research communications
catena-poly[N,N,N′,N′-tetramethylguanidinium [(chloridocadmate)-di-μ-chlorido]]
ofaLaboratoire des Produits Naturels, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and cDépartement de Chimie, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montréal, Québec, H3C 3J7, Canada
*Correspondence e-mail: dlibasse@gmail.com, thierry.maris@umontreal.ca
In the structure of the title salt, {(C5H14N3)[CdCl3]}n, the CdII atom of the complex anion is five-coordinated by one terminal and four bridging Cl atoms. The corresponding is a distorted trigonal bipyramid, with Cd—Cl distances in the range 2.4829 (4)–2.6402 (4) Å. The bipyramids are condensed into a polyanionic zigzag chain extending parallel to [101]. The tetramethylguanidinium cations are situated between the polyanionic chains and are linked to them through N—H⋯Cl hydrogen bonds, forming a layered network parallel to (010).
CCDC reference: 1434977
1. Chemical context
Tetramethylguanidine is known to crystallize in its neutral form, as a et al., 2005; Cowley et al., 2005; Eliseev et al., 2013), and halogenidometalates have been reported with tetramethylguanidinium as a counter-cation (Bujak et al., 1999; Bujak & Zaleski, 2007). Since none of these complexes has cadmium as a component, we decided to study the interactions between tetramethylguanidine and [CdCl2]·H2O, which has yielded the title salt, (C5H14N3)+[CdCl3]−, (I).
or as a singly protonated cation. Several cationic complexes of Pd, Ga and Pt have been reported with tetramethylguanidine acting as a ligand (Li2. Structural commentary
The (Fig. 1) consists of a CdII cation surrounded by four Cl atoms and one N,N,N′,N′-tetramethylguanidinium cation. The around CdII can be described best as a distorted trigonal bipyramid where atoms Cl1, Cl2 and Cl4 define the equatorial plane while atoms Cl3 and Cl4i [symmetry code: (i) − x, − y, 1 − z] are in axial positions with a Cl3—Cd1—Cl4i angle of 166.347 (10)°. The equatorial Cd—Cl bond lengths range from 2.4829 (4) Å to 2.5829 (4) Å while the axial bond lengths Cd1—Cl3 and Cd1—Cl4i are 2.5854 (4) Å and 2.6403 (4) Å, respectively. The CdCl4 moieties of the are related by an inversion center, generating an extended zigzag chain of edge-sharing trigonal bipyramids running parallel to [101]. These 1∞[CdCl4/2Cl1/1]− chains are formed by the bridging atoms Cl2, Cl3, Cl4 and Cl4i with a Cd—Cd—Cd angle of 137.893 (6)°. The corrugation of the chains results in rather short Cd⋯Cd distances of 3.8720 (3) and 3.8026 (3) Å. The same kind of zigzag chain is found, for example, in the [CdCl3]− salt obtained with benzyltriethylammonium as counter-cation (Sun & Jin, 2013) but with a less pronounced corrugation. Accordingly, the angle between two successive rectangular [Cd2Cl2] units is 57.928 (3)° in the structure of the benzyltriethylammonium compound compared with 129.859 (2)° for the present structure. The tetramethylguanidinium cation has the central atom C1 in an almost trigonal–planar configuration. The three N—C—N angles range from 119.26 (14) to 121.14 (14)° and the r.m.s deviation from the least-squares plane calculated with atoms C1, N1, N2 and N3 is only 0.005 Å. The corresponding C—N bond lengths of 1.330 (2), 1.3360 (19), and 1.3441 (19) Å indicate a partial double-bond character. Hence the positive charge may be considered as delocalized in the CN3 plane (Tiritiris, 2012). The two pairs of dimethylammonium groups are twisted by 24.67 (8) and 27.31 (9)° with respect to this plane.
of (I)3. Supramolecular features
The 1∞[CdCl4/2Cl1/1]− chains are interconnected through N—H⋯·Cl hydrogen bonds by pairs of tetramethylguanidinium cations linked to symmetry-related Cl1 atoms (Table 1). These interactions define layers extending parallel to (010) (Fig. 2).
4. Database survey
The trichloridocadmate anion, [CdCl3]−, may have various discrete or chain structures with tetrahedral, octahedral and trigonal–bipyramidal environments around the central CdII cation. A search in the Cambridge Structural Database (CSD Version 5.36 with three updates; Groom & Allen, 2014) returned only five entries with the chains having a trigonal–bipyramidal environment for CdII. The corresponding structures contain different cations such as sulfonium ylide (Sabounchei et al., 2013), tetraethylammonium (Lakshmi et al., 2004), hexadecyl sulfonium (Sokka et al., 2008), benzyltriethylammonium (Sun & Jin, 2013) or trimethylammoniumphenyl-4-thiol (Tang & Lang, 2011).
5. Synthesis and crystallization
Crystals suitable for a single-crystal X-ray diffraction study were obtained by mixing stoichiometric amounts of tetramethylguanidine with CdCl2·H2O in ethanol and allowing the solvent to evaporate slowly at room temperature.
6. Refinement
Crystal data, data collection and structure . The H-atom positions of all methyl groups were placed geometrically and refined with Uiso(H) = 1.5Ueq(C). H atoms bonded to the N atoms were located from a Fourier difference map and were refined freely.
details are summarized in Table 2Supporting information
CCDC reference: 1434977
10.1107/S2056989015020836/wm5207sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015020836/wm5207Isup2.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).(C5H14N3)[CdCl3] | F(000) = 1312 |
Mr = 334.94 | Dx = 1.981 Mg m−3 |
Monoclinic, C2/c | Ga Kα radiation, λ = 1.34139 Å |
a = 15.1305 (7) Å | Cell parameters from 9941 reflections |
b = 14.2921 (6) Å | θ = 3.9–60.7° |
c = 11.6939 (5) Å | µ = 14.50 mm−1 |
β = 117.370 (2)° | T = 100 K |
V = 2245.69 (17) Å3 | Block, clear light colourless |
Z = 8 | 0.19 × 0.10 × 0.10 mm |
Bruker Venture Metaljet diffractometer | 2593 independent reflections |
Radiation source: Metal Jet, Gallium Liquid Metal Jet Source | 2575 reflections with I > 2σ(I) |
Helios MX Mirror Optics monochromator | Rint = 0.043 |
Detector resolution: 10.24 pixels mm-1 | θmax = 60.7°, θmin = 3.9° |
ω and φ scans | h = −19→19 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −18→18 |
Tmin = 0.400, Tmax = 0.752 | l = −15→15 |
24837 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.016 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.040 | w = 1/[σ2(Fo2) + (0.0144P)2 + 2.6083P] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max = 0.001 |
2593 reflections | Δρmax = 0.63 e Å−3 |
122 parameters | Δρmin = −0.40 e Å−3 |
0 restraints |
Experimental. X-ray crystallographic data for I were collected from a single-crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Venture diffractometer equipped with a Photon 100 CMOS Detector, a Helios MX optics and a Kappa goniometer. The crystal-to-detector distance was 4.0 cm, and the data collection was carried out in 1024 x 1024 pixel mode. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.18403 (9) | 0.36639 (9) | 0.56127 (12) | 0.0134 (2) | |
N2 | 0.35116 (10) | 0.36153 (11) | 0.61584 (14) | 0.0191 (3) | |
N3 | 0.24068 (10) | 0.42244 (9) | 0.41914 (13) | 0.0150 (3) | |
C1 | 0.25851 (11) | 0.38434 (10) | 0.53204 (15) | 0.0132 (3) | |
C2 | 0.09488 (11) | 0.42502 (11) | 0.51613 (15) | 0.0153 (3) | |
H2C | 0.1042 | 0.4816 | 0.4756 | 0.023* | |
H2D | 0.0835 | 0.4425 | 0.5894 | 0.023* | |
H2E | 0.0373 | 0.3901 | 0.4532 | 0.023* | |
C3 | 0.19647 (12) | 0.29906 (11) | 0.66197 (15) | 0.0152 (3) | |
H3A | 0.2479 | 0.2535 | 0.6719 | 0.023* | |
H3B | 0.1334 | 0.2664 | 0.6379 | 0.023* | |
H3C | 0.2164 | 0.3322 | 0.7435 | 0.023* | |
C4 | 0.14557 (12) | 0.41074 (12) | 0.30272 (15) | 0.0200 (3) | |
H4A | 0.1074 | 0.3604 | 0.3163 | 0.030* | |
H4B | 0.1581 | 0.3948 | 0.2300 | 0.030* | |
H4C | 0.1076 | 0.4692 | 0.2842 | 0.030* | |
C5 | 0.32011 (13) | 0.46786 (12) | 0.40087 (17) | 0.0212 (3) | |
H5A | 0.3718 | 0.4902 | 0.4841 | 0.032* | |
H5B | 0.2926 | 0.5210 | 0.3420 | 0.032* | |
H5C | 0.3491 | 0.4228 | 0.3643 | 0.032* | |
Cd1 | 0.60861 (2) | 0.27596 (2) | 0.41882 (2) | 0.01199 (5) | |
Cl1 | 0.54707 (3) | 0.30385 (3) | 0.57950 (3) | 0.01619 (8) | |
Cl2 | 0.5000 | 0.15363 (3) | 0.2500 | 0.01344 (10) | |
Cl3 | 0.5000 | 0.39855 (4) | 0.2500 | 0.01852 (11) | |
Cl4 | 0.76617 (3) | 0.35865 (2) | 0.45006 (4) | 0.01607 (8) | |
H2A | 0.3944 (15) | 0.3603 (16) | 0.591 (2) | 0.021 (5)* | |
H2B | 0.3677 (16) | 0.3540 (16) | 0.694 (2) | 0.026 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0108 (6) | 0.0151 (6) | 0.0146 (6) | 0.0020 (5) | 0.0061 (5) | 0.0016 (5) |
N2 | 0.0120 (6) | 0.0333 (8) | 0.0139 (7) | 0.0037 (5) | 0.0076 (5) | 0.0038 (6) |
N3 | 0.0148 (6) | 0.0161 (6) | 0.0152 (6) | 0.0008 (5) | 0.0079 (5) | 0.0010 (5) |
C1 | 0.0143 (7) | 0.0120 (7) | 0.0141 (7) | 0.0012 (5) | 0.0072 (6) | −0.0027 (5) |
C2 | 0.0118 (7) | 0.0156 (7) | 0.0196 (7) | 0.0026 (5) | 0.0083 (6) | −0.0001 (6) |
C3 | 0.0140 (7) | 0.0174 (7) | 0.0151 (7) | 0.0016 (6) | 0.0073 (6) | 0.0020 (6) |
C4 | 0.0200 (8) | 0.0249 (8) | 0.0124 (7) | 0.0067 (6) | 0.0052 (6) | 0.0027 (6) |
C5 | 0.0232 (8) | 0.0210 (8) | 0.0254 (8) | 0.0017 (6) | 0.0163 (7) | 0.0050 (7) |
Cd1 | 0.00895 (7) | 0.01692 (7) | 0.01027 (7) | −0.00065 (3) | 0.00457 (5) | −0.00147 (3) |
Cl1 | 0.01164 (16) | 0.02608 (19) | 0.01180 (16) | 0.00064 (14) | 0.00620 (13) | −0.00316 (14) |
Cl2 | 0.0121 (2) | 0.0156 (2) | 0.0115 (2) | 0.000 | 0.00446 (18) | 0.000 |
Cl3 | 0.0168 (2) | 0.0176 (2) | 0.0151 (2) | 0.000 | 0.00209 (19) | 0.000 |
Cl4 | 0.01132 (16) | 0.01586 (16) | 0.02072 (18) | −0.00045 (12) | 0.00710 (14) | 0.00232 (13) |
N1—C1 | 1.3441 (19) | C4—H4A | 0.9800 |
N1—C2 | 1.4649 (19) | C4—H4B | 0.9800 |
N1—C3 | 1.4643 (19) | C4—H4C | 0.9800 |
N2—C1 | 1.330 (2) | C5—H5A | 0.9800 |
N2—H2A | 0.83 (2) | C5—H5B | 0.9800 |
N2—H2B | 0.83 (2) | C5—H5C | 0.9800 |
N3—C1 | 1.3360 (19) | Cd1—Cl1 | 2.4829 (4) |
N3—C4 | 1.467 (2) | Cd1—Cl2 | 2.5829 (4) |
N3—C5 | 1.465 (2) | Cd1—Cl3 | 2.5854 (4) |
C2—H2C | 0.9800 | Cd1—Cl4 | 2.5323 (4) |
C2—H2D | 0.9800 | Cd1—Cl4i | 2.6403 (4) |
C2—H2E | 0.9800 | Cl2—Cd1ii | 2.5830 (4) |
C3—H3A | 0.9800 | Cl3—Cd1ii | 2.5854 (4) |
C3—H3B | 0.9800 | Cl4—Cd1i | 2.6402 (4) |
C3—H3C | 0.9800 | ||
C1—N1—C2 | 122.68 (13) | N3—C4—H4B | 109.5 |
C1—N1—C3 | 121.14 (12) | N3—C4—H4C | 109.5 |
C3—N1—C2 | 114.98 (12) | H4A—C4—H4B | 109.5 |
C1—N2—H2A | 118.6 (14) | H4A—C4—H4C | 109.5 |
C1—N2—H2B | 121.6 (15) | H4B—C4—H4C | 109.5 |
H2A—N2—H2B | 120 (2) | N3—C5—H5A | 109.5 |
C1—N3—C4 | 122.47 (13) | N3—C5—H5B | 109.5 |
C1—N3—C5 | 121.21 (14) | N3—C5—H5C | 109.5 |
C5—N3—C4 | 115.83 (13) | H5A—C5—H5B | 109.5 |
N2—C1—N1 | 119.26 (14) | H5A—C5—H5C | 109.5 |
N2—C1—N3 | 119.57 (14) | H5B—C5—H5C | 109.5 |
N3—C1—N1 | 121.14 (14) | Cl1—Cd1—Cl2 | 111.033 (10) |
N1—C2—H2C | 109.5 | Cl1—Cd1—Cl3 | 98.115 (10) |
N1—C2—H2D | 109.5 | Cl1—Cd1—Cl4i | 95.516 (13) |
N1—C2—H2E | 109.5 | Cl1—Cd1—Cl4 | 118.137 (13) |
H2C—C2—H2D | 109.5 | Cl2—Cd1—Cl3 | 85.262 (13) |
H2C—C2—H2E | 109.5 | Cl2—Cd1—Cl4i | 89.152 (12) |
H2D—C2—H2E | 109.5 | Cl3—Cd1—Cl4i | 166.347 (10) |
N1—C3—H3A | 109.5 | Cl4—Cd1—Cl2 | 130.701 (9) |
N1—C3—H3B | 109.5 | Cl4—Cd1—Cl3 | 91.126 (11) |
N1—C3—H3C | 109.5 | Cl4—Cd1—Cl4i | 83.088 (12) |
H3A—C3—H3B | 109.5 | Cd1—Cl2—Cd1ii | 94.798 (17) |
H3A—C3—H3C | 109.5 | Cd1ii—Cl3—Cd1 | 94.679 (18) |
H3B—C3—H3C | 109.5 | Cd1—Cl4—Cd1i | 96.910 (13) |
N3—C4—H4A | 109.5 | ||
C2—N1—C1—N2 | 148.47 (15) | C4—N3—C1—N1 | −27.1 (2) |
C2—N1—C1—N3 | −33.2 (2) | C4—N3—C1—N2 | 151.23 (15) |
C3—N1—C1—N2 | −18.4 (2) | C5—N3—C1—N1 | 161.27 (14) |
C3—N1—C1—N3 | 159.92 (14) | C5—N3—C1—N2 | −20.4 (2) |
Symmetry codes: (i) −x+3/2, −y+1/2, −z+1; (ii) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2C···Cl4iii | 0.98 | 2.87 | 3.6567 (16) | 138 |
C3—H3B···Cl1iv | 0.98 | 2.92 | 3.7614 (16) | 144 |
C4—H4B···Cl4ii | 0.98 | 2.87 | 3.8347 (17) | 169 |
N2—H2A···Cl1 | 0.83 (2) | 2.51 (2) | 3.2871 (15) | 157 (2) |
N2—H2B···Cl1v | 0.83 (2) | 2.46 (2) | 3.2710 (15) | 164 (2) |
Symmetry codes: (ii) −x+1, y, −z+1/2; (iii) −x+1, −y+1, −z+1; (iv) −x+1/2, −y+1/2, −z+1; (v) −x+1, y, −z+3/2. |
Acknowledgements
The authors acknowledge the Cheikh Anta Diop University of Dakar (Sénégal), the Canada Foundation for Innovation and the Université de Montréal for financial support.
References
Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bujak, M., Osadczuk, P. & Zaleski, J. (1999). Acta Cryst. C55, 1443–1447. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bujak, M. & Zaleski, J. (2007). Acta Cryst. E63, m102–m104. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cowley, A. R., Downs, A. J., Himmel, H.-J., Marchant, S., Parsons, S. & Yeoman, J. A. (2005). Dalton Trans. pp. 1591–1597. Web of Science CSD CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Eliseev, I. I., Bokach, N. A., Haukka, M. & Golenya, I. A. (2013). Acta Cryst. E69, m117–m118. CSD CrossRef IUCr Journals Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Lakshmi, S., Sridhar, M. A., Prasad, J. S., Amirthaganesan, G., Kandhaswamy, M. A. & Srinivasan, V. (2004). Anal. Sci. X-ray Struct. Anal. Online, 20, x57–x58. CSD CrossRef CAS Google Scholar
Li, S., Xie, H., Zhang, S., Lin, Y., Xu, J. & Cao, J. (2005). Synlett, pp. 1885–1888. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sabounchei, S. J., Bagherjeri, F. A., Boskovic, C. & Gable, R. W. (2013). J. Mol. Struct. 1046, 39–43. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sokka, I., Fischer, A. & Kloo, L. (2008). Struct. Chem. 19, 51–55. Web of Science CSD CrossRef CAS Google Scholar
Sun, S.-W. & Jin, L. (2013). Acta Cryst. C69, 1030–1033. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tang, X.-Y. & Lang, J.-P. (2011). Acta Cryst. E67, m1883. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tiritiris, I. (2012). Acta Cryst. E68, o3500. CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.