research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of [Ln(NO3)3(μ2-bpydo)2], where Ln = Ce, Pr or Nd, and bpydo = 4,4′-bi­pyridine N,N′-dioxide: layered coordination networks containing 44 grids

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry Mathematics and Physics, Clarion University, 840 Wood Street, Clarion, PA 16214, USA, and bChemistry Department, 520 North Main St, Meadville, PA 16335, USA
*Correspondence e-mail: jknaust@clarion.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 16 November 2015; accepted 2 December 2015; online 1 January 2016)

Three isostructural coordination networks of Ce, Pr, and Nd nitrate with 4,4′-bi­pyridine N,N′-dioxide (bpydo) are reported, namely poly[[tris­(nitrato-κ2O,O′)cerium(III)]-bis­(μ2-4,4′-bi­pyridine N,N′-dioxide-κ2N:N′)], [Ce(NO3)3(C10H8N2O2)2], poly[[tris­(nitrato-κ2O,O′)praeseodymium(III)]-bis­(μ2-4,4′-bi­pyridine N,N′-dioxide-κ2N:N′)], [Pr(NO3)3(C10H8N2O2)2], and poly[[tris(nitrato-κ2O,O′)neodymium(III)]-bis­(μ2-4,4′-bi­pyridine N,N′-dioxide-κ2N:N′], [Nd(NO3)3(C10H8N2O2)2]. All three compounds are isostructural to the previously reported La analogue. The asymmetric unit of [Ln(NO3)3(μ2-bpydo)2] contains one lanthanide cation, two bpydo ligands, and three nitrate anions. Both bpydo ligands act as end-to-end μ2-bridges and display nearly ideal cis and gauche conformations, respectively. The bpydo ligands link the ten-coordinate LnIII cations, forming inter­digitating 44 grid-like layers extending parallel to (-101), where inter­digitation of layers is promoted by C—H⋯O inter­actions between nitrate anions and bpydo ligands. The inter­digitated layers are linked to sets of neighboring layers via further C—H⋯O and ππ inter­actions.

1. Chemical context

The use of aromatic N,N′-dioxide ligands such as 4,4′-bi­pyridine N,N′-dioxide (bpydo) in the synthesis of lanthanide compounds comprising coordination networks has been of recent inter­est (Dillner et al., 2010a[Dillner, A. J., Lilly, C. P. & Knaust, J. M. (2010b). Acta Cryst. E66, m1158-m1159.],b[Dillner, A. J., Lilly, C. P. & Knaust, J. M. (2010a). Acta Cryst. E66, m1156-m1157.]; Hill et al., 2004[Hill, R. J., Long, D. L., Turvey, M. S., Blake, A. J., Champness, N. R., Hubberstey, P., Wilson, C. & Schröder, M. (2004). Chem. Commun. pp. 1792.], 2005a[Hill, R. J., Long, D. L., Champness, N. R., Hubberstey, P. & Schröder, M. (2005a). Acc. Chem. Res. 38, 335-348.],b[Hill, R. J., Long, D. L., Hubberstey, P., Schröder, M. & Champness, N. R. (2005b). J. Solid State Chem. 178, 2414-2419.]; Long et al., 2000[Long, D. L., Blake, A. J., Champness, N. R. & Schröder, M. (2000). Chem. Commun. pp. 1369-1370.], 2002[Long, D. L., Blake, A. J., Champness, N. R., Wilson, C. & Schröder, M. (2002). Chem. Eur. J. 8, 2026-2033.]). The coordination modes of aromatic N,N′-dioxide ligands are flexible; they may act as terminal ligands, end-on or end-to-end μ2-bridges, μ3-bridges, or μ4-bridges (Lu et al., 2002[Lu, W.-J., Zhang, L.-P., Song, H.-B., Wang, Q.-M. & Mak, T. C. W. (2002). New J. Chem. 26, 775-781.]; Ma et al., 2001[Ma, B., Sun, H., Gao, S. & Xu, G.-X. (2001). Inorg. Chem. 40, 6247-6253.], 2003[Ma, S.-L., Zhu, W.-X., Huang, G.-H., Yuan, D.-Q. & Yan, X. J. (2003). J. Mol. Struct. 646, 89-94.]; Zhang et al., 2004a[Zhang, L.-P., Lu, W. & Mak, T. C. W. (2004a). Polyhedron, 23, 169-176.],b[Zhang, L.-P., Du, M., Lu, W.-J. & Mak, T. C. W. (2004b). Polyhedron, 23, 857-863.]). When acting as end-to-end μ2-bridges, these ligands can display cis, gauche, or trans conformations where the ideal conformations have M—O⋯O—M torsion angles of 0, 90 and 180°, respectively (Sun et al., 2004[Sun, H. L., Gao, S., Ma, B. Q., Chang, F. & Fu, W. F. (2004). Microporous Mesoporous Mater. 73, 89-95.]). Furthermore, aromatic N,N′-dioxide ligands are able to participate in a variety of hydrogen-bonding inter­actions (González Mantero et al., 2006[González Mantero, D., Neels, A. & Stoeckli-Evans, H. (2006). Inorg. Chem. 45, 3287-3294.]). Structure prediction with these ligands can be difficult, not only due to their flexible bonding modes and various hydrogen-bonding inter­actions, but also due to the influences of solvent and anion (Hill et al., 2005a[Hill, R. J., Long, D. L., Champness, N. R., Hubberstey, P. & Schröder, M. (2005a). Acc. Chem. Res. 38, 335-348.]).

2. Structural commentary

Three isostructural coordination networks of Ce, Pr, and Nd nitrate with 4,4′-bi­pyridine N,N′-dioxide (bpydo), [Ln(NO3)3(μ2-bpydo)2] [Ln = Ce (I)[link], Pr (II)[link], and Nd (III)] are reported. All three compounds are isostructural to the previously reported La analogue (Hill et al., 2004[Hill, R. J., Long, D. L., Turvey, M. S., Blake, A. J., Champness, N. R., Hubberstey, P., Wilson, C. & Schröder, M. (2004). Chem. Commun. pp. 1792.]).

[Scheme 1]

The asymmetric unit of [Ln(NO3)3(μ2-bpydo)2] contains one lanthanide cation, two end-to-end bridging μ2-bpydo ligands, and three chelating nitrate anions. All atoms in the asymmetric unit lie on general positions (Fig. 1[link]). The LnIII atoms have a coordination sphere defined by six oxygen atoms from chelating nitrate anions and four oxygen atoms from bpydo ligands. The ten oxygen atoms in the LnO10 coordination environment form a distorted bi-capped square prism (Fig. 2[link]). One of the ligands bridges in a nearly perfect cis conformation with an Lnl—O3⋯O4—Ln1iv torsion angle of approximately 5° and a dihedral angle between the rings of approximately 33°. The other ligand bridges in a nearly perfect gauche conformation with an Lnl—O2⋯O1—Ln1iii torsion angle of approximately 92° and a dihedral angle between the rings of approximately 28° (see Table 1[link]). The bpydo ligands link the LnIII atoms, forming 44 grid-like layers that are parallel to ([\overline{1}]01) (Fig. 3[link]). Each layer inter­digitates with a symmetry-equivalent second layer related by a twofold screw axis. The nitrate anions chelate to the metal cations on one side of the 44 grid and are directed towards the square void of the symmetry-related inter­digitated 44 grid (Fig. 4[link]).

Table 1
Selected geometric parameters (Å, °) for (I)–(III)

Dihedral angles are reported between the mean planes defined by the indicated aromatic rings. Cg1 is the centroid of the N3/C11–C15 ring.

    (I) (II) (III)
LnLn distances        
  Ln1⋯Ln1iii 13.3398 (13) 13.3127 (9) 13.3035 (5)
  Ln1⋯Ln1iv 13.2996 (11) 13.2634 (8) 13.2558 (4)
Dihedral angles        
  N1/C1–C5⋯N2/C6–C10 27.387 (58) 28.041 (62) 28.471 (109)
  N3/C11–C15⋯N4/C16–C20 22.560 (50) 22.552 (55) 22.677 (93)
Torsion angles        
  Ln1—O2⋯O1—Ln1iii 92.53 (6) 91.80 (6) 91.75 (11)
  Ln1—O3⋯O4—Ln1iv 5.38 (7) 4.86 (8) 4.87 (14)
ππ inter­actions for Cg1⋯Cg1x        
  Centroid–centroid distance 3.7535 (10) 3.7465 (10) 3.7344 (17)
  Inter­planar distance 3.2830 (6) 3.2790 (7) 3.2815 (11)
  Slippage 1.820 1.810 1.783
  Cg1—H15x distance 3.305 3.312 3.311
Symmetry codes: (iii) x, y + 1, z; (iv) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; (x) −x + [{1\over 2}], −y + [{1\over 2}], −z + 2.
[Figure 1]
Figure 1
Coordination sphere around the CeIII cation in the structure of (I)[link], with displacement ellipsoids drawn at the 50% probability level. Dashed lines represent C—H⋯O inter­actions between neighboring bpydo ligands within the coordination sphere. [Symmetry codes: (i) x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]; (ii) x, y − 1, z.]
[Figure 2]
Figure 2
LnO10 coordination environment forming a distorted bicapped square prism. [Symmetry codes: (i) x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]; (ii) x, y − 1, z.]
[Figure 3]
Figure 3
Diagram showing the 44 grid-like layers that lie parallel to ([\overline{1}]01) in (I)[link]. Dashed lines represent C—H⋯O inter­actions between neighboring bpydo ligands within the CeIII coordination sphere.
[Figure 4]
Figure 4
Diagram showing the C—H⋯O inter­actions between anions and ligands of inter­digitated layers in (I)[link]. Individual layers are represented in green and blue. Dashed red lines represent C—H⋯O inter­actions between the layers. [Symmetry codes: (iii) x, y + 1, z; (v) −x + [{1\over 2}], y + [{1\over 2}], −z + [{3\over 2}]; (xi) x + [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}].]

While a roughly linear decrease in cell volume for a series of isostructural lanthanide compounds due to the lanthanide contraction may be expected (see, for example, He et al., 2005[He, Z., Gao, E.-Q., Wang, Z.-M., Yan, C.-H. & Kurmoo, M. (2005). Inorg. Chem. 44, 862-874.]; Ji et al., 2012[Ji, B., Deng, D., He, X., Liu, B., Miao, S., Ma, N., Wang, W., Ji, L., Liu, P. & Li, X. (2012). Inorg. Chem. 51, 2170-2177.]), deviations from a linear trend as observed for compounds (I)–(III) are not unprecedented, and the gradual decrease in LnX bond lengths and bridged LnLn distances provides evidence of the lanthanide contraction (see, for example, Jia et al., 2013[Jia, L.-N., Hou, L., Wei, L., Jing, X.-J., Liu, B., Wang, Y.-Y. & Shi, Q.-Z. (2013). Cryst. Growth Des. 13, 1570-1576.]; Li et al., 2004[Li, J.-R., Bu, X.-H. & Zhang, R.-H. (2004). Inorg. Chem. 43, 237-244.], 2015[Li, Y., Wang, N., Xiong, Y.-J., Cheng, Q., Fang, J.-F., Zhu, F.-F., Long, Y. & Yue, S.-T. (2015). New J. Chem. 39, 9872-9878.]). Recent studies on several series of isostructural lanthanide compounds have shown that the lanthanide contraction can be observed by the quadratic decay of the Ln—O bond lengths with increasing atomic number (Quadrelli, 2002[Quadrelli, E. A. (2002). Inorg. Chem. 41, 167-169.]; Seitz et al., 2007[Seitz, M., Oliver, A. G. & Raymond, K. N. (2007). J. Am. Chem. Soc. 129, 11153-11160.]; Xu et al., 2013[Xu, W., Zhou, Y., Huang, D., Xiong, W., Su, M., Wang, K., Han, S. & Hong, M. (2013). Cryst. Growth Des. 13, 5420-5432.]). An examination of both the Ln—Obpydo and Ln—Onitrate distances for compounds (I)–(III) shows the expected gradual decrease in the Ln—O bond lengths from Ce (I)[link] to Nd (III)[link] due to the lanthanide contraction (Table 2[link]). The gradual decrease in bpydo-bridged LnLn distances within the layers is also consistent with the radius contraction from Ce to Nd (Table 1[link]).

Table 2
Selected bond lengths (Å) in compounds (I)–(III)

  Compound (I) (II) (III)
Ln—O bond lengths involving bpydo ligands        
  Ln1—O1ii 2.5464 (11) 2.5360 (12) 2.526 (2)
  Ln1—O2 2.5192 (11) 2.5009 (12) 2.488 (2)
  Ln1—O3 2.4685 (11) 2.4558 (11) 2.451 (2)
  Ln1—O4i 2.4692 (11) 2.4554 (12) 2.448 (2)
  Average Ln—O distances 2.501 2.487 2.478
Ln—O bond lengths involving chelating nitrate anions        
  Ln1—O5 2.5929 (13) 2.5750 (13) 2.555 (2)
  Ln1—O6 2.6573 (13) 2.6443 (14) 2.640 (2)
  Ln1—O8 2.6004 (12) 2.5832 (13) 2.573 (2)
  Ln1—O9 2.6428 (12) 2.6242 (13) 2.615 (2)
  Ln1—O11 2.6231 (12) 2.6036 (12) 2.585 (2)
  Ln1—O12 2.6333 (11) 2.6147 (12) 2.597 (2)
  Average Ln—O distances 2.625 2.608 2.594
Symmetry codes: (i) x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]; (ii) x, y − 1, z.

3. Supra­molecular features

Stabilizing C—H⋯O inter­actions (C5—H5⋯O4vii, C10—H10⋯O3, C15—H15⋯O1ii, and C20—H20⋯O2iv) are observed between neighboring bpydo ligands within the coordination sphere of the LnIII cation (see Tables 3[link]–5[link][link] for symmetry codes; Fig. 1[link]). The inter­digitation of layers is promoted by C—H⋯O inter­actions (C1—H1⋯O5v, C4—H4⋯O13vi, C9—H9⋯O10v, C11—H11⋯O10v, C14—H14⋯O7ix, C16—H16⋯O13v, and C17—H17⋯O12v) between the ligands of one layer and nitrate anions of the other layer (Fig. 4[link]). Further C—H⋯O inter­actions (C9—H9⋯O9viii and C10—H10⋯O7viii) and ππ inter­actions between Cg1 and the inversion-related Cg1x link each set of inter­digitated layers to symmetry-equivalent sets of layers above and below it [symmetry code: (x) −x + [{1\over 2}], −y + [{1\over 2}], −z + 2; Fig. 5[link]). ππ inter­actions between the neighboring rings are observed with a centroid-to-centroid distance of 3.7535 (10) Å and an inter­planar distance of 3.2830 (6) Å for (I)[link]; there is a slippage of 1.820 Å such that H15x of the neighboring N-oxide ring lies nearly centered over the centroid of Cg1 at a distance of 3.305 Å [see Table 1[link] for distances in compounds (II)[link] and (III)].

Table 3
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O5v 0.95 2.59 3.342 (2) 136
C4—H4⋯O13vi 0.95 2.37 3.208 (2) 148
C5—H5⋯O4vii 0.95 2.38 3.1868 (19) 142
C9—H9⋯O9viii 0.95 2.62 3.206 (2) 121
C9—H9⋯O10v 0.95 2.59 3.475 (2) 156
C10—H10⋯O3 0.95 2.32 3.128 (2) 143
C10—H10⋯O7viii 0.95 2.58 3.264 (2) 129
C11—H11⋯O10v 0.95 2.49 3.237 (2) 135
C14—H14⋯O7ix 0.95 2.22 3.004 (2) 139
C15—H15⋯O1ii 0.95 2.32 3.1069 (19) 140
C16—H16⋯O13v 0.95 2.55 3.154 (2) 122
C17—H17⋯O12v 0.95 2.36 3.2837 (19) 164
C20—H20⋯O2iv 0.95 2.63 3.3265 (19) 130
Symmetry codes: (ii) x, y-1, z; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) -x, -y+1, -z+1; (vii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (viii) [x, -y+1, z+{\script{1\over 2}}]; (ix) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O5v 0.95 2.59 3.331 (2) 135
C4—H4⋯O13vi 0.95 2.36 3.200 (2) 147
C5—H5⋯O4vii 0.95 2.37 3.168 (2) 141
C9—H9⋯O9viii 0.95 2.61 3.204 (2) 121
C9—H9⋯O10v 0.95 2.58 3.468 (2) 156
C10—H10⋯O3 0.95 2.31 3.115 (2) 143
C10—H10⋯O7viii 0.95 2.60 3.277 (3) 129
C11—H11⋯O10v 0.95 2.50 3.239 (2) 135
C14—H14⋯O7ix 0.95 2.22 3.002 (2) 139
C15—H15⋯O1ii 0.95 2.31 3.0924 (19) 140
C16—H16⋯O13v 0.95 2.56 3.154 (2) 121
C17—H17⋯O12v 0.95 2.36 3.288 (2) 164
C20—H20⋯O2iv 0.95 2.62 3.307 (2) 130
Symmetry codes: (ii) x, y-1, z; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) -x, -y+1, -z+1; (vii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (viii) [x, -y+1, z+{\script{1\over 2}}]; (ix) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 5
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O5v 0.95 2.61 3.353 (4) 135
C4—H4⋯O13vi 0.95 2.37 3.206 (4) 147
C5—H5⋯O4vii 0.95 2.37 3.163 (4) 141
C9—H9⋯O9viii 0.95 2.63 3.216 (4) 121
C9—H9⋯O10v 0.95 2.58 3.464 (4) 156
C10—H10⋯O3 0.95 2.30 3.110 (4) 142
C10—H10⋯O7viii 0.95 2.61 3.289 (4) 129
C11—H11⋯O10v 0.95 2.50 3.243 (4) 135
C14—H14⋯O7ix 0.95 2.21 2.998 (4) 139
C15—H15⋯O1ii 0.95 2.31 3.091 (4) 139
C16—H16⋯O13v 0.95 2.56 3.159 (4) 121
C17—H17⋯O12v 0.95 2.37 3.295 (4) 165
C20—H20⋯O2iv 0.95 2.61 3.294 (4) 130
Symmetry codes: (ii) x, y-1, z; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) -x, -y+1, -z+1; (vii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (viii) [x, -y+1, z+{\script{1\over 2}}]; (ix) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 5]
Figure 5
Diagram showing C—H⋯O inter­actions and ππ inter­actions that link each set of inter­digitated layers to similar sets of layers above and below it in (I)[link]. Individual layers are represented in green and blue. Dashed red lines represent C—H⋯O inter­actions, and dashed black lines represent ππ inter­actions.

4. Database survey

A survey of the Cambridge Structural Database (CSD, November 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) returned hits for 333 structures with 4,4′-bi­pyridine N,N′-dioxide. Sixty three structures are reported where bpydo coordinates to a lanthanide metal and acts a as bridging ligand in a coordination network. Of these structures, ten are reported with nitrate as the counter-ion. In [Tb(bpydo)2(NO3)3], linear chains are observed (Long et al., 2002[Long, D. L., Blake, A. J., Champness, N. R., Wilson, C. & Schröder, M. (2002). Chem. Eur. J. 8, 2026-2033.]). A one-dimensional network composed of zigzag chains is observed for [Tb(bpydo)(CH3OH)(NO3)3] (Long et al., 2002[Long, D. L., Blake, A. J., Champness, N. R., Wilson, C. & Schröder, M. (2002). Chem. Eur. J. 8, 2026-2033.]). In {[Ln(bpydo)1.5(NO3)3]·CH2Cl2} with Ln = Eu (Dillner et al., 2010a[Dillner, A. J., Lilly, C. P. & Knaust, J. M. (2010a). Acta Cryst. E66, m1156-m1157.]), Gd (Dillner et al., 2010b[Dillner, A. J., Lilly, C. P. & Knaust, J. M. (2010b). Acta Cryst. E66, m1158-m1159.]), and Tb (Long et al., 2002[Long, D. L., Blake, A. J., Champness, N. R., Wilson, C. & Schröder, M. (2002). Chem. Eur. J. 8, 2026-2033.]), a one-dimensional network composed of ladder-like chains is observed. [La(bpydo)2(NO3)3] is a two-dimensional network composed of sheets with 44 topology and is isostructural to the Ce, Pr, and Nd structures reported herein (Hill et al., 2004[Hill, R. J., Long, D. L., Turvey, M. S., Blake, A. J., Champness, N. R., Hubberstey, P., Wilson, C. & Schröder, M. (2004). Chem. Commun. pp. 1792.]). In {[Er2(bpydo)3(NO3)6]·2CH3OH}, {[Tb(bpydo)1.5(NO3)3]·CH3OH·0.8H2O}, and {[Tb(bpydo)1.5(NO3)3]·0.4CCl4·0.8CH3OH}, two-dimensional networks composed of sheets with 4.82 topology are formed (Long et al., 2000[Long, D. L., Blake, A. J., Champness, N. R. & Schröder, M. (2000). Chem. Commun. pp. 1369-1370.], 2002[Long, D. L., Blake, A. J., Champness, N. R., Wilson, C. & Schröder, M. (2002). Chem. Eur. J. 8, 2026-2033.]). In {[Sm(bpydo)2(NO3)3]·0.5H2O}, a twofold inter­penetrating three-dimensional network is formed (Long et al., 2000[Long, D. L., Blake, A. J., Champness, N. R. & Schröder, M. (2000). Chem. Commun. pp. 1369-1370.]).

