research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA
A correction has been published for this article. To view the correction, click here.

Crystal structure of 3-ferrocenyl-1-phenyl-1H-pyrrole, [Fe(η5-C5H4cC4H3NPh)(η5-C5H5)]

CROSSMARK_Color_square_no_text.svg

aTechnische Universität Chemnitz, Fakultät für Naturwissenschaften, Institut für Chemie, Anorganische Chemie, D-09107 Chemnitz, Germany
*Correspondence e-mail: heinrich.lang@chemie.tu-chemnitz.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 2 December 2015; accepted 16 December 2015; online 1 January 2016)

The mol­ecular structure of the title compound, [Fe(C5H5)(C15H12N)], consists of a ferrocene moiety with an N-phenyl­pyrrole heterocycle bound to one cyclo­penta­dienyl ring. The 1,3-disubstitution of the pyrrole results in an L-shaped arrangement of the mol­ecule with plane inter­sections of 2.78 (17)° between the pyrrole and the N-bonded phenyl ring and of 8.17 (18)° between the pyrrole and the cyclo­penta­dienyl ring. In the crystal, no remarkable inter­molecular inter­actions are observed

1. Chemical context

Ferrocenyl-substituted pyrroles have been investigated in electron-transfer studies (for example, see: Hildebrandt et al., 2011a[Hildebrandt, A., Schaarschmidt, D., Claus, R. & Lang, H. (2011a). Inorg. Chem. pp. 10623-10632.],b[Hildebrandt, A., Schaarschmidt, D. & Lang, H. (2011b). Organomet­allics, 30, 556-563.]; Hildebrandt & Lang, 2011[Hildebrandt, A. & Lang, H. (2011). Dalton Trans. 40, 11831-11837.], 2013[Hildebrandt, A. & Lang, H. (2013). Organometallics, 32, 5640-5653.]; Pfaff et al., 2013[Pfaff, U., Hildebrandt, A., Schaarschmidt, D., Rüffer, T., Low, P. J. & Lang, H. (2013). Organometallics, 32, 6106-6117.], 2015a[Pfaff, U., Hildebrandt, A., Korb, M. & Lang, H. (2015a). Polyhedron, 86, 2-9.]; Korb et al., 2014[Korb, M., Pfaff, U., Hildebrandt, A., Rüffer, T. & Lang, H. (2014). Eur. J. Inorg. Chem. pp. 1051-1061.]; Yu-Qiang et al., 2015[Yu-Qiang, H., Ning, Z. & Li-Min, H. (2015). Acta Phys. Chim. Sin. 31, 227-236.]), demonstrating that pyrroles are well suited to examine intra­molecular metal–metal inter­actions in mixed-valent species, when compared to other heterocycles such as furan, thio­phene, phosphole or siloles (Hildebrandt et al., 2013[Hildebrandt, A. & Lang, H. (2013). Organometallics, 32, 5640-5653.], 2011[Hildebrandt, A. & Lang, H. (2011). Dalton Trans. 40, 11831-11837.]; Pfaff et al., 2015a[Pfaff, U., Hildebrandt, A., Korb, M. & Lang, H. (2015a). Polyhedron, 86, 2-9.],b[Pfaff, U., Hildebrandt, A., Korb, M., Schaarschmidt, D., Rosenkranz, M., Popov, A. & Lang, H. (2015b). Organometallics, 34, 2826-2840.]; Lehrich et al., 2014[Lehrich, S. W., Hildebrandt, A., Rüffer, T., Korb, M., Low, P. J. & Lang, H. (2014). Organometallics, 33, 4836-4845.]; Miesel et al., 2013[Miesel, D., Hildebrandt, A., Korb, M., Low, P. J. & Lang, H. (2013). Organometallics, 32, 2993-3002.], 2015[Miesel, D., Hildebrandt, A., Korb, M., Wild, D. A., Low, P. J. & Lang, H. (2015). Chem. Eur. J. 21, 11545-11559.]; Speck et al., 2012a[Speck, J. M., Claus, R., Hildebrandt, A., Rüffer, T., Erasmus, E., van As, L., Swarts, J. C. & Lang, H. (2012a). Organometallics, 31, 6373-6380.], 2014[Speck, J. M., Korb, M., Rüffer, T., Hildebrandt, A. & Lang, H. (2014). Organometallics, 33, 4813-4823.], 2015[Speck, J. M., Korb, M., Schade, A., Spange, S. & Lang, H. (2015). Organometallics, 34, 3788-3798.]). As has been shown in the study of 3,4-diferrocenyl pyrroles [3,4-Fc2-cC4H2NR; Fc = Fe(η5-C5H4)(η5-C5H5); R = Ph, SO2-4-MeC6H4, SiiPr3; Korb et al., 2014[Korb, M., Pfaff, U., Hildebrandt, A., Rüffer, T. & Lang, H. (2014). Eur. J. Inorg. Chem. pp. 1051-1061.]; Goetsch et al., 2014[Goetsch, W. R., Solntsev, P. V., Van Stappen, C., Purchel, A. A., Dudkin, S. V. & Nemykin, V. N. (2014). Organometallics, 33, 145-157.]], the compounds showed a low degree of delocalization between the formal C,C double and C,C single bonds, in contrast to 2,5-substituted pyrroles (Korb et al., 2014[Korb, M., Pfaff, U., Hildebrandt, A., Rüffer, T. & Lang, H. (2014). Eur. J. Inorg. Chem. pp. 1051-1061.]). In addition, these compounds exhibit rather weak, broad inter-valence charge-transfer transitions in spectro-electrochemical investigations in the NIR region of the mixed-valent species. Lower redox splittings were also detected for such compounds. These results indicate that in mono-oxidized 3,4-diferrocenyl-substituted pyrroles the intra­molecular electron transfer is quite weak. In a continuation of this work, we present herein the synthesis and crystal structure of 3-ferrocenyl-N-phenyl­pyrrole, (I)[link], [Fe(η5-C5H4cC4H3NPh)(η5-C5H5)]. The synthesis of this compound was realized using typical Negishi C,C cross-coupling reaction conditions.

[Scheme 1]

2. Structural commentary

The 1,3-disubstitution of the pyrrole ring in compound (I)[link] results in an L-type shape of the mol­ecule with a bending of 34.882 (2)° of the three catenated ring systems, as calculated by the angle between the centroids of the respective cyclo­penta­dienyl, pyrrole and phenyl rings. The three rings are nearly coplanar, with plane inter­sections of 8.17 (18)° between the central pyrrole ring with the cyclo­penta­dienyl ring and of 2.78 (17)° between the pyrrole ring and the N-bound phenyl ring (Fig. 1[link]). The ferrocenyl substituent itself exhibits a nearly eclipsed conformation with a torsion angle of −12.2 (2)°. The 3-substitution affects the lengths of the C=C bonds in the pyrrole ring, resulting in a shortening to 1.349 (4) Å of the H3C3=C4H4 bond compared to 1.378 (4) Å for the C2=C1H1 bond. However, the unsymmetrical substitution pattern does not significantly affect the C—N bonds of the pyrrole ring system.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], with displacement ellipsoids drawn at the 50% probability level. All H atoms have been omitted for clarity.

3. Supra­molecular features

In the crystal packing of (I)[link], the N-phenyl­pyrrole moieties are directed along [[\overline{1}]01] with alternating directions for adjacent rows (Fig. 2[link]). The bent shape caused by the 3-substitution pattern furthermore results in a corrugated arrangement of the mol­ecules along [001] (Fig. 3[link]). Inter­estingly, no remarkable intra- or inter­molecular inter­actions, e.g. in the form of ππ inter­actions, are observed. Therefore it appears that the crystal packing is mainly dominated by van der Waals forces.

[Figure 2]
Figure 2
Packing of the mol­ecules in the crystal structure of (I)[link] in a view along [010]. All H atoms have been omitted for clarity.
[Figure 3]
Figure 3
Packing of the mol­ecules in the crystal structure of (I)[link] resulting in a wave-type arrangement along [001]. All H atoms have been omitted for clarity.

4. Database survey

A CSD database search (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for 3-ferrocenyl five-membered aromatics gave eleven results with seven of them disubstituted in the 3- and 4-positions including thio­phenes, like the super-crowded 3,3′,4,4′,5,5′-hexa­ferrocenyl-2,2′-bi­thio­phene (Speck et al., 2012b[Speck, J. M., Schaarschmidt, D. & Lang, H. (2012b). Organometallics, 31, 1975-1982.]), 2,3,4,5-tetra­kis­(ferrocen­yl)thio­phene (Hildebrandt et al., 2010[Hildebrandt, A., Rüffer, T., Erasmus, E., Swarts, J. C. & Lang, H. (2010). Organometallics, 29, 4900-4905.]) and also 1,1′-disubstituted ferrocenes bearing a 3-thienyl and a 3,5-bis­(tri­fluoro­meth­yl)phenyl substituent (Poppitz et al., 2014[Poppitz, E. A., Korb, M. & Lang, H. (2014). Acta Cryst. E70, 238-241.]). 1,3-Disubstituted thio­phenes are also reported (Speck et al., 2012a[Speck, J. M., Claus, R., Hildebrandt, A., Rüffer, T., Erasmus, E., van As, L., Swarts, J. C. & Lang, H. (2012a). Organometallics, 31, 6373-6380.]) due to the easy accessibility of each position. However, the 3- (and 4-) substitution of pyrroles is rather difficult, requiring sterically demanding N-substituents to block the 2- and 5-positions, e.g. N-triiso­propyl­silyl (Korb et al., 2014[Korb, M., Pfaff, U., Hildebrandt, A., Rüffer, T. & Lang, H. (2014). Eur. J. Inorg. Chem. pp. 1051-1061.]; Goetsch et al., 2014[Goetsch, W. R., Solntsev, P. V., Van Stappen, C., Purchel, A. A., Dudkin, S. V. & Nemykin, V. N. (2014). Organometallics, 33, 145-157.]) or deactivating p-toluene­sulfonyl substituents (Korb et al., 2014[Korb, M., Pfaff, U., Hildebrandt, A., Rüffer, T. & Lang, H. (2014). Eur. J. Inorg. Chem. pp. 1051-1061.]). Thus, several multiple ferrocenyl structures are known, including the super-crowded 2,3,4,5-tetra­ferrocenyl pyrrole bearing either an N-Me (Hildebrandt et al., 2011a[Hildebrandt, A., Schaarschmidt, D., Claus, R. & Lang, H. (2011a). Inorg. Chem. pp. 10623-10632.]) or N-Ph substituent (Hildebrandt et al., 2011b[Hildebrandt, A., Schaarschmidt, D. & Lang, H. (2011b). Organomet­allics, 30, 556-563.]).

However, a single substituted pyrrole bearing just one ferrocenyl substituent in the 3-position has not been reported so far. It should be noted that related structures like 3-ferrocenyl male­imides (Mathur et al., 2012[Mathur, P., Joshi, R. K., Rai, D. K., Jha, B. & Mobin, S. M. (2012). Dalton Trans. 41, 5045-5054.]) and a 3-ferrocenyl boron-dipyrromethene (Dhokale et al., 2013[Dhokale, B., Gautam, P., Mobin, S. M. & Misra, R. (2013). Dalton Trans. 42, 1512-1518.]) are reported bearing one ferrocenyl substituent.

Comparing the plane inter­sections between the ferrocenyl and the pyrrolic ring systems, compound (I)[link] exhibits the most coplanar torsion of 8.17 (18)° followed by 3,4-diferrocenyl-N-tosyl pyrrole (Korb et al., 2014[Korb, M., Pfaff, U., Hildebrandt, A., Rüffer, T. & Lang, H. (2014). Eur. J. Inorg. Chem. pp. 1051-1061.]) with 19.855 (6)° or, in the case of male­imides, the 3-bromo-4-ferrocenyl-N-phenyl-derivative with 9.8° (Hildebrandt et al., 2012[Hildebrandt, A., Lehrich, S. W., Schaarschmidt, D., Jaeschke, R., Schreiter, K., Spange, S. & Lang, H. (2012). Eur. J. Inorg. Chem. pp. 1114-1121.]).

The smallest inter­section between the phenyl and pyrrole rings are reported with 5.4° for a 3-ferrocenyl-pyrrolo­[1,2-a]quinoxaline (Guillon et al., 2011[Guillon, J., Mouray, E., Moreau, S., Mullié, C., Forfar, I., Desplat, V., Belisle-Fabre, S., Pinaud, N., Ravanello, F., Le-Naour, A., Léger, J.-M., Gosmann, G., Jarry, C., Déléris, G., Sonnet, P. & Grellier, P. (2011). Eur. J. Med. Chem. 46, 2310-2326.]), due to the hindered rotation of the N—CPh bond. However, comparable derivatives with free rotable N-aromatics exhibit torsions above 35° (Hilde­brandt et al., 2012[Hildebrandt, A., Lehrich, S. W., Schaarschmidt, D., Jaeschke, R., Schreiter, K., Spange, S. & Lang, H. (2012). Eur. J. Inorg. Chem. pp. 1114-1121.]).

5. Synthesis and crystallization

3-Bromo-N-phenyl­pyrrole was prepared from 2-bromo-N-phenyl­pyrrole according to the synthetic methodology reported by Choi et al. (1998[Choi, D.-S., Huang, S., Huang, M., Barnard, T. S., Adams, R. D., Seminario, J. M. & Tour, J. M. (1998). J. Org. Chem. 63, 2646-2655.]). The synthesis of ferrocenyl pyrrole (I)[link] was realized using typical Negishi C,C cross-coupling reaction conditions by reacting ferrocenyl zinc chloride with 3-bromo-N-phenyl­pyrrole (Negishi et al., 1977[Negishi, E., King, A. O. & Okukado, N. (1977). J. Org. Chem. 42, 1821-1823.]).

Synthesis of (I)[link]: Ferrocene (0.35 g, 1.88 mmol) and 0.125 eq of KOtBu (0.03 g, 0.23 mmol) were dissolved in 20 ml of tetra­hydro­furan and the respective solution was cooled to 193 K. Afterwards, 2 eq of tbutyl­lithium (2.4 ml, 3.76 mmol, 1.6 M in npenta­ne) were added dropwise via a syringe and the reaction solution was stirred for 1 h. Then, 1 eq of [ZnCl2·2thf] (0.53 g, 1.88 mmol) was added in a single portion. The reaction mixture was stirred for additional 30 min at 273 K. Afterwards, 0.25 mol-% of [Pd(CH2C(CH3)2P(tC4H9)2)(μ-Cl)]2 (3.2 mg, 0.47 mmol) and 3-bromo-N-phenyl­pyrrole (0.27 g, 1.24 mmol) were added in a single portion and stirring was continued overnight at 333–343 K. After evaporation of all volatiles, the crude product was worked-up by column chroma­tography (silica, column size: 1.5 x 10 cm) using an n-hexa­ne/diethyl ether mixture (ratio 10:1; v/v) as the eluent. The first fraction contained ferrocene, while thereafter compound (I)[link] was eluted as an orange phase. Single crystals of (I)[link], suitable for single crystal diffraction analysis, were obtained by slow evaporation of a saturated di­chloro­methane/methanol (ratio 1:1 v/v) solution containing (I)[link] at ambient temperature. Yield: 0.16 g (0.48 mmol, 39% based on 3-bromo-N-phenyl­pyrrole). IR data [KBr, cm−1] ν: 749 (s, δ o.o.p.=C—H), 1512 (s, νC=C), 1599 (m, νC=C), 3055, 3084 (w, ν=C—H). 1H NMR (CDCl3, p.p.m.) δ: 4.08 (s, 5 H, C5H5), 4.21 (pt, 3+4JH,H = 1.90 Hz, 2 H, C5H4), 4.48 (pt, 3+4JH,H = 1.90 Hz, 2 H, C5H4), 6.44 (dd, 3JH4,H5 = 2.9 Hz, 4JH4,H2 = 1.7 Hz, 1 H, H-4), 7.05 (dd, 3JH5,H4 = 2.8 Hz, 4JH5,H2 = 2.3 Hz, 1 H, H-5), 7.12 (dd, 4JH2,H5 = 2.3 Hz, 4JH2,H4 = 1.7 Hz, 1 H, H-2), 7.22–7.25 (m, 1 H, C6H5/p-H), 7.40–7.45 (m, 4 H, C6H5). 13C{1H} NMR (CDCl3, p.p.m.) δ: 66.19 (C5H4), 67.86 (C5H4), 69.60 (C5H5), 81.82 (Ci-C5H4), 109.97 (C-4), 115.32 (C-2), 119.58 (C-5), 120.10 (C6H5), 124.07 (Ci-C-3), 125.50 (C6H5), 129.70 (C6H5), 140.70 (Ci-C6H5). HR–ESI–MS (m/z): calculated for C20H17NFe: 327.0705, found: 327.0715 (M)+. Analysis calculated for C20H17NFe (327.20 g/mol) (%): C, 73.41; H, 5.24; N, 4.28; found: C, 72.99; H, 5.31; N, 4.10. Mp.: 401 K. CV (mV): E°′ = −123, ΔEp = 74 (potentials vs FcH/FcH+).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. C-bonded aromatic hydrogen atoms were placed in calculated positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) and a C—H distance of 0.93 Å.

Table 1
Experimental details

Crystal data
Chemical formula [Fe(C5H5)(C15H12N)]
Mr 327.19
Crystal system, space group Monoclinic, P21/n
Temperature (K) 110
a, b, c (Å) 10.9173 (8), 5.8011 (6), 23.085 (2)
β (°) 93.160 (7)
V3) 1459.8 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.03
Crystal size (mm) 0.2 × 0.1 × 0.1
 
Data collection
Diffractometer Oxford Gemini S
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.])
Tmin, Tmax 0.192, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6054, 2858, 2198
Rint 0.047
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.110, 1.02
No. of reflections 2858
No. of parameters 199
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.50, −0.75
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

3-Ferrocenyl-1-phenyl-1H-pyrrole top
Crystal data top
[Fe(C5H5)(C15H12N)]F(000) = 680
Mr = 327.19Dx = 1.489 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.9173 (8) ÅCell parameters from 1838 reflections
b = 5.8011 (6) Åθ = 4.0–28.3°
c = 23.085 (2) ŵ = 1.03 mm1
β = 93.160 (7)°T = 110 K
V = 1459.8 (2) Å3Plate, orange
Z = 40.2 × 0.1 × 0.1 mm
Data collection top
Oxford Gemini S
diffractometer
2198 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
Graphite monochromatorθmax = 26.0°, θmin = 3.2°
/w scansh = 1310
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 67
Tmin = 0.192, Tmax = 1.000l = 2825
6054 measured reflections2 standard reflections every 50 reflections
2858 independent reflections intensity decay: none
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0503P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
2858 reflectionsΔρmax = 0.50 e Å3
199 parametersΔρmin = 0.75 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5499 (3)0.1196 (5)0.24155 (12)0.0173 (6)
H10.51760.26150.22980.021*
C20.5435 (3)0.0236 (5)0.29591 (12)0.0165 (6)
C30.6066 (3)0.1911 (5)0.29421 (13)0.0201 (7)
H30.61830.29400.32490.024*
C40.6466 (3)0.2195 (5)0.24043 (12)0.0195 (7)
H40.69010.34610.22780.023*
C50.4917 (3)0.1248 (5)0.34651 (13)0.0165 (6)
C60.4859 (3)0.0136 (5)0.40182 (12)0.0186 (7)
H60.50990.13710.41030.022*
C70.4375 (3)0.1710 (5)0.44135 (13)0.0217 (7)
H70.42510.14240.48020.026*
C80.4112 (3)0.3799 (5)0.41138 (13)0.0203 (7)
H80.37830.51220.42720.024*
C90.4436 (3)0.3527 (5)0.35336 (13)0.0195 (7)
H90.43520.46400.32440.023*
C100.2029 (3)0.0235 (6)0.30801 (14)0.0249 (7)
H100.22570.05820.27080.030*
C110.2121 (3)0.1733 (5)0.35651 (15)0.0281 (8)
H110.24170.32360.35660.034*
C120.1686 (3)0.0549 (6)0.40452 (15)0.0302 (8)
H120.16490.11280.44190.036*
C130.1314 (3)0.1681 (5)0.38567 (14)0.0258 (8)
H130.09850.28220.40850.031*
C140.1533 (3)0.1862 (5)0.32592 (13)0.0241 (7)
H140.13750.31480.30260.029*
C150.6417 (3)0.0084 (5)0.14879 (13)0.0183 (7)
C160.6046 (3)0.2088 (5)0.12047 (13)0.0259 (7)
H160.55950.31840.13960.031*
C170.6347 (3)0.2466 (6)0.06357 (14)0.0332 (8)
H170.60880.38110.04470.040*
C180.7025 (3)0.0869 (6)0.03478 (15)0.0315 (8)
H180.72290.11290.00330.038*
C190.7393 (3)0.1117 (6)0.06342 (14)0.0308 (8)
H190.78500.22040.04430.037*
C200.7101 (3)0.1529 (5)0.11972 (13)0.0254 (8)
H200.73590.28810.13830.030*
N10.6125 (2)0.0310 (4)0.20734 (10)0.0172 (5)
Fe10.31350 (4)0.11585 (7)0.37338 (2)0.01626 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0098 (15)0.0181 (14)0.0240 (17)0.0015 (13)0.0006 (12)0.0006 (12)
C20.0070 (14)0.0192 (15)0.0232 (16)0.0028 (12)0.0017 (12)0.0033 (12)
C30.0102 (15)0.0227 (15)0.0271 (17)0.0025 (13)0.0020 (13)0.0043 (13)
C40.0098 (15)0.0177 (14)0.0306 (17)0.0029 (13)0.0015 (13)0.0014 (13)
C50.0051 (14)0.0218 (15)0.0227 (16)0.0020 (12)0.0006 (12)0.0030 (13)
C60.0096 (15)0.0242 (16)0.0216 (16)0.0006 (13)0.0035 (12)0.0042 (13)
C70.0140 (16)0.0309 (17)0.0196 (16)0.0016 (14)0.0042 (13)0.0010 (13)
C80.0142 (16)0.0216 (15)0.0246 (16)0.0006 (13)0.0026 (13)0.0019 (13)
C90.0098 (15)0.0222 (16)0.0267 (17)0.0023 (13)0.0016 (13)0.0042 (13)
C100.0094 (16)0.0397 (19)0.0251 (17)0.0013 (15)0.0034 (13)0.0053 (15)
C110.0120 (16)0.0218 (16)0.050 (2)0.0024 (14)0.0049 (16)0.0019 (15)
C120.0154 (17)0.045 (2)0.0299 (19)0.0096 (16)0.0031 (14)0.0086 (16)
C130.0083 (15)0.0350 (19)0.0342 (19)0.0024 (14)0.0040 (14)0.0093 (15)
C140.0115 (16)0.0283 (16)0.0319 (18)0.0019 (14)0.0049 (14)0.0060 (14)
C150.0052 (14)0.0260 (16)0.0236 (16)0.0037 (13)0.0008 (12)0.0020 (13)
C160.0182 (17)0.0286 (17)0.0312 (18)0.0062 (15)0.0040 (14)0.0016 (15)
C170.027 (2)0.041 (2)0.0320 (19)0.0071 (17)0.0014 (16)0.0096 (17)
C180.0201 (18)0.049 (2)0.0258 (18)0.0030 (17)0.0049 (15)0.0022 (16)
C190.0221 (18)0.040 (2)0.0308 (19)0.0060 (17)0.0055 (15)0.0011 (16)
C200.0193 (18)0.0292 (18)0.0274 (18)0.0049 (14)0.0001 (14)0.0019 (14)
N10.0068 (12)0.0208 (12)0.0237 (14)0.0003 (11)0.0009 (10)0.0003 (11)
Fe10.0085 (2)0.0199 (2)0.0202 (3)0.00065 (19)0.00110 (17)0.00174 (18)
Geometric parameters (Å, º) top
C1—C21.378 (4)C10—Fe12.047 (3)
C1—N11.384 (3)C10—H100.9300
C1—H10.9300C11—C121.409 (5)
C2—C31.425 (4)C11—Fe12.036 (3)
C2—C51.449 (4)C11—H110.9300
C3—C41.349 (4)C12—C131.417 (4)
C3—H30.9300C12—Fe12.032 (3)
C4—N11.373 (4)C12—H120.9300
C4—H40.9300C13—C141.417 (4)
C5—C91.435 (4)C13—Fe12.046 (3)
C5—C61.435 (4)C13—H130.9300
C5—Fe12.075 (3)C14—Fe12.053 (3)
C6—C71.414 (4)C14—H140.9300
C6—Fe12.046 (3)C15—C161.384 (4)
C6—H60.9300C15—C201.392 (4)
C7—C81.417 (4)C15—N11.424 (4)
C7—Fe12.040 (3)C16—C171.389 (4)
C7—H70.9300C16—H160.9300
C8—C91.413 (4)C17—C181.379 (4)
C8—Fe12.038 (3)C17—H170.9300
C8—H80.9300C18—C191.378 (4)
C9—Fe12.047 (3)C18—H180.9300
C9—H90.9300C19—C201.376 (4)
C10—C141.403 (4)C19—H190.9300
C10—C111.417 (4)C20—H200.9300
C2—C1—N1108.4 (2)C10—C14—H14125.9
C2—C1—H1125.8C13—C14—H14125.9
N1—C1—H1125.8Fe1—C14—H14126.4
C1—C2—C3106.2 (2)C16—C15—C20119.2 (3)
C1—C2—C5127.7 (3)C16—C15—N1120.6 (3)
C3—C2—C5125.9 (3)C20—C15—N1120.2 (3)
C4—C3—C2108.3 (3)C15—C16—C17120.1 (3)
C4—C3—H3125.9C15—C16—H16120.0
C2—C3—H3125.9C17—C16—H16120.0
C3—C4—N1108.9 (3)C18—C17—C16120.7 (3)
C3—C4—H4125.6C18—C17—H17119.6
N1—C4—H4125.6C16—C17—H17119.6
C9—C5—C6106.4 (3)C19—C18—C17118.7 (3)
C9—C5—C2128.5 (3)C19—C18—H18120.6
C6—C5—C2125.0 (3)C17—C18—H18120.6
C9—C5—Fe168.60 (16)C20—C19—C18121.4 (3)
C6—C5—Fe168.56 (16)C20—C19—H19119.3
C2—C5—Fe1130.1 (2)C18—C19—H19119.3
C7—C6—C5108.7 (3)C19—C20—C15119.8 (3)
C7—C6—Fe169.53 (17)C19—C20—H20120.1
C5—C6—Fe170.70 (16)C15—C20—H20120.1
C7—C6—H6125.7C4—N1—C1108.2 (2)
C5—C6—H6125.7C4—N1—C15126.0 (2)
Fe1—C6—H6125.7C1—N1—C15125.7 (2)
C6—C7—C8108.1 (3)C12—Fe1—C1140.53 (13)
C6—C7—Fe169.99 (17)C12—Fe1—C8127.87 (13)
C8—C7—Fe169.56 (17)C11—Fe1—C8165.53 (13)
C6—C7—H7126.0C12—Fe1—C7107.52 (13)
C8—C7—H7126.0C11—Fe1—C7127.38 (13)
Fe1—C7—H7126.1C8—Fe1—C740.67 (12)
C9—C8—C7108.2 (3)C12—Fe1—C1340.66 (13)
C9—C8—Fe170.14 (16)C11—Fe1—C1368.05 (13)
C7—C8—Fe169.77 (17)C8—Fe1—C13108.58 (12)
C9—C8—H8125.9C7—Fe1—C13118.60 (13)
C7—C8—H8125.9C12—Fe1—C6117.74 (13)
Fe1—C8—H8125.8C11—Fe1—C6107.65 (12)
C8—C9—C5108.6 (3)C8—Fe1—C668.25 (12)
C8—C9—Fe169.40 (17)C7—Fe1—C640.48 (11)
C5—C9—Fe170.67 (16)C13—Fe1—C6151.85 (13)
C8—C9—H9125.7C12—Fe1—C1068.21 (13)
C5—C9—H9125.7C11—Fe1—C1040.61 (13)
Fe1—C9—H9125.8C8—Fe1—C10152.65 (13)
C14—C10—C11108.1 (3)C7—Fe1—C10165.59 (12)
C14—C10—Fe170.23 (18)C13—Fe1—C1067.81 (13)
C11—C10—Fe169.28 (18)C6—Fe1—C10128.09 (12)
C14—C10—H10125.9C12—Fe1—C9166.10 (13)
C11—C10—H10125.9C11—Fe1—C9152.46 (13)
Fe1—C10—H10126.1C8—Fe1—C940.47 (11)
C12—C11—C10108.1 (3)C7—Fe1—C968.23 (12)
C12—C11—Fe169.58 (18)C13—Fe1—C9128.57 (12)
C10—C11—Fe170.12 (17)C6—Fe1—C968.27 (12)
C12—C11—H11126.0C10—Fe1—C9119.17 (13)
C10—C11—H11126.0C12—Fe1—C1468.19 (13)
Fe1—C11—H11125.9C11—Fe1—C1467.88 (13)
C11—C12—C13107.9 (3)C8—Fe1—C14119.39 (12)
C11—C12—Fe169.89 (19)C7—Fe1—C14152.72 (13)
C13—C12—Fe170.22 (18)C13—Fe1—C1440.43 (12)
C11—C12—H12126.1C6—Fe1—C14165.97 (12)
C13—C12—H12126.1C10—Fe1—C1440.03 (12)
Fe1—C12—H12125.4C9—Fe1—C14109.11 (12)
C14—C13—C12107.8 (3)C12—Fe1—C5151.56 (12)
C14—C13—Fe170.06 (18)C11—Fe1—C5118.19 (12)
C12—C13—Fe169.12 (18)C8—Fe1—C568.44 (12)
C14—C13—H13126.1C7—Fe1—C568.45 (12)
C12—C13—H13126.1C13—Fe1—C5166.39 (12)
Fe1—C13—H13126.3C6—Fe1—C540.74 (11)
C10—C14—C13108.1 (3)C10—Fe1—C5108.33 (12)
C10—C14—Fe169.73 (18)C9—Fe1—C540.73 (11)
C13—C14—Fe169.51 (18)C14—Fe1—C5128.38 (12)
N1—C1—C2—C30.9 (3)Fe1—C10—C11—C1259.5 (2)
N1—C1—C2—C5176.7 (3)C14—C10—C11—Fe159.7 (2)
C1—C2—C3—C40.8 (3)C10—C11—C12—C130.4 (4)
C5—C2—C3—C4176.7 (3)Fe1—C11—C12—C1360.2 (2)
C2—C3—C4—N10.4 (3)C10—C11—C12—Fe159.8 (2)
C1—C2—C5—C95.1 (5)C11—C12—C13—C140.4 (4)
C3—C2—C5—C9169.9 (3)Fe1—C12—C13—C1459.6 (2)
C1—C2—C5—C6178.8 (3)C11—C12—C13—Fe160.0 (2)
C3—C2—C5—C66.2 (5)C11—C10—C14—C130.0 (3)
C1—C2—C5—Fe188.4 (4)Fe1—C10—C14—C1359.1 (2)
C3—C2—C5—Fe196.6 (3)C11—C10—C14—Fe159.1 (2)
C9—C5—C6—C71.0 (3)C12—C13—C14—C100.3 (3)
C2—C5—C6—C7175.9 (3)Fe1—C13—C14—C1059.3 (2)
Fe1—C5—C6—C759.4 (2)C12—C13—C14—Fe159.0 (2)
C9—C5—C6—Fe158.4 (2)C20—C15—C16—C170.6 (5)
C2—C5—C6—Fe1124.8 (3)N1—C15—C16—C17179.3 (3)
C5—C6—C7—C80.7 (3)C15—C16—C17—C180.6 (5)
Fe1—C6—C7—C859.4 (2)C16—C17—C18—C190.4 (5)
C5—C6—C7—Fe160.1 (2)C17—C18—C19—C200.1 (5)
C6—C7—C8—C90.2 (3)C18—C19—C20—C150.0 (5)
Fe1—C7—C8—C959.8 (2)C16—C15—C20—C190.3 (5)
C6—C7—C8—Fe159.6 (2)N1—C15—C20—C19179.0 (3)
C7—C8—C9—C50.4 (3)C3—C4—N1—C10.2 (3)
Fe1—C8—C9—C560.0 (2)C3—C4—N1—C15177.4 (3)
C7—C8—C9—Fe159.6 (2)C2—C1—N1—C40.7 (3)
C6—C5—C9—C80.8 (3)C2—C1—N1—C15177.9 (3)
C2—C5—C9—C8175.8 (3)C16—C15—N1—C4178.3 (3)
Fe1—C5—C9—C859.2 (2)C20—C15—N1—C40.5 (4)
C6—C5—C9—Fe158.38 (19)C16—C15—N1—C11.6 (4)
C2—C5—C9—Fe1125.0 (3)C20—C15—N1—C1177.2 (3)
C14—C10—C11—C120.3 (4)
 

Acknowledgements

MK thanks the Fonds der Chemischen Industrie for a PhD Chemiefonds fellowship.

References

First citationChoi, D.-S., Huang, S., Huang, M., Barnard, T. S., Adams, R. D., Seminario, J. M. & Tour, J. M. (1998). J. Org. Chem. 63, 2646–2655.  CrossRef PubMed Google Scholar
First citationDhokale, B., Gautam, P., Mobin, S. M. & Misra, R. (2013). Dalton Trans. 42, 1512–1518.  CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoetsch, W. R., Solntsev, P. V., Van Stappen, C., Purchel, A. A., Dudkin, S. V. & Nemykin, V. N. (2014). Organometallics, 33, 145–157.  CrossRef CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuillon, J., Mouray, E., Moreau, S., Mullié, C., Forfar, I., Desplat, V., Belisle-Fabre, S., Pinaud, N., Ravanello, F., Le-Naour, A., Léger, J.-M., Gosmann, G., Jarry, C., Déléris, G., Sonnet, P. & Grellier, P. (2011). Eur. J. Med. Chem. 46, 2310–2326.  CrossRef CAS PubMed Google Scholar
First citationHildebrandt, A. & Lang, H. (2011). Dalton Trans. 40, 11831–11837.  CrossRef CAS PubMed Google Scholar
First citationHildebrandt, A. & Lang, H. (2013). Organometallics, 32, 5640–5653.  Web of Science CrossRef CAS Google Scholar
First citationHildebrandt, A., Lehrich, S. W., Schaarschmidt, D., Jaeschke, R., Schreiter, K., Spange, S. & Lang, H. (2012). Eur. J. Inorg. Chem. pp. 1114–1121.  CrossRef Google Scholar
First citationHildebrandt, A., Rüffer, T., Erasmus, E., Swarts, J. C. & Lang, H. (2010). Organometallics, 29, 4900–4905.  CrossRef CAS Google Scholar
First citationHildebrandt, A., Schaarschmidt, D., Claus, R. & Lang, H. (2011a). Inorg. Chem. pp. 10623–10632.  CrossRef Google Scholar
First citationHildebrandt, A., Schaarschmidt, D. & Lang, H. (2011b). Organomet­allics, 30, 556–563.  CrossRef CAS Google Scholar
First citationKorb, M., Pfaff, U., Hildebrandt, A., Rüffer, T. & Lang, H. (2014). Eur. J. Inorg. Chem. pp. 1051–1061.  CrossRef Google Scholar
First citationLehrich, S. W., Hildebrandt, A., Rüffer, T., Korb, M., Low, P. J. & Lang, H. (2014). Organometallics, 33, 4836–4845.  CrossRef CAS Google Scholar
First citationMathur, P., Joshi, R. K., Rai, D. K., Jha, B. & Mobin, S. M. (2012). Dalton Trans. 41, 5045–5054.  CrossRef CAS PubMed Google Scholar
First citationMiesel, D., Hildebrandt, A., Korb, M., Low, P. J. & Lang, H. (2013). Organometallics, 32, 2993–3002.  Web of Science CSD CrossRef CAS Google Scholar
First citationMiesel, D., Hildebrandt, A., Korb, M., Wild, D. A., Low, P. J. & Lang, H. (2015). Chem. Eur. J. 21, 11545–11559.  CrossRef CAS PubMed Google Scholar
First citationNegishi, E., King, A. O. & Okukado, N. (1977). J. Org. Chem. 42, 1821–1823.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.  Google Scholar
First citationPfaff, U., Hildebrandt, A., Korb, M. & Lang, H. (2015a). Polyhedron, 86, 2–9.  CrossRef CAS Google Scholar
First citationPfaff, U., Hildebrandt, A., Korb, M., Schaarschmidt, D., Rosenkranz, M., Popov, A. & Lang, H. (2015b). Organometallics, 34, 2826–2840.  CrossRef CAS Google Scholar
First citationPfaff, U., Hildebrandt, A., Schaarschmidt, D., Rüffer, T., Low, P. J. & Lang, H. (2013). Organometallics, 32, 6106–6117.  Web of Science CSD CrossRef CAS Google Scholar
First citationPoppitz, E. A., Korb, M. & Lang, H. (2014). Acta Cryst. E70, 238–241.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpeck, J. M., Claus, R., Hildebrandt, A., Rüffer, T., Erasmus, E., van As, L., Swarts, J. C. & Lang, H. (2012a). Organometallics, 31, 6373–6380.  CrossRef CAS Google Scholar
First citationSpeck, J. M., Korb, M., Rüffer, T., Hildebrandt, A. & Lang, H. (2014). Organometallics, 33, 4813–4823.  CrossRef CAS Google Scholar
First citationSpeck, J. M., Korb, M., Schade, A., Spange, S. & Lang, H. (2015). Organometallics, 34, 3788–3798.  CrossRef CAS Google Scholar
First citationSpeck, J. M., Schaarschmidt, D. & Lang, H. (2012b). Organometallics, 31, 1975–1982.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu-Qiang, H., Ning, Z. & Li-Min, H. (2015). Acta Phys. Chim. Sin. 31, 227–236.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds