research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of ethyl (1RS,6SR)-4-(2-methyl-1H-imidazol-4-yl)-2-oxo-6-(2,3,5-tri­chloro­phen­yl)cyclo­hex-3-ene-1-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, P.A. College of Engineering, Mangaluru 574 153, India, bDepartment of Studies in Industrial Chemistry, Mangalore University, Mangalagangothri 574 199, India, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India, dDepartment of Biotechnology, Dayananda Sagar College of Engineering, Bengaluru 560 078, India, and eSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: yathirajan@hotmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 29 November 2015; accepted 3 December 2015; online 1 January 2016)

The title compound, C19H17Cl3N2O3, has been prepared in a cyclo­condensation reaction between 2,3,5-tri­chloro­benzaldehye and 4-acetyl-2-methyl-1H-imidazole. The cyclo­hexenone ring adopts an envelope conformation with the C atom substituted by the tri­chloro­phenyl ring as the flap. The mutually trans ester and aryl substituents both occupy equatorial sites. In the crystal, a combination of N—H⋯O and C—H⋯N hydrogen bonds links the mol­ecules into ribbons of edge-fused centrosymmetric rings, which enclose R22(14) and R44(16) alternate ring motifs, propagating along the b-axis direction.

1. Chemical context

We have recently reported (Salian et al., 2015[Salian, V. V., Narayana, B., Yathirajan, H. S., Akkurt, M., Çelik, Ö., Ersanlı, C. C. & Glidewell, C. (2015). Acta Cryst. C71, 610-617.]) a simple and versatile synthesis of substituted 1,1′:3′1′′-terphenyls based upon the two-electron oxidation of substituted cyclo­hex-2-en-1-ones, themselves readily synthesized in reactions between 1,3-di­aryl­prop-2-en-1-ones (chalcones) and compounds containing activated methyl­ene units. This method points to a similar routes to substituted bi­phenyls carrying a wide range of substituents, including heterocyclic units. To this end, we have now synthesized the title compound (I)[link] as a key inter­mediate in this proposed pathway. It was prepared by reaction of ethyl 3-oxo­butano­ate with the chalcone inter­mediate (A) (Fig. 1[link]), which was itself prepared by base-catalysed condensation between 2,3,5-tri­chloro­benzaldehye and 4-acetyl-2-methyl-1H-imidazole. The conversion of the inter­mediate (A) to the final product (I)[link] is a two-step, but one-pot, process involving both Michael addition and a condensation reaction.

[Scheme 1]
[Figure 1]
Figure 1
The synthesis of the title compound (I)[link].

2. Structural commentary

The mol­ecule of compound (I)[link] contains two stereogenic centres at atoms C1 and C6 (Fig. 2[link]). The reference mol­ecule was selected as one having the R-configuration at atom C1 and in this mol­ecule atom C6 has the S-configuration; the centrosymmetric space group confirms that the compound has crystallized as a racemic mixture of the (1R,6S) and (1S,6R) diastereoisomers.

[Figure 2]
Figure 2
The mol­ecular structure of the (1R,6S) enanti­omer of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

The central cyclo­hexenone ring (C1–C6), has puckering parameters of Q = 0.497 (3) Å, θ = 124.1 (3)° and φ = 123.6 (3)°, indicating an almost ideal envelope conformation with atom C6 as the flap. The maximum deviation from the mean plane through atoms (C1–C5) is 0.023 (2) Å for atom C4, with an r.m.s. deviation of 0.0144 Å, and with the flap atom C6 displaced by 0.684 (3) Å.

The ester and aryl substituents at atoms C1 and C6, respectively, are trans to one another and both occupy equatorial sites (Fig. 2[link]). The dihedral angle between the mean plane through atoms (C1–C5) and the adjacent imidazole ring is only 2.18 (16)° but, despite this, the bond lengths in the imidazolyl-cyclohexenone portion of the molecule, atoms (N41,C45,C44,C4,C3,C2,O2), provide no evidence for delocal­ization of the lone pair from the planar atom N41 through the vinylogous amide fragment onto atom O2. In contrast, the dihedral angle between the mean plane through atoms (C1–C5) and the carboxyl group (C11/O11/O12) is 89.0 (3)°.

3. Supra­molecular inter­actions

In the crystal of compound (I)[link], mol­ecules related by translation along [100] are linked by nearly linear N—H⋯O hydrogen bonds (Table 1[link] and Fig. 3[link]), forming C(8) chains, and inversion-related pairs of such chains are linked by C—H⋯N hydrogen bonds, forming ribbons or mol­ecular ladders of edge-fused centrosymmetric rings, in which R22(14) rings centred at (n + 1/2, 1/2, 1/2) alternate with R44(16) rings centred at (n, 1/2, 1/2); where n represents an integer in each case (Fig. 3[link]). There are no direction-specific inter­actions between adjacent ribbons.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N41—H41⋯O2i 0.79 (4) 2.10 (4) 2.878 (3) 167 (3)
C1—H1⋯N43ii 0.98 2.60 3.538 (4) 161
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+1.
[Figure 3]
Figure 3
A partial view of the crystal packing of compound (I)[link], showing the formation of a ribbon of edge-fused hydrogen-bonded R22(14) and R44(16) rings running parallel to the [100] direction (see Table 1[link]). Hydrogen bonds are shown as dashed lines and, for the sake of clarity, the H atoms not involved in the motifs shown have been omitted.

4. Database survey

The structures of a number of analogues of compound (I)[link], usually carrying aryl substituents on atoms C4 and C6, have been reported in recent years (Fischer et al., 2008[Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2008). Acta Cryst. E64, o560.]; Fun et al., 2008[Fun, H.-K., Jebas, S. R., Rao, J. N. & Kalluraya, B. (2008). Acta Cryst. E64, o2448.], 2012[Fun, H.-K., Farhadikoutenaei, A., Sarojini, B. K., Mohan, B. J. & Narayana, B. (2012). Acta Cryst. E68, o2788-o2789.]; Dutkiewicz et al., 2011a[Dutkiewicz, G., Narayana, B., Veena, K., Yathirajan, H. S. & Kubicki, M. (2011a). Acta Cryst. E67, o334-o335.],b[Dutkiewicz, G., Narayana, B., Veena, K., Yathirajan, H. S. & Kubicki, M. (2011b). Acta Cryst. E67, o336.],c[Dutkiewicz, G., Narayana, B., Veena, K., Yathirajan, H. S. & Kubicki, M. (2011c). Acta Cryst. E67, o445-o446.]; Kant et al., 2012[Kant, R., Gupta, V. K., Kapoor, K., Sapnakumari, M., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2917-o2918.]; Salian et al., 2015[Salian, V. V., Narayana, B., Yathirajan, H. S., Akkurt, M., Çelik, Ö., Ersanlı, C. C. & Glidewell, C. (2015). Acta Cryst. C71, 610-617.]). Without exception, these compounds all crystallize as racemic mixtures of the (1R,6S) and (1S,6R) forms, with mutually trans substituents at the sites corres­ponding to atoms C1 and C6 in compound (I)[link], although in quite a number of these reports, the stereochemistry is not mentioned at all. The consistency of the stereochemistry indicates that the first step in the reaction between the chalcone and ester reagents is condensation between the chalcone and the acyl group of the ester component, followed by the Michael addition step, whose transition state is organized to minimize steric repulsions, leading to the mutually trans disposition of the substituents at sites C1 and C6. Of particular inter­est is the structure of methyl (1RS,6SR)-4-(4-chlorophen­yl)-6-[4-(propan-2-yl)phen­yl]-2-oxo­cyclo­hex-3-ene-1-carb­oxyl­ate, which exhibits enanti­omeric disorder where the reference site contains both (1R,6S) and (1S,6R) forms with occupancies of 0.923 (3) and 0.077 (3), respectively (Salian et al., 2015[Salian, V. V., Narayana, B., Yathirajan, H. S., Akkurt, M., Çelik, Ö., Ersanlı, C. C. & Glidewell, C. (2015). Acta Cryst. C71, 610-617.]), There appears to be no evidence for such disorder in the structure reported earlier nor, indeed, in the structure of compound (I)[link] reported here.

5. Synthesis and crystallization

The synthesis of the title compound is illustrated in Fig. 1[link]. For the synthesis of 1-(2-methyl-1H-imidazol-4-yl)-3-(2,3,5-tri­chloro­phen­yl)prop-2-en-1-one (A), aqueous sodium hydrox­ide solution (10% w/v, 30 cm3) was added to a mixture of 2,3,5- tri­chloro­benzaldehyde (0.02 mol) and 4-acetyl-2-methyl-1H-imidazole (0.02 mol), and the mixture was stirred at 275 K for 3 h. The resulting solid product was collected by filtration and recrystallized from ethanol. For the synthesis of the title compound, (I)[link], a mixture of compound A (3.15 g, 0.01 mol) and ethyl 3-oxo­butano­ate (1.30 g, 0.01 mol) in methanol (30 cm3) containing aqueous sodium hydroxide (10% w/v, 0.8 cm3) was heated under reflux for 10 h. The reaction mixture was then cooled to ambient temperature and the resulting solid product (I)[link] was collected by filtration. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in the presence of air, of a solution in methanol.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All the H atoms were located in difference-Fourier maps. For the H atom bonded to atom N41, the atomic coordinates were refined with Uiso(H) = 1.2Ueq(N), giving an N—H distance of 0.79 (3) Å. The C-bound H atoms were subsequently treated as riding atoms in geometrically idealized positions: C—H distances 0.93–98 Å with Uiso(H) = 1.5Ueq(Cmeth­yl) and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C19H17Cl3N2O3
Mr 427.70
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 295
a, b, c (Å) 9.753 (5), 10.029 (6), 11.099 (5)
α, β, γ (°) 106.281 (4), 96.420 (5), 104.913 (5)
V3) 987.0 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.49
Crystal size (mm) 0.26 × 0.21 × 0.18
 
Data collection
Diffractometer Bruker APEXII area detector
Absorption correction Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.789, 0.916
No. of measured, independent and observed [I > 2σ(I)] reflections 18900, 4534, 3178
Rint 0.026
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.146, 1.03
No. of reflections 4534
No. of parameters 249
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.58, −0.54
Computer programs: APEX2 and SAINT-Plus (Bruker, 2012[Bruker (2012). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: APEX2 (Bruker, 2012); data reduction: SAINT-Plus (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Ethyl (1RS,6SR)-4-(2-methyl-1H-imidazol-4-yl)-2-oxo-6-(2,3,5-trichlorophenyl)cyclohex-3-ene-1-carboxylate top
Crystal data top
C19H17Cl3N2O3Z = 2
Mr = 427.70F(000) = 440
Triclinic, P1Dx = 1.439 Mg m3
a = 9.753 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.029 (6) ÅCell parameters from 5020 reflections
c = 11.099 (5) Åθ = 2.7–28.7°
α = 106.281 (4)°µ = 0.49 mm1
β = 96.420 (5)°T = 295 K
γ = 104.913 (5)°Block, colourless
V = 987.0 (9) Å30.26 × 0.21 × 0.18 mm
Data collection top
Bruker APEXII area-detector
diffractometer
4534 independent reflections
Radiation source: fine-focus sealed tube3178 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 27.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1212
Tmin = 0.789, Tmax = 0.916k = 1213
18900 measured reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.0533P)2 + 0.9642P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4534 reflectionsΔρmax = 0.58 e Å3
249 parametersΔρmin = 0.54 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6401 (2)0.3358 (2)0.5952 (2)0.0332 (5)
H10.67100.44170.63660.040*
C20.6017 (2)0.3076 (3)0.4517 (2)0.0343 (5)
O20.69386 (18)0.3027 (2)0.38603 (16)0.0473 (4)
C30.4555 (2)0.2959 (3)0.3987 (2)0.0354 (5)
H30.42950.27570.31080.042*
C40.3547 (2)0.3129 (2)0.4705 (2)0.0331 (5)
C50.3877 (2)0.3355 (3)0.6115 (2)0.0370 (5)
H5A0.30070.28960.63730.044*
H5B0.41710.43910.65830.044*
C60.5070 (2)0.2725 (3)0.6461 (2)0.0336 (5)
H60.47230.16710.60210.040*
C110.7669 (3)0.2835 (3)0.6267 (2)0.0378 (5)
O110.88835 (19)0.3608 (2)0.66651 (19)0.0516 (5)
O120.7266 (2)0.1410 (2)0.6038 (2)0.0547 (5)
C120.8381 (4)0.0789 (4)0.6394 (4)0.0731 (10)
H12A0.93020.13210.62600.088*
H12B0.81400.02190.58570.088*
C130.8502 (6)0.0866 (5)0.7739 (5)0.1074 (16)
H13A0.75880.03410.78700.161*
H13B0.87670.18670.82700.161*
H13C0.92290.04410.79610.161*
N410.0094 (2)0.3117 (3)0.3823 (2)0.0491 (6)
H410.086 (4)0.321 (3)0.393 (3)0.059*
C420.0373 (3)0.2879 (3)0.2703 (3)0.0452 (6)
N430.1716 (2)0.2869 (2)0.28599 (19)0.0404 (5)
C440.2128 (2)0.3098 (3)0.4154 (2)0.0344 (5)
C450.1003 (3)0.3263 (3)0.4751 (3)0.0435 (6)
H450.09960.34400.56180.052*
C460.0557 (3)0.2675 (4)0.1471 (3)0.0726 (10)
H46A0.01950.21610.07730.109*
H46B0.05480.36090.13990.109*
H46C0.15300.21220.14420.109*
C610.5373 (2)0.2972 (3)0.7887 (2)0.0351 (5)
C620.4533 (3)0.2008 (3)0.8401 (2)0.0453 (6)
Cl620.31485 (11)0.05093 (9)0.74148 (7)0.0798 (3)
C630.4784 (3)0.2242 (3)0.9712 (3)0.0538 (7)
Cl630.37058 (14)0.10827 (13)1.03524 (9)0.1058 (5)
C640.5884 (3)0.3421 (3)1.0529 (2)0.0508 (7)
H640.60710.35651.14040.061*
C650.6695 (3)0.4379 (3)1.0018 (2)0.0454 (6)
Cl650.80666 (9)0.58707 (10)1.10331 (7)0.0736 (3)
C660.6450 (3)0.4174 (3)0.8725 (2)0.0401 (5)
H660.70120.48480.84100.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0278 (10)0.0376 (12)0.0331 (11)0.0076 (9)0.0063 (9)0.0118 (9)
C20.0283 (11)0.0410 (12)0.0354 (12)0.0108 (9)0.0097 (9)0.0134 (10)
O20.0297 (8)0.0772 (13)0.0393 (9)0.0183 (8)0.0135 (7)0.0209 (9)
C30.0285 (11)0.0505 (14)0.0285 (11)0.0115 (10)0.0070 (8)0.0144 (10)
C40.0287 (11)0.0377 (12)0.0328 (11)0.0086 (9)0.0073 (9)0.0121 (9)
C50.0330 (12)0.0501 (14)0.0313 (11)0.0154 (10)0.0118 (9)0.0140 (10)
C60.0309 (11)0.0405 (12)0.0293 (11)0.0088 (9)0.0077 (9)0.0123 (9)
C110.0357 (12)0.0470 (14)0.0335 (12)0.0142 (10)0.0089 (9)0.0150 (10)
O110.0310 (9)0.0553 (11)0.0652 (12)0.0095 (8)0.0048 (8)0.0193 (9)
O120.0439 (10)0.0450 (11)0.0700 (13)0.0124 (8)0.0010 (9)0.0161 (9)
C120.063 (2)0.0548 (19)0.107 (3)0.0243 (16)0.0036 (19)0.0332 (19)
C130.121 (4)0.098 (3)0.113 (4)0.033 (3)0.008 (3)0.061 (3)
N410.0257 (10)0.0629 (15)0.0679 (15)0.0175 (10)0.0148 (10)0.0295 (12)
C420.0323 (12)0.0508 (15)0.0526 (15)0.0106 (11)0.0030 (11)0.0208 (12)
N430.0308 (10)0.0521 (12)0.0397 (11)0.0137 (9)0.0050 (8)0.0166 (9)
C440.0268 (10)0.0400 (12)0.0375 (12)0.0091 (9)0.0082 (9)0.0144 (10)
C450.0312 (12)0.0572 (16)0.0476 (14)0.0154 (11)0.0142 (10)0.0209 (12)
C460.0450 (17)0.099 (3)0.070 (2)0.0196 (17)0.0092 (15)0.0305 (19)
C610.0336 (11)0.0425 (13)0.0310 (11)0.0139 (9)0.0075 (9)0.0120 (10)
C620.0542 (15)0.0442 (14)0.0324 (12)0.0069 (11)0.0110 (11)0.0109 (10)
Cl620.0963 (7)0.0659 (5)0.0445 (4)0.0258 (4)0.0122 (4)0.0142 (4)
C630.0669 (18)0.0590 (17)0.0371 (14)0.0121 (14)0.0189 (13)0.0212 (13)
Cl630.1377 (10)0.1048 (8)0.0488 (5)0.0215 (7)0.0276 (5)0.0344 (5)
C640.0556 (16)0.0693 (18)0.0284 (12)0.0232 (14)0.0089 (11)0.0132 (12)
C650.0390 (13)0.0565 (16)0.0340 (12)0.0166 (11)0.0019 (10)0.0044 (11)
Cl650.0584 (5)0.0874 (6)0.0435 (4)0.0011 (4)0.0029 (3)0.0008 (4)
C660.0354 (12)0.0484 (14)0.0353 (12)0.0111 (10)0.0077 (10)0.0130 (10)
Geometric parameters (Å, º) top
C1—C111.506 (3)C13—H13C0.9600
C1—C21.522 (3)N41—C451.348 (3)
C1—C61.532 (3)N41—C421.351 (4)
C1—H10.9800N41—H410.79 (3)
C2—O21.221 (3)C42—N431.306 (3)
C2—C31.443 (3)C42—C461.485 (4)
C3—C41.347 (3)N43—C441.384 (3)
C3—H30.9300C44—C451.365 (3)
C4—C441.438 (3)C45—H450.9300
C4—C51.502 (3)C46—H46A0.9600
C5—C61.521 (3)C46—H46B0.9600
C5—H5A0.9700C46—H46C0.9600
C5—H5B0.9700C61—C661.387 (3)
C6—C611.514 (3)C61—C621.391 (3)
C6—H60.9800C62—C631.390 (4)
C11—O111.191 (3)C62—Cl621.727 (3)
C11—O121.322 (3)C63—C641.378 (4)
O12—C121.454 (4)C63—Cl631.722 (3)
C12—C131.463 (6)C64—C651.373 (4)
C12—H12A0.9700C64—H640.9300
C12—H12B0.9700C65—C661.376 (3)
C13—H13A0.9600C65—Cl651.727 (3)
C13—H13B0.9600C66—H660.9300
C11—C1—C2110.53 (18)C12—C13—H13C109.5
C11—C1—C6113.77 (19)H13A—C13—H13C109.5
C2—C1—C6110.99 (18)H13B—C13—H13C109.5
C11—C1—H1107.1C45—N41—C42108.0 (2)
C2—C1—H1107.1C45—N41—H41125 (2)
C6—C1—H1107.1C42—N41—H41127 (2)
O2—C2—C3121.8 (2)N43—C42—N41111.5 (2)
O2—C2—C1120.7 (2)N43—C42—C46125.8 (3)
C3—C2—C1117.43 (18)N41—C42—C46122.7 (3)
C4—C3—C2123.1 (2)C42—N43—C44105.2 (2)
C4—C3—H3118.4C45—C44—N43109.6 (2)
C2—C3—H3118.4C45—C44—C4128.4 (2)
C3—C4—C44121.5 (2)N43—C44—C4121.97 (19)
C3—C4—C5120.7 (2)N41—C45—C44105.8 (2)
C44—C4—C5117.83 (19)N41—C45—H45127.1
C4—C5—C6111.86 (18)C44—C45—H45127.1
C4—C5—H5A109.2C42—C46—H46A109.5
C6—C5—H5A109.2C42—C46—H46B109.5
C4—C5—H5B109.2H46A—C46—H46B109.5
C6—C5—H5B109.2C42—C46—H46C109.5
H5A—C5—H5B107.9H46A—C46—H46C109.5
C61—C6—C5110.43 (18)H46B—C46—H46C109.5
C61—C6—C1113.84 (18)C66—C61—C62117.8 (2)
C5—C6—C1109.12 (19)C66—C61—C6121.8 (2)
C61—C6—H6107.7C62—C61—C6120.3 (2)
C5—C6—H6107.7C63—C62—C61120.7 (2)
C1—C6—H6107.7C63—C62—Cl62119.0 (2)
O11—C11—O12124.3 (2)C61—C62—Cl62120.26 (19)
O11—C11—C1124.2 (2)C64—C63—C62120.7 (2)
O12—C11—C1111.6 (2)C64—C63—Cl63118.6 (2)
C11—O12—C12116.6 (2)C62—C63—Cl63120.7 (2)
O12—C12—C13110.1 (3)C65—C64—C63118.3 (2)
O12—C12—H12A109.6C65—C64—H64120.9
C13—C12—H12A109.6C63—C64—H64120.9
O12—C12—H12B109.6C64—C65—C66121.7 (2)
C13—C12—H12B109.6C64—C65—Cl65118.8 (2)
H12A—C12—H12B108.1C66—C65—Cl65119.5 (2)
C12—C13—H13A109.5C65—C66—C61120.7 (2)
C12—C13—H13B109.5C65—C66—H66119.7
H13A—C13—H13B109.5C61—C66—H66119.7
C11—C1—C2—O227.7 (3)C42—N43—C44—C4178.7 (2)
C6—C1—C2—O2154.8 (2)C3—C4—C44—C45179.5 (3)
C11—C1—C2—C3156.0 (2)C5—C4—C44—C450.7 (4)
C6—C1—C2—C328.9 (3)C3—C4—C44—N431.1 (4)
O2—C2—C3—C4174.3 (2)C5—C4—C44—N43178.8 (2)
C1—C2—C3—C41.9 (3)C42—N41—C45—C440.3 (3)
C2—C3—C4—C44175.9 (2)N43—C44—C45—N410.8 (3)
C2—C3—C4—C54.2 (4)C4—C44—C45—N41178.8 (2)
C3—C4—C5—C624.9 (3)C5—C6—C61—C6693.7 (3)
C44—C4—C5—C6154.9 (2)C1—C6—C61—C6629.5 (3)
C4—C5—C6—C61179.98 (19)C5—C6—C61—C6284.2 (3)
C4—C5—C6—C154.2 (3)C1—C6—C61—C62152.7 (2)
C11—C1—C6—C6154.8 (3)C66—C61—C62—C630.7 (4)
C2—C1—C6—C61179.81 (19)C6—C61—C62—C63178.6 (2)
C11—C1—C6—C5178.64 (19)C66—C61—C62—Cl62178.65 (19)
C2—C1—C6—C556.0 (2)C6—C61—C62—Cl620.7 (3)
C2—C1—C11—O1199.8 (3)C61—C62—C63—C641.0 (4)
C6—C1—C11—O11134.6 (2)Cl62—C62—C63—C64179.6 (2)
C2—C1—C11—O1279.8 (2)C61—C62—C63—Cl63177.8 (2)
C6—C1—C11—O1245.8 (3)Cl62—C62—C63—Cl631.5 (4)
O11—C11—O12—C124.8 (4)C62—C63—C64—C651.9 (4)
C1—C11—O12—C12175.6 (2)Cl63—C63—C64—C65177.0 (2)
C11—O12—C12—C1386.1 (4)C63—C64—C65—C661.1 (4)
C45—N41—C42—N430.2 (3)C63—C64—C65—Cl65179.4 (2)
C45—N41—C42—C46179.7 (3)C64—C65—C66—C610.7 (4)
N41—C42—N43—C440.7 (3)Cl65—C65—C66—C61178.85 (19)
C46—C42—N43—C44179.9 (3)C62—C61—C66—C651.5 (4)
C42—N43—C44—C450.9 (3)C6—C61—C66—C65179.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N41—H41···O2i0.79 (4)2.10 (4)2.878 (3)167 (3)
C1—H1···N43ii0.982.603.538 (4)161
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

BKS gratefully acknowledges the Department of Atomic Energy (DAE)/BRNS, Government of India, for providing financial assistance for the BRNS Project (No. 2011/34/20-BRNS/0846). The X-ray data were collected at SAIF, IIT, Madras, India.

References

First citationBruker (2012). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDutkiewicz, G., Narayana, B., Veena, K., Yathirajan, H. S. & Kubicki, M. (2011a). Acta Cryst. E67, o334–o335.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDutkiewicz, G., Narayana, B., Veena, K., Yathirajan, H. S. & Kubicki, M. (2011b). Acta Cryst. E67, o336.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDutkiewicz, G., Narayana, B., Veena, K., Yathirajan, H. S. & Kubicki, M. (2011c). Acta Cryst. E67, o445–o446.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2008). Acta Cryst. E64, o560.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Farhadikoutenaei, A., Sarojini, B. K., Mohan, B. J. & Narayana, B. (2012). Acta Cryst. E68, o2788–o2789.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Jebas, S. R., Rao, J. N. & Kalluraya, B. (2008). Acta Cryst. E64, o2448.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKant, R., Gupta, V. K., Kapoor, K., Sapnakumari, M., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2917–o2918.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSalian, V. V., Narayana, B., Yathirajan, H. S., Akkurt, M., Çelik, Ö., Ersanlı, C. C. & Glidewell, C. (2015). Acta Cryst. C71, 610–617.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds