research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [bis­­(2-amino­ethyl-κN)(2-{[4-(tri­fluoro­meth­yl)benzyl­­idene]amino}­eth­yl)amine-κN]di­chlorido­copper(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry & Physics, Saint Marys College, Notre Dame, IN 46556, USA, bDepartment of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA, and cDepartment of Chemistry, Youngstown State University, Youngstown, OH 44555, USA
*Correspondence e-mail: koshin@saintmarys.edu

Edited by S. Parkin, University of Kentucky, USA (Received 4 December 2015; accepted 15 December 2015; online 1 January 2016)

The CuII atom in the title compound, [CuCl2(C14H21F3N4)], adopts a coordination geometry that is between distorted square-based pyramidal and very Jahn–Teller-elongated octa­hedral. It is coordinated by three N atoms from the bis­(2-amino­eth­yl)(2-{[4-(tri­fluoro­meth­yl)benzyl­idene]amino}­eth­yl)amine and two chloride ligands. The two crystallographically unique copper complexes present in the asymmetric unit exhibit noticeable differences in the coordination bond lengths. Considering the CuII atoms as having square-pyramidal geometry, the basal Cu—Cl bond lengths are typical [2.2701 (12) and 2.2777 (12) Å], while the apical distances are considerably elongated [2.8505 (12) and 2.9415 (12) Å]. For each mol­ecule, a CuII atom from inversion-related mol­ecules are in nearby proximity to the remaining axial CuII sites, but the Cu⋯Cl distances are very long [3.4056 (12) and 3.1645 (12) Å], attributable to van der Waals contacts. Nonetheless, these contacts appear to have some structure-directing properties, leading to association into dimers. These dimers associate via stacking of the aromatic rings to form extended zigzag chains.

1. Chemical context

The introduction of a fluorine atom or perfluoro­alkyl group into a compound can bring about significant changes in its physical, chemical, and biological properties, making organo-fluorine derivatives suitable for diverse applications in areas of material science, agrochemistry, and medicinal chemistry (Singh & Shreeve, 2000[Singh, R. P. & Shreeve, J. M. (2000). Tetrahedron, 56, 7613-7632.]). Modifications include polarity and conformational changes, increased chemical or metabolic stability, and enhanced lipophilicity (Böhm et al., 2004[Böhm, H. J., Banner, D., Bendels, S., Kansy, M., Kuhn, B., Müller, K., Obst-Sander, U. & Stahl, M. (2004). ChemBioChem, 5, 637-643.]). As many as 30–40% of agrochemicals and 20% of pharmaceuticals on the market are estimated to contain fluorine, including three of the top eight drugs sold in 2007 (Dubinia et al., 2008[Dubinina, G. G., Ogikubo, J. & Vicic, D. A. (2008). Organometallics, 27, 6233-6235.]). Fluorination can also serve as a diagnostic tool, enabling techniques such as 19F NMR spectroscopy and positron emission tomography, with some organo-fluorine compounds exhibiting inter­esting NMR spectra (Purser et al., 2008[Purser, S., Moore, P. R., Swallow, S. & Gouverneur, V. (2008). Chem. Soc. Rev. 37, 320-330.]). The simplest perfluoro­alkyl group, tri­fluoro­methyl, has become an important structural component for many compounds, mainly because of its polar influence and effect on lipophilicity (Dolbier, 2009[Dolbier, W. R. (2009). Guide to Fluorine NMR for Organic Chemists, ch. 5, pp. 137-176. Hoboken: John Wiley and Sons.]). Its electronegativity and relatively small size (only two and one-half times the volume of a methyl group) contribute to this behavior (Welch, 1987[Welch, J. T. (1987). Tetrahedron, 43, 3123-3197.]). As such, synthesis of simple and complex compounds incorporating fluorinated analogues of the methyl group has become a growing area of inter­est. In this context, we report the synthesis and crystal structure of the title compound [CuCl2(C14H21N4F3)] (1).

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound contains two Cu–ligand complexes (Fig. 1[link]). The coordination geometries of both CuII ions are between distorted square-based pyramidal and very Jahn–Teller-distorted octa­hedral. The first complex displays Cu—Cl bond lengths of 2.2701 (12) and 2.8505 (12) Å, while Cu—Cl lengths of 2.2777 (12) and 2.9415 (12) Å are observed in the second (Table 1[link], Fig. 2[link]). Some studies suggest that copper(II) complexes adopting square-pyramidal geometries with apical Cu—L bonds longer than the basal bonds by up to 0.5 Å may not be due to Jahn–Teller distortion, but the result of a double electron occupancy of the anti­bonding a1 orbital and single occupancy of the b1 orbital, leading to increased anti-bonding electron density along the apical Cu—L axis (Rossi & Hoffmann, 1975[Rossi, A. R. & Hoffmann, R. (1975). Inorg. Chem. 14, 365-374.]). Copper(II) complexes with a square plane of ligand donors and one or two axial Cu—L inter­actions of 2.1–2.8 Å are very common (Murphy & Hathaway, 2003[Murphy, B. & Hathaway, B. (2003). Coord. Chem. Rev. 243, 2370-262.]). Taking into consideration the covalent and van der Waals radii of copper (1.4 Å), an axial Cu—Cl bond length of less than 2.8 Å can be viewed as a genuine bond while bond lengths between 2.8–3.2 Å represent a weaker secondary inter­action that is predominantly electrostatic in nature. Distances greater than 3.2 Å can be considered as purely van der Waals contacts (Halcrow, 2013[Halcrow, M. A. (2013). Chem. Soc. Rev. 42, 1784-1795.]). Following these criteria, it would seem that the inter­action observed between Cu2⋯Cl3ii [3.1645 (12) Å; symmetry code: (ii) −x, −y, −z + 2] is a weaker secondary inter­action with electrostatic characteristics. However, an elongated Cu1⋯Cl2i distance of 3.4056 (12) Å is also observed, which can be attributed to a van der Waals contact [Halcrow, 2013[Halcrow, M. A. (2013). Chem. Soc. Rev. 42, 1784-1795.]; symmetry code: (i) −x + 1, −y + 1, −z). These contacts appear to have some structure-directing properties, producing chlorine-bridged dimers in the crystal structure of (1).

Table 1
Selected geometric parameters (Å, °)

Cu1—N2 1.986 (3) Cu2—N7 1.986 (4)
Cu1—N3 1.988 (4) Cu2—N6 1.989 (4)
Cu1—N1 2.062 (4) Cu2—N5 2.070 (4)
Cu1—Cl1 2.2701 (12) Cu2—Cl3 2.2777 (12)
Cu1—Cl2 2.8505 (12) Cu2—Cl4 2.9415 (12)
Cu1—Cl1i 3.4056 (12) Cu2—Cl3ii 3.1645 (12)
       
N2—Cu1—N3 166.47 (15) N7—Cu2—N6 163.80 (16)
N2—Cu1—N1 84.81 (14) N7—Cu2—N5 85.50 (15)
N3—Cu1—N1 85.31 (14) N6—Cu2—N5 85.18 (14)
N2—Cu1—Cl1 95.85 (11) N7—Cu2—Cl3 95.55 (11)
N3—Cu1—Cl1 95.68 (11) N6—Cu2—Cl3 95.56 (11)
N1—Cu1—Cl1 168.47 (11) N5—Cu2—Cl3 171.82 (11)
N2—Cu1—Cl2 88.27 (11) N7—Cu2—Cl4 81.07 (11)
N3—Cu1—Cl2 83.37 (11) N6—Cu2—Cl4 86.35 (11)
N1—Cu1—Cl2 94.77 (10) N5—Cu2—Cl4 93.74 (10)
Cl1—Cu1—Cl2 96.76 (4) Cl3—Cu2—Cl4 94.44 (4)
N2—Cu1—Cl1i 115.18 (11) N7—Cu2—Cl3ii 80.52 (11)
N3—Cu1—Cl1i 74.19 (11) N6—Cu2—Cl3ii 113.16 (12)
N1—Cu1—Cl1i 90.95 (10) N5—Cu2—Cl3ii 92.88 (10)
Cl1—Cu1—Cl1i 78.32 (4) Cl3—Cu2—Cl3ii 79.32 (4)
Cl2—Cu1—Cl1i 156.30 (3) Cl4—Cu2—Cl3ii 159.87 (3)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y, -z+2.
[Figure 1]
Figure 1
Asymmetric unit of the title compound, showing atomic displacement ellipsoids at the 50% probability level and the atom-numbering scheme.
[Figure 2]
Figure 2
Dimer inter­actions between [CuCl2(C14H21N4F3)] mol­ecules, shown with 50% probability ellipsoids. H atoms were removed for clarity. Symmetry codes: (i) −x + 1, −y + 1, −z; (ii) −x, −y, −z + 2.

3. Supra­molecular features

In addition to electrostatic inter­actions observed in each complex, the aromatic rings engage in offset face-to-face ππ inter­actions with an observed centroid-to-centroid distance of 3.906 (3) Å and a dihedral angle of 10.6 (3)° (Fig. 3[link]). Inspection of the extended structure shows that the orientation of these phenyl rings (C8–C13 and C22–C27) reduces inter­actions of the CF3 groups associated with these rings. Coupled with the chlorine-bridged dimer we find that chains of mol­ecules extend through the crystal parallel to the [221] direction (Fig. 3[link]).

[Figure 3]
Figure 3
View along the a axis showing weak inter­molecular inter­actions present in the crystal lattice. Atomic displacement ellipsoids depicted at 50% probability level with ππ inter­actions shown as dashed gray lines.

Inspection of inter­molecular/intra­molecular contacts reveals that amine nitro­gen atoms N2, N3, N6 and N7 are involved in N—H⋯Cl hydrogen-bonds (Table 2[link]). However, several of the contacts [N3⋯Cl3i, N3⋯Cl2, N7⋯Cl4; symmetry code: (i) −x + 1, −y + 1, −z] have severely constrained N—H⋯Cl angles and are merely contacts to chlorine atoms bonded to the same CuII atom. The remaining hydrogen-bond contacts are inter­molecular inter­actions, and while relatively long, they likely contribute to structure-directed organization.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl3iii 0.91 2.84 3.591 (4) 141
N2—H2B⋯Cl4iv 0.91 2.46 3.365 (4) 171
N3—H3A⋯Cl1i 0.91 2.95 3.444 (4) 115
N3—H3A⋯Cl4v 0.91 2.60 3.334 (4) 139
N3—H3B⋯Cl2 0.91 2.83 3.281 (4) 112
N6—H6C⋯Cl1v 0.91 2.96 3.681 (4) 138
N6—H6D⋯Cl2vi 0.91 2.45 3.342 (4) 167
N7—H7A⋯Cl2iii 0.91 2.57 3.348 (4) 143
N7—H7B⋯Cl4 0.91 2.79 3.284 (4) 115
Symmetry codes: (i) -x+1, -y+1, -z; (iii) -x, -y, -z+1; (iv) x+1, y, z-1; (v) -x, -y+1, -z+1; (vi) x, y, z+1.

4. Database survey

There are 318 structures that incorporate the N-2-bis(2-amino­eth­yl)amino­ethyl ligand skeleton (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]; CSD Version 5.36). Of those 318 structures, five incorporate one para-substituted benzene ring as presented in this article. Of those five, two have bromo-substituted phenyl rings displaying a nickel metal atom with perchlorate counter-ion and a zinc metal atom with tetra­fluorido­borate counter-ion, respectively. Two display nitro-substituted phenyl rings with a copper metal atom and perchlorate counter-ions. Of those two, one contains a bidentate ligand with an ammonium derivative group not coordinating to the metal atom. The final structure is a zinc complex incorporating an unsubstituted phenyl ring with a perchlorate counter-ion. Of the 318 structures, none incorporates the tri­fluoro­methyl-substituted phenyl group presented here and none displays the dichloride counterions presented here. A survey of Cu—Cl bond-length elongations of similar structures in the literature produced examples such as 2.6061 (18) and 2.609 (2) Å (Tucker et al., 1991[Tucker, D. A., White, P. S., Trojan, K. L., Kirk, M. J. & Hatfield, W. E. (1991). Inorg. Chem. 30, 823-826.]), 2.843 (1) to 3.140 (1) Å (Krysiak et al., 2014[Krysiak, Y., Fink, L., Bernert, T., Glinnemann, J., Kapuscinski, M., Zhao, H., Alig, E. & Schmidt, M. U. (2014). Z. Anorg. Allg. Chem. 640, 3190-3196.]), 2.665 (3) and 2.731 (2) Å (Ferrari et al., 1998[Ferrari, M. B., Fava, G. G., Leporati, E., Pelosi, G. K., Rossi, R., Tarasconi, P., Albertini, R., Bonati, A., Lunghi, P. & Pinelli, S. (1998). J. Inorg. Biochem. 70, 145-154.]) and 2.7546 (9) Å (Odoko et al., 2002[Odoko, M., Yamamoto, K. & Okabe, N. (2002). Acta Cryst. C58, m506-m508.]).

5. Synthesis and crystallization

Synthesis of tris(2-(4-tri­fluoro­methyl­benzyl­idene­amino)­eth­yl)amine ligand: In a drybox, tris(2-(amino)­eth­yl)amine (2.56 mL, 17.10 mmol) was dissolved in 100 mL methanol in a 250 mL round-bottom flask (Fig. 4[link]). Ligand precursor 4-(tri­fluoro­meth­yl)benzaldehyde (6.90 mL, 51.29 mmol) was added to the flask to give a light-yellow colored solution. Reaction was sealed and allowed to mix for 48 h producing a clear yellow solution. Solvent was removed using a rotary evaporator and dried under vacuum for one h to yield a yellow solid (10.40 g, 99%). 1H NMR (CDCl3, 500 MHz): δ 2.94 (t, J = 7.6 Hz, 2H), 3.70 (t, J = 7.5 Hz, 2H), 7.56 (br, 2H), 8.08 (s, 1H). 13C NMR (CDCl3, 500 MHz): δ 55.62, 60.32, 122.85 (q), 125.73 (q), 128.35, 132.44 (q), 139.62, 160.42. FT–IR (solid) v (cm−1): 1321 (s), 1169 (s), 1118 (s), 1062 (s), 834 (s). Melting Point: 344 K. TOF–ESI–MS: (m/z) [M + (H)]+ calculated for C30H28N4F9 = 615.2165, found 615.2194 (4.8 p.p.m.).

[Figure 4]
Figure 4
Synthetic scheme for [Cu(C14H21N4Cl2F3)(Cl2)]

Synthesis of 2-(4-tri­fluoro­methyl­benzyl­idene­amino)­eth­yl)amine-bis(2-αminoeth­yl)amine copper(II) chloride complex: tris(2-(4-Tri­fluoro­methyl­benzyl­idene­amino)­eth­yl)amine (1.000 g, 1.63 mmol) was dissolved in 20 mL methanol in a 100 mL round-bottom flask. CuCl2 (0.219 g, 1.63 mmol) was added to the flask to give a teal-colored solution. The reaction was allowed to mix for six h then 20 mL of pentane was slowly added to the solution to generate a teal-colored precipitate. Solvent was removed from the round-bottom flask by connecting it to a rotary evaporator. The precipitate obtained was washed twice by transferring 15 mL of pentane into the flask and stirring vigorously for thirty minutes. Solvent was removed and precipitate dried under vacuum for one h to yield a teal-colored solid (1.140 g, 93%). FT–IR (solid): v (cm−1) = 1636 (m), 1506 (s), 1473 (s), 1317 (s), 1163 (s), 1109 (br), 830 (s). UV–Vis (MeOH) λmax = 668 nm. TOF–ESI–MS: (m/z) [M – 2(Cl)]2+ calculated for C30H27N4F9Cu = 677.1383, found 677.1381 (0.2 p.p.m.). Blue single crystal plates suitable for X-ray analysis were obtained by slow diffusion of diethyl ether into a complex solution made in aceto­nitrile at room temperature. The structure obtained is indicative of hydrolysis occuring on two amine positions of the intended copper(II) complex.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were placed at calculated positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N) for methyl­ene, aromatic and amide groups with C—H distances set at 0.99 Å (methyl­ene), 0.95 Å (aromatic) and N—H = 0.91 Å.

Table 3
Experimental details

Crystal data
Chemical formula [CuCl2(C14H21F3N4)]
Mr 436.80
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.8506 (6), 11.0603 (7), 17.8574 (12)
α, β, γ (°) 73.110 (3), 75.530 (2), 89.010 (2)
V3) 1799.4 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.54
Crystal size (mm) 0.30 × 0.19 × 0.05
 
Data collection
Diffractometer Bruker AXS D8 Quest CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.573, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 49937, 8937, 7063
Rint 0.079
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.151, 1.22
No. of reflections 8937
No. of parameters 433
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.32, −0.74
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]), and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: CrystalMaker (Palmer, 2007) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

[Bis(2-aminoethyl-κN)(2-{[4-(trifluoromethyl)benzylidene]amino}ethyl)amine-κN]dichloridocopper(II) top
Crystal data top
[CuCl2(C14H21F3N4)]Z = 4
Mr = 436.80F(000) = 892
Triclinic, P1Dx = 1.612 Mg m3
a = 9.8506 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.0603 (7) ÅCell parameters from 9961 reflections
c = 17.8574 (12) Åθ = 2.5–28.3°
α = 73.110 (3)°µ = 1.54 mm1
β = 75.530 (2)°T = 100 K
γ = 89.010 (2)°Plate, blue
V = 1799.4 (2) Å30.30 × 0.19 × 0.05 mm
Data collection top
Bruker AXS D8 Quest CMOS
diffractometer
8937 independent reflections
Radiation source: I-mu-S microsource X-ray tube7063 reflections with I > 2σ(I)
Laterally graded multilayer (Goebel) mirror monochromatorRint = 0.079
ω and phi scansθmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 1313
Tmin = 0.573, Tmax = 0.746k = 1414
49937 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.22 w = 1/[σ2(Fo2) + (0.0341P)2 + 8.3032P]
where P = (Fo2 + 2Fc2)/3
8937 reflections(Δ/σ)max = 0.001
433 parametersΔρmax = 1.32 e Å3
0 restraintsΔρmin = 0.74 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.37014 (6)0.32211 (5)0.07300 (3)0.01576 (13)
Cl10.34574 (11)0.47852 (10)0.03695 (7)0.0181 (2)
Cl20.08223 (11)0.23298 (9)0.13230 (7)0.0178 (2)
N10.4341 (4)0.1932 (3)0.1650 (2)0.0148 (7)
N20.4034 (4)0.1876 (3)0.0182 (2)0.0153 (7)
H2A0.32590.17480.00180.018*
H2B0.47680.21350.02650.018*
N30.3162 (4)0.4228 (3)0.1506 (2)0.0180 (8)
H3A0.35590.50290.12690.022*
H3B0.22130.42750.16380.022*
N40.6465 (4)0.1886 (4)0.2797 (2)0.0220 (8)
C10.3888 (5)0.0696 (4)0.1598 (3)0.0165 (8)
H1A0.28530.05650.17960.020*
H1B0.43090.00060.19450.020*
C20.4347 (4)0.0663 (4)0.0728 (3)0.0157 (8)
H2C0.53670.05400.05810.019*
H2D0.38410.00540.06660.019*
C30.3557 (5)0.2219 (4)0.2404 (3)0.0173 (9)
H3C0.39810.18050.28550.021*
H3D0.25660.18930.25550.021*
C40.3632 (5)0.3641 (4)0.2247 (3)0.0200 (9)
H4A0.30180.38660.27120.024*
H4B0.46070.39510.21750.024*
C50.5900 (4)0.2083 (4)0.1504 (3)0.0171 (9)
H5A0.61540.29820.14250.020*
H5B0.63430.18920.09930.020*
C60.6539 (5)0.1267 (4)0.2166 (3)0.0192 (9)
H6A0.60210.04280.24070.023*
H6B0.75300.11360.19270.023*
C70.7616 (5)0.2140 (4)0.2922 (3)0.0207 (9)
H70.84560.18510.26500.025*
C80.7687 (5)0.2881 (4)0.3484 (3)0.0229 (10)
C90.6476 (6)0.3277 (5)0.3926 (3)0.0317 (12)
H90.55780.29900.39170.038*
C100.6578 (6)0.4083 (6)0.4375 (4)0.0380 (13)
H100.57500.43420.46790.046*
C110.7877 (7)0.4513 (5)0.4381 (3)0.0339 (12)
C120.9094 (6)0.4099 (6)0.3972 (4)0.0365 (13)
H120.99870.43740.39930.044*
C130.8989 (6)0.3276 (5)0.3529 (3)0.0296 (11)
H130.98180.29780.32540.036*
C140.7966 (7)0.5463 (6)0.4827 (4)0.0439 (15)
F10.9161 (5)0.6165 (4)0.4552 (2)0.0643 (13)
F20.7837 (6)0.4938 (4)0.5606 (2)0.0708 (14)
F30.6983 (6)0.6312 (5)0.4752 (4)0.093 (2)
Cu20.05556 (6)0.17013 (5)0.92597 (3)0.01768 (14)
Cl30.18291 (11)0.01387 (10)1.03343 (7)0.0185 (2)
Cl40.30093 (11)0.26904 (10)0.86714 (7)0.0194 (2)
N50.0850 (4)0.3019 (3)0.8338 (2)0.0139 (7)
N60.0796 (4)0.3026 (4)0.9827 (2)0.0175 (7)
H6C0.17250.31610.99800.021*
H6D0.04800.27531.02810.021*
N70.0460 (4)0.0769 (3)0.8452 (2)0.0172 (8)
H7A0.02920.00540.86690.021*
H7B0.12970.07880.83200.021*
N80.4024 (4)0.3011 (4)0.7164 (2)0.0242 (9)
C150.0291 (5)0.4249 (4)0.8417 (3)0.0162 (8)
H15A0.05820.43830.82320.019*
H15B0.09860.49510.80730.019*
C160.0011 (5)0.4240 (4)0.9293 (3)0.0170 (9)
H16A0.08820.43260.94370.020*
H16B0.05760.49630.93720.020*
C170.0714 (5)0.2776 (4)0.7581 (3)0.0176 (9)
H17A0.15220.31930.71250.021*
H17B0.01580.31230.74470.021*
C180.0672 (5)0.1352 (4)0.7717 (3)0.0190 (9)
H18A0.04830.11550.72440.023*
H18B0.15850.10180.77880.023*
C190.2302 (4)0.2903 (4)0.8443 (3)0.0165 (8)
H19A0.25290.20060.85320.020*
H19B0.23150.31220.89410.020*
C200.3469 (5)0.3718 (4)0.7746 (3)0.0214 (10)
H20A0.30910.45120.74710.026*
H20B0.42330.39410.79600.026*
C210.5325 (5)0.2848 (4)0.7024 (3)0.0221 (10)
H210.59000.32470.72490.027*
C220.5967 (5)0.2040 (5)0.6508 (3)0.0240 (10)
C230.5150 (6)0.1411 (5)0.6187 (3)0.0288 (11)
H230.41830.15650.62480.035*
C240.5744 (6)0.0561 (5)0.5779 (3)0.0330 (12)
H240.51800.01090.55770.040*
C250.7162 (6)0.0377 (5)0.5668 (3)0.0327 (12)
C260.7993 (6)0.1014 (6)0.5960 (4)0.0394 (14)
H260.89700.08880.58720.047*
C270.7394 (6)0.1846 (5)0.6383 (4)0.0327 (12)
H270.79630.22850.65890.039*
C280.7789 (7)0.0583 (6)0.5239 (4)0.0425 (15)
F40.8768 (6)0.1210 (4)0.5533 (3)0.0730 (14)
F50.8382 (6)0.0061 (4)0.4467 (3)0.0854 (18)
F60.6850 (5)0.1463 (6)0.5298 (5)0.113 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0205 (3)0.0126 (2)0.0166 (3)0.0093 (2)0.0060 (2)0.0075 (2)
Cl10.0154 (5)0.0155 (5)0.0217 (5)0.0018 (4)0.0058 (4)0.0018 (4)
Cl20.0161 (5)0.0132 (4)0.0255 (6)0.0022 (4)0.0049 (4)0.0085 (4)
N10.0167 (18)0.0127 (16)0.0169 (18)0.0045 (14)0.0048 (14)0.0070 (14)
N20.0155 (17)0.0170 (17)0.0157 (18)0.0062 (14)0.0055 (14)0.0076 (14)
N30.0206 (19)0.0086 (16)0.026 (2)0.0037 (14)0.0063 (16)0.0061 (15)
N40.025 (2)0.025 (2)0.019 (2)0.0040 (16)0.0080 (16)0.0085 (16)
C10.020 (2)0.0135 (19)0.017 (2)0.0017 (16)0.0043 (17)0.0063 (16)
C20.015 (2)0.017 (2)0.020 (2)0.0068 (16)0.0071 (17)0.0125 (17)
C30.021 (2)0.018 (2)0.013 (2)0.0043 (17)0.0015 (16)0.0077 (17)
C40.020 (2)0.024 (2)0.020 (2)0.0028 (18)0.0043 (18)0.0136 (19)
C50.014 (2)0.015 (2)0.022 (2)0.0019 (16)0.0045 (17)0.0069 (17)
C60.020 (2)0.018 (2)0.022 (2)0.0014 (17)0.0075 (18)0.0094 (18)
C70.024 (2)0.020 (2)0.018 (2)0.0044 (18)0.0048 (18)0.0066 (18)
C80.032 (3)0.021 (2)0.014 (2)0.0002 (19)0.0067 (19)0.0018 (18)
C90.031 (3)0.037 (3)0.029 (3)0.001 (2)0.005 (2)0.016 (2)
C100.042 (3)0.043 (3)0.036 (3)0.007 (3)0.007 (3)0.024 (3)
C110.055 (4)0.028 (3)0.025 (3)0.003 (2)0.018 (3)0.011 (2)
C120.041 (3)0.041 (3)0.035 (3)0.001 (3)0.020 (3)0.014 (3)
C130.033 (3)0.034 (3)0.026 (3)0.005 (2)0.010 (2)0.013 (2)
C140.053 (4)0.046 (4)0.046 (4)0.010 (3)0.024 (3)0.025 (3)
F10.108 (4)0.045 (2)0.045 (2)0.023 (2)0.017 (2)0.0216 (19)
F20.121 (4)0.062 (3)0.031 (2)0.032 (3)0.012 (2)0.0215 (19)
F30.114 (4)0.085 (4)0.142 (5)0.048 (3)0.082 (4)0.086 (4)
Cu20.0214 (3)0.0159 (3)0.0160 (3)0.0060 (2)0.0010 (2)0.0079 (2)
Cl30.0143 (5)0.0183 (5)0.0204 (5)0.0000 (4)0.0045 (4)0.0019 (4)
Cl40.0191 (5)0.0137 (5)0.0277 (6)0.0046 (4)0.0064 (4)0.0094 (4)
N50.0182 (18)0.0102 (16)0.0143 (18)0.0026 (13)0.0037 (14)0.0056 (14)
N60.0166 (18)0.0214 (19)0.0157 (18)0.0010 (14)0.0026 (14)0.0086 (15)
N70.0180 (18)0.0117 (17)0.025 (2)0.0040 (14)0.0063 (15)0.0089 (15)
N80.023 (2)0.026 (2)0.022 (2)0.0042 (16)0.0009 (16)0.0093 (17)
C150.019 (2)0.0127 (19)0.020 (2)0.0063 (16)0.0040 (17)0.0097 (17)
C160.016 (2)0.019 (2)0.020 (2)0.0005 (16)0.0025 (17)0.0126 (18)
C170.023 (2)0.018 (2)0.015 (2)0.0040 (17)0.0042 (17)0.0103 (17)
C180.023 (2)0.017 (2)0.020 (2)0.0055 (17)0.0045 (18)0.0114 (18)
C190.016 (2)0.0143 (19)0.020 (2)0.0024 (16)0.0044 (17)0.0062 (17)
C200.020 (2)0.018 (2)0.025 (2)0.0025 (17)0.0001 (18)0.0085 (19)
C210.026 (2)0.020 (2)0.019 (2)0.0013 (18)0.0044 (19)0.0053 (18)
C220.028 (3)0.024 (2)0.015 (2)0.0053 (19)0.0034 (18)0.0053 (19)
C230.032 (3)0.033 (3)0.021 (2)0.008 (2)0.004 (2)0.011 (2)
C240.039 (3)0.039 (3)0.021 (3)0.006 (2)0.005 (2)0.012 (2)
C250.036 (3)0.030 (3)0.026 (3)0.005 (2)0.005 (2)0.011 (2)
C260.025 (3)0.041 (3)0.049 (4)0.008 (2)0.003 (2)0.020 (3)
C270.026 (3)0.033 (3)0.039 (3)0.001 (2)0.001 (2)0.016 (2)
C280.043 (3)0.043 (3)0.040 (3)0.006 (3)0.004 (3)0.024 (3)
F40.109 (4)0.060 (3)0.058 (3)0.053 (3)0.021 (3)0.031 (2)
F50.145 (5)0.065 (3)0.033 (2)0.053 (3)0.002 (3)0.019 (2)
F60.062 (3)0.106 (4)0.195 (7)0.007 (3)0.016 (4)0.124 (5)
Geometric parameters (Å, º) top
Cu1—N21.986 (3)Cu2—N71.986 (4)
Cu1—N31.988 (4)Cu2—N61.989 (4)
Cu1—N12.062 (4)Cu2—N52.070 (4)
Cu1—Cl12.2701 (12)Cu2—Cl32.2777 (12)
Cu1—Cl22.8505 (12)Cu2—Cl42.9415 (12)
Cu1—Cl1i3.4056 (12)Cu2—Cl3ii3.1645 (12)
N1—C11.480 (5)N5—C191.486 (5)
N1—C31.493 (5)N5—C151.491 (5)
N1—C51.496 (5)N5—C171.491 (5)
N2—C21.491 (5)N6—C161.494 (6)
N2—H2A0.9100N6—H6C0.9100
N2—H2B0.9100N6—H6D0.9100
N3—C41.478 (6)N7—C181.478 (6)
N3—H3A0.9100N7—H7A0.9100
N3—H3B0.9100N7—H7B0.9100
N4—C71.260 (6)N8—C211.263 (6)
N4—C61.466 (6)N8—C201.470 (6)
C1—C21.518 (6)C15—C161.515 (6)
C1—H1A0.9900C15—H15A0.9900
C1—H1B0.9900C15—H15B0.9900
C2—H2C0.9900C16—H16A0.9900
C2—H2D0.9900C16—H16B0.9900
C3—C41.516 (6)C17—C181.522 (6)
C3—H3C0.9900C17—H17A0.9900
C3—H3D0.9900C17—H17B0.9900
C4—H4A0.9900C18—H18A0.9900
C4—H4B0.9900C18—H18B0.9900
C5—C61.529 (6)C19—C201.534 (6)
C5—H5A0.9900C19—H19A0.9900
C5—H5B0.9900C19—H19B0.9900
C6—H6A0.9900C20—H20A0.9900
C6—H6B0.9900C20—H20B0.9900
C7—C81.482 (6)C21—C221.488 (6)
C7—H70.9500C21—H210.9500
C8—C131.390 (7)C22—C271.390 (7)
C8—C91.397 (7)C22—C231.394 (8)
C9—C101.381 (8)C23—C241.386 (7)
C9—H90.9500C23—H230.9500
C10—C111.377 (9)C24—C251.381 (8)
C10—H100.9500C24—H240.9500
C11—C121.385 (9)C25—C261.373 (9)
C11—C141.506 (8)C25—C281.519 (7)
C12—C131.387 (8)C26—C271.389 (8)
C12—H120.9500C26—H260.9500
C13—H130.9500C27—H270.9500
C14—F21.317 (8)C28—F41.306 (8)
C14—F11.323 (8)C28—F51.312 (7)
C14—F31.341 (8)C28—F61.318 (8)
N2—Cu1—N3166.47 (15)N7—Cu2—N6163.80 (16)
N2—Cu1—N184.81 (14)N7—Cu2—N585.50 (15)
N3—Cu1—N185.31 (14)N6—Cu2—N585.18 (14)
N2—Cu1—Cl195.85 (11)N7—Cu2—Cl395.55 (11)
N3—Cu1—Cl195.68 (11)N6—Cu2—Cl395.56 (11)
N1—Cu1—Cl1168.47 (11)N5—Cu2—Cl3171.82 (11)
N2—Cu1—Cl288.27 (11)N7—Cu2—Cl481.07 (11)
N3—Cu1—Cl283.37 (11)N6—Cu2—Cl486.35 (11)
N1—Cu1—Cl294.77 (10)N5—Cu2—Cl493.74 (10)
Cl1—Cu1—Cl296.76 (4)Cl3—Cu2—Cl494.44 (4)
N2—Cu1—Cl1i115.18 (11)N7—Cu2—Cl3ii80.52 (11)
N3—Cu1—Cl1i74.19 (11)N6—Cu2—Cl3ii113.16 (12)
N1—Cu1—Cl1i90.95 (10)N5—Cu2—Cl3ii92.88 (10)
Cl1—Cu1—Cl1i78.32 (4)Cl3—Cu2—Cl3ii79.32 (4)
Cl2—Cu1—Cl1i156.30 (3)Cl4—Cu2—Cl3ii159.87 (3)
C1—N1—C3113.3 (3)C19—N5—C15111.4 (3)
C1—N1—C5112.1 (3)C19—N5—C17113.2 (3)
C3—N1—C5112.9 (3)C15—N5—C17112.4 (3)
C1—N1—Cu1103.3 (3)C19—N5—Cu2111.7 (3)
C3—N1—Cu1104.8 (2)C15—N5—Cu2102.9 (3)
C5—N1—Cu1109.8 (3)C17—N5—Cu2104.7 (3)
C2—N2—Cu1111.7 (3)C16—N6—Cu2111.2 (3)
C2—N2—H2A109.3C16—N6—H6C109.4
Cu1—N2—H2A109.3Cu2—N6—H6C109.4
C2—N2—H2B109.3C16—N6—H6D109.4
Cu1—N2—H2B109.3Cu2—N6—H6D109.4
H2A—N2—H2B107.9H6C—N6—H6D108.0
C4—N3—Cu1110.5 (3)C18—N7—Cu2110.0 (3)
C4—N3—H3A109.5C18—N7—H7A109.7
Cu1—N3—H3A109.5Cu2—N7—H7A109.7
C4—N3—H3B109.5C18—N7—H7B109.7
Cu1—N3—H3B109.5Cu2—N7—H7B109.7
H3A—N3—H3B108.1H7A—N7—H7B108.2
C7—N4—C6116.6 (4)C21—N8—C20116.4 (4)
N1—C1—C2109.9 (4)N5—C15—C16109.5 (4)
N1—C1—H1A109.7N5—C15—H15A109.8
C2—C1—H1A109.7C16—C15—H15A109.8
N1—C1—H1B109.7N5—C15—H15B109.8
C2—C1—H1B109.7C16—C15—H15B109.8
H1A—C1—H1B108.2H15A—C15—H15B108.2
N2—C2—C1109.4 (3)N6—C16—C15109.5 (3)
N2—C2—H2C109.8N6—C16—H16A109.8
C1—C2—H2C109.8C15—C16—H16A109.8
N2—C2—H2D109.8N6—C16—H16B109.8
C1—C2—H2D109.8C15—C16—H16B109.8
H2C—C2—H2D108.2H16A—C16—H16B108.2
N1—C3—C4108.3 (4)N5—C17—C18108.2 (4)
N1—C3—H3C110.0N5—C17—H17A110.0
C4—C3—H3C110.0C18—C17—H17A110.0
N1—C3—H3D110.0N5—C17—H17B110.0
C4—C3—H3D110.0C18—C17—H17B110.0
H3C—C3—H3D108.4H17A—C17—H17B108.4
N3—C4—C3108.1 (4)N7—C18—C17107.7 (3)
N3—C4—H4A110.1N7—C18—H18A110.2
C3—C4—H4A110.1C17—C18—H18A110.2
N3—C4—H4B110.1N7—C18—H18B110.2
C3—C4—H4B110.1C17—C18—H18B110.2
H4A—C4—H4B108.4H18A—C18—H18B108.5
N1—C5—C6116.6 (4)N5—C19—C20116.6 (4)
N1—C5—H5A108.1N5—C19—H19A108.2
C6—C5—H5A108.1C20—C19—H19A108.2
N1—C5—H5B108.1N5—C19—H19B108.2
C6—C5—H5B108.1C20—C19—H19B108.2
H5A—C5—H5B107.3H19A—C19—H19B107.3
N4—C6—C5110.1 (4)N8—C20—C19109.5 (4)
N4—C6—H6A109.6N8—C20—H20A109.8
C5—C6—H6A109.6C19—C20—H20A109.8
N4—C6—H6B109.6N8—C20—H20B109.8
C5—C6—H6B109.6C19—C20—H20B109.8
H6A—C6—H6B108.1H20A—C20—H20B108.2
N4—C7—C8121.4 (4)N8—C21—C22120.6 (5)
N4—C7—H7119.3N8—C21—H21119.7
C8—C7—H7119.3C22—C21—H21119.7
C13—C8—C9118.8 (5)C27—C22—C23119.1 (5)
C13—C8—C7119.6 (4)C27—C22—C21119.5 (5)
C9—C8—C7121.5 (5)C23—C22—C21121.3 (4)
C10—C9—C8120.3 (5)C24—C23—C22120.2 (5)
C10—C9—H9119.9C24—C23—H23119.9
C8—C9—H9119.9C22—C23—H23119.9
C11—C10—C9120.1 (5)C25—C24—C23119.5 (5)
C11—C10—H10120.0C25—C24—H24120.2
C9—C10—H10120.0C23—C24—H24120.2
C10—C11—C12120.7 (5)C26—C25—C24121.1 (5)
C10—C11—C14119.3 (6)C26—C25—C28120.0 (5)
C12—C11—C14120.0 (6)C24—C25—C28118.8 (5)
C11—C12—C13119.0 (5)C25—C26—C27119.4 (5)
C11—C12—H12120.5C25—C26—H26120.3
C13—C12—H12120.5C27—C26—H26120.3
C12—C13—C8121.0 (5)C26—C27—C22120.5 (5)
C12—C13—H13119.5C26—C27—H27119.7
C8—C13—H13119.5C22—C27—H27119.7
F2—C14—F1105.8 (5)F4—C28—F5105.2 (5)
F2—C14—F3107.4 (6)F4—C28—F6104.6 (6)
F1—C14—F3103.8 (6)F5—C28—F6107.6 (6)
F2—C14—C11113.2 (5)F4—C28—C25113.6 (6)
F1—C14—C11113.8 (6)F5—C28—C25112.7 (5)
F3—C14—C11112.1 (5)F6—C28—C25112.5 (5)
C3—N1—C1—C2161.1 (3)C19—N5—C15—C1671.4 (4)
C5—N1—C1—C269.8 (4)C17—N5—C15—C16160.5 (4)
Cu1—N1—C1—C248.3 (4)Cu2—N5—C15—C1648.4 (4)
Cu1—N2—C2—C117.1 (4)Cu2—N6—C16—C1519.9 (4)
N1—C1—C2—N244.7 (5)N5—C15—C16—N646.7 (5)
C1—N1—C3—C4156.5 (4)C19—N5—C17—C1877.8 (4)
C5—N1—C3—C474.8 (4)C15—N5—C17—C18155.0 (4)
Cu1—N1—C3—C444.7 (4)Cu2—N5—C17—C1844.0 (4)
Cu1—N3—C4—C333.0 (4)Cu2—N7—C18—C1735.9 (4)
N1—C3—C4—N352.3 (5)N5—C17—C18—N754.0 (5)
C1—N1—C5—C670.5 (5)C15—N5—C19—C2072.8 (5)
C3—N1—C5—C658.9 (5)C17—N5—C19—C2055.0 (5)
Cu1—N1—C5—C6175.4 (3)Cu2—N5—C19—C20172.7 (3)
C7—N4—C6—C5120.4 (4)C21—N8—C20—C19122.6 (5)
N1—C5—C6—N484.7 (5)N5—C19—C20—N889.7 (4)
C6—N4—C7—C8173.7 (4)C20—N8—C21—C22173.9 (4)
N4—C7—C8—C13172.1 (5)N8—C21—C22—C27178.1 (5)
N4—C7—C8—C93.0 (7)N8—C21—C22—C231.9 (7)
C13—C8—C9—C102.4 (8)C27—C22—C23—C242.8 (8)
C7—C8—C9—C10172.7 (5)C21—C22—C23—C24173.4 (5)
C8—C9—C10—C110.7 (9)C22—C23—C24—C252.3 (8)
C9—C10—C11—C123.1 (9)C23—C24—C25—C260.4 (9)
C9—C10—C11—C14175.8 (6)C23—C24—C25—C28178.4 (5)
C10—C11—C12—C132.3 (9)C24—C25—C26—C270.9 (9)
C14—C11—C12—C13176.6 (5)C28—C25—C26—C27177.0 (6)
C11—C12—C13—C80.9 (8)C25—C26—C27—C220.4 (9)
C9—C8—C13—C123.2 (8)C23—C22—C27—C261.5 (8)
C7—C8—C13—C12172.0 (5)C21—C22—C27—C26174.8 (5)
C10—C11—C14—F284.1 (7)C26—C25—C28—F434.7 (8)
C12—C11—C14—F297.1 (7)C24—C25—C28—F4143.3 (6)
C10—C11—C14—F1155.1 (6)C26—C25—C28—F584.8 (8)
C12—C11—C14—F123.8 (8)C24—C25—C28—F597.2 (7)
C10—C11—C14—F337.6 (9)C26—C25—C28—F6153.2 (7)
C12—C11—C14—F3141.2 (6)C24—C25—C28—F624.8 (9)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl3iii0.912.843.591 (4)141
N2—H2B···Cl4iv0.912.463.365 (4)171
N3—H3A···Cl1i0.912.953.444 (4)115
N3—H3A···Cl4v0.912.603.334 (4)139
N3—H3B···Cl20.912.833.281 (4)112
N6—H6C···Cl1v0.912.963.681 (4)138
N6—H6D···Cl2vi0.912.453.342 (4)167
N7—H7A···Cl2iii0.912.573.348 (4)143
N7—H7B···Cl40.912.793.284 (4)115
Symmetry codes: (i) x+1, y+1, z; (iii) x, y, z+1; (iv) x+1, y, z1; (v) x, y+1, z+1; (vi) x, y, z+1.
 

Acknowledgements

The authors would like to thank all students listed for their contribution to this project and Youngstown State University for instrument support. The Weber Foundation, Thermo-Fisher Scientific, Kimble–Chase Life Science, and Hamilton Company are also gratefully acknowledged for funding support. X-ray diffractometer was funded by NSF Grant No. 1337296 and Project SEED student (ASH) was funded by the American Chemical Society.

References

First citationBöhm, H. J., Banner, D., Bendels, S., Kansy, M., Kuhn, B., Müller, K., Obst-Sander, U. & Stahl, M. (2004). ChemBioChem, 5, 637–643.  PubMed Google Scholar
First citationBruker (2013). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolbier, W. R. (2009). Guide to Fluorine NMR for Organic Chemists, ch. 5, pp. 137–176. Hoboken: John Wiley and Sons.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDubinina, G. G., Ogikubo, J. & Vicic, D. A. (2008). Organometallics, 27, 6233–6235.  CSD CrossRef CAS Google Scholar
First citationFerrari, M. B., Fava, G. G., Leporati, E., Pelosi, G. K., Rossi, R., Tarasconi, P., Albertini, R., Bonati, A., Lunghi, P. & Pinelli, S. (1998). J. Inorg. Biochem. 70, 145–154.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHalcrow, M. A. (2013). Chem. Soc. Rev. 42, 1784–1795.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKrysiak, Y., Fink, L., Bernert, T., Glinnemann, J., Kapuscinski, M., Zhao, H., Alig, E. & Schmidt, M. U. (2014). Z. Anorg. Allg. Chem. 640, 3190–3196.  CSD CrossRef CAS Google Scholar
First citationMurphy, B. & Hathaway, B. (2003). Coord. Chem. Rev. 243, 2370–262.  CrossRef Google Scholar
First citationOdoko, M., Yamamoto, K. & Okabe, N. (2002). Acta Cryst. C58, m506–m508.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.  Google Scholar
First citationPurser, S., Moore, P. R., Swallow, S. & Gouverneur, V. (2008). Chem. Soc. Rev. 37, 320–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRossi, A. R. & Hoffmann, R. (1975). Inorg. Chem. 14, 365–374.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, R. P. & Shreeve, J. M. (2000). Tetrahedron, 56, 7613–7632.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTucker, D. A., White, P. S., Trojan, K. L., Kirk, M. J. & Hatfield, W. E. (1991). Inorg. Chem. 30, 823–826.  CSD CrossRef CAS Google Scholar
First citationWelch, J. T. (1987). Tetrahedron, 43, 3123–3197.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds