research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­chlorido­bis­­(di­methyl N-cyano­di­thio­imino­carbonate)cobalt(II)

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bDepartment of Chemistry and Biochemistry, University of Notre Dame, 246, Nieuwland, Science Hall, Notre Dame, IN 46557-5670, USA
*Correspondence e-mail: mouhamadoubdiop@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 1 December 2015; accepted 6 December 2015; online 1 January 2016)

The structure of the mononuclear title complex, [{(H3CS)2C=NC≡ N}2CoCl2], consists of a CoII atom coordinated in a distorted tetra­hedral manner by two Cl ligands and the terminal N atoms of two dimethyl N-cyano­dithio­imino­carbonate ligands. The two organic ligands are almost coplanar, with a dihedral angle of 5.99 (6)° between their least-squares planes. The crystal packing features pairs of inversion-related complexes that are held together through C—H⋯Cl and C—H⋯S inter­actions and ππ stacking [centroid-to-centroid distance = 3.515 (su?) Å]. Additional C—H⋯Cl and C—H⋯S inter­actions, as well as Cl⋯S contacts < 3.6 Å, consolidate the crystal packing.

1. Chemical context

Dimethyl N-cyano­dithio­imino­carbonate with its two N and two S atoms has four possible coordination sites and hence should present a high coordination ability. The behaviour of N and S atoms according to Pearson's concept as hard and soft donors, respectively, may allow coordination to both hard and soft Lewis acids. Despite this coordination property, the ligand has scarcely been studied. Only one crystalline compound with dimethyl N-cyano­dithio­imino­carbonate as a ligand has been reported previously (Kojić-Prodić et al., 1992[Kojić-Prodić, B., Kiralj, R., Zlata, R. & Šunjić, V. (1992). Vestn. Slov. Kem. Drus. (Bull. Slovenian Chem. Soc.), 39, 367-381.]). The structure of this latter compound contains polymeric [CuICl]n chains flanked by two N-coordinating ligands. Because of the scarcity of data on this ligand, we have initiated a study of the inter­actions between cobalt(II) chloride hexa­hydrate and dimethyl N-cyano­dithio­imino­carbonate which has yielded the title complex, [{(H3CS)2C=NC≡ N}2CoCl2].

[Scheme 1]

2. Structural commentary

The structure of the title complex consists of a CoII atom coordinated in a distorted tetra­hedral manner by two Cl ligands and the cyanide N atoms of two dimethyl N-cyano­dithio­imino­carbonate ligands (Fig. 1[link]). Co—Cl and Co—N bond lengths are within expected ranges (Table 1[link]). The Cl—Co—Cl angle is slightly larger than an ideal tetra­hedral angle whereas three of the Cl—Co—N angles are smaller and the N—Co—N angle is very close to the ideal tetra­hedral angle. This is remarkable because the bulky N-cyano­dithio­imino­carbonate ligands might be expected to enforce a higher distortion. The coordination of the ligand's nitrile nitro­gen atoms to CoII is slightly bent (Table 1[link]). Despite this bending, the nitrile groups retain triple-bond character, with C1≡N1 and C5≡N3 bond lengths of 1.148 (3) and 1.147 (3) Å, respectively. The angular sums of the central C atoms of the ligands (C1, C5, 360.0 and 359.98°, respectively) show the expected trigonal–planar configuration. The least-squares planes of the two dimethyl N-cyano­dithio­imino­carbonate ligands are almost co-planar [dihedral angle = 5.99 (6)°]. The CoII atom lies 0.437 (2) and 0.557 (2) Å from the mean planes of the two ligands.

Table 1
Selected geometric parameters (Å, °)

Co1—N3 1.9788 (18) Co1—Cl2 2.2159 (6)
Co1—N1 1.9791 (19) Co1—Cl1 2.2291 (6)
       
N3—Co1—N1 110.03 (8) N1—Co1—Cl1 106.68 (6)
N3—Co1—Cl2 110.81 (6) Cl2—Co1—Cl1 114.28 (2)
N1—Co1—Cl2 108.76 (6) C1—N1—Co1 169.31 (18)
N3—Co1—Cl1 106.16 (6) C5—N3—Co1 167.94 (18)
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids for non-H atoms drawn at the 50% probability level.

3. Supra­molecular features

The crystal packing features inversion-related pairs of complex mol­ecules (Fig. 2[link]). These pairs are arranged such that Cl1 is oriented between the H3C—S groups of the adjacent mol­ecule, presumably reducing steric inter­actions. Apart from C—H⋯Cl and C—H⋯S inter­actions (Table 2[link]), ππ stacking with a centroid-to-centroid distance of 3.515 (su?) Å prevails within a pair of complex mol­ecules. In the crystal, these pairs are arranged parallel to (110) (Fig. 2[link]). Additional C—H⋯Cl and C—H⋯S inter­actions between individual pairs consolidate the crystal packing which might be influenced also by other weak contacts under 3.6 Å involving the Cl and S atoms (Table 3[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯Cl2i 0.98 2.88 3.538 (2) 125
C4—H4A⋯Cl1ii 0.98 2.85 3.602 (2) 135
C4—H4C⋯Cl2iii 0.98 2.74 3.714 (2) 177
C7—H7A⋯Cl1ii 0.98 2.80 3.592 (3) 138
C7—H7B⋯Cl1iv 0.98 2.87 3.590 (3) 131
C8—H8A⋯Cl2v 0.98 2.73 3.450 (2) 131
C8—H8B⋯S4vi 0.98 2.95 3.910 (2) 167
C8—H8C⋯S1ii 0.98 2.99 3.709 (3) 131
Symmetry codes: (i) x, y, z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+2, -z+1; (iv) x+1, y, z; (v) x+1, y-1, z; (vi) -x+2, -y+1, -z.

Table 3
Inter­molecular contacts under 3.6 Å

Atom 1⋯Atom 2 Distance (Å)
Cl2⋯S1i 3.3742 (11)
Cl2⋯S4ii 3.3814 (10)
Cl1⋯S2iii 3.5945 (10)
Symmetry codes: (i) x, y, z − 1; (ii) x − 1, y + 1, z; (iii) −x + 1, −y + 1, −z + 1.
[Figure 2]
Figure 2
Packing diagram of the title compound viewed approximately along the c axis. Displacement ellipsoids are as in Fig. 1[link].

4. Synthesis and crystallization

All chemicals were purchased from Aldrich (Germany) and were used as received. The title compound was prepared by mixing of CoCl2·6H2O (1.665 g, 7 mmol) in aceto­nitrile (30 ml) and dimethyl N-cyano­dithio­imino­carbonate (1.023 g, 7 mmol) in aceto­nitrile (20 ml) at room temperature. The resulting blue solution was stirred for about 2 h. Blue crystals suitable for single-crystal X-ray diffraction were obtained after six days of slow solvent evaporation at room temperature (300 K).

Infra-red bands: ν(C≡N) 2224 cm−1, ν(C=N) 1458 cm−1, ν(CS2) + rocking CH3 1024 and 962 cm−1. Melting point 398 K. Elemental analyses of C8H12Cl2CoN4S4: calculated (found): C 22.75 (21.91), H 2.86 (3.43), N 13.27 (12.63), S 30.37 (29.40).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Methyl H atoms were allowed to rotate to maximize their contribution to the electron density and were modelled with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C).

Table 4
Experimental details

Crystal data
Chemical formula [CoCl2(C4H6N2S2)2]
Mr 422.29
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 120
a, b, c (Å) 8.8533 (10), 8.8722 (10), 11.2487 (14)
α, β, γ (°) 72.823 (3), 87.281 (4), 80.072 (3)
V3) 831.51 (17)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.85
Crystal size (mm) 0.17 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker Kappa X8 APEXII
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.757, 0.963
No. of measured, independent and observed [I > 2σ(I)] reflections 12851, 4139, 3566
Rint 0.028
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.087, 1.09
No. of reflections 4139
No. of parameters 176
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.11, −0.50
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Dichloridobis(dimethyl N-cyanodithioiminocarbonate)cobalt(II) top
Crystal data top
[CoCl2(C4H6N2S2)2]Z = 2
Mr = 422.29F(000) = 426
Triclinic, P1Dx = 1.687 Mg m3
a = 8.8533 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.8722 (10) ÅCell parameters from 6476 reflections
c = 11.2487 (14) Åθ = 2.3–28.4°
α = 72.823 (3)°µ = 1.85 mm1
β = 87.281 (4)°T = 120 K
γ = 80.072 (3)°Block, blue
V = 831.51 (17) Å30.17 × 0.15 × 0.10 mm
Data collection top
Bruker Kappa X8 APEXII
diffractometer
4139 independent reflections
Radiation source: fine-focus sealed tube3566 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 8.33 pixels mm-1θmax = 28.4°, θmin = 1.9°
combination of ω and φ–scansh = 1111
Absorption correction: numerical
(SADABS; Krause et al., 2015)
k = 1111
Tmin = 0.757, Tmax = 0.963l = 147
12851 measured reflections
Refinement top
Refinement on F2Primary atom site location: real-space vector search
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0454P)2 + 0.4168P]
where P = (Fo2 + 2Fc2)/3
4139 reflections(Δ/σ)max = 0.001
176 parametersΔρmax = 1.11 e Å3
0 restraintsΔρmin = 0.50 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.32319 (3)0.80109 (3)0.23799 (3)0.01930 (9)
Cl10.16996 (6)0.61729 (6)0.29242 (6)0.02787 (13)
Cl20.23586 (6)1.01243 (6)0.08085 (5)0.02677 (13)
S10.35461 (6)0.94916 (6)0.80748 (5)0.02145 (12)
S20.53818 (6)0.72624 (6)0.68536 (5)0.02235 (12)
S30.83867 (6)0.41595 (6)0.37512 (5)0.02199 (12)
S40.97640 (6)0.27842 (6)0.17733 (5)0.02215 (12)
N10.3446 (2)0.8728 (2)0.38617 (18)0.0247 (4)
N20.3115 (2)0.9569 (2)0.57616 (17)0.0223 (4)
N30.5233 (2)0.6904 (2)0.19638 (19)0.0242 (4)
N40.73672 (19)0.5076 (2)0.14206 (18)0.0220 (4)
C10.3361 (2)0.9056 (2)0.4779 (2)0.0217 (4)
C20.3924 (2)0.8854 (2)0.6783 (2)0.0206 (4)
C30.1932 (3)1.1047 (3)0.7548 (2)0.0266 (5)
H3A0.16141.15530.82050.040*
H3B0.10811.05880.73460.040*
H3C0.22171.18490.68040.040*
C40.6032 (2)0.6665 (3)0.8441 (2)0.0261 (4)
H4A0.68460.57300.85790.039*
H4B0.51730.63910.90010.039*
H4C0.64290.75470.86080.039*
C50.6267 (2)0.6032 (2)0.1776 (2)0.0208 (4)
C60.8401 (2)0.4120 (2)0.2233 (2)0.0201 (4)
C71.0010 (3)0.2699 (3)0.4438 (2)0.0288 (5)
H7A1.00520.25890.53300.043*
H7B1.09510.30420.40380.043*
H7C0.99150.16670.43230.043*
C80.9185 (3)0.3104 (3)0.0198 (2)0.0271 (5)
H8A0.98600.23580.01630.041*
H8B0.92550.42050.02900.041*
H8C0.81250.29240.01880.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01959 (14)0.02016 (14)0.01816 (16)0.00228 (10)0.00075 (11)0.00863 (11)
Cl10.0279 (3)0.0291 (3)0.0300 (3)0.0061 (2)0.0048 (2)0.0138 (2)
Cl20.0319 (3)0.0244 (2)0.0215 (3)0.00654 (19)0.0057 (2)0.0084 (2)
S10.0240 (2)0.0225 (2)0.0175 (3)0.00254 (19)0.00157 (19)0.0087 (2)
S20.0242 (2)0.0216 (2)0.0215 (3)0.00096 (19)0.0012 (2)0.0095 (2)
S30.0212 (2)0.0245 (2)0.0197 (3)0.00097 (18)0.00047 (19)0.0084 (2)
S40.0208 (2)0.0231 (2)0.0210 (3)0.00428 (18)0.00045 (19)0.0086 (2)
N10.0309 (9)0.0249 (9)0.0192 (9)0.0058 (7)0.0009 (7)0.0072 (7)
N20.0273 (9)0.0222 (8)0.0175 (9)0.0008 (7)0.0002 (7)0.0076 (7)
N30.0236 (8)0.0217 (8)0.0266 (10)0.0018 (7)0.0005 (7)0.0088 (7)
N40.0210 (8)0.0222 (8)0.0211 (9)0.0025 (6)0.0004 (7)0.0070 (7)
C10.0249 (10)0.0194 (9)0.0202 (11)0.0039 (7)0.0002 (8)0.0047 (8)
C20.0214 (9)0.0202 (9)0.0208 (11)0.0032 (7)0.0032 (8)0.0077 (8)
C30.0295 (11)0.0250 (10)0.0239 (11)0.0063 (8)0.0046 (9)0.0105 (9)
C40.0246 (10)0.0272 (10)0.0259 (12)0.0043 (8)0.0055 (9)0.0109 (9)
C50.0231 (9)0.0195 (9)0.0190 (10)0.0020 (7)0.0014 (8)0.0049 (8)
C60.0198 (9)0.0197 (9)0.0203 (10)0.0013 (7)0.0020 (8)0.0067 (8)
C70.0282 (11)0.0317 (11)0.0235 (12)0.0036 (9)0.0040 (9)0.0077 (9)
C80.0295 (11)0.0309 (11)0.0199 (11)0.0046 (9)0.0007 (9)0.0113 (9)
Geometric parameters (Å, º) top
Co1—N31.9788 (18)N3—C51.147 (3)
Co1—N11.9791 (19)N4—C51.306 (3)
Co1—Cl22.2159 (6)N4—C61.321 (3)
Co1—Cl12.2291 (6)C3—H3A0.9800
S1—C21.708 (2)C3—H3B0.9800
S1—C31.793 (2)C3—H3C0.9800
S2—C21.726 (2)C4—H4A0.9800
S2—C41.798 (2)C4—H4B0.9800
S3—C61.718 (2)C4—H4C0.9800
S3—C71.793 (2)C7—H7A0.9800
S4—C61.714 (2)C7—H7B0.9800
S4—C81.795 (2)C7—H7C0.9800
N1—C11.148 (3)C8—H8A0.9800
N2—C11.310 (3)C8—H8B0.9800
N2—C21.314 (3)C8—H8C0.9800
N3—Co1—N1110.03 (8)H3B—C3—H3C109.5
N3—Co1—Cl2110.81 (6)S2—C4—H4A109.5
N1—Co1—Cl2108.76 (6)S2—C4—H4B109.5
N3—Co1—Cl1106.16 (6)H4A—C4—H4B109.5
N1—Co1—Cl1106.68 (6)S2—C4—H4C109.5
Cl2—Co1—Cl1114.28 (2)H4A—C4—H4C109.5
C2—S1—C3100.97 (10)H4B—C4—H4C109.5
C2—S2—C4103.59 (10)N3—C5—N4172.7 (2)
C6—S3—C7103.88 (10)N4—C6—S4119.43 (16)
C6—S4—C8101.50 (10)N4—C6—S3121.39 (15)
C1—N1—Co1169.31 (18)S4—C6—S3119.16 (12)
C1—N2—C2120.71 (18)S3—C7—H7A109.5
C5—N3—Co1167.94 (18)S3—C7—H7B109.5
C5—N4—C6120.10 (19)H7A—C7—H7B109.5
N1—C1—N2172.7 (2)S3—C7—H7C109.5
N2—C2—S1120.19 (15)H7A—C7—H7C109.5
N2—C2—S2121.18 (16)H7B—C7—H7C109.5
S1—C2—S2118.63 (13)S4—C8—H8A109.5
S1—C3—H3A109.5S4—C8—H8B109.5
S1—C3—H3B109.5H8A—C8—H8B109.5
H3A—C3—H3B109.5S4—C8—H8C109.5
S1—C3—H3C109.5H8A—C8—H8C109.5
H3A—C3—H3C109.5H8B—C8—H8C109.5
C1—N2—C2—S1177.67 (16)C5—N4—C6—S4175.87 (16)
C1—N2—C2—S22.3 (3)C5—N4—C6—S32.8 (3)
C3—S1—C2—N22.6 (2)C8—S4—C6—N43.5 (2)
C3—S1—C2—S2177.38 (13)C8—S4—C6—S3175.25 (13)
C4—S2—C2—N2176.86 (18)C7—S3—C6—N4178.88 (18)
C4—S2—C2—S13.11 (15)C7—S3—C6—S42.43 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cl2i0.982.883.538 (2)125
C4—H4A···Cl1ii0.982.853.602 (2)135
C4—H4C···Cl2iii0.982.743.714 (2)177
C7—H7A···Cl1ii0.982.803.592 (3)138
C7—H7B···Cl1iv0.982.873.590 (3)131
C8—H8A···Cl2v0.982.733.450 (2)131
C8—H8B···S4vi0.982.953.910 (2)167
C8—H8C···S1ii0.982.993.709 (3)131
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+1; (iv) x+1, y, z; (v) x+1, y1, z; (vi) x+2, y+1, z.
Intermolecular contacts under 3.6 Å top
Atom 1···Atom 2Distance (Å)
Cl2···S1i3.3742 (11)
Cl2···S4ii3.3814 (10)
Cl1···S2iii3.5945 (10)
Symmetry codes: (i) x, y, z - 1; (ii) x - 1, y + 1, z; (iii) -x + 1, -y + 1, -z + 1.
 

Acknowledgements

The authors acknowledge the Cheikh Anta Diop University of Dakar (Sénégal) and University of Notre Dame (USA) for financial support and equipment facilities. The Dakar group thanks Dr Laurent Plasseraud (University of Burgundy, Dijon, France) for equipment support.

References

First citationBruker (2014). APEX2 and SAINT. Bruker–Nonius AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKojić-Prodić, B., Kiralj, R., Zlata, R. & Šunjić, V. (1992). Vestn. Slov. Kem. Drus. (Bull. Slovenian Chem. Soc.), 39, 367–381.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds