A—H40D109.0C21—C22—H22A109.5
C39A—C40A—Cl4A113 (3)C21—C22—H22B109.5
C39A—C40A—H40C109.0C21—C22—H22C109.5
C39A—C40A—H40D109.0H22A—C22—H22B109.5
H40C—C40A—H40D107.8H22A—C22—H22C109.5
Cl5A—C41A—H41A108.7H22B—C22—H22C109.5
Cl5A—C41A—H41B108.7C21—C23—H23A109.5
H41A—C41A—H41B107.6C21—C23—H23B109.5
C42A—C41A—Cl5A114.2 (14)C21—C23—H23C109.5
C42A—C41A—H41A108.7H23A—C23—H23B109.5
C42A—C41A—H41B108.7H23A—C23—H23C109.5
Cl6A—C42A—H42A110.4H23B—C23—H23C109.5
Cl6A—C42A—H42B110.4C21—C24—H24A109.5
C41A—C42A—Cl6A106.7 (14)C21—C24—H24B109.5
C41A—C42A—H42A110.4C21—C24—H24C109.5
C41A—C42A—H42B110.4H24A—C24—H24B109.5
H42A—C42A—H42B108.6H24A—C24—H24C109.5
Cl5B—C41B—H41C109.9H24B—C24—H24C109.5
Cl5B—C41B—H41D109.9C25—P3—H3P102.8 (13)
H41C—C41B—H41D108.3C25—P3—C33114.59 (16)
C42B—C41B—Cl5B109.0 (9)C29—P3—H3P105.2 (13)
C42B—C41B—H41C109.9C29—P3—C25113.83 (16)
C42B—C41B—H41D109.9C29—P3—C33114.89 (16)
Cl6B—C42B—H42C108.8C33—P3—H3P103.6 (13)
Cl6B—C42B—H42D108.8C26—C25—P3108.3 (2)
C41B—C42B—Cl6B113.7 (8)C27—C25—P3110.6 (3)
C41B—C42B—H42C108.8C27—C25—C26105.7 (3)
C41B—C42B—H42D108.8C28—C25—P3111.3 (2)
H42C—C42B—H42D107.7C28—C25—C26110.4 (3)
C1—P1—H1P104.7 (13)C28—C25—C27110.3 (3)
C1—P1—C5114.66 (16)C25—C26—H26A109.5
C1—P1—C9114.03 (16)C25—C26—H26B109.5
C5—P1—H1P102.8 (14)C25—C26—H26C109.5
C9—P1—H1P104.2 (14)H26A—C26—H26B109.5
C9—P1—C5114.61 (16)H26A—C26—H26C109.5
C2—C1—P1111.4 (3)H26B—C26—H26C109.5
C2—C1—C3109.0 (3)C25—C27—H27A109.5
C2—C1—C4111.0 (3)C25—C27—H27B109.5
C3—C1—P1110.5 (2)C25—C27—H27C109.5
C4—C1—P1108.6 (2)H27A—C27—H27B109.5
C4—C1—C3106.2 (3)H27A—C27—H27C109.5
C1—C2—H2A109.5H27B—C27—H27C109.5
C1—C2—H2B109.5C25—C28—H28A109.5
C1—C2—H2C109.5C25—C28—H28B109.5
H2A—C2—H2B109.5C25—C28—H28C109.5
H2A—C2—H2C109.5H28A—C28—H28B109.5
H2B—C2—H2C109.5H28A—C28—H28C109.5
C1—C3—H3A109.5H28B—C28—H28C109.5
C1—C3—H3B109.5C30—C29—P3110.5 (2)
C1—C3—H3C109.5C30—C29—C32106.3 (3)
H3A—C3—H3B109.5C31—C29—P3111.1 (2)
H3A—C3—H3C109.5C31—C29—C30109.3 (3)
H3B—C3—H3C109.5C31—C29—C32111.0 (3)
C1—C4—H4A109.5C32—C29—P3108.5 (2)
C1—C4—H4B109.5C29—C30—H30A109.5
C1—C4—H4C109.5C29—C30—H30B109.5
H4A—C4—H4B109.5C29—C30—H30C109.5
H4A—C4—H4C109.5H30A—C30—H30B109.5
H4B—C4—H4C109.5H30A—C30—H30C109.5
C6—C5—P1111.9 (3)H30B—C30—H30C109.5
C6—C5—C7109.9 (3)C29—C31—H31A109.5
C6—C5—C8110.2 (3)C29—C31—H31B109.5
C7—C5—P1109.7 (2)C29—C31—H31C109.5
C8—C5—P1108.7 (2)H31A—C31—H31B109.5
C8—C5—C7106.3 (3)H31A—C31—H31C109.5
C5—C6—H6A109.5H31B—C31—H31C109.5
C5—C6—H6B109.5C29—C32—H32A109.5
C5—C6—H6C109.5C29—C32—H32B109.5
H6A—C6—H6B109.5C29—C32—H32C109.5
H6A—C6—H6C109.5H32A—C32—H32B109.5
H6B—C6—H6C109.5H32A—C32—H32C109.5
C5—C7—H7A109.5H32B—C32—H32C109.5
C5—C7—H7B109.5C34—C33—P3109.8 (2)
C5—C7—H7C109.5C34—C33—C35106.7 (3)
H7A—C7—H7B109.5C34—C33—C36109.7 (3)
H7A—C7—H7C109.5C35—C33—P3109.3 (2)
H7B—C7—H7C109.5C35—C33—C36109.9 (3)
C5—C8—H8A109.5C36—C33—P3111.4 (3)
C5—C8—H8B109.5C33—C34—H34A109.5
C5—C8—H8C109.5C33—C34—H34B109.5
H8A—C8—H8B109.5C33—C34—H34C109.5
H8A—C8—H8C109.5H34A—C34—H34B109.5
H8B—C8—H8C109.5H34A—C34—H34C109.5
C10—C9—P1112.1 (2)H34B—C34—H34C109.5
C10—C9—C11111.0 (3)C33—C35—H35A109.5
C10—C9—C12110.2 (3)C33—C35—H35B109.5
C11—C9—P1107.1 (2)C33—C35—H35C109.5
C12—C9—P1110.8 (3)H35A—C35—H35B109.5
C12—C9—C11105.4 (3)H35A—C35—H35C109.5
C9—C10—H10A109.5H35B—C35—H35C109.5
C9—C10—H10B109.5C33—C36—H36A109.5
C9—C10—H10C109.5C33—C36—H36B109.5
H10A—C10—H10B109.5C33—C36—H36C109.5
H10A—C10—H10C109.5H36A—C36—H36B109.5
H10B—C10—H10C109.5H36A—C36—H36C109.5
C9—C11—H11A109.5H36B—C36—H36C109.5
C9—C11—H11B109.5
Cl1B—C37B—C38B—Cl2B68.6 (12)C17—P2—C13—C1436.4 (3)
Cl1A—C37A—C38A—Cl2A61.4 (14)C17—P2—C13—C1584.4 (3)
Cl3B—C39B—C40B—Cl4B67.1 (6)C17—P2—C13—C16152.9 (2)
Cl3A—C39A—C40A—Cl4A54 (4)C17—P2—C21—C2272.8 (3)
Cl5A—C41A—C42A—Cl6A64 (2)C17—P2—C21—C23171.0 (3)
Cl5B—C41B—C42B—Cl6B66.1 (12)C17—P2—C21—C2448.6 (3)
C1—P1—C5—C653.1 (3)C21—P2—C13—C14171.5 (3)
C1—P1—C5—C7175.4 (2)C21—P2—C13—C1550.7 (3)
C1—P1—C5—C868.7 (3)C21—P2—C13—C1672.0 (3)
C1—P1—C9—C1084.8 (3)C21—P2—C17—C18155.5 (3)
C1—P1—C9—C11153.2 (2)C21—P2—C17—C1983.1 (3)
C1—P1—C9—C1238.7 (3)C21—P2—C17—C2039.7 (3)
C5—P1—C1—C285.5 (3)C25—P3—C29—C30169.9 (2)
C5—P1—C1—C335.8 (3)C25—P3—C29—C3148.4 (3)
C5—P1—C1—C4152.0 (2)C25—P3—C29—C3273.9 (3)
C5—P1—C9—C1050.2 (3)C25—P3—C33—C3440.7 (3)
C5—P1—C9—C1171.8 (3)C25—P3—C33—C35157.4 (2)
C5—P1—C9—C12173.7 (2)C25—P3—C33—C3681.0 (3)
C9—P1—C1—C249.5 (3)C29—P3—C25—C26155.1 (2)
C9—P1—C1—C3170.7 (2)C29—P3—C25—C2739.6 (3)
C9—P1—C1—C473.1 (3)C29—P3—C25—C2883.4 (3)
C9—P1—C5—C681.5 (3)C29—P3—C33—C34175.3 (2)
C9—P1—C5—C740.7 (3)C29—P3—C33—C3568.0 (3)
C9—P1—C5—C8156.6 (2)C29—P3—C33—C3653.6 (3)
C13—P2—C17—C1869.8 (3)C33—P3—C25—C2669.8 (3)
C13—P2—C17—C1951.6 (4)C33—P3—C25—C27174.7 (2)
C13—P2—C17—C20174.4 (3)C33—P3—C25—C2851.7 (3)
C13—P2—C21—C22152.0 (3)C33—P3—C29—C3034.9 (3)
C13—P2—C21—C2335.8 (3)C33—P3—C29—C3186.6 (3)
C13—P2—C21—C2486.5 (3)C33—P3—C29—C32151.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1OA···Cl2i0.82 (2)2.37 (3)3.107 (3)150 (4)
O1—H1OB···Cl1ii0.82 (2)2.27 (2)3.086 (3)173 (4)
O2—H2OA···Cl9iii0.82 (2)2.33 (2)3.120 (3)161 (4)
O2—H2OB···Cl8iv0.82 (2)2.28 (2)3.095 (3)177 (4)
O3—H3OA···Cl5iii0.85 (2)2.30 (2)3.100 (3)158 (4)
O3—H3OB···Cl6iv0.83 (2)2.28 (2)3.106 (3)173 (4)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1/2, y1/2, z+3/2; (iii) x+3/2, y+1/2, z+3/2; (iv) x+3/2, y1/2, z+3/2.
 

Acknowledgements

This work was supported by the National Science Foundation under NSF Award Nos. CBET-0730667 and CHE-0642413.

References

First citationBell, N. A., Coles, S. J., Hursthouse, M. B., Light, M. E., Malik, K. A. & Mansor, R. (2000). Polyhedron, 19, 1719–1726.  CSD CrossRef CAS Google Scholar
First citationBell, N. A., Dee, T. D., Goldstein, M. & Nowell, I. W. (1983). Inorg. Chim. Acta, 70, 215–221.  CSD CrossRef CAS Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). SADABS and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCohen, O., Grossman, O., Vaccaro, L. & Gelman, D. (2014). J. Organomet. Chem. 750, 13–16.  CSD CrossRef CAS Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFliedel, C., Mameri, M., Dagorne, S. & Avilés, T. (2014). Appl. Organomet. Chem. 28, 504–511.  CSD CrossRef CAS Google Scholar
First citationFu, G. C. (2008). Acc. Chem. Res. 41, 1555–1564.  CrossRef PubMed CAS Google Scholar
First citationFuhr, O. & Fenske, D. (2004). Z. Anorg. Allg. Chem. 630, 244–246.  CSD CrossRef CAS Google Scholar
First citationGoel, R. G. & Ogini, W. O. (1977). Inorg. Chem. 16, 1968–1972.  CrossRef CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, Y. & Verkade, J. G. (2003). J. Organomet. Chem. 669, 32–36.  CSD CrossRef CAS Google Scholar
First citationLiang, L.-C., Lee, W.-Y., Tsai, T.-L., Hsu, Y.-L. & Lee, T.-Y. (2010). Dalton Trans. 39, 8748–8758.  CSD CrossRef CAS PubMed Google Scholar
First citationPattacini, R., Jie, S. & Braunstein, P. (2009). Chem. Commun. pp. 890–892.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (2010). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStephan, D. W. & Erker, G. (2015). Angew. Chem. Int. Ed. 54, 6400–6441.  Web of Science CrossRef CAS Google Scholar
First citationThorn, A., Dittrich, B. & Sheldrick, G. M. (2012). Acta Cryst. A68, 448–451.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, J., Yu, T.-E., Chen, C.-T. & Lin, C.-C. (2006). Coord. Chem. Rev. 250, 602–626.  CrossRef CAS Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds