research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N-{4-[(6-chloro­pyridin-3-yl)meth­­oxy]phen­yl}-2,6-di­fluoro­benzamide

CROSSMARK_Color_square_no_text.svg

aHubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Science, Wuhan 430064, People's Republic of China
*Correspondence e-mail: ying.liang@nberc.com

Edited by J. Simpson, University of Otago, New Zealand (Received 30 November 2015; accepted 10 December 2015; online 1 January 2016)

In the title compound, C19H13ClF2N2O2, the conformation of the N—H bond in the amide segment is anti to the C=O bond. The mol­ecule is not planar, with dihedral angles between the central benzene ring and the outer benzene and pyridyl rings of 73.35 (7) and 81.26 (6)°, respectively. A weak intra­molecular C—H⋯O hydrogen bond occurs. In the crystal, N—H⋯N, C—H⋯O and C—H⋯F hydrogen bonds lead to the formation of dimers. The N—H⋯N inversion dimers are linked by ππ contacts between adjacent pyridine rings [centroid–centroid = 3.8541 (12) Å] and C—H⋯π inter­actions. These contacts combine to stack the mol­ecules along the a axis.

1. Chemical context

Amide derivatives show diverse biological properties, acting as insecticides (Liu et al., 2004a[Liu, C. L., Li, L. & Li, Z. M. (2004a). Bioorg. Med. Chem. 12, 2825-2830.]), fungicides (Liu et al., 2004b[Liu, C. L., Li, Z. M. & Zhong, B. (2004b). J. Fluor. Chem. 125, 1287-1290.]) and acaricides (Shiga et al., 2003[Shiga, Y., Okada, I. & Fukuchi, T. (2003). J. Pestic. Sci. 28, 310-312.]). Amides in regular commercial use include benzamide (flutolanil, fluopicolide), nicotinamide (boscalid) and thia­zole carboxamide (thifluzamide, ethaboxam). As a part of our work on the synthesis of novel fluorine-containing compounds with good biological activities, we report herein on the crystal structure of the title compound,(I), Fig. 1[link].

[Scheme 1]
[Figure 1]
Figure 1
The structure of (I)[link], showing 50% probability displacement ellipsoids and the atom-numbering scheme.

2. Structural commentary

The conformation of the N—H and the C=O bonds in the amide segment are anti to one another, similar to the conformation observed in another amide compound (Gowda et al., 2010[Gowda, B. T., Tokarčík, M., Shakuntala, K., Kožíšek, J. & Fuess, H. (2010). Acta Cryst. E66, o1529-o1530.]). The dihedral angle between the two benzene rings is 73.35 (6)° while that between the central benzene ring and the chloro-substituted pyridine ring is 81.26 (6). The amide residue C1/N1/C7/O1 lies close to the plane of the central benzene ring, making a dihedral angle of 8.73 (6)°. A weak intra­molecular C9—H9⋯O1 hydrogen bond (Table 1[link]) contrib­utes to the planarity of this part of the mol­ecule.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1 0.93 2.27 2.863 (2) 121
N1—H1⋯N2i 0.88 (2) 2.24 (2) 3.109 (2) 170.6 (18)
C19—H19⋯F2ii 0.93 2.54 3.309 (2) 140
C14—H14B⋯O1ii 0.97 2.42 3.344 (3) 160
C16—H16⋯Cg2iii 0.93 2.99 3.912 (2) 173
Symmetry codes: (i) -x, -y+1, -z; (ii) x-1, y, z; (iii) x-1, y, z+1.

3. Supra­molecular features

In the crystal structure, pairs of classical N1—H1⋯N2i hydrogen bonds, Table 1[link], link the mol­ecules into inversion dimers and generate R22(22) rings (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). C14—H14B⋯O1ii and C19—H19⋯F2ii hydrogen bonds also form dimers, which enclose an R22(10) ring motif, Fig. 2[link]. The N—H⋯N dimers are linked into chains along the c-axis direction by ππ stacking inter­actions between adjacent pyridyl rings [Cg1⋯Cg1iv = 3.8541 (12) Å; symmetry code: (iv) 1 − x, 1 − y, 1 − z] augmented by a weak C16—H16⋯Cg2 contact (Cg2 is the centroid of the C1–C6 benzene ring), Table 1[link], Fig. 3[link]. These contacts combine to stack the mol­ecules along the a axis, Fig. 4[link].

[Figure 2]
Figure 2
A pair of dimers with hydrogen bonds drawn as blue dashed lines.
[Figure 3]
Figure 3
Chains of inversion dimers along the c-axis direction. Hydrogen bonds are drawn as dashed lines with ππ and C—H⋯π contacts shown as green dotted lines.
[Figure 4]
Figure 4
The overall packing for (I)[link] viewed along the a-axis direction.

4. Synthesis and crystallization

Tri­ethyl­amine (6mmol) was added dropwise to a stirred solution of 4-(6-chloro­pyridin-3-yl) meth­oxy aniline (5mmol) and 2,6-di­fluoro­benzoyl chloride (5mmol) in dry di­chloro­methane (20ml) at 275-277 K. The mixture was stirred at 283–288 K for 2 h, then washed with 0.5% hydro­chloric acid solution, and a saturated aqueous solution of sodium hydrogen carbonate, dried and evaporated. The residue was recrystallized from di­chloro­methane, giving colourless blocks of the title compound after three weeks.

5. Database survey

A search of the Cambridge Structural Database (Version 5.36 with three updates) (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for N-(4-(pyridin-3-ylmeth­oxy)phen­yl)benzamide or its substituted derivatives gave no hits. However, structures of eight substituted 2,6-di­fluoro-N-phenyl­benzamide derivatives were found, see for example Cockroft et al. (2007[Cockroft, S. L., Perkins, J., Zonta, C., Adams, H., Spey, S. E., Low, C. M. R., Vinter, J. G., Lawson, K. R., Urch, C. J. & Hunter, C. A. (2007). Org. Biomol. Chem. 5, 1062-1080.]); Spitaleri et al. (2004[Spitaleri, A., Hunter, C. A., McCabe, J. F., Packer, M. J. & Cockroft, S. L. (2004). CrystEngComm, 6, 490-493.]); Fun et al. (2010[Fun, H.-K., Goh, J. H., Gowda, J., Khader, A. M. & Kalluraya, B. (2010). Acta Cryst. E66, o3192.]). Two structures of purely organic 3-(phen­oxy­meth­yl)pyridine derivatives have also been reported (Lakshminarayana et al., 2009[Lakshminarayana, B. N., Prasad, J. S., Venu, T. D., Manuprasad, B. K., Sridhar, M. A. & Shashikanth, S. (2009). Mol. Cryst. Liq. Cryst. 515, 207-214.]; Liu et al., 2010[Liu, X.-H., Liu, H.-F., Shen, X., Song, B.-A., Bhadury, P. S., Zhu, H.-L., Liu, J.-X. & Qi, X.-B. (2010). Bioorg. Med. Chem. Lett. 20, 4163-4167.]) together with that of a cadmium complex of 4-[(6-chloro­pyridin-3-yl)meth­oxy]benz­oate, Li et al. (2007[Li, S.-L., Liu, J. & Liu, Y.-Y. (2007). Acta Cryst. E63, m2956.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The NH H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C19H13ClF2N2O2
Mr 374.76
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 298
a, b, c (Å) 8.8173 (11), 10.7036 (13), 10.8452 (14)
α, β, γ (°) 61.939 (2), 77.597 (2), 69.636 (2)
V3) 845.15 (18)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.26
Crystal size (mm) 0.16 × 0.12 × 0.10
 
Data collection
Diffractometer Bruker SMART APEX CCD area detector
Absorption correction Multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.959, 0.974
No. of measured, independent and observed [I > 2σ(I)] reflections 5474, 3271, 2886
Rint 0.029
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.116, 1.06
No. of reflections 3271
No. of parameters 239
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.23
Computer programs: SMART and SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

N-{4-[(6-Chloropyridin-3-yl)methoxy]phenyl}-2,6-difluorobenzamide top
Crystal data top
C19H13ClF2N2O2Z = 2
Mr = 374.76F(000) = 384
Triclinic, P1Dx = 1.473 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8173 (11) ÅCell parameters from 2810 reflections
b = 10.7036 (13) Åθ = 2.3–28.3°
c = 10.8452 (14) ŵ = 0.26 mm1
α = 61.939 (2)°T = 298 K
β = 77.597 (2)°Block, colorless
γ = 69.636 (2)°0.16 × 0.12 × 0.10 mm
V = 845.15 (18) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3271 independent reflections
Radiation source: fine-focus sealed tube2886 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1010
Tmin = 0.959, Tmax = 0.974k = 1313
5474 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0526P)2 + 0.196P]
where P = (Fo2 + 2Fc2)/3
3271 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7630 (2)0.2167 (2)0.02643 (18)0.0427 (4)
C20.8270 (2)0.1167 (2)0.08394 (19)0.0478 (4)
C30.9422 (3)0.1317 (3)0.1918 (2)0.0611 (6)
H30.98160.06180.22760.073*
C40.9982 (3)0.2526 (3)0.2461 (2)0.0706 (7)
H41.07730.26440.31950.085*
C50.9403 (3)0.3566 (3)0.1949 (2)0.0750 (7)
H50.97870.43880.23270.090*
C60.8239 (3)0.3360 (2)0.0861 (2)0.0602 (5)
C70.6521 (2)0.1886 (2)0.10413 (18)0.0432 (4)
C80.3644 (2)0.21024 (17)0.18987 (17)0.0391 (4)
C90.3813 (2)0.1688 (2)0.32952 (18)0.0462 (4)
H90.48170.15030.35900.055*
C100.2489 (2)0.1551 (2)0.42425 (18)0.0461 (4)
H100.26090.12730.51760.055*
C110.0990 (2)0.18196 (17)0.38294 (18)0.0408 (4)
C120.0809 (2)0.2233 (2)0.24416 (19)0.0470 (4)
H120.01980.24220.21490.056*
C130.2140 (2)0.2363 (2)0.14935 (18)0.0461 (4)
H130.20190.26310.05630.055*
C140.1851 (2)0.2030 (2)0.4525 (2)0.0497 (5)
H14A0.24880.15210.53410.060*
H14B0.18610.17370.38060.060*
C150.2607 (2)0.36755 (19)0.40005 (18)0.0414 (4)
C160.2680 (2)0.4370 (2)0.4829 (2)0.0498 (5)
H160.22640.38190.57100.060*
C170.3362 (2)0.5864 (2)0.4347 (2)0.0506 (5)
H170.34180.63480.48850.061*
C180.3961 (2)0.6622 (2)0.3043 (2)0.0479 (4)
C190.3260 (2)0.4551 (2)0.2721 (2)0.0503 (5)
H190.32300.40980.21610.060*
Cl10.48341 (8)0.85162 (6)0.23999 (7)0.0783 (2)
F10.77345 (18)0.00346 (13)0.02627 (13)0.0741 (4)
F20.7661 (2)0.43493 (16)0.03160 (16)0.1031 (6)
N10.49454 (18)0.22686 (16)0.08547 (16)0.0430 (4)
H10.468 (2)0.265 (2)0.001 (2)0.052*
N20.3942 (2)0.60203 (18)0.22226 (16)0.0537 (4)
O10.71012 (17)0.1345 (2)0.21658 (15)0.0727 (5)
O20.02172 (15)0.16015 (14)0.48849 (13)0.0495 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0410 (9)0.0482 (10)0.0375 (9)0.0112 (8)0.0013 (7)0.0189 (8)
C20.0514 (11)0.0483 (10)0.0415 (10)0.0084 (8)0.0054 (8)0.0207 (8)
C30.0524 (12)0.0763 (15)0.0463 (11)0.0010 (11)0.0033 (9)0.0335 (11)
C40.0484 (12)0.116 (2)0.0456 (12)0.0288 (13)0.0066 (9)0.0342 (13)
C50.0860 (17)0.1005 (19)0.0517 (13)0.0615 (15)0.0073 (12)0.0240 (13)
C60.0785 (15)0.0630 (13)0.0489 (11)0.0310 (11)0.0043 (10)0.0278 (10)
C70.0470 (10)0.0465 (9)0.0385 (9)0.0125 (8)0.0001 (8)0.0220 (8)
C80.0434 (9)0.0330 (8)0.0364 (9)0.0069 (7)0.0014 (7)0.0159 (7)
C90.0425 (10)0.0540 (10)0.0408 (10)0.0085 (8)0.0032 (8)0.0230 (8)
C100.0508 (11)0.0483 (10)0.0347 (9)0.0076 (8)0.0026 (8)0.0188 (8)
C110.0453 (10)0.0322 (8)0.0391 (9)0.0062 (7)0.0016 (7)0.0160 (7)
C120.0423 (10)0.0523 (10)0.0444 (10)0.0092 (8)0.0041 (8)0.0219 (9)
C130.0512 (11)0.0480 (10)0.0355 (9)0.0090 (8)0.0030 (8)0.0188 (8)
C140.0457 (10)0.0462 (10)0.0515 (11)0.0141 (8)0.0055 (8)0.0194 (9)
C150.0353 (9)0.0447 (9)0.0424 (9)0.0120 (7)0.0045 (7)0.0198 (8)
C160.0479 (11)0.0540 (11)0.0457 (10)0.0101 (8)0.0079 (8)0.0214 (9)
C170.0483 (11)0.0552 (11)0.0573 (12)0.0160 (9)0.0002 (9)0.0321 (10)
C180.0379 (9)0.0427 (9)0.0550 (11)0.0123 (7)0.0062 (8)0.0179 (9)
C190.0544 (11)0.0524 (11)0.0444 (10)0.0118 (9)0.0011 (8)0.0254 (9)
Cl10.0732 (4)0.0415 (3)0.0948 (5)0.0080 (2)0.0032 (3)0.0186 (3)
F10.1111 (11)0.0569 (7)0.0632 (8)0.0301 (7)0.0031 (7)0.0322 (6)
F20.1807 (18)0.0716 (9)0.0786 (10)0.0650 (11)0.0283 (10)0.0444 (8)
N10.0453 (9)0.0451 (8)0.0327 (8)0.0082 (6)0.0008 (6)0.0161 (7)
N20.0541 (10)0.0527 (9)0.0428 (9)0.0079 (7)0.0019 (7)0.0173 (7)
O10.0500 (8)0.1190 (14)0.0444 (8)0.0210 (9)0.0008 (7)0.0348 (9)
O20.0436 (7)0.0507 (7)0.0411 (7)0.0063 (6)0.0034 (5)0.0170 (6)
Geometric parameters (Å, º) top
C1—C61.374 (3)C11—O21.377 (2)
C1—C21.382 (2)C11—C121.383 (2)
C1—C71.504 (2)C12—C131.384 (2)
C2—F11.344 (2)C12—H120.9300
C2—C31.361 (3)C13—H130.9300
C3—C41.366 (3)C14—O21.432 (2)
C3—H30.9300C14—C151.508 (2)
C4—C51.368 (4)C14—H14A0.9700
C4—H40.9300C14—H14B0.9700
C5—C61.374 (3)C15—C191.371 (3)
C5—H50.9300C15—C161.391 (2)
C6—F21.347 (2)C16—C171.368 (3)
C7—O11.217 (2)C16—H160.9300
C7—N11.336 (2)C17—C181.372 (3)
C8—C131.381 (3)C17—H170.9300
C8—C91.390 (2)C18—N21.316 (2)
C8—N11.423 (2)C18—Cl11.7328 (19)
C9—C101.379 (2)C19—N21.345 (2)
C9—H90.9300C19—H190.9300
C10—C111.378 (3)N1—H10.88 (2)
C10—H100.9300
C6—C1—C2115.21 (17)C11—C12—C13119.36 (17)
C6—C1—C7121.35 (16)C11—C12—H12120.3
C2—C1—C7122.93 (16)C13—C12—H12120.3
F1—C2—C3119.06 (18)C8—C13—C12121.47 (16)
F1—C2—C1117.06 (16)C8—C13—H13119.3
C3—C2—C1123.86 (19)C12—C13—H13119.3
C2—C3—C4118.0 (2)O2—C14—C15111.33 (15)
C2—C3—H3121.0O2—C14—H14A109.4
C4—C3—H3121.0C15—C14—H14A109.4
C3—C4—C5121.5 (2)O2—C14—H14B109.4
C3—C4—H4119.3C15—C14—H14B109.4
C5—C4—H4119.3H14A—C14—H14B108.0
C4—C5—C6118.1 (2)C19—C15—C16116.97 (17)
C4—C5—H5121.0C19—C15—C14122.83 (17)
C6—C5—H5121.0C16—C15—C14120.19 (16)
F2—C6—C1116.98 (18)C17—C16—C15119.99 (17)
F2—C6—C5119.7 (2)C17—C16—H16120.0
C1—C6—C5123.4 (2)C15—C16—H16120.0
O1—C7—N1125.21 (17)C16—C17—C18117.59 (17)
O1—C7—C1118.93 (16)C16—C17—H17121.2
N1—C7—C1115.86 (15)C18—C17—H17121.2
C13—C8—C9118.73 (16)N2—C18—C17124.97 (17)
C13—C8—N1117.80 (15)N2—C18—Cl1116.22 (15)
C9—C8—N1123.47 (16)C17—C18—Cl1118.81 (15)
C10—C9—C8119.84 (17)N2—C19—C15124.31 (17)
C10—C9—H9120.1N2—C19—H19117.8
C8—C9—H9120.1C15—C19—H19117.8
C11—C10—C9121.11 (16)C7—N1—C8127.66 (15)
C11—C10—H10119.4C7—N1—H1116.4 (13)
C9—C10—H10119.4C8—N1—H1115.9 (13)
O2—C11—C10115.23 (15)C18—N2—C19116.17 (17)
O2—C11—C12125.25 (16)C11—O2—C14118.83 (14)
C10—C11—C12119.49 (16)
C6—C1—C2—F1178.43 (17)C10—C11—C12—C130.3 (3)
C7—C1—C2—F16.5 (3)C9—C8—C13—C120.6 (3)
C6—C1—C2—C30.0 (3)N1—C8—C13—C12179.67 (16)
C7—C1—C2—C3171.90 (18)C11—C12—C13—C80.6 (3)
F1—C2—C3—C4178.15 (19)O2—C14—C15—C19123.96 (19)
C1—C2—C3—C40.2 (3)O2—C14—C15—C1656.7 (2)
C2—C3—C4—C50.4 (3)C19—C15—C16—C170.8 (3)
C3—C4—C5—C60.3 (4)C14—C15—C16—C17179.80 (17)
C2—C1—C6—F2179.11 (18)C15—C16—C17—C180.3 (3)
C7—C1—C6—F27.1 (3)C16—C17—C18—N20.6 (3)
C2—C1—C6—C50.1 (3)C16—C17—C18—Cl1179.99 (14)
C7—C1—C6—C5171.9 (2)C16—C15—C19—N20.7 (3)
C4—C5—C6—F2178.9 (2)C14—C15—C19—N2179.97 (17)
C4—C5—C6—C10.0 (4)O1—C7—N1—C81.5 (3)
C6—C1—C7—O177.8 (3)C1—C7—N1—C8178.76 (15)
C2—C1—C7—O193.7 (2)C13—C8—N1—C7170.21 (16)
C6—C1—C7—N1102.0 (2)C9—C8—N1—C79.5 (3)
C2—C1—C7—N186.6 (2)C17—C18—N2—C190.7 (3)
C13—C8—C9—C100.3 (3)Cl1—C18—N2—C19179.84 (14)
N1—C8—C9—C10179.98 (16)C15—C19—N2—C180.1 (3)
C8—C9—C10—C110.0 (3)C10—C11—O2—C14172.31 (14)
C9—C10—C11—O2178.18 (16)C12—C11—O2—C149.6 (2)
C9—C10—C11—C120.0 (3)C15—C14—O2—C1178.49 (19)
O2—C11—C12—C13177.66 (16)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C9—H9···O10.932.272.863 (2)121
N1—H1···N2i0.88 (2)2.24 (2)3.109 (2)170.6 (18)
C19—H19···F2ii0.932.543.309 (2)140
C14—H14B···O1ii0.972.423.344 (3)160
C16—H16···Cg2iii0.932.993.912 (2)173
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z; (iii) x1, y, z+1.
 

Acknowledgements

We gratefully acknowledge the financial support of this work by the Youth Science Foundation of Hubei Academy of Agricultural Sciences (grant No. 2013NKYJJ22) and the Key Laboratory of Integrated Pest Management in Crops in Central China, the Ministry of Agriculture and Hubei Key Laboratory of Crop Diseases, Insect Pests and Weed Control (grant No. 2015ZTSJJ9).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCockroft, S. L., Perkins, J., Zonta, C., Adams, H., Spey, S. E., Low, C. M. R., Vinter, J. G., Lawson, K. R., Urch, C. J. & Hunter, C. A. (2007). Org. Biomol. Chem. 5, 1062–1080.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFun, H.-K., Goh, J. H., Gowda, J., Khader, A. M. & Kalluraya, B. (2010). Acta Cryst. E66, o3192.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Shakuntala, K., Kožíšek, J. & Fuess, H. (2010). Acta Cryst. E66, o1529–o1530.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationLakshminarayana, B. N., Prasad, J. S., Venu, T. D., Manuprasad, B. K., Sridhar, M. A. & Shashikanth, S. (2009). Mol. Cryst. Liq. Cryst. 515, 207–214.  CSD CrossRef CAS Google Scholar
First citationLi, S.-L., Liu, J. & Liu, Y.-Y. (2007). Acta Cryst. E63, m2956.  CSD CrossRef IUCr Journals Google Scholar
First citationLiu, C. L., Li, L. & Li, Z. M. (2004a). Bioorg. Med. Chem. 12, 2825–2830.  CrossRef PubMed CAS Google Scholar
First citationLiu, C. L., Li, Z. M. & Zhong, B. (2004b). J. Fluor. Chem. 125, 1287–1290.  CrossRef CAS Google Scholar
First citationLiu, X.-H., Liu, H.-F., Shen, X., Song, B.-A., Bhadury, P. S., Zhu, H.-L., Liu, J.-X. & Qi, X.-B. (2010). Bioorg. Med. Chem. Lett. 20, 4163–4167.  CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShiga, Y., Okada, I. & Fukuchi, T. (2003). J. Pestic. Sci. 28, 310–312.  Web of Science CrossRef CAS Google Scholar
First citationSpitaleri, A., Hunter, C. A., McCabe, J. F., Packer, M. J. & Cockroft, S. L. (2004). CrystEngComm, 6, 490–493.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds