research communications
κN)(2-{[4-(trifluoromethyl)benzylidene]amino}ethyl)amine-κN]dichloridocopper(II)
of [bis(2-aminoethyl-aDepartment of Chemistry & Physics, Saint Marys College, Notre Dame, IN 46556, USA, bDepartment of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA, and cDepartment of Chemistry, Youngstown State University, Youngstown, OH 44555, USA
*Correspondence e-mail: koshin@saintmarys.edu
The CuII atom in the title compound, [CuCl2(C14H21F3N4)], adopts a coordination geometry that is between distorted square-based pyramidal and very Jahn–Teller-elongated octahedral. It is coordinated by three N atoms from the bis(2-aminoethyl)(2-{[4-(trifluoromethyl)benzylidene]amino}ethyl)amine and two chloride ligands. The two crystallographically unique copper complexes present in the exhibit noticeable differences in the coordination bond lengths. Considering the CuII atoms as having square-pyramidal geometry, the basal Cu—Cl bond lengths are typical [2.2701 (12) and 2.2777 (12) Å], while the apical distances are considerably elongated [2.8505 (12) and 2.9415 (12) Å]. For each molecule, a CuII atom from inversion-related molecules are in nearby proximity to the remaining axial CuII sites, but the Cu⋯Cl distances are very long [3.4056 (12) and 3.1645 (12) Å], attributable to van der Waals contacts. Nonetheless, these contacts appear to have some structure-directing properties, leading to association into dimers. These dimers associate via stacking of the aromatic rings to form extended zigzag chains.
Keywords: crystal structure; four-coordinate copper(II) complex; trifluoromethyl group analogue; ligand disorder.
CCDC reference: 1442779
1. Chemical context
The introduction of a fluorine atom or perfluoroalkyl group into a compound can bring about significant changes in its physical, chemical, and biological properties, making organo-fluorine derivatives suitable for diverse applications in areas of material science, agrochemistry, and medicinal chemistry (Singh & Shreeve, 2000). Modifications include polarity and conformational changes, increased chemical or metabolic stability, and enhanced (Böhm et al., 2004). As many as 30–40% of agrochemicals and 20% of pharmaceuticals on the market are estimated to contain fluorine, including three of the top eight drugs sold in 2007 (Dubinia et al., 2008). Fluorination can also serve as a diagnostic tool, enabling techniques such as 19F NMR spectroscopy and positron emission tomography, with some organo-fluorine compounds exhibiting interesting NMR spectra (Purser et al., 2008). The simplest perfluoroalkyl group, trifluoromethyl, has become an important structural component for many compounds, mainly because of its polar influence and effect on (Dolbier, 2009). Its and relatively small size (only two and one-half times the volume of a methyl group) contribute to this behavior (Welch, 1987). As such, synthesis of simple and complex compounds incorporating fluorinated analogues of the methyl group has become a growing area of interest. In this context, we report the synthesis and of the title compound [CuCl2(C14H21N4F3)] (1).
2. Structural commentary
The ). The coordination geometries of both CuII ions are between distorted square-based pyramidal and very Jahn–Teller-distorted octahedral. The first complex displays Cu—Cl bond lengths of 2.2701 (12) and 2.8505 (12) Å, while Cu—Cl lengths of 2.2777 (12) and 2.9415 (12) Å are observed in the second (Table 1, Fig. 2). Some studies suggest that copper(II) complexes adopting square-pyramidal geometries with apical Cu—L bonds longer than the basal bonds by up to 0.5 Å may not be due to Jahn–Teller distortion, but the result of a double electron occupancy of the antibonding a1 orbital and single occupancy of the b1 orbital, leading to increased anti-bonding electron density along the apical Cu—L axis (Rossi & Hoffmann, 1975). Copper(II) complexes with a square plane of ligand donors and one or two axial Cu—L interactions of 2.1–2.8 Å are very common (Murphy & Hathaway, 2003). Taking into consideration the covalent and van der Waals radii of copper (1.4 Å), an axial Cu—Cl bond length of less than 2.8 Å can be viewed as a genuine bond while bond lengths between 2.8–3.2 Å represent a weaker secondary interaction that is predominantly electrostatic in nature. Distances greater than 3.2 Å can be considered as purely van der Waals contacts (Halcrow, 2013). Following these criteria, it would seem that the interaction observed between Cu2⋯Cl3ii [3.1645 (12) Å; symmetry code: (ii) −x, −y, −z + 2] is a weaker secondary interaction with electrostatic characteristics. However, an elongated Cu1⋯Cl2i distance of 3.4056 (12) Å is also observed, which can be attributed to a van der Waals contact [Halcrow, 2013; symmetry code: (i) −x + 1, −y + 1, −z). These contacts appear to have some structure-directing properties, producing chlorine-bridged dimers in the of (1).
of the title compound contains two Cu–ligand complexes (Fig. 13. Supramolecular features
In addition to electrostatic interactions observed in each complex, the aromatic rings engage in offset face-to-face π–π interactions with an observed centroid-to-centroid distance of 3.906 (3) Å and a dihedral angle of 10.6 (3)° (Fig. 3). Inspection of the extended structure shows that the orientation of these phenyl rings (C8–C13 and C22–C27) reduces interactions of the CF3 groups associated with these rings. Coupled with the chlorine-bridged dimer we find that chains of molecules extend through the crystal parallel to the [221] direction (Fig. 3).
Inspection of intermolecular/intramolecular contacts reveals that amine nitrogen atoms N2, N3, N6 and N7 are involved in N—H⋯Cl hydrogen-bonds (Table 2). However, several of the contacts [N3⋯Cl3i, N3⋯Cl2, N7⋯Cl4; symmetry code: (i) −x + 1, −y + 1, −z] have severely constrained N—H⋯Cl angles and are merely contacts to chlorine atoms bonded to the same CuII atom. The remaining hydrogen-bond contacts are intermolecular interactions, and while relatively long, they likely contribute to structure-directed organization.
|
4. Database survey
There are 318 structures that incorporate the N-2-bis(2-aminoethyl)aminoethyl ligand skeleton (Groom & Allen, 2014; CSD Version 5.36). Of those 318 structures, five incorporate one para-substituted benzene ring as presented in this article. Of those five, two have bromo-substituted phenyl rings displaying a nickel metal atom with perchlorate counter-ion and a zinc metal atom with tetrafluoridoborate counter-ion, respectively. Two display nitro-substituted phenyl rings with a copper metal atom and perchlorate counter-ions. Of those two, one contains a bidentate ligand with an ammonium derivative group not coordinating to the metal atom. The final structure is a zinc complex incorporating an unsubstituted phenyl ring with a perchlorate counter-ion. Of the 318 structures, none incorporates the trifluoromethyl-substituted phenyl group presented here and none displays the dichloride counterions presented here. A survey of Cu—Cl bond-length elongations of similar structures in the literature produced examples such as 2.6061 (18) and 2.609 (2) Å (Tucker et al., 1991), 2.843 (1) to 3.140 (1) Å (Krysiak et al., 2014), 2.665 (3) and 2.731 (2) Å (Ferrari et al., 1998) and 2.7546 (9) Å (Odoko et al., 2002).
5. Synthesis and crystallization
Synthesis of tris(2-(4-trifluoromethylbenzylideneamino)ethyl)amine ligand: In a drybox, tris(2-(amino)ethyl)amine (2.56 mL, 17.10 mmol) was dissolved in 100 mL methanol in a 250 mL round-bottom flask (Fig. 4). Ligand precursor 4-(trifluoromethyl)benzaldehyde (6.90 mL, 51.29 mmol) was added to the flask to give a light-yellow colored solution. Reaction was sealed and allowed to mix for 48 h producing a clear yellow solution. Solvent was removed using a rotary evaporator and dried under vacuum for one h to yield a yellow solid (10.40 g, 99%). 1H NMR (CDCl3, 500 MHz): δ 2.94 (t, J = 7.6 Hz, 2H), 3.70 (t, J = 7.5 Hz, 2H), 7.56 (br, 2H), 8.08 (s, 1H). 13C NMR (CDCl3, 500 MHz): δ 55.62, 60.32, 122.85 (q), 125.73 (q), 128.35, 132.44 (q), 139.62, 160.42. FT–IR (solid) v (cm−1): 1321 (s), 1169 (s), 1118 (s), 1062 (s), 834 (s). Melting Point: 344 K. TOF–ESI–MS: (m/z) [M + (H)]+ calculated for C30H28N4F9 = 615.2165, found 615.2194 (4.8 p.p.m.).
Synthesis of 2-(4-trifluoromethylbenzylideneamino)ethyl)amine-bis(2-αminoethyl)amine copper(II) chloride complex: tris(2-(4-Trifluoromethylbenzylideneamino)ethyl)amine (1.000 g, 1.63 mmol) was dissolved in 20 mL methanol in a 100 mL round-bottom flask. CuCl2 (0.219 g, 1.63 mmol) was added to the flask to give a teal-colored solution. The reaction was allowed to mix for six h then 20 mL of pentane was slowly added to the solution to generate a teal-colored precipitate. Solvent was removed from the round-bottom flask by connecting it to a rotary evaporator. The precipitate obtained was washed twice by transferring 15 mL of pentane into the flask and stirring vigorously for thirty minutes. Solvent was removed and precipitate dried under vacuum for one h to yield a teal-colored solid (1.140 g, 93%). FT–IR (solid): v (cm−1) = 1636 (m), 1506 (s), 1473 (s), 1317 (s), 1163 (s), 1109 (br), 830 (s). UV–Vis (MeOH) λmax = 668 nm. TOF–ESI–MS: (m/z) [M – 2(Cl)]2+ calculated for C30H27N4F9Cu = 677.1383, found 677.1381 (0.2 p.p.m.). Blue single crystal plates suitable for X-ray analysis were obtained by slow diffusion of diethyl ether into a complex solution made in acetonitrile at room temperature. The structure obtained is indicative of hydrolysis occuring on two amine positions of the intended copper(II) complex.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms were placed at calculated positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N) for methylene, aromatic and amide groups with C—H distances set at 0.99 Å (methylene), 0.95 Å (aromatic) and N—H = 0.91 Å.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1442779
10.1107/S2056989015024147/pk2570sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015024147/pk2570Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015024147/pk2570Isup3.pdf
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: CrystalMaker (Palmer, 2007) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010) and PLATON (Spek, 2009).[CuCl2(C14H21F3N4)] | Z = 4 |
Mr = 436.80 | F(000) = 892 |
Triclinic, P1 | Dx = 1.612 Mg m−3 |
a = 9.8506 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.0603 (7) Å | Cell parameters from 9961 reflections |
c = 17.8574 (12) Å | θ = 2.5–28.3° |
α = 73.110 (3)° | µ = 1.54 mm−1 |
β = 75.530 (2)° | T = 100 K |
γ = 89.010 (2)° | Plate, blue |
V = 1799.4 (2) Å3 | 0.30 × 0.19 × 0.05 mm |
Bruker AXS D8 Quest CMOS diffractometer | 8937 independent reflections |
Radiation source: I-mu-S microsource X-ray tube | 7063 reflections with I > 2σ(I) |
Laterally graded multilayer (Goebel) mirror monochromator | Rint = 0.079 |
ω and phi scans | θmax = 28.3°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | h = −13→13 |
Tmin = 0.573, Tmax = 0.746 | k = −14→14 |
49937 measured reflections | l = −23→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.073 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.151 | H-atom parameters constrained |
S = 1.22 | w = 1/[σ2(Fo2) + (0.0341P)2 + 8.3032P] where P = (Fo2 + 2Fc2)/3 |
8937 reflections | (Δ/σ)max = 0.001 |
433 parameters | Δρmax = 1.32 e Å−3 |
0 restraints | Δρmin = −0.74 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.37014 (6) | 0.32211 (5) | 0.07300 (3) | 0.01576 (13) | |
Cl1 | 0.34574 (11) | 0.47852 (10) | −0.03695 (7) | 0.0181 (2) | |
Cl2 | 0.08223 (11) | 0.23298 (9) | 0.13230 (7) | 0.0178 (2) | |
N1 | 0.4341 (4) | 0.1932 (3) | 0.1650 (2) | 0.0148 (7) | |
N2 | 0.4034 (4) | 0.1876 (3) | 0.0182 (2) | 0.0153 (7) | |
H2A | 0.3259 | 0.1748 | 0.0018 | 0.018* | |
H2B | 0.4768 | 0.2135 | −0.0265 | 0.018* | |
N3 | 0.3162 (4) | 0.4228 (3) | 0.1506 (2) | 0.0180 (8) | |
H3A | 0.3559 | 0.5029 | 0.1269 | 0.022* | |
H3B | 0.2213 | 0.4275 | 0.1638 | 0.022* | |
N4 | 0.6465 (4) | 0.1886 (4) | 0.2797 (2) | 0.0220 (8) | |
C1 | 0.3888 (5) | 0.0696 (4) | 0.1598 (3) | 0.0165 (8) | |
H1A | 0.2853 | 0.0565 | 0.1796 | 0.020* | |
H1B | 0.4309 | 0.0006 | 0.1945 | 0.020* | |
C2 | 0.4347 (4) | 0.0663 (4) | 0.0728 (3) | 0.0157 (8) | |
H2C | 0.5367 | 0.0540 | 0.0581 | 0.019* | |
H2D | 0.3841 | −0.0054 | 0.0666 | 0.019* | |
C3 | 0.3557 (5) | 0.2219 (4) | 0.2404 (3) | 0.0173 (9) | |
H3C | 0.3981 | 0.1805 | 0.2855 | 0.021* | |
H3D | 0.2566 | 0.1893 | 0.2555 | 0.021* | |
C4 | 0.3632 (5) | 0.3641 (4) | 0.2247 (3) | 0.0200 (9) | |
H4A | 0.3018 | 0.3866 | 0.2712 | 0.024* | |
H4B | 0.4607 | 0.3951 | 0.2175 | 0.024* | |
C5 | 0.5900 (4) | 0.2083 (4) | 0.1504 (3) | 0.0171 (9) | |
H5A | 0.6154 | 0.2982 | 0.1425 | 0.020* | |
H5B | 0.6343 | 0.1892 | 0.0993 | 0.020* | |
C6 | 0.6539 (5) | 0.1267 (4) | 0.2166 (3) | 0.0192 (9) | |
H6A | 0.6021 | 0.0428 | 0.2407 | 0.023* | |
H6B | 0.7530 | 0.1136 | 0.1927 | 0.023* | |
C7 | 0.7616 (5) | 0.2140 (4) | 0.2922 (3) | 0.0207 (9) | |
H7 | 0.8456 | 0.1851 | 0.2650 | 0.025* | |
C8 | 0.7687 (5) | 0.2881 (4) | 0.3484 (3) | 0.0229 (10) | |
C9 | 0.6476 (6) | 0.3277 (5) | 0.3926 (3) | 0.0317 (12) | |
H9 | 0.5578 | 0.2990 | 0.3917 | 0.038* | |
C10 | 0.6578 (6) | 0.4083 (6) | 0.4375 (4) | 0.0380 (13) | |
H10 | 0.5750 | 0.4342 | 0.4679 | 0.046* | |
C11 | 0.7877 (7) | 0.4513 (5) | 0.4381 (3) | 0.0339 (12) | |
C12 | 0.9094 (6) | 0.4099 (6) | 0.3972 (4) | 0.0365 (13) | |
H12 | 0.9987 | 0.4374 | 0.3993 | 0.044* | |
C13 | 0.8989 (6) | 0.3276 (5) | 0.3529 (3) | 0.0296 (11) | |
H13 | 0.9818 | 0.2978 | 0.3254 | 0.036* | |
C14 | 0.7966 (7) | 0.5463 (6) | 0.4827 (4) | 0.0439 (15) | |
F1 | 0.9161 (5) | 0.6165 (4) | 0.4552 (2) | 0.0643 (13) | |
F2 | 0.7837 (6) | 0.4938 (4) | 0.5606 (2) | 0.0708 (14) | |
F3 | 0.6983 (6) | 0.6312 (5) | 0.4752 (4) | 0.093 (2) | |
Cu2 | −0.05556 (6) | 0.17013 (5) | 0.92597 (3) | 0.01768 (14) | |
Cl3 | −0.18291 (11) | 0.01387 (10) | 1.03343 (7) | 0.0185 (2) | |
Cl4 | −0.30093 (11) | 0.26904 (10) | 0.86714 (7) | 0.0194 (2) | |
N5 | 0.0850 (4) | 0.3019 (3) | 0.8338 (2) | 0.0139 (7) | |
N6 | −0.0796 (4) | 0.3026 (4) | 0.9827 (2) | 0.0175 (7) | |
H6C | −0.1725 | 0.3161 | 0.9980 | 0.021* | |
H6D | −0.0480 | 0.2753 | 1.0281 | 0.021* | |
N7 | −0.0460 (4) | 0.0769 (3) | 0.8452 (2) | 0.0172 (8) | |
H7A | −0.0292 | −0.0054 | 0.8669 | 0.021* | |
H7B | −0.1297 | 0.0788 | 0.8320 | 0.021* | |
N8 | 0.4024 (4) | 0.3011 (4) | 0.7164 (2) | 0.0242 (9) | |
C15 | 0.0291 (5) | 0.4249 (4) | 0.8417 (3) | 0.0162 (8) | |
H15A | −0.0582 | 0.4383 | 0.8232 | 0.019* | |
H15B | 0.0986 | 0.4951 | 0.8073 | 0.019* | |
C16 | −0.0011 (5) | 0.4240 (4) | 0.9293 (3) | 0.0170 (9) | |
H16A | 0.0882 | 0.4326 | 0.9437 | 0.020* | |
H16B | −0.0576 | 0.4963 | 0.9372 | 0.020* | |
C17 | 0.0714 (5) | 0.2776 (4) | 0.7581 (3) | 0.0176 (9) | |
H17A | 0.1522 | 0.3193 | 0.7125 | 0.021* | |
H17B | −0.0158 | 0.3123 | 0.7447 | 0.021* | |
C18 | 0.0672 (5) | 0.1352 (4) | 0.7717 (3) | 0.0190 (9) | |
H18A | 0.0483 | 0.1155 | 0.7244 | 0.023* | |
H18B | 0.1585 | 0.1018 | 0.7788 | 0.023* | |
C19 | 0.2302 (4) | 0.2903 (4) | 0.8443 (3) | 0.0165 (8) | |
H19A | 0.2529 | 0.2006 | 0.8532 | 0.020* | |
H19B | 0.2315 | 0.3122 | 0.8941 | 0.020* | |
C20 | 0.3469 (5) | 0.3718 (4) | 0.7746 (3) | 0.0214 (10) | |
H20A | 0.3091 | 0.4512 | 0.7471 | 0.026* | |
H20B | 0.4233 | 0.3941 | 0.7960 | 0.026* | |
C21 | 0.5325 (5) | 0.2848 (4) | 0.7024 (3) | 0.0221 (10) | |
H21 | 0.5900 | 0.3247 | 0.7249 | 0.027* | |
C22 | 0.5967 (5) | 0.2040 (5) | 0.6508 (3) | 0.0240 (10) | |
C23 | 0.5150 (6) | 0.1411 (5) | 0.6187 (3) | 0.0288 (11) | |
H23 | 0.4183 | 0.1565 | 0.6248 | 0.035* | |
C24 | 0.5744 (6) | 0.0561 (5) | 0.5779 (3) | 0.0330 (12) | |
H24 | 0.5180 | 0.0109 | 0.5577 | 0.040* | |
C25 | 0.7162 (6) | 0.0377 (5) | 0.5668 (3) | 0.0327 (12) | |
C26 | 0.7993 (6) | 0.1014 (6) | 0.5960 (4) | 0.0394 (14) | |
H26 | 0.8970 | 0.0888 | 0.5872 | 0.047* | |
C27 | 0.7394 (6) | 0.1846 (5) | 0.6383 (4) | 0.0327 (12) | |
H27 | 0.7963 | 0.2285 | 0.6589 | 0.039* | |
C28 | 0.7789 (7) | −0.0583 (6) | 0.5239 (4) | 0.0425 (15) | |
F4 | 0.8768 (6) | −0.1210 (4) | 0.5533 (3) | 0.0730 (14) | |
F5 | 0.8382 (6) | −0.0061 (4) | 0.4467 (3) | 0.0854 (18) | |
F6 | 0.6850 (5) | −0.1463 (6) | 0.5298 (5) | 0.113 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0205 (3) | 0.0126 (2) | 0.0166 (3) | 0.0093 (2) | −0.0060 (2) | −0.0075 (2) |
Cl1 | 0.0154 (5) | 0.0155 (5) | 0.0217 (5) | 0.0018 (4) | −0.0058 (4) | −0.0018 (4) |
Cl2 | 0.0161 (5) | 0.0132 (4) | 0.0255 (6) | 0.0022 (4) | −0.0049 (4) | −0.0085 (4) |
N1 | 0.0167 (18) | 0.0127 (16) | 0.0169 (18) | 0.0045 (14) | −0.0048 (14) | −0.0070 (14) |
N2 | 0.0155 (17) | 0.0170 (17) | 0.0157 (18) | 0.0062 (14) | −0.0055 (14) | −0.0076 (14) |
N3 | 0.0206 (19) | 0.0086 (16) | 0.026 (2) | 0.0037 (14) | −0.0063 (16) | −0.0061 (15) |
N4 | 0.025 (2) | 0.025 (2) | 0.019 (2) | 0.0040 (16) | −0.0080 (16) | −0.0085 (16) |
C1 | 0.020 (2) | 0.0135 (19) | 0.017 (2) | 0.0017 (16) | −0.0043 (17) | −0.0063 (16) |
C2 | 0.015 (2) | 0.017 (2) | 0.020 (2) | 0.0068 (16) | −0.0071 (17) | −0.0125 (17) |
C3 | 0.021 (2) | 0.018 (2) | 0.013 (2) | 0.0043 (17) | −0.0015 (16) | −0.0077 (17) |
C4 | 0.020 (2) | 0.024 (2) | 0.020 (2) | 0.0028 (18) | −0.0043 (18) | −0.0136 (19) |
C5 | 0.014 (2) | 0.015 (2) | 0.022 (2) | 0.0019 (16) | −0.0045 (17) | −0.0069 (17) |
C6 | 0.020 (2) | 0.018 (2) | 0.022 (2) | 0.0014 (17) | −0.0075 (18) | −0.0094 (18) |
C7 | 0.024 (2) | 0.020 (2) | 0.018 (2) | 0.0044 (18) | −0.0048 (18) | −0.0066 (18) |
C8 | 0.032 (3) | 0.021 (2) | 0.014 (2) | −0.0002 (19) | −0.0067 (19) | −0.0018 (18) |
C9 | 0.031 (3) | 0.037 (3) | 0.029 (3) | −0.001 (2) | −0.005 (2) | −0.016 (2) |
C10 | 0.042 (3) | 0.043 (3) | 0.036 (3) | 0.007 (3) | −0.007 (3) | −0.024 (3) |
C11 | 0.055 (4) | 0.028 (3) | 0.025 (3) | 0.003 (2) | −0.018 (3) | −0.011 (2) |
C12 | 0.041 (3) | 0.041 (3) | 0.035 (3) | 0.001 (3) | −0.020 (3) | −0.014 (3) |
C13 | 0.033 (3) | 0.034 (3) | 0.026 (3) | 0.005 (2) | −0.010 (2) | −0.013 (2) |
C14 | 0.053 (4) | 0.046 (4) | 0.046 (4) | 0.010 (3) | −0.024 (3) | −0.025 (3) |
F1 | 0.108 (4) | 0.045 (2) | 0.045 (2) | −0.023 (2) | −0.017 (2) | −0.0216 (19) |
F2 | 0.121 (4) | 0.062 (3) | 0.031 (2) | −0.032 (3) | −0.012 (2) | −0.0215 (19) |
F3 | 0.114 (4) | 0.085 (4) | 0.142 (5) | 0.048 (3) | −0.082 (4) | −0.086 (4) |
Cu2 | 0.0214 (3) | 0.0159 (3) | 0.0160 (3) | −0.0060 (2) | −0.0010 (2) | −0.0079 (2) |
Cl3 | 0.0143 (5) | 0.0183 (5) | 0.0204 (5) | 0.0000 (4) | −0.0045 (4) | −0.0019 (4) |
Cl4 | 0.0191 (5) | 0.0137 (5) | 0.0277 (6) | 0.0046 (4) | −0.0064 (4) | −0.0094 (4) |
N5 | 0.0182 (18) | 0.0102 (16) | 0.0143 (18) | 0.0026 (13) | −0.0037 (14) | −0.0056 (14) |
N6 | 0.0166 (18) | 0.0214 (19) | 0.0157 (18) | −0.0010 (14) | −0.0026 (14) | −0.0086 (15) |
N7 | 0.0180 (18) | 0.0117 (17) | 0.025 (2) | 0.0040 (14) | −0.0063 (15) | −0.0089 (15) |
N8 | 0.023 (2) | 0.026 (2) | 0.022 (2) | 0.0042 (16) | −0.0009 (16) | −0.0093 (17) |
C15 | 0.019 (2) | 0.0127 (19) | 0.020 (2) | 0.0063 (16) | −0.0040 (17) | −0.0097 (17) |
C16 | 0.016 (2) | 0.019 (2) | 0.020 (2) | 0.0005 (16) | −0.0025 (17) | −0.0126 (18) |
C17 | 0.023 (2) | 0.018 (2) | 0.015 (2) | 0.0040 (17) | −0.0042 (17) | −0.0103 (17) |
C18 | 0.023 (2) | 0.017 (2) | 0.020 (2) | 0.0055 (17) | −0.0045 (18) | −0.0114 (18) |
C19 | 0.016 (2) | 0.0143 (19) | 0.020 (2) | 0.0024 (16) | −0.0044 (17) | −0.0062 (17) |
C20 | 0.020 (2) | 0.018 (2) | 0.025 (2) | 0.0025 (17) | 0.0001 (18) | −0.0085 (19) |
C21 | 0.026 (2) | 0.020 (2) | 0.019 (2) | 0.0013 (18) | −0.0044 (19) | −0.0053 (18) |
C22 | 0.028 (3) | 0.024 (2) | 0.015 (2) | 0.0053 (19) | 0.0034 (18) | −0.0053 (19) |
C23 | 0.032 (3) | 0.033 (3) | 0.021 (2) | 0.008 (2) | −0.004 (2) | −0.011 (2) |
C24 | 0.039 (3) | 0.039 (3) | 0.021 (3) | 0.006 (2) | −0.005 (2) | −0.012 (2) |
C25 | 0.036 (3) | 0.030 (3) | 0.026 (3) | 0.005 (2) | 0.005 (2) | −0.011 (2) |
C26 | 0.025 (3) | 0.041 (3) | 0.049 (4) | 0.008 (2) | 0.003 (2) | −0.020 (3) |
C27 | 0.026 (3) | 0.033 (3) | 0.039 (3) | 0.001 (2) | −0.001 (2) | −0.016 (2) |
C28 | 0.043 (3) | 0.043 (3) | 0.040 (3) | 0.006 (3) | 0.004 (3) | −0.024 (3) |
F4 | 0.109 (4) | 0.060 (3) | 0.058 (3) | 0.053 (3) | −0.021 (3) | −0.031 (2) |
F5 | 0.145 (5) | 0.065 (3) | 0.033 (2) | 0.053 (3) | 0.002 (3) | −0.019 (2) |
F6 | 0.062 (3) | 0.106 (4) | 0.195 (7) | −0.007 (3) | 0.016 (4) | −0.124 (5) |
Cu1—N2 | 1.986 (3) | Cu2—N7 | 1.986 (4) |
Cu1—N3 | 1.988 (4) | Cu2—N6 | 1.989 (4) |
Cu1—N1 | 2.062 (4) | Cu2—N5 | 2.070 (4) |
Cu1—Cl1 | 2.2701 (12) | Cu2—Cl3 | 2.2777 (12) |
Cu1—Cl2 | 2.8505 (12) | Cu2—Cl4 | 2.9415 (12) |
Cu1—Cl1i | 3.4056 (12) | Cu2—Cl3ii | 3.1645 (12) |
N1—C1 | 1.480 (5) | N5—C19 | 1.486 (5) |
N1—C3 | 1.493 (5) | N5—C15 | 1.491 (5) |
N1—C5 | 1.496 (5) | N5—C17 | 1.491 (5) |
N2—C2 | 1.491 (5) | N6—C16 | 1.494 (6) |
N2—H2A | 0.9100 | N6—H6C | 0.9100 |
N2—H2B | 0.9100 | N6—H6D | 0.9100 |
N3—C4 | 1.478 (6) | N7—C18 | 1.478 (6) |
N3—H3A | 0.9100 | N7—H7A | 0.9100 |
N3—H3B | 0.9100 | N7—H7B | 0.9100 |
N4—C7 | 1.260 (6) | N8—C21 | 1.263 (6) |
N4—C6 | 1.466 (6) | N8—C20 | 1.470 (6) |
C1—C2 | 1.518 (6) | C15—C16 | 1.515 (6) |
C1—H1A | 0.9900 | C15—H15A | 0.9900 |
C1—H1B | 0.9900 | C15—H15B | 0.9900 |
C2—H2C | 0.9900 | C16—H16A | 0.9900 |
C2—H2D | 0.9900 | C16—H16B | 0.9900 |
C3—C4 | 1.516 (6) | C17—C18 | 1.522 (6) |
C3—H3C | 0.9900 | C17—H17A | 0.9900 |
C3—H3D | 0.9900 | C17—H17B | 0.9900 |
C4—H4A | 0.9900 | C18—H18A | 0.9900 |
C4—H4B | 0.9900 | C18—H18B | 0.9900 |
C5—C6 | 1.529 (6) | C19—C20 | 1.534 (6) |
C5—H5A | 0.9900 | C19—H19A | 0.9900 |
C5—H5B | 0.9900 | C19—H19B | 0.9900 |
C6—H6A | 0.9900 | C20—H20A | 0.9900 |
C6—H6B | 0.9900 | C20—H20B | 0.9900 |
C7—C8 | 1.482 (6) | C21—C22 | 1.488 (6) |
C7—H7 | 0.9500 | C21—H21 | 0.9500 |
C8—C13 | 1.390 (7) | C22—C27 | 1.390 (7) |
C8—C9 | 1.397 (7) | C22—C23 | 1.394 (8) |
C9—C10 | 1.381 (8) | C23—C24 | 1.386 (7) |
C9—H9 | 0.9500 | C23—H23 | 0.9500 |
C10—C11 | 1.377 (9) | C24—C25 | 1.381 (8) |
C10—H10 | 0.9500 | C24—H24 | 0.9500 |
C11—C12 | 1.385 (9) | C25—C26 | 1.373 (9) |
C11—C14 | 1.506 (8) | C25—C28 | 1.519 (7) |
C12—C13 | 1.387 (8) | C26—C27 | 1.389 (8) |
C12—H12 | 0.9500 | C26—H26 | 0.9500 |
C13—H13 | 0.9500 | C27—H27 | 0.9500 |
C14—F2 | 1.317 (8) | C28—F4 | 1.306 (8) |
C14—F1 | 1.323 (8) | C28—F5 | 1.312 (7) |
C14—F3 | 1.341 (8) | C28—F6 | 1.318 (8) |
N2—Cu1—N3 | 166.47 (15) | N7—Cu2—N6 | 163.80 (16) |
N2—Cu1—N1 | 84.81 (14) | N7—Cu2—N5 | 85.50 (15) |
N3—Cu1—N1 | 85.31 (14) | N6—Cu2—N5 | 85.18 (14) |
N2—Cu1—Cl1 | 95.85 (11) | N7—Cu2—Cl3 | 95.55 (11) |
N3—Cu1—Cl1 | 95.68 (11) | N6—Cu2—Cl3 | 95.56 (11) |
N1—Cu1—Cl1 | 168.47 (11) | N5—Cu2—Cl3 | 171.82 (11) |
N2—Cu1—Cl2 | 88.27 (11) | N7—Cu2—Cl4 | 81.07 (11) |
N3—Cu1—Cl2 | 83.37 (11) | N6—Cu2—Cl4 | 86.35 (11) |
N1—Cu1—Cl2 | 94.77 (10) | N5—Cu2—Cl4 | 93.74 (10) |
Cl1—Cu1—Cl2 | 96.76 (4) | Cl3—Cu2—Cl4 | 94.44 (4) |
N2—Cu1—Cl1i | 115.18 (11) | N7—Cu2—Cl3ii | 80.52 (11) |
N3—Cu1—Cl1i | 74.19 (11) | N6—Cu2—Cl3ii | 113.16 (12) |
N1—Cu1—Cl1i | 90.95 (10) | N5—Cu2—Cl3ii | 92.88 (10) |
Cl1—Cu1—Cl1i | 78.32 (4) | Cl3—Cu2—Cl3ii | 79.32 (4) |
Cl2—Cu1—Cl1i | 156.30 (3) | Cl4—Cu2—Cl3ii | 159.87 (3) |
C1—N1—C3 | 113.3 (3) | C19—N5—C15 | 111.4 (3) |
C1—N1—C5 | 112.1 (3) | C19—N5—C17 | 113.2 (3) |
C3—N1—C5 | 112.9 (3) | C15—N5—C17 | 112.4 (3) |
C1—N1—Cu1 | 103.3 (3) | C19—N5—Cu2 | 111.7 (3) |
C3—N1—Cu1 | 104.8 (2) | C15—N5—Cu2 | 102.9 (3) |
C5—N1—Cu1 | 109.8 (3) | C17—N5—Cu2 | 104.7 (3) |
C2—N2—Cu1 | 111.7 (3) | C16—N6—Cu2 | 111.2 (3) |
C2—N2—H2A | 109.3 | C16—N6—H6C | 109.4 |
Cu1—N2—H2A | 109.3 | Cu2—N6—H6C | 109.4 |
C2—N2—H2B | 109.3 | C16—N6—H6D | 109.4 |
Cu1—N2—H2B | 109.3 | Cu2—N6—H6D | 109.4 |
H2A—N2—H2B | 107.9 | H6C—N6—H6D | 108.0 |
C4—N3—Cu1 | 110.5 (3) | C18—N7—Cu2 | 110.0 (3) |
C4—N3—H3A | 109.5 | C18—N7—H7A | 109.7 |
Cu1—N3—H3A | 109.5 | Cu2—N7—H7A | 109.7 |
C4—N3—H3B | 109.5 | C18—N7—H7B | 109.7 |
Cu1—N3—H3B | 109.5 | Cu2—N7—H7B | 109.7 |
H3A—N3—H3B | 108.1 | H7A—N7—H7B | 108.2 |
C7—N4—C6 | 116.6 (4) | C21—N8—C20 | 116.4 (4) |
N1—C1—C2 | 109.9 (4) | N5—C15—C16 | 109.5 (4) |
N1—C1—H1A | 109.7 | N5—C15—H15A | 109.8 |
C2—C1—H1A | 109.7 | C16—C15—H15A | 109.8 |
N1—C1—H1B | 109.7 | N5—C15—H15B | 109.8 |
C2—C1—H1B | 109.7 | C16—C15—H15B | 109.8 |
H1A—C1—H1B | 108.2 | H15A—C15—H15B | 108.2 |
N2—C2—C1 | 109.4 (3) | N6—C16—C15 | 109.5 (3) |
N2—C2—H2C | 109.8 | N6—C16—H16A | 109.8 |
C1—C2—H2C | 109.8 | C15—C16—H16A | 109.8 |
N2—C2—H2D | 109.8 | N6—C16—H16B | 109.8 |
C1—C2—H2D | 109.8 | C15—C16—H16B | 109.8 |
H2C—C2—H2D | 108.2 | H16A—C16—H16B | 108.2 |
N1—C3—C4 | 108.3 (4) | N5—C17—C18 | 108.2 (4) |
N1—C3—H3C | 110.0 | N5—C17—H17A | 110.0 |
C4—C3—H3C | 110.0 | C18—C17—H17A | 110.0 |
N1—C3—H3D | 110.0 | N5—C17—H17B | 110.0 |
C4—C3—H3D | 110.0 | C18—C17—H17B | 110.0 |
H3C—C3—H3D | 108.4 | H17A—C17—H17B | 108.4 |
N3—C4—C3 | 108.1 (4) | N7—C18—C17 | 107.7 (3) |
N3—C4—H4A | 110.1 | N7—C18—H18A | 110.2 |
C3—C4—H4A | 110.1 | C17—C18—H18A | 110.2 |
N3—C4—H4B | 110.1 | N7—C18—H18B | 110.2 |
C3—C4—H4B | 110.1 | C17—C18—H18B | 110.2 |
H4A—C4—H4B | 108.4 | H18A—C18—H18B | 108.5 |
N1—C5—C6 | 116.6 (4) | N5—C19—C20 | 116.6 (4) |
N1—C5—H5A | 108.1 | N5—C19—H19A | 108.2 |
C6—C5—H5A | 108.1 | C20—C19—H19A | 108.2 |
N1—C5—H5B | 108.1 | N5—C19—H19B | 108.2 |
C6—C5—H5B | 108.1 | C20—C19—H19B | 108.2 |
H5A—C5—H5B | 107.3 | H19A—C19—H19B | 107.3 |
N4—C6—C5 | 110.1 (4) | N8—C20—C19 | 109.5 (4) |
N4—C6—H6A | 109.6 | N8—C20—H20A | 109.8 |
C5—C6—H6A | 109.6 | C19—C20—H20A | 109.8 |
N4—C6—H6B | 109.6 | N8—C20—H20B | 109.8 |
C5—C6—H6B | 109.6 | C19—C20—H20B | 109.8 |
H6A—C6—H6B | 108.1 | H20A—C20—H20B | 108.2 |
N4—C7—C8 | 121.4 (4) | N8—C21—C22 | 120.6 (5) |
N4—C7—H7 | 119.3 | N8—C21—H21 | 119.7 |
C8—C7—H7 | 119.3 | C22—C21—H21 | 119.7 |
C13—C8—C9 | 118.8 (5) | C27—C22—C23 | 119.1 (5) |
C13—C8—C7 | 119.6 (4) | C27—C22—C21 | 119.5 (5) |
C9—C8—C7 | 121.5 (5) | C23—C22—C21 | 121.3 (4) |
C10—C9—C8 | 120.3 (5) | C24—C23—C22 | 120.2 (5) |
C10—C9—H9 | 119.9 | C24—C23—H23 | 119.9 |
C8—C9—H9 | 119.9 | C22—C23—H23 | 119.9 |
C11—C10—C9 | 120.1 (5) | C25—C24—C23 | 119.5 (5) |
C11—C10—H10 | 120.0 | C25—C24—H24 | 120.2 |
C9—C10—H10 | 120.0 | C23—C24—H24 | 120.2 |
C10—C11—C12 | 120.7 (5) | C26—C25—C24 | 121.1 (5) |
C10—C11—C14 | 119.3 (6) | C26—C25—C28 | 120.0 (5) |
C12—C11—C14 | 120.0 (6) | C24—C25—C28 | 118.8 (5) |
C11—C12—C13 | 119.0 (5) | C25—C26—C27 | 119.4 (5) |
C11—C12—H12 | 120.5 | C25—C26—H26 | 120.3 |
C13—C12—H12 | 120.5 | C27—C26—H26 | 120.3 |
C12—C13—C8 | 121.0 (5) | C26—C27—C22 | 120.5 (5) |
C12—C13—H13 | 119.5 | C26—C27—H27 | 119.7 |
C8—C13—H13 | 119.5 | C22—C27—H27 | 119.7 |
F2—C14—F1 | 105.8 (5) | F4—C28—F5 | 105.2 (5) |
F2—C14—F3 | 107.4 (6) | F4—C28—F6 | 104.6 (6) |
F1—C14—F3 | 103.8 (6) | F5—C28—F6 | 107.6 (6) |
F2—C14—C11 | 113.2 (5) | F4—C28—C25 | 113.6 (6) |
F1—C14—C11 | 113.8 (6) | F5—C28—C25 | 112.7 (5) |
F3—C14—C11 | 112.1 (5) | F6—C28—C25 | 112.5 (5) |
C3—N1—C1—C2 | 161.1 (3) | C19—N5—C15—C16 | −71.4 (4) |
C5—N1—C1—C2 | −69.8 (4) | C17—N5—C15—C16 | 160.5 (4) |
Cu1—N1—C1—C2 | 48.3 (4) | Cu2—N5—C15—C16 | 48.4 (4) |
Cu1—N2—C2—C1 | 17.1 (4) | Cu2—N6—C16—C15 | 19.9 (4) |
N1—C1—C2—N2 | −44.7 (5) | N5—C15—C16—N6 | −46.7 (5) |
C1—N1—C3—C4 | −156.5 (4) | C19—N5—C17—C18 | 77.8 (4) |
C5—N1—C3—C4 | 74.8 (4) | C15—N5—C17—C18 | −155.0 (4) |
Cu1—N1—C3—C4 | −44.7 (4) | Cu2—N5—C17—C18 | −44.0 (4) |
Cu1—N3—C4—C3 | −33.0 (4) | Cu2—N7—C18—C17 | −35.9 (4) |
N1—C3—C4—N3 | 52.3 (5) | N5—C17—C18—N7 | 54.0 (5) |
C1—N1—C5—C6 | −70.5 (5) | C15—N5—C19—C20 | −72.8 (5) |
C3—N1—C5—C6 | 58.9 (5) | C17—N5—C19—C20 | 55.0 (5) |
Cu1—N1—C5—C6 | 175.4 (3) | Cu2—N5—C19—C20 | 172.7 (3) |
C7—N4—C6—C5 | −120.4 (4) | C21—N8—C20—C19 | −122.6 (5) |
N1—C5—C6—N4 | −84.7 (5) | N5—C19—C20—N8 | −89.7 (4) |
C6—N4—C7—C8 | 173.7 (4) | C20—N8—C21—C22 | 173.9 (4) |
N4—C7—C8—C13 | −172.1 (5) | N8—C21—C22—C27 | −178.1 (5) |
N4—C7—C8—C9 | 3.0 (7) | N8—C21—C22—C23 | −1.9 (7) |
C13—C8—C9—C10 | 2.4 (8) | C27—C22—C23—C24 | 2.8 (8) |
C7—C8—C9—C10 | −172.7 (5) | C21—C22—C23—C24 | −173.4 (5) |
C8—C9—C10—C11 | 0.7 (9) | C22—C23—C24—C25 | −2.3 (8) |
C9—C10—C11—C12 | −3.1 (9) | C23—C24—C25—C26 | 0.4 (9) |
C9—C10—C11—C14 | 175.8 (6) | C23—C24—C25—C28 | 178.4 (5) |
C10—C11—C12—C13 | 2.3 (9) | C24—C25—C26—C27 | 0.9 (9) |
C14—C11—C12—C13 | −176.6 (5) | C28—C25—C26—C27 | −177.0 (6) |
C11—C12—C13—C8 | 0.9 (8) | C25—C26—C27—C22 | −0.4 (9) |
C9—C8—C13—C12 | −3.2 (8) | C23—C22—C27—C26 | −1.5 (8) |
C7—C8—C13—C12 | 172.0 (5) | C21—C22—C27—C26 | 174.8 (5) |
C10—C11—C14—F2 | 84.1 (7) | C26—C25—C28—F4 | 34.7 (8) |
C12—C11—C14—F2 | −97.1 (7) | C24—C25—C28—F4 | −143.3 (6) |
C10—C11—C14—F1 | −155.1 (6) | C26—C25—C28—F5 | −84.8 (8) |
C12—C11—C14—F1 | 23.8 (8) | C24—C25—C28—F5 | 97.2 (7) |
C10—C11—C14—F3 | −37.6 (9) | C26—C25—C28—F6 | 153.2 (7) |
C12—C11—C14—F3 | 141.2 (6) | C24—C25—C28—F6 | −24.8 (9) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···Cl3iii | 0.91 | 2.84 | 3.591 (4) | 141 |
N2—H2B···Cl4iv | 0.91 | 2.46 | 3.365 (4) | 171 |
N3—H3A···Cl1i | 0.91 | 2.95 | 3.444 (4) | 115 |
N3—H3A···Cl4v | 0.91 | 2.60 | 3.334 (4) | 139 |
N3—H3B···Cl2 | 0.91 | 2.83 | 3.281 (4) | 112 |
N6—H6C···Cl1v | 0.91 | 2.96 | 3.681 (4) | 138 |
N6—H6D···Cl2vi | 0.91 | 2.45 | 3.342 (4) | 167 |
N7—H7A···Cl2iii | 0.91 | 2.57 | 3.348 (4) | 143 |
N7—H7B···Cl4 | 0.91 | 2.79 | 3.284 (4) | 115 |
Symmetry codes: (i) −x+1, −y+1, −z; (iii) −x, −y, −z+1; (iv) x+1, y, z−1; (v) −x, −y+1, −z+1; (vi) x, y, z+1. |
Acknowledgements
The authors would like to thank all students listed for their contribution to this project and Youngstown State University for instrument support. The Weber Foundation, Thermo-Fisher Scientific, Kimble–Chase Life Science, and Hamilton Company are also gratefully acknowledged for funding support. X-ray diffractometer was funded by NSF Grant No. 1337296 and Project SEED student (ASH) was funded by the American Chemical Society.
References
Böhm, H. J., Banner, D., Bendels, S., Kansy, M., Kuhn, B., Müller, K., Obst-Sander, U. & Stahl, M. (2004). ChemBioChem, 5, 637–643. PubMed Google Scholar
Bruker (2013). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolbier, W. R. (2009). Guide to Fluorine NMR for Organic Chemists, ch. 5, pp. 137–176. Hoboken: John Wiley and Sons. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dubinina, G. G., Ogikubo, J. & Vicic, D. A. (2008). Organometallics, 27, 6233–6235. CSD CrossRef CAS Google Scholar
Ferrari, M. B., Fava, G. G., Leporati, E., Pelosi, G. K., Rossi, R., Tarasconi, P., Albertini, R., Bonati, A., Lunghi, P. & Pinelli, S. (1998). J. Inorg. Biochem. 70, 145–154. CrossRef CAS PubMed Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Halcrow, M. A. (2013). Chem. Soc. Rev. 42, 1784–1795. Web of Science CrossRef CAS PubMed Google Scholar
Krysiak, Y., Fink, L., Bernert, T., Glinnemann, J., Kapuscinski, M., Zhao, H., Alig, E. & Schmidt, M. U. (2014). Z. Anorg. Allg. Chem. 640, 3190–3196. CSD CrossRef CAS Google Scholar
Murphy, B. & Hathaway, B. (2003). Coord. Chem. Rev. 243, 2370–262. CrossRef Google Scholar
Odoko, M., Yamamoto, K. & Okabe, N. (2002). Acta Cryst. C58, m506–m508. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England. Google Scholar
Purser, S., Moore, P. R., Swallow, S. & Gouverneur, V. (2008). Chem. Soc. Rev. 37, 320–330. Web of Science CrossRef PubMed CAS Google Scholar
Rossi, A. R. & Hoffmann, R. (1975). Inorg. Chem. 14, 365–374. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, R. P. & Shreeve, J. M. (2000). Tetrahedron, 56, 7613–7632. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tucker, D. A., White, P. S., Trojan, K. L., Kirk, M. J. & Hatfield, W. E. (1991). Inorg. Chem. 30, 823–826. CSD CrossRef CAS Google Scholar
Welch, J. T. (1987). Tetrahedron, 43, 3123–3197. CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.