5. Synthesis and crystallization

4,4′-bi­pyridine N,N′-dioxide·H2O was synthesized from 4,4′-bi­pyridine according to the method of Simpson et al. (1963[Simpson, P. G., Vinciguerra, A. & Quagliano, J. V. (1963). Inorg. Chem. 2, 282-286.]). All other chemicals were obtained from commercial sources and used without further purification. For the Ce, Pr and Nd compounds, respectively, the appropriate Ln(NO3)3·6H2O (0.113 mmol) was placed in the bottom of a test tube and covered with CH2Cl2 (5 ml). 4,4′-Bi­pyridine-N,N′-dioxide·H2O (0.0376 g, 0.182 mmol) was dissolved in methanol (8 ml), and this solution was layered over the CH2Cl2 solution. The two solutions were allowed to slowly mix. Over a period of several weeks the Ln(NO3)3·6H2O dissolved, and red block-like crystals of [Ce(μ2-bpydo)2(NO3)3], yellow block-like crystals of [Pr(μ2-bpydo)2(NO3)3], and yellow block-like crystals of [Nd(μ2-bpydo)2(NO3)3] were formed.

6. Refinement

All aromatic H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C). Crystal data, data collection and structure refinement details are summarized in Table 6[link].

Table 6
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula [Ce(NO3)3(C10H8N2O2)2] [Pr(NO3)3(C10H8N2O2)2] [Nd(NO3)3(C10H8N2O2)2]
Mr 702.52 703.31 706.64
Crystal system, space group Monoclinic, C2/c Monoclinic, C2/c Monoclinic, C2/c
Temperature (K) 173 173 173
a, b, c (Å) 26.786 (3), 13.3398 (13), 13.7571 (13) 26.7416 (18), 13.3127 (9), 13.7586 (9) 26.7422 (10), 13.3035 (5), 13.7804 (5)
β (°) 105.837 (1) 105.981 (1) 106.065 (1)
V3) 4729.1 (8) 4708.8 (5) 4711.1 (3)
Z 8 8 8
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 2.01 2.16 2.29
Crystal size (mm) 0.55 × 0.45 × 0.38 0.55 × 0.37 × 0.26 0.14 × 0.12 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD Bruker D8 Quest CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2009[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.][Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2009[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.][Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.536, 0.746 0.579, 0.746 0.682, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 15990, 7152, 6686 18363, 7241, 6782 47148, 8277, 5419
Rint 0.018 0.020 0.115
(sin θ/λ)max−1) 0.735 0.737 0.777
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.050, 1.05 0.021, 0.052, 1.05 0.051, 0.067, 1.01
No. of reflections 7152 7241 8277
No. of parameters 370 370 370
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.10, −0.65 0.89, −1.06 1.49, −1.29
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.], 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009) for (I), (II); APEX2 (Bruker, 2014) for (III). Cell refinement: SAINT (Bruker, 2009) for (I), (II); SAINT (Bruker, 2014) for (III). Data reduction: SAINT (Bruker, 2009) for (I), (II); SAINT (Bruker, 2014) for (III). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED (Barbour, 2001).

(I) Poly[[tris(nitrato-κ2O,O')cerium(III)]-bis(µ-4,4'-bipyridine N,N'-dioxide-κ2N:N')] top
Crystal data top
[Ce(NO3)3(C10H8N2O2)2]F(000) = 2776
Mr = 702.52Dx = 1.973 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 26.786 (3) ÅCell parameters from 11055 reflections
b = 13.3398 (13) Åθ = 2.5–31.5°
c = 13.7571 (13) ŵ = 2.01 mm1
β = 105.837 (1)°T = 173 K
V = 4729.1 (8) Å3Block, red
Z = 80.55 × 0.45 × 0.38 mm
Data collection top
Bruker APEXII CCD
diffractometer
6686 reflections with I > 2σ(I)
phi and ω scansRint = 0.018
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 31.5°, θmin = 1.6°
Tmin = 0.536, Tmax = 0.746h = 3737
15990 measured reflectionsk = 1119
7152 independent reflectionsl = 2019
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.050 w = 1/[σ2(Fo2) + (0.0231P)2 + 5.9858P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
7152 reflectionsΔρmax = 1.10 e Å3
370 parametersΔρmin = 0.65 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce10.12666 (2)0.27581 (2)0.66455 (2)0.00880 (3)
O10.14943 (4)1.12935 (8)0.78743 (9)0.0138 (2)
O20.07510 (4)0.41815 (8)0.70896 (9)0.0154 (2)
O30.18037 (4)0.33380 (8)0.83061 (8)0.0131 (2)
O40.54328 (4)0.28358 (8)1.18738 (9)0.0126 (2)
O50.19329 (6)0.41286 (11)0.65215 (10)0.0288 (3)
O60.12041 (6)0.42801 (10)0.53717 (11)0.0267 (3)
O70.18842 (7)0.50937 (10)0.52255 (12)0.0365 (4)
O80.21266 (5)0.18687 (11)0.66189 (9)0.0221 (3)
O90.16939 (5)0.24235 (9)0.51565 (9)0.0157 (2)
O100.23607 (5)0.14464 (9)0.52773 (9)0.0195 (2)
O110.05806 (5)0.25187 (9)0.48914 (9)0.0162 (2)
O120.09542 (4)0.11414 (8)0.55499 (8)0.0148 (2)
O130.03572 (5)0.11024 (10)0.41152 (9)0.0217 (3)
N10.14037 (5)1.03162 (9)0.77682 (9)0.0113 (2)
N20.08640 (5)0.51564 (10)0.71907 (10)0.0134 (2)
N30.23131 (5)0.32751 (10)0.87085 (9)0.0109 (2)
N40.49487 (5)0.28718 (9)1.12873 (10)0.0111 (2)
N50.16766 (7)0.45133 (11)0.56933 (12)0.0253 (3)
N60.20687 (5)0.19053 (10)0.56676 (10)0.0145 (2)
N70.06262 (5)0.15808 (10)0.48319 (9)0.0137 (2)
C10.18034 (6)0.96562 (12)0.79956 (12)0.0142 (3)
H10.21500.98950.82190.017*
C20.17085 (6)0.86374 (12)0.79041 (12)0.0144 (3)
H20.19910.81800.80750.017*
C30.12012 (6)0.82731 (11)0.75622 (11)0.0121 (3)
C40.08022 (6)0.89772 (12)0.73462 (12)0.0137 (3)
H40.04520.87590.71150.016*
C50.09092 (6)0.99873 (12)0.74644 (12)0.0136 (3)
H50.06321.04570.73310.016*
C60.05307 (6)0.58316 (12)0.66253 (13)0.0171 (3)
H60.02250.56060.61440.021*
C70.06325 (6)0.68421 (12)0.67436 (12)0.0165 (3)
H70.03930.73100.63510.020*
C80.10854 (6)0.71893 (11)0.74362 (12)0.0124 (3)
C90.14170 (6)0.64712 (12)0.80061 (12)0.0162 (3)
H90.17270.66770.84850.019*
C100.12988 (6)0.54644 (12)0.78811 (13)0.0172 (3)
H100.15250.49840.82840.021*
C110.25885 (6)0.41124 (11)0.90585 (11)0.0128 (3)
H110.24210.47470.89720.015*
C120.31105 (6)0.40468 (12)0.95406 (11)0.0131 (3)
H120.33000.46370.97930.016*
C130.33644 (6)0.31212 (11)0.96620 (11)0.0117 (3)
C140.30687 (6)0.22856 (11)0.92576 (12)0.0137 (3)
H140.32310.16470.93020.016*
C150.25463 (6)0.23682 (11)0.87958 (12)0.0132 (3)
H150.23490.17880.85380.016*
C160.47610 (6)0.37514 (11)1.08504 (11)0.0131 (3)
H160.49850.43151.09180.016*
C170.42495 (6)0.38381 (12)1.03088 (12)0.0135 (3)
H170.41220.44601.00040.016*
C180.39170 (6)0.30199 (11)1.02043 (11)0.0115 (3)
C190.41282 (6)0.21126 (11)1.06413 (12)0.0125 (3)
H190.39150.15341.05670.015*
C200.46424 (6)0.20521 (12)1.11776 (12)0.0129 (3)
H200.47820.14331.14710.015*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.00749 (4)0.00690 (4)0.01083 (4)0.00080 (3)0.00051 (3)0.00044 (2)
O10.0156 (5)0.0062 (5)0.0175 (5)0.0020 (4)0.0008 (4)0.0001 (4)
O20.0164 (5)0.0053 (5)0.0237 (6)0.0017 (4)0.0043 (4)0.0023 (4)
O30.0069 (4)0.0139 (5)0.0155 (5)0.0001 (4)0.0021 (4)0.0013 (4)
O40.0063 (5)0.0135 (5)0.0158 (5)0.0010 (4)0.0008 (4)0.0013 (4)
O50.0369 (8)0.0279 (7)0.0231 (6)0.0185 (6)0.0107 (6)0.0048 (5)
O60.0349 (7)0.0180 (6)0.0309 (7)0.0042 (5)0.0152 (6)0.0061 (5)
O70.0665 (11)0.0128 (6)0.0464 (9)0.0089 (7)0.0427 (8)0.0018 (6)
O80.0195 (6)0.0320 (7)0.0146 (5)0.0088 (5)0.0041 (4)0.0025 (5)
O90.0138 (5)0.0163 (5)0.0164 (5)0.0019 (4)0.0030 (4)0.0025 (4)
O100.0201 (6)0.0183 (6)0.0224 (6)0.0039 (5)0.0094 (5)0.0015 (5)
O110.0169 (5)0.0131 (5)0.0170 (5)0.0016 (4)0.0018 (4)0.0001 (4)
O120.0154 (5)0.0117 (5)0.0151 (5)0.0000 (4)0.0006 (4)0.0010 (4)
O130.0184 (6)0.0261 (6)0.0167 (5)0.0039 (5)0.0016 (4)0.0090 (5)
N10.0129 (6)0.0079 (5)0.0118 (5)0.0016 (4)0.0010 (4)0.0003 (4)
N20.0141 (6)0.0084 (6)0.0170 (6)0.0003 (5)0.0033 (5)0.0013 (5)
N30.0083 (5)0.0115 (6)0.0115 (5)0.0001 (4)0.0002 (4)0.0002 (4)
N40.0081 (5)0.0116 (6)0.0127 (6)0.0007 (4)0.0014 (4)0.0008 (4)
N50.0444 (10)0.0104 (6)0.0298 (8)0.0066 (6)0.0244 (7)0.0040 (6)
N60.0132 (6)0.0139 (6)0.0163 (6)0.0010 (5)0.0041 (5)0.0004 (5)
N70.0119 (6)0.0169 (6)0.0117 (5)0.0021 (5)0.0023 (4)0.0028 (5)
C10.0113 (6)0.0125 (7)0.0170 (7)0.0000 (5)0.0005 (5)0.0002 (5)
C20.0129 (6)0.0117 (7)0.0172 (7)0.0012 (5)0.0017 (5)0.0002 (5)
C30.0147 (7)0.0083 (6)0.0117 (6)0.0010 (5)0.0012 (5)0.0007 (5)
C40.0118 (6)0.0112 (7)0.0163 (7)0.0011 (5)0.0010 (5)0.0003 (5)
C50.0113 (6)0.0112 (7)0.0163 (7)0.0002 (5)0.0005 (5)0.0007 (5)
C60.0155 (7)0.0120 (7)0.0196 (7)0.0009 (6)0.0025 (6)0.0000 (6)
C70.0172 (7)0.0103 (7)0.0186 (7)0.0005 (6)0.0010 (6)0.0018 (6)
C80.0143 (7)0.0084 (6)0.0139 (7)0.0009 (5)0.0029 (5)0.0007 (5)
C90.0145 (7)0.0103 (7)0.0201 (7)0.0001 (5)0.0015 (6)0.0015 (6)
C100.0134 (7)0.0105 (7)0.0237 (8)0.0010 (6)0.0018 (6)0.0005 (6)
C110.0112 (6)0.0095 (6)0.0164 (7)0.0001 (5)0.0014 (5)0.0014 (5)
C120.0099 (6)0.0111 (6)0.0163 (7)0.0008 (5)0.0002 (5)0.0029 (5)
C130.0096 (6)0.0128 (7)0.0114 (6)0.0002 (5)0.0006 (5)0.0003 (5)
C140.0118 (7)0.0101 (7)0.0170 (7)0.0008 (5)0.0002 (5)0.0005 (5)
C150.0122 (7)0.0093 (6)0.0159 (7)0.0002 (5)0.0004 (5)0.0004 (5)
C160.0108 (6)0.0112 (6)0.0158 (7)0.0002 (5)0.0010 (5)0.0028 (5)
C170.0115 (6)0.0116 (6)0.0161 (7)0.0009 (5)0.0017 (5)0.0033 (5)
C180.0094 (6)0.0124 (6)0.0118 (6)0.0007 (5)0.0014 (5)0.0009 (5)
C190.0114 (6)0.0104 (6)0.0145 (7)0.0006 (5)0.0015 (5)0.0009 (5)
C200.0121 (6)0.0102 (6)0.0151 (7)0.0000 (5)0.0017 (5)0.0010 (5)
Geometric parameters (Å, º) top
Ce1—O32.4685 (11)C1—H10.9500
Ce1—O4i2.4692 (11)C2—C31.398 (2)
Ce1—O22.5192 (11)C2—H20.9500
Ce1—O1ii2.5464 (11)C3—C41.393 (2)
Ce1—O52.5929 (13)C3—C81.479 (2)
Ce1—O82.6004 (12)C4—C51.378 (2)
Ce1—O112.6231 (12)C4—H40.9500
Ce1—O122.6333 (11)C5—H50.9500
Ce1—O92.6428 (12)C6—C71.376 (2)
Ce1—O62.6573 (13)C6—H60.9500
O1—N11.3268 (16)C7—C81.401 (2)
O1—Ce1iii2.5464 (11)C7—H70.9500
O2—N21.3339 (16)C8—C91.393 (2)
O3—N31.3277 (15)C9—C101.380 (2)
O4—N41.3281 (16)C9—H90.9500
O4—Ce1iv2.4694 (11)C10—H100.9500
O5—N51.267 (2)C11—C121.377 (2)
O6—N51.260 (2)C11—H110.9500
O7—N51.2321 (19)C12—C131.398 (2)
O8—N61.2761 (18)C12—H120.9500
O9—N61.2629 (18)C13—C141.393 (2)
O10—N61.2264 (17)C13—C181.471 (2)
O11—N71.2619 (18)C14—C151.374 (2)
O12—N71.2718 (17)C14—H140.9500
O13—N71.2292 (17)C15—H150.9500
N1—C51.3490 (19)C16—C171.374 (2)
N1—C11.355 (2)C16—H160.9500
N2—C101.350 (2)C17—C181.391 (2)
N2—C61.354 (2)C17—H170.9500
N3—C151.3517 (19)C18—C191.400 (2)
N3—C111.3527 (19)C19—C201.376 (2)
N4—C201.3504 (19)C19—H190.9500
N4—C161.3512 (19)C20—H200.9500
C1—C21.382 (2)
O3—Ce1—O4i107.56 (4)O7—N5—O5120.87 (18)
O3—Ce1—O276.05 (4)O6—N5—O5117.48 (14)
O4i—Ce1—O268.67 (4)O10—N6—O9122.32 (13)
O3—Ce1—O1ii69.67 (4)O10—N6—O8121.08 (14)
O4i—Ce1—O1ii74.36 (4)O9—N6—O8116.59 (13)
O2—Ce1—O1ii117.72 (4)O13—N7—O11121.39 (14)
O3—Ce1—O566.55 (4)O13—N7—O12120.88 (14)
O4i—Ce1—O5153.81 (4)O11—N7—O12117.72 (12)
O2—Ce1—O585.25 (4)N1—C1—C2120.25 (14)
O1ii—Ce1—O5122.70 (4)N1—C1—H1119.9
O3—Ce1—O882.02 (4)C2—C1—H1119.9
O4i—Ce1—O8133.70 (4)C1—C2—C3120.67 (14)
O2—Ce1—O8153.34 (4)C1—C2—H2119.7
O1ii—Ce1—O866.84 (4)C3—C2—H2119.7
O5—Ce1—O872.09 (5)C4—C3—C2117.13 (14)
O3—Ce1—O11167.04 (4)C4—C3—C8120.68 (14)
O4i—Ce1—O1169.34 (4)C2—C3—C8122.18 (14)
O2—Ce1—O1191.27 (4)C5—C4—C3120.78 (14)
O1ii—Ce1—O11119.87 (4)C5—C4—H4119.6
O5—Ce1—O11110.32 (4)C3—C4—H4119.6
O8—Ce1—O11109.41 (4)N1—C5—C4120.64 (14)
O3—Ce1—O12143.16 (4)N1—C5—H5119.7
O4i—Ce1—O1269.69 (4)C4—C5—H5119.7
O2—Ce1—O12130.28 (4)N2—C6—C7120.35 (15)
O1ii—Ce1—O1274.50 (4)N2—C6—H6119.8
O5—Ce1—O12131.05 (4)C7—C6—H6119.8
O8—Ce1—O1276.27 (4)C6—C7—C8120.73 (15)
O11—Ce1—O1248.73 (4)C6—C7—H7119.6
O3—Ce1—O9120.26 (4)C8—C7—H7119.6
O4i—Ce1—O9129.97 (4)C9—C8—C7117.14 (14)
O2—Ce1—O9134.21 (4)C9—C8—C3121.68 (14)
O1ii—Ce1—O9108.00 (4)C7—C8—C3121.18 (14)
O5—Ce1—O967.46 (4)C10—C9—C8120.65 (15)
O8—Ce1—O948.65 (4)C10—C9—H9119.7
O11—Ce1—O967.00 (4)C8—C9—H9119.7
O12—Ce1—O963.59 (4)N2—C10—C9120.55 (14)
O3—Ce1—O6106.67 (4)N2—C10—H10119.7
O4i—Ce1—O6115.64 (4)C9—C10—H10119.7
O2—Ce1—O669.15 (4)N3—C11—C12120.16 (14)
O1ii—Ce1—O6169.94 (4)N3—C11—H11119.9
O5—Ce1—O648.58 (5)C12—C11—H11119.9
O8—Ce1—O6103.65 (4)C11—C12—C13120.71 (14)
O11—Ce1—O665.43 (4)C11—C12—H12119.6
O12—Ce1—O6107.17 (4)C13—C12—H12119.6
O9—Ce1—O665.20 (4)C14—C13—C12117.02 (14)
N1—O1—Ce1iii132.64 (9)C14—C13—C18120.87 (14)
N2—O2—Ce1129.52 (9)C12—C13—C18122.11 (14)
N3—O3—Ce1129.72 (9)C15—C14—C13121.13 (14)
N4—O4—Ce1iv134.54 (9)C15—C14—H14119.4
N5—O5—Ce197.52 (10)C13—C14—H14119.4
N5—O6—Ce194.62 (10)N3—C15—C14120.03 (14)
N6—O8—Ce197.86 (9)N3—C15—H15120.0
N6—O9—Ce196.18 (9)C14—C15—H15120.0
N7—O11—Ce197.15 (8)N4—C16—C17120.61 (14)
N7—O12—Ce196.39 (8)N4—C16—H16119.7
O1—N1—C5119.22 (13)C17—C16—H16119.7
O1—N1—C1120.25 (13)C16—C17—C18120.36 (14)
C5—N1—C1120.49 (13)C16—C17—H17119.8
O2—N2—C10119.84 (13)C18—C17—H17119.8
O2—N2—C6119.56 (13)C17—C18—C19117.49 (14)
C10—N2—C6120.56 (14)C17—C18—C13120.50 (14)
O3—N3—C15119.41 (13)C19—C18—C13122.01 (14)
O3—N3—C11119.65 (12)C20—C19—C18120.59 (14)
C15—N3—C11120.89 (13)C20—C19—H19119.7
O4—N4—C20120.08 (12)C18—C19—H19119.7
O4—N4—C16118.99 (12)N4—C20—C19120.07 (14)
C20—N4—C16120.83 (13)N4—C20—H20120.0
O7—N5—O6121.65 (18)C19—C20—H20120.0
Ce1—O3—O4—Ce1iv5.38 (7)Ce1—O2—O1—Ce1iii92.53 (6)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y1, z; (iii) x, y+1, z; (iv) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O5v0.952.593.342 (2)136
C4—H4···O13vi0.952.373.208 (2)148
C5—H5···O4vii0.952.383.1868 (19)142
C9—H9···O9viii0.952.623.206 (2)121
C9—H9···O10v0.952.593.475 (2)156
C10—H10···O30.952.323.128 (2)143
C10—H10···O7viii0.952.583.264 (2)129
C11—H11···O10v0.952.493.237 (2)135
C14—H14···O7ix0.952.223.004 (2)139
C15—H15···O1ii0.952.323.1069 (19)140
C16—H16···O13v0.952.553.154 (2)122
C17—H17···O12v0.952.363.2837 (19)164
C20—H20···O2iv0.952.633.3265 (19)130
Symmetry codes: (ii) x, y1, z; (iv) x+1/2, y+1/2, z+1/2; (v) x+1/2, y+1/2, z+3/2; (vi) x, y+1, z+1; (vii) x1/2, y+3/2, z1/2; (viii) x, y+1, z+1/2; (ix) x+1/2, y1/2, z+3/2.
(II) Poly[[tris(nitrato-κ2O,O')praeseodymium(III)]-bis(µ-4,4'-bipyridine N,N'-dioxide-κ2N:N')] top
Crystal data top
[Pr(NO3)3(C10H8N2O2)2]F(000) = 2784
Mr = 703.31Dx = 1.984 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 11450 reflections
a = 26.7416 (18) Åθ = 2.5–31.3°
b = 13.3127 (9) ŵ = 2.16 mm1
c = 13.7586 (9) ÅT = 173 K
β = 105.981 (1)°Block, yellow
V = 4708.8 (5) Å30.55 × 0.37 × 0.26 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
7241 independent reflections
Radiation source: sealed tube6782 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
phi and ω scansθmax = 31.6°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 3938
Tmin = 0.579, Tmax = 0.746k = 1818
18363 measured reflectionsl = 1915
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0248P)2 + 6.7123P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.003
7241 reflectionsΔρmax = 0.89 e Å3
370 parametersΔρmin = 1.06 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pr10.12674 (2)0.27553 (2)0.66470 (2)0.00790 (3)
O10.14910 (4)1.12982 (8)0.78780 (9)0.0121 (2)
O20.07540 (5)0.41686 (8)0.70889 (10)0.0138 (2)
O30.17985 (4)0.33321 (9)0.83058 (9)0.0115 (2)
O40.54388 (4)0.28390 (8)1.18793 (9)0.0111 (2)
O50.19376 (6)0.41071 (11)0.65327 (11)0.0253 (3)
O60.12068 (6)0.42773 (10)0.53849 (11)0.0236 (3)
O70.18928 (7)0.50822 (10)0.52428 (13)0.0324 (4)
O80.21197 (5)0.18554 (11)0.66227 (10)0.0196 (3)
O90.16890 (5)0.24298 (10)0.51644 (10)0.0144 (2)
O100.23564 (5)0.14508 (10)0.52791 (10)0.0181 (2)
O110.05832 (5)0.25265 (10)0.49034 (9)0.0144 (2)
O120.09581 (4)0.11451 (9)0.55595 (9)0.0135 (2)
O130.03605 (5)0.11082 (10)0.41182 (10)0.0198 (3)
N10.14024 (5)1.03189 (10)0.77697 (10)0.0100 (2)
N20.08667 (5)0.51456 (10)0.71901 (11)0.0117 (2)
N30.23089 (5)0.32704 (10)0.87050 (10)0.0096 (2)
N40.49530 (5)0.28712 (10)1.12884 (11)0.0097 (2)
N50.16820 (7)0.45013 (11)0.57063 (13)0.0219 (3)
N60.20645 (5)0.19037 (11)0.56710 (11)0.0129 (3)
N70.06291 (5)0.15870 (11)0.48410 (10)0.0124 (3)
C10.18032 (6)0.96583 (12)0.79944 (13)0.0127 (3)
H10.21510.98990.82170.015*
C20.17102 (6)0.86383 (12)0.79021 (13)0.0130 (3)
H20.19940.81820.80720.016*
C30.12013 (6)0.82702 (12)0.75610 (12)0.0106 (3)
C40.07981 (6)0.89758 (12)0.73481 (13)0.0126 (3)
H40.04470.87560.71200.015*
C50.09060 (6)0.99871 (12)0.74667 (12)0.0120 (3)
H50.06281.04570.73340.014*
C60.05349 (6)0.58208 (12)0.66223 (13)0.0152 (3)
H60.02300.55930.61380.018*
C70.06337 (6)0.68346 (12)0.67370 (13)0.0145 (3)
H70.03940.73010.63400.017*
C80.10860 (6)0.71840 (11)0.74358 (13)0.0109 (3)
C90.14177 (6)0.64669 (12)0.80127 (13)0.0149 (3)
H90.17270.66740.84990.018*
C100.12999 (6)0.54590 (12)0.78830 (14)0.0154 (3)
H100.15270.49790.82880.019*
C110.25850 (6)0.41103 (12)0.90557 (12)0.0116 (3)
H110.24170.47460.89690.014*
C120.31102 (6)0.40482 (12)0.95382 (13)0.0120 (3)
H120.33000.46400.97900.014*
C130.33636 (6)0.31196 (12)0.96590 (12)0.0100 (3)
C140.30678 (6)0.22808 (11)0.92570 (13)0.0122 (3)
H140.32310.16420.93020.015*
C150.25433 (6)0.23623 (12)0.87957 (13)0.0116 (3)
H150.23460.17800.85400.014*
C160.47654 (6)0.37537 (12)1.08487 (12)0.0117 (3)
H160.49900.43181.09140.014*
C170.42522 (6)0.38374 (12)1.03083 (13)0.0120 (3)
H170.41240.44611.00050.014*
C180.39185 (6)0.30165 (12)1.02012 (12)0.0102 (3)
C190.41298 (6)0.21084 (12)1.06397 (13)0.0113 (3)
H190.39160.15281.05660.014*
C200.46461 (6)0.20508 (12)1.11778 (13)0.0116 (3)
H200.47870.14311.14720.014*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.00728 (4)0.00661 (4)0.00934 (5)0.00065 (2)0.00148 (3)0.00049 (3)
O10.0148 (5)0.0056 (5)0.0146 (5)0.0022 (4)0.0018 (4)0.0004 (4)
O20.0154 (5)0.0052 (5)0.0209 (6)0.0015 (4)0.0053 (5)0.0021 (4)
O30.0063 (4)0.0124 (5)0.0137 (5)0.0004 (4)0.0007 (4)0.0013 (4)
O40.0065 (5)0.0123 (5)0.0129 (5)0.0013 (4)0.0001 (4)0.0010 (4)
O50.0328 (7)0.0242 (7)0.0209 (7)0.0155 (6)0.0106 (6)0.0031 (6)
O60.0300 (7)0.0164 (6)0.0278 (7)0.0033 (5)0.0139 (6)0.0046 (5)
O70.0589 (10)0.0118 (6)0.0418 (9)0.0076 (6)0.0397 (8)0.0016 (6)
O80.0178 (6)0.0292 (7)0.0122 (6)0.0078 (5)0.0046 (5)0.0029 (5)
O90.0129 (5)0.0150 (5)0.0146 (6)0.0029 (4)0.0029 (4)0.0024 (5)
O100.0188 (6)0.0181 (6)0.0205 (6)0.0040 (5)0.0105 (5)0.0012 (5)
O110.0149 (5)0.0119 (5)0.0152 (6)0.0010 (4)0.0020 (5)0.0003 (5)
O120.0145 (5)0.0112 (5)0.0130 (5)0.0008 (4)0.0009 (4)0.0001 (4)
O130.0181 (6)0.0232 (7)0.0154 (6)0.0038 (5)0.0000 (5)0.0078 (5)
N10.0129 (6)0.0075 (6)0.0094 (6)0.0014 (4)0.0024 (5)0.0000 (5)
N20.0128 (6)0.0068 (6)0.0157 (6)0.0005 (4)0.0043 (5)0.0013 (5)
N30.0079 (5)0.0102 (6)0.0102 (6)0.0001 (4)0.0016 (4)0.0000 (5)
N40.0077 (5)0.0109 (6)0.0106 (6)0.0006 (4)0.0028 (5)0.0003 (5)
N50.0391 (9)0.0081 (6)0.0260 (8)0.0043 (6)0.0216 (7)0.0035 (6)
N60.0121 (6)0.0125 (6)0.0148 (7)0.0002 (5)0.0048 (5)0.0000 (5)
N70.0112 (6)0.0152 (6)0.0108 (6)0.0018 (5)0.0031 (5)0.0029 (5)
C10.0107 (6)0.0121 (7)0.0146 (7)0.0003 (5)0.0022 (6)0.0003 (6)
C20.0119 (7)0.0112 (7)0.0146 (7)0.0012 (5)0.0017 (6)0.0009 (6)
C30.0137 (7)0.0072 (6)0.0107 (7)0.0007 (5)0.0031 (5)0.0000 (5)
C40.0113 (6)0.0105 (7)0.0149 (7)0.0007 (5)0.0018 (6)0.0007 (6)
C50.0120 (6)0.0094 (7)0.0137 (7)0.0001 (5)0.0021 (6)0.0006 (6)
C60.0141 (7)0.0111 (7)0.0176 (8)0.0016 (5)0.0005 (6)0.0007 (6)
C70.0157 (7)0.0101 (7)0.0152 (8)0.0006 (5)0.0001 (6)0.0009 (6)
C80.0132 (7)0.0077 (7)0.0120 (7)0.0002 (5)0.0037 (6)0.0009 (5)
C90.0135 (7)0.0100 (7)0.0186 (8)0.0001 (5)0.0001 (6)0.0010 (6)
C100.0132 (7)0.0095 (7)0.0205 (8)0.0013 (5)0.0006 (6)0.0006 (6)
C110.0111 (6)0.0084 (6)0.0143 (7)0.0001 (5)0.0018 (6)0.0010 (6)
C120.0100 (6)0.0097 (7)0.0152 (7)0.0013 (5)0.0019 (5)0.0015 (6)
C130.0086 (6)0.0111 (7)0.0100 (7)0.0006 (5)0.0019 (5)0.0004 (5)
C140.0113 (7)0.0088 (7)0.0151 (7)0.0003 (5)0.0015 (6)0.0003 (6)
C150.0113 (7)0.0082 (6)0.0141 (7)0.0000 (5)0.0011 (6)0.0001 (6)
C160.0100 (6)0.0099 (7)0.0148 (7)0.0002 (5)0.0027 (5)0.0027 (6)
C170.0102 (6)0.0097 (7)0.0153 (7)0.0004 (5)0.0023 (6)0.0027 (6)
C180.0084 (6)0.0112 (7)0.0106 (7)0.0001 (5)0.0020 (5)0.0000 (6)
C190.0107 (6)0.0103 (7)0.0127 (7)0.0008 (5)0.0029 (5)0.0003 (6)
C200.0113 (6)0.0101 (7)0.0131 (7)0.0005 (5)0.0029 (6)0.0011 (6)
Geometric parameters (Å, º) top
Pr1—O4i2.4554 (12)C1—H10.9500
Pr1—O32.4558 (11)C2—C31.400 (2)
Pr1—O22.5009 (12)C2—H20.9500
Pr1—O1ii2.5360 (12)C3—C41.399 (2)
Pr1—O52.5750 (13)C3—C81.479 (2)
Pr1—O82.5832 (13)C4—C51.377 (2)
Pr1—O112.6036 (12)C4—H40.9500
Pr1—O122.6147 (12)C5—H50.9500
Pr1—O92.6242 (13)C6—C71.376 (2)
Pr1—O62.6443 (14)C6—H60.9500
O1—N11.3261 (17)C7—C81.401 (2)
O1—Pr1iii2.5360 (12)C7—H70.9500
O2—N21.3337 (17)C8—C91.393 (2)
O3—N31.3261 (16)C9—C101.379 (2)
O4—N41.3300 (17)C9—H90.9500
O4—Pr1iv2.4554 (12)C10—H100.9500
O5—N51.268 (2)C11—C121.381 (2)
O6—N51.261 (2)C11—H110.9500
O7—N51.233 (2)C12—C131.397 (2)
O8—N61.2782 (19)C12—H120.9500
O9—N61.2646 (18)C13—C141.392 (2)
O10—N61.2229 (18)C13—C181.472 (2)
O11—N71.2620 (18)C14—C151.375 (2)
O12—N71.2722 (18)C14—H140.9500
O13—N71.2319 (18)C15—H150.9500
N1—C51.352 (2)C16—C171.373 (2)
N1—C11.355 (2)C16—H160.9500
N2—C101.348 (2)C17—C181.393 (2)
N2—C61.351 (2)C17—H170.9500
N3—C151.352 (2)C18—C191.399 (2)
N3—C111.353 (2)C19—C201.377 (2)
N4—C201.349 (2)C19—H190.9500
N4—C161.353 (2)C20—H200.9500
C1—C21.380 (2)
O4i—Pr1—O3106.95 (4)O4—N4—C16118.73 (13)
O4i—Pr1—O268.60 (4)C20—N4—C16120.89 (14)
O3—Pr1—O275.79 (4)O7—N5—O6121.81 (18)
O4i—Pr1—O1ii73.85 (4)O7—N5—O5120.86 (18)
O3—Pr1—O1ii69.44 (4)O6—N5—O5117.33 (15)
O2—Pr1—O1ii117.22 (4)O7—N5—Pr1168.42 (12)
O4i—Pr1—O5154.35 (4)O6—N5—Pr160.94 (9)
O3—Pr1—O566.68 (4)O5—N5—Pr157.81 (8)
O2—Pr1—O585.82 (5)O10—N6—O9122.44 (15)
O1ii—Pr1—O5122.36 (4)O10—N6—O8121.27 (14)
O4i—Pr1—O8133.11 (4)O9—N6—O8116.28 (14)
O3—Pr1—O882.56 (4)O13—N7—O11121.44 (14)
O2—Pr1—O8153.82 (4)O13—N7—O12120.85 (14)
O1ii—Pr1—O866.88 (4)O11—N7—O12117.70 (13)
O5—Pr1—O872.05 (5)N1—C1—C2120.45 (14)
O4i—Pr1—O1169.62 (4)N1—C1—H1119.8
O3—Pr1—O11166.61 (4)C2—C1—H1119.8
O2—Pr1—O1191.05 (4)C1—C2—C3120.60 (15)
O1ii—Pr1—O11120.17 (4)C1—C2—H2119.7
O5—Pr1—O11110.48 (4)C3—C2—H2119.7
O8—Pr1—O11109.43 (4)C4—C3—C2117.20 (14)
O4i—Pr1—O1269.86 (4)C4—C3—C8120.55 (14)
O3—Pr1—O12143.04 (4)C2—C3—C8122.25 (14)
O2—Pr1—O12130.35 (4)C5—C4—C3120.50 (14)
O1ii—Pr1—O1274.59 (4)C5—C4—H4119.8
O5—Pr1—O12130.84 (4)C3—C4—H4119.8
O8—Pr1—O1275.74 (4)N1—C5—C4120.79 (15)
O11—Pr1—O1249.12 (4)N1—C5—H5119.6
O4i—Pr1—O9130.11 (4)C4—C5—H5119.6
O3—Pr1—O9120.78 (4)N2—C6—C7120.78 (15)
O2—Pr1—O9134.05 (4)N2—C6—H6119.6
O1ii—Pr1—O9108.67 (4)C7—C6—H6119.6
O5—Pr1—O967.21 (4)C6—C7—C8120.43 (15)
O8—Pr1—O949.00 (4)C6—C7—H7119.8
O11—Pr1—O966.91 (4)C8—C7—H7119.8
O12—Pr1—O963.63 (4)C9—C8—C7117.22 (14)
O4i—Pr1—O6115.98 (4)C9—C8—C3121.62 (14)
O3—Pr1—O6106.61 (4)C7—C8—C3121.16 (14)
O2—Pr1—O669.19 (4)C10—C9—C8120.43 (15)
O1ii—Pr1—O6170.15 (4)C10—C9—H9119.8
O5—Pr1—O648.87 (5)C8—C9—H9119.8
O8—Pr1—O6103.98 (4)N2—C10—C9120.93 (15)
O11—Pr1—O665.42 (4)N2—C10—H10119.5
O12—Pr1—O6107.45 (4)C9—C10—H10119.5
O9—Pr1—O665.03 (4)N3—C11—C12120.32 (14)
O4i—Pr1—N5139.09 (4)N3—C11—H11119.8
O3—Pr1—N588.34 (4)C12—C11—H11119.8
O2—Pr1—N579.39 (4)C11—C12—C13120.37 (14)
O1ii—Pr1—N5146.01 (4)C11—C12—H12119.8
O5—Pr1—N524.63 (5)C13—C12—H12119.8
O8—Pr1—N585.53 (5)C14—C13—C12117.30 (14)
O11—Pr1—N586.73 (5)C14—C13—C18120.64 (14)
O12—Pr1—N5118.82 (4)C12—C13—C18122.05 (14)
O9—Pr1—N560.42 (4)C15—C14—C13121.05 (15)
O6—Pr1—N524.63 (5)C15—C14—H14119.5
N1—O1—Pr1iii132.45 (9)C13—C14—H14119.5
N2—O2—Pr1129.47 (9)N3—C15—C14120.09 (14)
N3—O3—Pr1129.16 (9)N3—C15—H15120.0
N4—O4—Pr1iv134.06 (10)C14—C15—H15120.0
N5—O5—Pr197.56 (10)N4—C16—C17120.31 (14)
N5—O6—Pr194.43 (10)N4—C16—H16119.8
N6—O8—Pr197.84 (9)C17—C16—H16119.8
N6—O9—Pr196.25 (9)C16—C17—C18120.61 (15)
N7—O11—Pr197.00 (9)C16—C17—H17119.7
N7—O12—Pr196.18 (9)C18—C17—H17119.7
O1—N1—C5119.07 (13)C17—C18—C19117.47 (14)
O1—N1—C1120.46 (13)C17—C18—C13120.49 (14)
C5—N1—C1120.42 (14)C19—C18—C13122.02 (14)
O2—N2—C10120.08 (13)C20—C19—C18120.40 (15)
O2—N2—C6119.67 (13)C20—C19—H19119.8
C10—N2—C6120.20 (14)C18—C19—H19119.8
O3—N3—C15119.46 (13)N4—C20—C19120.27 (15)
O3—N3—C11119.65 (13)N4—C20—H20119.9
C15—N3—C11120.82 (13)C19—C20—H20119.9
O4—N4—C20120.28 (13)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y1, z; (iii) x, y+1, z; (iv) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O5v0.952.593.331 (2)135
C4—H4···O13vi0.952.363.200 (2)147
C5—H5···O4vii0.952.373.168 (2)141
C9—H9···O9viii0.952.613.204 (2)121
C9—H9···O10v0.952.583.468 (2)156
C10—H10···O30.952.313.115 (2)143
C10—H10···O7viii0.952.603.277 (3)129
C11—H11···O10v0.952.503.239 (2)135
C14—H14···O7ix0.952.223.002 (2)139
C15—H15···O1ii0.952.313.0924 (19)140
C16—H16···O13v0.952.563.154 (2)121
C17—H17···O12v0.952.363.288 (2)164
C20—H20···O2iv0.952.623.307 (2)130
Symmetry codes: (ii) x, y1, z; (iv) x+1/2, y+1/2, z+1/2; (v) x+1/2, y+1/2, z+3/2; (vi) x, y+1, z+1; (vii) x1/2, y+3/2, z1/2; (viii) x, y+1, z+1/2; (ix) x+1/2, y1/2, z+3/2.
(III) Poly[[tris(nitrato-κ2O,O')neodymium(III)]-bis(µ-4,4'-bipyridine N,N'-dioxide-κ2N:N'}] top
Crystal data top
[Nd(NO3)3(C10H8N2O2)2]F(000) = 2792
Mr = 706.64Dx = 1.993 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 26.7422 (10) ÅCell parameters from 8852 reflections
b = 13.3035 (5) Åθ = 2.5–31.4°
c = 13.7804 (5) ŵ = 2.29 mm1
β = 106.065 (1)°T = 173 K
V = 4711.1 (3) Å3Block, yellow
Z = 80.14 × 0.12 × 0.08 mm
Data collection top
Bruker D8 Quest CMOS
diffractometer
8277 independent reflections
Radiation source: I-mu-S microsource X-ray tube5419 reflections with I > 2σ(I)
Laterally graded multilayer (Goebel) mirror monochromatorRint = 0.115
ω and phi scansθmax = 33.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 3839
Tmin = 0.682, Tmax = 0.747k = 2018
47148 measured reflectionsl = 2118
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0161P)2 + 13.5513P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
8277 reflectionsΔρmax = 1.49 e Å3
370 parametersΔρmin = 1.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd10.12681 (2)0.27502 (2)0.66431 (2)0.00728 (4)
O10.14904 (8)1.13013 (15)0.78718 (16)0.0116 (5)
O20.07574 (8)0.41599 (15)0.70766 (16)0.0130 (5)
O30.17968 (8)0.33233 (15)0.83003 (15)0.0111 (4)
O40.54422 (8)0.28373 (16)1.18789 (15)0.0104 (4)
O50.19319 (10)0.40971 (18)0.65362 (18)0.0251 (6)
O60.12057 (10)0.42656 (17)0.53782 (19)0.0236 (6)
O70.18928 (11)0.50787 (17)0.5251 (2)0.0317 (7)
O80.21193 (9)0.18587 (18)0.66255 (16)0.0190 (5)
O90.16865 (8)0.24311 (15)0.51655 (16)0.0139 (5)
O100.23559 (9)0.14500 (17)0.52853 (17)0.0187 (5)
O110.05854 (8)0.25293 (15)0.49154 (16)0.0136 (5)
O120.09612 (8)0.11469 (16)0.55686 (16)0.0120 (5)
O130.03619 (9)0.11085 (17)0.41220 (17)0.0198 (5)
N10.14002 (10)1.03179 (18)0.77624 (18)0.0092 (5)
N20.08697 (10)0.51388 (19)0.7183 (2)0.0113 (6)
N30.23077 (10)0.32610 (19)0.87052 (18)0.0094 (5)
N40.49563 (9)0.28710 (19)1.12926 (17)0.0094 (5)
N50.16807 (13)0.4492 (2)0.5712 (2)0.0228 (7)
N60.20618 (10)0.19050 (19)0.56738 (19)0.0125 (6)
N70.06299 (10)0.1590 (2)0.48487 (19)0.0124 (6)
C10.18004 (12)0.9658 (2)0.7982 (2)0.0123 (6)
H10.21480.98990.82010.015*
C20.17080 (12)0.8640 (2)0.7892 (2)0.0120 (6)
H20.19930.81850.80590.014*
C30.12022 (12)0.8270 (2)0.7557 (2)0.0097 (6)
C40.07995 (12)0.8974 (2)0.7348 (2)0.0117 (6)
H40.04490.87510.71230.014*
C50.09037 (12)0.9987 (2)0.7464 (2)0.0121 (6)
H50.06251.04550.73340.015*
C60.05363 (13)0.5813 (2)0.6616 (2)0.0144 (7)
H60.02300.55840.61330.017*
C70.06354 (12)0.6827 (2)0.6730 (2)0.0137 (7)
H70.03960.72930.63290.016*
C80.10854 (11)0.7181 (2)0.7431 (2)0.0099 (6)
C90.14192 (13)0.6463 (2)0.8007 (2)0.0147 (7)
H90.17290.66710.84910.018*
C100.13017 (13)0.5451 (2)0.7879 (3)0.0168 (7)
H100.15280.49700.82870.020*
C110.25859 (12)0.4103 (2)0.9057 (2)0.0109 (6)
H110.24190.47400.89640.013*
C120.31067 (12)0.4040 (2)0.9544 (2)0.0115 (6)
H120.32950.46330.98030.014*
C130.33621 (12)0.3117 (2)0.9664 (2)0.0099 (6)
C140.30682 (11)0.2278 (2)0.9260 (2)0.0111 (6)
H140.32320.16390.93070.013*
C150.25439 (12)0.2359 (2)0.8795 (2)0.0117 (6)
H150.23480.17760.85360.014*
C160.47655 (12)0.3749 (2)1.0850 (2)0.0118 (6)
H160.49890.43141.09150.014*
C170.42538 (12)0.3837 (2)1.0310 (2)0.0115 (6)
H170.41260.44591.00020.014*
C180.39187 (12)0.3015 (2)1.0209 (2)0.0101 (6)
C190.41335 (12)0.2105 (2)1.0646 (2)0.0113 (6)
H190.39200.15221.05700.014*
C200.46497 (12)0.2047 (2)1.1181 (2)0.0109 (6)
H200.47910.14261.14740.013*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.00565 (7)0.00592 (7)0.00960 (7)0.00075 (8)0.00098 (5)0.00046 (8)
O10.0140 (12)0.0039 (10)0.0155 (11)0.0026 (9)0.0018 (9)0.0000 (9)
O20.0142 (12)0.0030 (10)0.0215 (12)0.0035 (9)0.0046 (10)0.0026 (9)
O30.0036 (10)0.0125 (11)0.0143 (11)0.0003 (9)0.0023 (9)0.0010 (9)
O40.0050 (10)0.0122 (11)0.0121 (10)0.0010 (9)0.0009 (8)0.0004 (9)
O50.0326 (16)0.0244 (14)0.0197 (13)0.0162 (12)0.0095 (12)0.0016 (11)
O60.0301 (16)0.0144 (12)0.0295 (14)0.0025 (11)0.0136 (12)0.0065 (11)
O70.060 (2)0.0106 (12)0.0401 (16)0.0062 (12)0.0397 (16)0.0002 (12)
O80.0165 (13)0.0297 (14)0.0104 (11)0.0076 (11)0.0032 (10)0.0031 (10)
O90.0118 (11)0.0138 (12)0.0155 (11)0.0024 (9)0.0028 (9)0.0025 (9)
O100.0190 (13)0.0168 (12)0.0236 (13)0.0047 (10)0.0115 (11)0.0020 (10)
O110.0140 (11)0.0103 (12)0.0153 (11)0.0011 (8)0.0021 (9)0.0004 (8)
O120.0122 (12)0.0097 (11)0.0117 (11)0.0000 (9)0.0007 (9)0.0002 (9)
O130.0160 (13)0.0240 (13)0.0159 (12)0.0041 (10)0.0014 (10)0.0109 (10)
N10.0105 (14)0.0081 (13)0.0081 (12)0.0017 (10)0.0013 (11)0.0009 (10)
N20.0123 (14)0.0068 (13)0.0164 (14)0.0004 (11)0.0064 (12)0.0015 (11)
N30.0085 (13)0.0107 (13)0.0076 (12)0.0021 (11)0.0002 (10)0.0008 (10)
N40.0082 (12)0.0122 (13)0.0074 (11)0.0004 (11)0.0017 (10)0.0018 (10)
N50.040 (2)0.0092 (14)0.0285 (17)0.0060 (14)0.0242 (16)0.0043 (13)
N60.0126 (14)0.0106 (13)0.0145 (13)0.0015 (11)0.0042 (11)0.0008 (11)
N70.0104 (14)0.0132 (14)0.0144 (13)0.0016 (11)0.0045 (11)0.0036 (11)
C10.0098 (16)0.0119 (16)0.0146 (15)0.0011 (13)0.0021 (13)0.0001 (13)
C20.0117 (16)0.0104 (15)0.0131 (15)0.0023 (13)0.0022 (13)0.0014 (12)
C30.0124 (16)0.0084 (15)0.0081 (14)0.0005 (13)0.0023 (12)0.0018 (12)
C40.0089 (16)0.0103 (15)0.0138 (15)0.0004 (12)0.0005 (13)0.0022 (13)
C50.0103 (16)0.0113 (16)0.0149 (16)0.0014 (13)0.0037 (13)0.0013 (13)
C60.0125 (17)0.0115 (16)0.0156 (16)0.0009 (13)0.0021 (13)0.0002 (13)
C70.0120 (16)0.0099 (15)0.0156 (16)0.0010 (13)0.0021 (13)0.0007 (13)
C80.0111 (15)0.0071 (14)0.0123 (14)0.0015 (13)0.0044 (12)0.0008 (13)
C90.0114 (16)0.0114 (16)0.0186 (17)0.0010 (13)0.0004 (14)0.0016 (13)
C100.0122 (17)0.0132 (16)0.0218 (18)0.0042 (13)0.0007 (14)0.0001 (14)
C110.0112 (16)0.0071 (15)0.0138 (15)0.0001 (12)0.0023 (13)0.0019 (12)
C120.0090 (16)0.0102 (15)0.0145 (15)0.0021 (12)0.0019 (13)0.0029 (13)
C130.0100 (15)0.0119 (15)0.0082 (14)0.0005 (12)0.0032 (12)0.0004 (12)
C140.0103 (14)0.0093 (14)0.0133 (14)0.0008 (14)0.0024 (12)0.0004 (14)
C150.0136 (15)0.0074 (14)0.0129 (14)0.0027 (13)0.0018 (12)0.0020 (13)
C160.0114 (16)0.0095 (15)0.0148 (15)0.0003 (12)0.0039 (13)0.0032 (13)
C170.0100 (16)0.0099 (15)0.0141 (15)0.0021 (12)0.0026 (13)0.0012 (12)
C180.0096 (15)0.0126 (16)0.0094 (14)0.0022 (12)0.0049 (12)0.0001 (12)
C190.0113 (15)0.0098 (16)0.0135 (14)0.0017 (12)0.0044 (12)0.0007 (12)
C200.0135 (16)0.0085 (16)0.0113 (14)0.0001 (12)0.0041 (13)0.0002 (11)
Geometric parameters (Å, º) top
Nd1—O4i2.448 (2)C1—H10.9500
Nd1—O32.451 (2)C2—C31.393 (4)
Nd1—O22.488 (2)C2—H20.9500
Nd1—O1ii2.526 (2)C3—C41.396 (4)
Nd1—O52.555 (2)C3—C81.482 (4)
Nd1—O82.573 (2)C4—C51.376 (4)
Nd1—O112.585 (2)C4—H40.9500
Nd1—O122.597 (2)C5—H50.9500
Nd1—O92.615 (2)C6—C71.377 (4)
Nd1—O62.640 (2)C6—H60.9500
O1—N11.331 (3)C7—C81.399 (4)
O1—Nd1iii2.526 (2)C7—H70.9500
O2—N21.335 (3)C8—C91.396 (4)
O3—N31.328 (3)C9—C101.383 (4)
O4—N41.328 (3)C9—H90.9500
O4—Nd1iv2.448 (2)C10—H100.9500
O5—N51.263 (4)C11—C121.371 (4)
O6—N51.262 (4)C11—H110.9500
O7—N51.238 (3)C12—C131.393 (4)
O8—N61.279 (3)C12—H120.9500
O9—N61.264 (3)C13—C141.389 (4)
O10—N61.227 (3)C13—C181.476 (4)
O11—N71.261 (3)C14—C151.375 (4)
O12—N71.277 (3)C14—H140.9500
O13—N71.237 (3)C15—H150.9500
N1—C51.351 (4)C16—C171.370 (4)
N1—C11.352 (4)C16—H160.9500
N2—C101.347 (4)C17—C181.395 (4)
N2—C61.350 (4)C17—H170.9500
N3—C151.346 (4)C18—C191.403 (4)
N3—C111.358 (4)C19—C201.376 (4)
N4—C161.351 (4)C19—H190.9500
N4—C201.352 (4)C20—H200.9500
C1—C21.375 (4)
O4i—Nd1—O3106.54 (7)O4—N4—C20120.2 (2)
O4i—Nd1—O268.50 (7)C16—N4—C20120.6 (3)
O3—Nd1—O275.84 (7)O7—N5—O6121.4 (3)
O4i—Nd1—O1ii73.79 (7)O7—N5—O5121.2 (3)
O3—Nd1—O1ii69.19 (7)O6—N5—O5117.4 (3)
O2—Nd1—O1ii117.21 (7)O7—N5—Nd1168.5 (2)
O4i—Nd1—O5153.95 (8)O6—N5—Nd161.29 (16)
O3—Nd1—O566.72 (7)O5—N5—Nd157.42 (15)
O2—Nd1—O585.50 (8)O10—N6—O9122.5 (3)
O1ii—Nd1—O5122.38 (8)O10—N6—O8120.9 (3)
O4i—Nd1—O8133.41 (7)O9—N6—O8116.5 (2)
O3—Nd1—O882.44 (7)O13—N7—O11121.8 (3)
O2—Nd1—O8153.59 (7)O13—N7—O12120.8 (3)
O1ii—Nd1—O867.03 (7)O11—N7—O12117.4 (2)
O5—Nd1—O872.07 (8)N1—C1—C2120.5 (3)
O4i—Nd1—O1169.68 (7)N1—C1—H1119.7
O3—Nd1—O11166.35 (6)C2—C1—H1119.7
O2—Nd1—O1190.70 (7)C1—C2—C3120.8 (3)
O1ii—Nd1—O11120.39 (6)C1—C2—H2119.6
O5—Nd1—O11110.58 (7)C3—C2—H2119.6
O8—Nd1—O11109.88 (7)C2—C3—C4117.0 (3)
O4i—Nd1—O1270.06 (7)C2—C3—C8122.6 (3)
O3—Nd1—O12142.80 (7)C4—C3—C8120.4 (3)
O2—Nd1—O12130.40 (7)C5—C4—C3120.9 (3)
O1ii—Nd1—O1274.57 (6)C5—C4—H4119.6
O5—Nd1—O12131.16 (7)C3—C4—H4119.6
O8—Nd1—O1275.92 (7)N1—C5—C4120.4 (3)
O11—Nd1—O1249.47 (6)N1—C5—H5119.8
O4i—Nd1—O9130.37 (7)C4—C5—H5119.8
O3—Nd1—O9121.01 (7)N2—C6—C7120.6 (3)
O2—Nd1—O9133.70 (7)N2—C6—H6119.7
O1ii—Nd1—O9109.03 (7)C7—C6—H6119.7
O5—Nd1—O967.36 (7)C6—C7—C8120.7 (3)
O8—Nd1—O949.27 (7)C6—C7—H7119.7
O11—Nd1—O967.02 (7)C8—C7—H7119.7
O12—Nd1—O963.80 (7)C9—C8—C7117.1 (3)
O4i—Nd1—O6115.92 (7)C9—C8—C3121.4 (3)
O3—Nd1—O6107.00 (7)C7—C8—C3121.5 (3)
O2—Nd1—O669.17 (7)C10—C9—C8120.5 (3)
O1ii—Nd1—O6170.26 (7)C10—C9—H9119.8
O5—Nd1—O649.03 (8)C8—C9—H9119.8
O8—Nd1—O6103.89 (7)N2—C10—C9120.7 (3)
O11—Nd1—O665.12 (7)N2—C10—H10119.6
O12—Nd1—O6107.37 (7)C9—C10—H10119.6
O9—Nd1—O664.68 (7)N3—C11—C12120.4 (3)
O4i—Nd1—N5139.01 (8)N3—C11—H11119.8
O3—Nd1—N588.42 (8)C12—C11—H11119.8
O2—Nd1—N579.15 (7)C11—C12—C13120.7 (3)
O1ii—Nd1—N5146.02 (8)C11—C12—H12119.7
O5—Nd1—N524.61 (8)C13—C12—H12119.7
O8—Nd1—N585.48 (8)C14—C13—C12117.2 (3)
O11—Nd1—N586.77 (8)C14—C13—C18120.6 (3)
O12—Nd1—N5119.07 (7)C12—C13—C18122.2 (3)
O9—Nd1—N560.38 (7)C15—C14—C13121.0 (3)
O6—Nd1—N524.79 (8)C15—C14—H14119.5
N1—O1—Nd1iii132.26 (17)C13—C14—H14119.5
N2—O2—Nd1129.77 (17)N3—C15—C14120.3 (3)
N3—O3—Nd1129.30 (16)N3—C15—H15119.8
N4—O4—Nd1iv134.20 (16)C14—C15—H15119.8
N5—O5—Nd197.97 (19)N4—C16—C17120.9 (3)
N5—O6—Nd193.92 (19)N4—C16—H16119.5
N6—O8—Nd197.58 (17)C17—C16—H16119.5
N6—O9—Nd195.95 (16)C16—C17—C18120.3 (3)
N7—O11—Nd197.07 (17)C16—C17—H17119.8
N7—O12—Nd196.06 (16)C18—C17—H17119.8
O1—N1—C5119.2 (2)C17—C18—C19117.3 (3)
O1—N1—C1120.4 (2)C17—C18—C13120.5 (3)
C5—N1—C1120.4 (3)C19—C18—C13122.2 (3)
O2—N2—C10120.1 (3)C20—C19—C18120.6 (3)
O2—N2—C6119.4 (3)C20—C19—H19119.7
C10—N2—C6120.4 (3)C18—C19—H19119.7
O3—N3—C15119.8 (2)N4—C20—C19120.2 (3)
O3—N3—C11119.8 (2)N4—C20—H20119.9
C15—N3—C11120.4 (3)C19—C20—H20119.9
O4—N4—C16119.2 (2)
Nd1—O3—O4—Nd1iv4.87 (14)Nd1—O2—O1—Nd1iii91.75 (11)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y1, z; (iii) x, y+1, z; (iv) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O5v0.952.613.353 (4)135
C4—H4···O13vi0.952.373.206 (4)147
C5—H5···O4vii0.952.373.163 (4)141
C9—H9···O9viii0.952.633.216 (4)121
C9—H9···O10v0.952.583.464 (4)156
C10—H10···O30.952.303.110 (4)142
C10—H10···O7viii0.952.613.289 (4)129
C11—H11···O10v0.952.503.243 (4)135
C14—H14···O7ix0.952.212.998 (4)139
C15—H15···O1ii0.952.313.091 (4)139
C16—H16···O13v0.952.563.159 (4)121
C17—H17···O12v0.952.373.295 (4)165
C20—H20···O2iv0.952.613.294 (4)130
Symmetry codes: (ii) x, y1, z; (iv) x+1/2, y+1/2, z+1/2; (v) x+1/2, y+1/2, z+3/2; (vi) x, y+1, z+1; (vii) x1/2, y+3/2, z1/2; (viii) x, y+1, z+1/2; (ix) x+1/2, y1/2, z+3/2.
Selected geometric parameters (Å, °) for (I)–(III) top
Dihedral angles are reported between the mean planes defined by the indicated aromatic rings. Cg1 is the centroid of the N3/C11–C15 ring.
(I)(II)(III)
Ln···Ln distances
Ln1···Ln1iii13.3398 (13)13.3127 (9)13.3035 (5)
Ln1···Ln1iv13.2996 (11)13.2634 (8)13.2558 (4)
Dihedral angles
N1/C1–C5···N2/C6–C1027.387 (58)28.041 (62)28.471 (109)
N3/C11–C15···N4/C16–C2022.560 (50)22.552 (55)22.677 (93)
Torsion angles
Ln1—O2···O1—Ln1iii92.53 (6)91.80 (6)91.75 (11)
Ln1—O3···O4—Ln1iv5.38 (7)4.86 (8)4.87 (14)
ππ interactions for Cg1···Cg1x
Centroid–centroid distance3.7535 (10)3.7465 (10)3.7344 (17)
Interplanar distance3.2830 (6)3.2790 (7)3.2815 (11)
Slippage1.8201.8101.783
Cg1—H15x distance3.3053.3123.311
Symmetry codes: (iii) x, y + 1, z; (iv) x + 1/2, -y + 1/2, z + 1/2; (x) -x + 1/2, -y + 1/2, -z + 2.
Selected bond lengths (Å) in compounds (I)–(III) top
Compound(I)(II)(III)
Ln—O bond lengths involving bpydo ligands
Ln1—O1ii2.5464 (11)2.5360 (12)2.526 (2)
Ln1—O22.5192 (11)2.5009 (12)2.488 (2)
Ln1—O32.4685 (11)2.4558 (11)2.451 (2)
Ln1—O4i2.4692 (11)2.4554 (12)2.448 (2)
Average Ln—O distances2.5012.4872.478
Ln—O bond lengths involving chelating nitrate anions
Ln1—O52.5929 (13)2.5750 (13)2.555 (2)
Ln1—O62.6573 (13)2.6443 (14)2.640 (2)
Ln1—O82.6004 (12)2.5832 (13)2.573 (2)
Ln1—O92.6428 (12)2.6242 (13)2.615 (2)
Ln1—O112.6231 (12)2.6036 (12)2.585 (2)
Ln1—O122.6333 (11)2.6147 (12)2.597 (2)
Average Ln—O distances2.6252.6082.594
Symmetry codes: (i) x - 1/2, -y + 1/2, z - 1/2; (ii) x, y - 1, z.
 

Acknowledgements

The authors are thankful to Clarion University and Allegheny College for providing funding in support of this research. The diffractometer were funded by the NSF (grants CHE0087210 and DMR 1337296), the Ohio Board of Regents (grant No. CAP-491) and by Youngstown State University. The authors would also like to acknowledge Dr Matthias Zeller, Youngstown State University, for assistance with the data collection and for helpful discussions.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDillner, A. J., Lilly, C. P. & Knaust, J. M. (2010a). Acta Cryst. E66, m1156–m1157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDillner, A. J., Lilly, C. P. & Knaust, J. M. (2010b). Acta Cryst. E66, m1158–m1159.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGonzález Mantero, D., Neels, A. & Stoeckli-Evans, H. (2006). Inorg. Chem. 45, 3287–3294.  Web of Science PubMed Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHe, Z., Gao, E.-Q., Wang, Z.-M., Yan, C.-H. & Kurmoo, M. (2005). Inorg. Chem. 44, 862–874.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHill, R. J., Long, D. L., Champness, N. R., Hubberstey, P. & Schröder, M. (2005a). Acc. Chem. Res. 38, 335–348.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHill, R. J., Long, D. L., Hubberstey, P., Schröder, M. & Champness, N. R. (2005b). J. Solid State Chem. 178, 2414–2419.  Web of Science CrossRef CAS Google Scholar
First citationHill, R. J., Long, D. L., Turvey, M. S., Blake, A. J., Champness, N. R., Hubberstey, P., Wilson, C. & Schröder, M. (2004). Chem. Commun. pp. 1792.  Google Scholar
First citationJia, L.-N., Hou, L., Wei, L., Jing, X.-J., Liu, B., Wang, Y.-Y. & Shi, Q.-Z. (2013). Cryst. Growth Des. 13, 1570–1576.  CSD CrossRef CAS Google Scholar
First citationJi, B., Deng, D., He, X., Liu, B., Miao, S., Ma, N., Wang, W., Ji, L., Liu, P. & Li, X. (2012). Inorg. Chem. 51, 2170–2177.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLi, J.-R., Bu, X.-H. & Zhang, R.-H. (2004). Inorg. Chem. 43, 237–244.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, Y., Wang, N., Xiong, Y.-J., Cheng, Q., Fang, J.-F., Zhu, F.-F., Long, Y. & Yue, S.-T. (2015). New J. Chem. 39, 9872–9878.  Web of Science CSD CrossRef CAS Google Scholar
First citationLong, D. L., Blake, A. J., Champness, N. R. & Schröder, M. (2000). Chem. Commun. pp. 1369–1370.  Web of Science CSD CrossRef Google Scholar
First citationLong, D. L., Blake, A. J., Champness, N. R., Wilson, C. & Schröder, M. (2002). Chem. Eur. J. 8, 2026–2033.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLu, W.-J., Zhang, L.-P., Song, H.-B., Wang, Q.-M. & Mak, T. C. W. (2002). New J. Chem. 26, 775–781.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, B., Sun, H., Gao, S. & Xu, G.-X. (2001). Inorg. Chem. 40, 6247–6253.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMa, S.-L., Zhu, W.-X., Huang, G.-H., Yuan, D.-Q. & Yan, X. J. (2003). J. Mol. Struct. 646, 89–94.  Web of Science CSD CrossRef CAS Google Scholar
First citationQuadrelli, E. A. (2002). Inorg. Chem. 41, 167–169.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSeitz, M., Oliver, A. G. & Raymond, K. N. (2007). J. Am. Chem. Soc. 129, 11153–11160.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSimpson, P. G., Vinciguerra, A. & Quagliano, J. V. (1963). Inorg. Chem. 2, 282–286.  CrossRef CAS Web of Science Google Scholar
First citationSun, H. L., Gao, S., Ma, B. Q., Chang, F. & Fu, W. F. (2004). Microporous Mesoporous Mater. 73, 89–95.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, W., Zhou, Y., Huang, D., Xiong, W., Su, M., Wang, K., Han, S. & Hong, M. (2013). Cryst. Growth Des. 13, 5420–5432.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, L.-P., Du, M., Lu, W.-J. & Mak, T. C. W. (2004b). Polyhedron, 23, 857–863.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, L.-P., Lu, W. & Mak, T. C. W. (2004a). Polyhedron, 23, 169–176.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds