research communications
A correction has been published for this article. To view the correction, click here.
H-pyrrole, [Fe(η5-C5H4cC4H3NPh)(η5-C5H5)]
of 3-ferrocenyl-1-phenyl-1aTechnische Universität Chemnitz, Fakultät für Naturwissenschaften, Institut für Chemie, Anorganische Chemie, D-09107 Chemnitz, Germany
*Correspondence e-mail: heinrich.lang@chemie.tu-chemnitz.de
The molecular structure of the title compound, [Fe(C5H5)(C15H12N)], consists of a ferrocene moiety with an N-phenylpyrrole heterocycle bound to one cyclopentadienyl ring. The 1,3-disubstitution of the pyrrole results in an L-shaped arrangement of the molecule with plane intersections of 2.78 (17)° between the pyrrole and the N-bonded phenyl ring and of 8.17 (18)° between the pyrrole and the cyclopentadienyl ring. In the crystal, no remarkable intermolecular interactions are observed
Keywords: crystal structure; ferrocene; pyrrole; Negishi C,C cross-coupling.
CCDC reference: 1442943
1. Chemical context
Ferrocenyl-substituted pyrroles have been investigated in electron-transfer studies (for example, see: Hildebrandt et al., 2011a,b; Hildebrandt & Lang, 2011, 2013; Pfaff et al., 2013, 2015a; Korb et al., 2014; Yu-Qiang et al., 2015), demonstrating that pyrroles are well suited to examine intramolecular metal–metal interactions in mixed-valent species, when compared to other heterocycles such as furan, thiophene, phosphole or siloles (Hildebrandt et al., 2013, 2011; Pfaff et al., 2015a,b; Lehrich et al., 2014; Miesel et al., 2013, 2015; Speck et al., 2012a, 2014, 2015). As has been shown in the study of 3,4-diferrocenyl pyrroles [3,4-Fc2-cC4H2NR; Fc = Fe(η5-C5H4)(η5-C5H5); R = Ph, SO2-4-MeC6H4, SiiPr3; Korb et al., 2014; Goetsch et al., 2014], the compounds showed a low degree of delocalization between the formal C,C double and C,C single bonds, in contrast to 2,5-substituted pyrroles (Korb et al., 2014). In addition, these compounds exhibit rather weak, broad inter-valence charge-transfer transitions in spectro-electrochemical investigations in the NIR region of the mixed-valent species. Lower redox splittings were also detected for such compounds. These results indicate that in mono-oxidized 3,4-diferrocenyl-substituted pyrroles the intramolecular is quite weak. In a continuation of this work, we present herein the synthesis and of 3-ferrocenyl-N-phenylpyrrole, (I), [Fe(η5-C5H4cC4H3NPh)(η5-C5H5)]. The synthesis of this compound was realized using typical Negishi C,C cross-coupling reaction conditions.
2. Structural commentary
The 1,3-disubstitution of the pyrrole ring in compound (I) results in an L-type shape of the molecule with a bending of 34.882 (2)° of the three catenated ring systems, as calculated by the angle between the centroids of the respective cyclopentadienyl, pyrrole and phenyl rings. The three rings are nearly coplanar, with plane intersections of 8.17 (18)° between the central pyrrole ring with the cyclopentadienyl ring and of 2.78 (17)° between the pyrrole ring and the N-bound phenyl ring (Fig. 1). The ferrocenyl substituent itself exhibits a nearly eclipsed conformation with a torsion angle of −12.2 (2)°. The 3-substitution affects the lengths of the C=C bonds in the pyrrole ring, resulting in a shortening to 1.349 (4) Å of the H3C3=C4H4 bond compared to 1.378 (4) Å for the C2=C1H1 bond. However, the unsymmetrical substitution pattern does not significantly affect the C—N bonds of the pyrrole ring system.
3. Supramolecular features
In the crystal packing of (I), the N-phenylpyrrole moieties are directed along [01] with alternating directions for adjacent rows (Fig. 2). The bent shape caused by the 3-substitution pattern furthermore results in a corrugated arrangement of the molecules along [001] (Fig. 3). Interestingly, no remarkable intra- or intermolecular interactions, e.g. in the form of π–π interactions, are observed. Therefore it appears that the crystal packing is mainly dominated by van der Waals forces.
4. Database survey
A CSD database search (Groom & Allen, 2014) for 3-ferrocenyl five-membered aromatics gave eleven results with seven of them disubstituted in the 3- and 4-positions including thiophenes, like the super-crowded 3,3′,4,4′,5,5′-hexaferrocenyl-2,2′-bithiophene (Speck et al., 2012b), 2,3,4,5-tetrakis(ferrocenyl)thiophene (Hildebrandt et al., 2010) and also 1,1′-disubstituted ferrocenes bearing a 3-thienyl and a 3,5-bis(trifluoromethyl)phenyl substituent (Poppitz et al., 2014). 1,3-Disubstituted thiophenes are also reported (Speck et al., 2012a) due to the easy accessibility of each position. However, the 3- (and 4-) substitution of pyrroles is rather difficult, requiring sterically demanding N-substituents to block the 2- and 5-positions, e.g. N-triisopropylsilyl (Korb et al., 2014; Goetsch et al., 2014) or deactivating p-toluenesulfonyl substituents (Korb et al., 2014). Thus, several multiple ferrocenyl structures are known, including the super-crowded 2,3,4,5-tetraferrocenyl pyrrole bearing either an N-Me (Hildebrandt et al., 2011a) or N-Ph substituent (Hildebrandt et al., 2011b).
However, a single substituted pyrrole bearing just one ferrocenyl substituent in the 3-position has not been reported so far. It should be noted that related structures like 3-ferrocenyl maleimides (Mathur et al., 2012) and a 3-ferrocenyl boron-dipyrromethene (Dhokale et al., 2013) are reported bearing one ferrocenyl substituent.
Comparing the plane intersections between the ferrocenyl and the pyrrolic ring systems, compound (I) exhibits the most coplanar torsion of 8.17 (18)° followed by 3,4-diferrocenyl-N-tosyl pyrrole (Korb et al., 2014) with 19.855 (6)° or, in the case of maleimides, the 3-bromo-4-ferrocenyl-N-phenyl-derivative with 9.8° (Hildebrandt et al., 2012).
The smallest intersection between the phenyl and pyrrole rings are reported with 5.4° for a 3-ferrocenyl-pyrrolo[1,2-a]quinoxaline (Guillon et al., 2011), due to the of the N—CPh bond. However, comparable derivatives with free rotable N-aromatics exhibit torsions above 35° (Hildebrandt et al., 2012).
5. Synthesis and crystallization
3-Bromo-N-phenylpyrrole was prepared from 2-bromo-N-phenylpyrrole according to the synthetic methodology reported by Choi et al. (1998). The synthesis of ferrocenyl pyrrole (I) was realized using typical Negishi C,C cross-coupling reaction conditions by reacting ferrocenyl zinc chloride with 3-bromo-N-phenylpyrrole (Negishi et al., 1977).
Synthesis of (I): Ferrocene (0.35 g, 1.88 mmol) and 0.125 eq of KOtBu (0.03 g, 0.23 mmol) were dissolved in 20 ml of tetrahydrofuran and the respective solution was cooled to 193 K. Afterwards, 2 eq of tbutyllithium (2.4 ml, 3.76 mmol, 1.6 M in npentane) were added dropwise via a syringe and the reaction solution was stirred for 1 h. Then, 1 eq of [ZnCl2·2thf] (0.53 g, 1.88 mmol) was added in a single portion. The reaction mixture was stirred for additional 30 min at 273 K. Afterwards, 0.25 mol-% of [Pd(CH2C(CH3)2P(tC4H9)2)(μ-Cl)]2 (3.2 mg, 0.47 mmol) and 3-bromo-N-phenylpyrrole (0.27 g, 1.24 mmol) were added in a single portion and stirring was continued overnight at 333–343 K. After evaporation of all volatiles, the crude product was worked-up by column chromatography (silica, column size: 1.5 x 10 cm) using an n-hexane/diethyl ether mixture (ratio 10:1; v/v) as the The first fraction contained ferrocene, while thereafter compound (I) was eluted as an orange phase. Single crystals of (I), suitable for single crystal were obtained by slow evaporation of a saturated dichloromethane/methanol (ratio 1:1 v/v) solution containing (I) at ambient temperature. Yield: 0.16 g (0.48 mmol, 39% based on 3-bromo-N-phenylpyrrole). IR data [KBr, cm−1] ν: 749 (s, δ o.o.p.=C—H), 1512 (s, νC=C), 1599 (m, νC=C), 3055, 3084 (w, ν=C—H). 1H NMR (CDCl3, p.p.m.) δ: 4.08 (s, 5 H, C5H5), 4.21 (pt, 3+4JH,H = 1.90 Hz, 2 H, C5H4), 4.48 (pt, 3+4JH,H = 1.90 Hz, 2 H, C5H4), 6.44 (dd, 3JH4,H5 = 2.9 Hz, 4JH4,H2 = 1.7 Hz, 1 H, H-4), 7.05 (dd, 3JH5,H4 = 2.8 Hz, 4JH5,H2 = 2.3 Hz, 1 H, H-5), 7.12 (dd, 4JH2,H5 = 2.3 Hz, 4JH2,H4 = 1.7 Hz, 1 H, H-2), 7.22–7.25 (m, 1 H, C6H5/p-H), 7.40–7.45 (m, 4 H, C6H5). 13C{1H} NMR (CDCl3, p.p.m.) δ: 66.19 (C5H4), 67.86 (C5H4), 69.60 (C5H5), 81.82 (Ci-C5H4), 109.97 (C-4), 115.32 (C-2), 119.58 (C-5), 120.10 (C6H5), 124.07 (Ci-C-3), 125.50 (C6H5), 129.70 (C6H5), 140.70 (Ci-C6H5). HR–ESI–MS (m/z): calculated for C20H17NFe: 327.0705, found: 327.0715 (M)+. Analysis calculated for C20H17NFe (327.20 g/mol) (%): C, 73.41; H, 5.24; N, 4.28; found: C, 72.99; H, 5.31; N, 4.10. Mp.: 401 K. CV (mV): E°′ = −123, ΔEp = 74 (potentials vs FcH/FcH+).
6. Refinement
Crystal data, data collection and structure . C-bonded aromatic hydrogen atoms were placed in calculated positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) and a C—H distance of 0.93 Å.
details are summarized in Table 1Supporting information
CCDC reference: 1442943
10.1107/S2056989015024214/wm5252sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015024214/wm5252Isup2.hkl
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).[Fe(C5H5)(C15H12N)] | F(000) = 680 |
Mr = 327.19 | Dx = 1.489 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 10.9173 (8) Å | Cell parameters from 1838 reflections |
b = 5.8011 (6) Å | θ = 4.0–28.3° |
c = 23.085 (2) Å | µ = 1.03 mm−1 |
β = 93.160 (7)° | T = 110 K |
V = 1459.8 (2) Å3 | Plate, orange |
Z = 4 | 0.2 × 0.1 × 0.1 mm |
Oxford Gemini S diffractometer | 2198 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.047 |
Graphite monochromator | θmax = 26.0°, θmin = 3.2° |
/w scans | h = −13→10 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) | k = −6→7 |
Tmin = 0.192, Tmax = 1.000 | l = −28→25 |
6054 measured reflections | 2 standard reflections every 50 reflections |
2858 independent reflections | intensity decay: none |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.045 | H-atom parameters constrained |
wR(F2) = 0.110 | w = 1/[σ2(Fo2) + (0.0503P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
2858 reflections | Δρmax = 0.50 e Å−3 |
199 parameters | Δρmin = −0.75 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5499 (3) | 0.1196 (5) | 0.24155 (12) | 0.0173 (6) | |
H1 | 0.5176 | 0.2615 | 0.2298 | 0.021* | |
C2 | 0.5435 (3) | 0.0236 (5) | 0.29591 (12) | 0.0165 (6) | |
C3 | 0.6066 (3) | −0.1911 (5) | 0.29421 (13) | 0.0201 (7) | |
H3 | 0.6183 | −0.2940 | 0.3249 | 0.024* | |
C4 | 0.6466 (3) | −0.2195 (5) | 0.24043 (12) | 0.0195 (7) | |
H4 | 0.6901 | −0.3461 | 0.2278 | 0.023* | |
C5 | 0.4917 (3) | 0.1248 (5) | 0.34651 (13) | 0.0165 (6) | |
C6 | 0.4859 (3) | 0.0136 (5) | 0.40182 (12) | 0.0186 (7) | |
H6 | 0.5099 | −0.1371 | 0.4103 | 0.022* | |
C7 | 0.4375 (3) | 0.1710 (5) | 0.44135 (13) | 0.0217 (7) | |
H7 | 0.4251 | 0.1424 | 0.4802 | 0.026* | |
C8 | 0.4112 (3) | 0.3799 (5) | 0.41138 (13) | 0.0203 (7) | |
H8 | 0.3783 | 0.5122 | 0.4272 | 0.024* | |
C9 | 0.4436 (3) | 0.3527 (5) | 0.35336 (13) | 0.0195 (7) | |
H9 | 0.4352 | 0.4640 | 0.3244 | 0.023* | |
C10 | 0.2029 (3) | −0.0235 (6) | 0.30801 (14) | 0.0249 (7) | |
H10 | 0.2257 | −0.0582 | 0.2708 | 0.030* | |
C11 | 0.2121 (3) | −0.1733 (5) | 0.35651 (15) | 0.0281 (8) | |
H11 | 0.2417 | −0.3236 | 0.3566 | 0.034* | |
C12 | 0.1686 (3) | −0.0549 (6) | 0.40452 (15) | 0.0302 (8) | |
H12 | 0.1649 | −0.1128 | 0.4419 | 0.036* | |
C13 | 0.1314 (3) | 0.1681 (5) | 0.38567 (14) | 0.0258 (8) | |
H13 | 0.0985 | 0.2822 | 0.4085 | 0.031* | |
C14 | 0.1533 (3) | 0.1862 (5) | 0.32592 (13) | 0.0241 (7) | |
H14 | 0.1375 | 0.3148 | 0.3026 | 0.029* | |
C15 | 0.6417 (3) | 0.0084 (5) | 0.14879 (13) | 0.0183 (7) | |
C16 | 0.6046 (3) | 0.2088 (5) | 0.12047 (13) | 0.0259 (7) | |
H16 | 0.5595 | 0.3184 | 0.1396 | 0.031* | |
C17 | 0.6347 (3) | 0.2466 (6) | 0.06357 (14) | 0.0332 (8) | |
H17 | 0.6088 | 0.3811 | 0.0447 | 0.040* | |
C18 | 0.7025 (3) | 0.0869 (6) | 0.03478 (15) | 0.0315 (8) | |
H18 | 0.7229 | 0.1129 | −0.0033 | 0.038* | |
C19 | 0.7393 (3) | −0.1117 (6) | 0.06342 (14) | 0.0308 (8) | |
H19 | 0.7850 | −0.2204 | 0.0443 | 0.037* | |
C20 | 0.7101 (3) | −0.1529 (5) | 0.11972 (13) | 0.0254 (8) | |
H20 | 0.7359 | −0.2881 | 0.1383 | 0.030* | |
N1 | 0.6125 (2) | −0.0310 (4) | 0.20734 (10) | 0.0172 (5) | |
Fe1 | 0.31350 (4) | 0.11585 (7) | 0.37338 (2) | 0.01626 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0098 (15) | 0.0181 (14) | 0.0240 (17) | 0.0015 (13) | 0.0006 (12) | −0.0006 (12) |
C2 | 0.0070 (14) | 0.0192 (15) | 0.0232 (16) | −0.0028 (12) | −0.0017 (12) | 0.0033 (12) |
C3 | 0.0102 (15) | 0.0227 (15) | 0.0271 (17) | −0.0025 (13) | −0.0020 (13) | 0.0043 (13) |
C4 | 0.0098 (15) | 0.0177 (14) | 0.0306 (17) | 0.0029 (13) | −0.0015 (13) | 0.0014 (13) |
C5 | 0.0051 (14) | 0.0218 (15) | 0.0227 (16) | −0.0020 (12) | 0.0006 (12) | 0.0030 (13) |
C6 | 0.0096 (15) | 0.0242 (16) | 0.0216 (16) | −0.0006 (13) | −0.0035 (12) | 0.0042 (13) |
C7 | 0.0140 (16) | 0.0309 (17) | 0.0196 (16) | −0.0016 (14) | −0.0042 (13) | −0.0010 (13) |
C8 | 0.0142 (16) | 0.0216 (15) | 0.0246 (16) | −0.0006 (13) | −0.0026 (13) | −0.0019 (13) |
C9 | 0.0098 (15) | 0.0222 (16) | 0.0267 (17) | −0.0023 (13) | 0.0016 (13) | 0.0042 (13) |
C10 | 0.0094 (16) | 0.0397 (19) | 0.0251 (17) | −0.0013 (15) | −0.0034 (13) | −0.0053 (15) |
C11 | 0.0120 (16) | 0.0218 (16) | 0.050 (2) | −0.0024 (14) | −0.0049 (16) | −0.0019 (15) |
C12 | 0.0154 (17) | 0.045 (2) | 0.0299 (19) | −0.0096 (16) | −0.0031 (14) | 0.0086 (16) |
C13 | 0.0083 (15) | 0.0350 (19) | 0.0342 (19) | −0.0024 (14) | 0.0040 (14) | −0.0093 (15) |
C14 | 0.0115 (16) | 0.0283 (16) | 0.0319 (18) | −0.0019 (14) | −0.0049 (14) | 0.0060 (14) |
C15 | 0.0052 (14) | 0.0260 (16) | 0.0236 (16) | −0.0037 (13) | −0.0008 (12) | −0.0020 (13) |
C16 | 0.0182 (17) | 0.0286 (17) | 0.0312 (18) | 0.0062 (15) | 0.0040 (14) | 0.0016 (15) |
C17 | 0.027 (2) | 0.041 (2) | 0.0320 (19) | 0.0071 (17) | 0.0014 (16) | 0.0096 (17) |
C18 | 0.0201 (18) | 0.049 (2) | 0.0258 (18) | 0.0030 (17) | 0.0049 (15) | 0.0022 (16) |
C19 | 0.0221 (18) | 0.040 (2) | 0.0308 (19) | 0.0060 (17) | 0.0055 (15) | −0.0011 (16) |
C20 | 0.0193 (18) | 0.0292 (18) | 0.0274 (18) | 0.0049 (14) | 0.0001 (14) | 0.0019 (14) |
N1 | 0.0068 (12) | 0.0208 (12) | 0.0237 (14) | 0.0003 (11) | −0.0009 (10) | 0.0003 (11) |
Fe1 | 0.0085 (2) | 0.0199 (2) | 0.0202 (3) | −0.00065 (19) | −0.00110 (17) | 0.00174 (18) |
C1—C2 | 1.378 (4) | C10—Fe1 | 2.047 (3) |
C1—N1 | 1.384 (3) | C10—H10 | 0.9300 |
C1—H1 | 0.9300 | C11—C12 | 1.409 (5) |
C2—C3 | 1.425 (4) | C11—Fe1 | 2.036 (3) |
C2—C5 | 1.449 (4) | C11—H11 | 0.9300 |
C3—C4 | 1.349 (4) | C12—C13 | 1.417 (4) |
C3—H3 | 0.9300 | C12—Fe1 | 2.032 (3) |
C4—N1 | 1.373 (4) | C12—H12 | 0.9300 |
C4—H4 | 0.9300 | C13—C14 | 1.417 (4) |
C5—C9 | 1.435 (4) | C13—Fe1 | 2.046 (3) |
C5—C6 | 1.435 (4) | C13—H13 | 0.9300 |
C5—Fe1 | 2.075 (3) | C14—Fe1 | 2.053 (3) |
C6—C7 | 1.414 (4) | C14—H14 | 0.9300 |
C6—Fe1 | 2.046 (3) | C15—C16 | 1.384 (4) |
C6—H6 | 0.9300 | C15—C20 | 1.392 (4) |
C7—C8 | 1.417 (4) | C15—N1 | 1.424 (4) |
C7—Fe1 | 2.040 (3) | C16—C17 | 1.389 (4) |
C7—H7 | 0.9300 | C16—H16 | 0.9300 |
C8—C9 | 1.413 (4) | C17—C18 | 1.379 (4) |
C8—Fe1 | 2.038 (3) | C17—H17 | 0.9300 |
C8—H8 | 0.9300 | C18—C19 | 1.378 (4) |
C9—Fe1 | 2.047 (3) | C18—H18 | 0.9300 |
C9—H9 | 0.9300 | C19—C20 | 1.376 (4) |
C10—C14 | 1.403 (4) | C19—H19 | 0.9300 |
C10—C11 | 1.417 (4) | C20—H20 | 0.9300 |
C2—C1—N1 | 108.4 (2) | C10—C14—H14 | 125.9 |
C2—C1—H1 | 125.8 | C13—C14—H14 | 125.9 |
N1—C1—H1 | 125.8 | Fe1—C14—H14 | 126.4 |
C1—C2—C3 | 106.2 (2) | C16—C15—C20 | 119.2 (3) |
C1—C2—C5 | 127.7 (3) | C16—C15—N1 | 120.6 (3) |
C3—C2—C5 | 125.9 (3) | C20—C15—N1 | 120.2 (3) |
C4—C3—C2 | 108.3 (3) | C15—C16—C17 | 120.1 (3) |
C4—C3—H3 | 125.9 | C15—C16—H16 | 120.0 |
C2—C3—H3 | 125.9 | C17—C16—H16 | 120.0 |
C3—C4—N1 | 108.9 (3) | C18—C17—C16 | 120.7 (3) |
C3—C4—H4 | 125.6 | C18—C17—H17 | 119.6 |
N1—C4—H4 | 125.6 | C16—C17—H17 | 119.6 |
C9—C5—C6 | 106.4 (3) | C19—C18—C17 | 118.7 (3) |
C9—C5—C2 | 128.5 (3) | C19—C18—H18 | 120.6 |
C6—C5—C2 | 125.0 (3) | C17—C18—H18 | 120.6 |
C9—C5—Fe1 | 68.60 (16) | C20—C19—C18 | 121.4 (3) |
C6—C5—Fe1 | 68.56 (16) | C20—C19—H19 | 119.3 |
C2—C5—Fe1 | 130.1 (2) | C18—C19—H19 | 119.3 |
C7—C6—C5 | 108.7 (3) | C19—C20—C15 | 119.8 (3) |
C7—C6—Fe1 | 69.53 (17) | C19—C20—H20 | 120.1 |
C5—C6—Fe1 | 70.70 (16) | C15—C20—H20 | 120.1 |
C7—C6—H6 | 125.7 | C4—N1—C1 | 108.2 (2) |
C5—C6—H6 | 125.7 | C4—N1—C15 | 126.0 (2) |
Fe1—C6—H6 | 125.7 | C1—N1—C15 | 125.7 (2) |
C6—C7—C8 | 108.1 (3) | C12—Fe1—C11 | 40.53 (13) |
C6—C7—Fe1 | 69.99 (17) | C12—Fe1—C8 | 127.87 (13) |
C8—C7—Fe1 | 69.56 (17) | C11—Fe1—C8 | 165.53 (13) |
C6—C7—H7 | 126.0 | C12—Fe1—C7 | 107.52 (13) |
C8—C7—H7 | 126.0 | C11—Fe1—C7 | 127.38 (13) |
Fe1—C7—H7 | 126.1 | C8—Fe1—C7 | 40.67 (12) |
C9—C8—C7 | 108.2 (3) | C12—Fe1—C13 | 40.66 (13) |
C9—C8—Fe1 | 70.14 (16) | C11—Fe1—C13 | 68.05 (13) |
C7—C8—Fe1 | 69.77 (17) | C8—Fe1—C13 | 108.58 (12) |
C9—C8—H8 | 125.9 | C7—Fe1—C13 | 118.60 (13) |
C7—C8—H8 | 125.9 | C12—Fe1—C6 | 117.74 (13) |
Fe1—C8—H8 | 125.8 | C11—Fe1—C6 | 107.65 (12) |
C8—C9—C5 | 108.6 (3) | C8—Fe1—C6 | 68.25 (12) |
C8—C9—Fe1 | 69.40 (17) | C7—Fe1—C6 | 40.48 (11) |
C5—C9—Fe1 | 70.67 (16) | C13—Fe1—C6 | 151.85 (13) |
C8—C9—H9 | 125.7 | C12—Fe1—C10 | 68.21 (13) |
C5—C9—H9 | 125.7 | C11—Fe1—C10 | 40.61 (13) |
Fe1—C9—H9 | 125.8 | C8—Fe1—C10 | 152.65 (13) |
C14—C10—C11 | 108.1 (3) | C7—Fe1—C10 | 165.59 (12) |
C14—C10—Fe1 | 70.23 (18) | C13—Fe1—C10 | 67.81 (13) |
C11—C10—Fe1 | 69.28 (18) | C6—Fe1—C10 | 128.09 (12) |
C14—C10—H10 | 125.9 | C12—Fe1—C9 | 166.10 (13) |
C11—C10—H10 | 125.9 | C11—Fe1—C9 | 152.46 (13) |
Fe1—C10—H10 | 126.1 | C8—Fe1—C9 | 40.47 (11) |
C12—C11—C10 | 108.1 (3) | C7—Fe1—C9 | 68.23 (12) |
C12—C11—Fe1 | 69.58 (18) | C13—Fe1—C9 | 128.57 (12) |
C10—C11—Fe1 | 70.12 (17) | C6—Fe1—C9 | 68.27 (12) |
C12—C11—H11 | 126.0 | C10—Fe1—C9 | 119.17 (13) |
C10—C11—H11 | 126.0 | C12—Fe1—C14 | 68.19 (13) |
Fe1—C11—H11 | 125.9 | C11—Fe1—C14 | 67.88 (13) |
C11—C12—C13 | 107.9 (3) | C8—Fe1—C14 | 119.39 (12) |
C11—C12—Fe1 | 69.89 (19) | C7—Fe1—C14 | 152.72 (13) |
C13—C12—Fe1 | 70.22 (18) | C13—Fe1—C14 | 40.43 (12) |
C11—C12—H12 | 126.1 | C6—Fe1—C14 | 165.97 (12) |
C13—C12—H12 | 126.1 | C10—Fe1—C14 | 40.03 (12) |
Fe1—C12—H12 | 125.4 | C9—Fe1—C14 | 109.11 (12) |
C14—C13—C12 | 107.8 (3) | C12—Fe1—C5 | 151.56 (12) |
C14—C13—Fe1 | 70.06 (18) | C11—Fe1—C5 | 118.19 (12) |
C12—C13—Fe1 | 69.12 (18) | C8—Fe1—C5 | 68.44 (12) |
C14—C13—H13 | 126.1 | C7—Fe1—C5 | 68.45 (12) |
C12—C13—H13 | 126.1 | C13—Fe1—C5 | 166.39 (12) |
Fe1—C13—H13 | 126.3 | C6—Fe1—C5 | 40.74 (11) |
C10—C14—C13 | 108.1 (3) | C10—Fe1—C5 | 108.33 (12) |
C10—C14—Fe1 | 69.73 (18) | C9—Fe1—C5 | 40.73 (11) |
C13—C14—Fe1 | 69.51 (18) | C14—Fe1—C5 | 128.38 (12) |
N1—C1—C2—C3 | 0.9 (3) | Fe1—C10—C11—C12 | 59.5 (2) |
N1—C1—C2—C5 | 176.7 (3) | C14—C10—C11—Fe1 | −59.7 (2) |
C1—C2—C3—C4 | −0.8 (3) | C10—C11—C12—C13 | 0.4 (4) |
C5—C2—C3—C4 | −176.7 (3) | Fe1—C11—C12—C13 | 60.2 (2) |
C2—C3—C4—N1 | 0.4 (3) | C10—C11—C12—Fe1 | −59.8 (2) |
C1—C2—C5—C9 | −5.1 (5) | C11—C12—C13—C14 | −0.4 (4) |
C3—C2—C5—C9 | 169.9 (3) | Fe1—C12—C13—C14 | 59.6 (2) |
C1—C2—C5—C6 | 178.8 (3) | C11—C12—C13—Fe1 | −60.0 (2) |
C3—C2—C5—C6 | −6.2 (5) | C11—C10—C14—C13 | 0.0 (3) |
C1—C2—C5—Fe1 | 88.4 (4) | Fe1—C10—C14—C13 | −59.1 (2) |
C3—C2—C5—Fe1 | −96.6 (3) | C11—C10—C14—Fe1 | 59.1 (2) |
C9—C5—C6—C7 | −1.0 (3) | C12—C13—C14—C10 | 0.3 (3) |
C2—C5—C6—C7 | 175.9 (3) | Fe1—C13—C14—C10 | 59.3 (2) |
Fe1—C5—C6—C7 | −59.4 (2) | C12—C13—C14—Fe1 | −59.0 (2) |
C9—C5—C6—Fe1 | 58.4 (2) | C20—C15—C16—C17 | 0.6 (5) |
C2—C5—C6—Fe1 | −124.8 (3) | N1—C15—C16—C17 | 179.3 (3) |
C5—C6—C7—C8 | 0.7 (3) | C15—C16—C17—C18 | −0.6 (5) |
Fe1—C6—C7—C8 | −59.4 (2) | C16—C17—C18—C19 | 0.4 (5) |
C5—C6—C7—Fe1 | 60.1 (2) | C17—C18—C19—C20 | −0.1 (5) |
C6—C7—C8—C9 | −0.2 (3) | C18—C19—C20—C15 | 0.0 (5) |
Fe1—C7—C8—C9 | −59.8 (2) | C16—C15—C20—C19 | −0.3 (5) |
C6—C7—C8—Fe1 | 59.6 (2) | N1—C15—C20—C19 | −179.0 (3) |
C7—C8—C9—C5 | −0.4 (3) | C3—C4—N1—C1 | 0.2 (3) |
Fe1—C8—C9—C5 | −60.0 (2) | C3—C4—N1—C15 | 177.4 (3) |
C7—C8—C9—Fe1 | 59.6 (2) | C2—C1—N1—C4 | −0.7 (3) |
C6—C5—C9—C8 | 0.8 (3) | C2—C1—N1—C15 | −177.9 (3) |
C2—C5—C9—C8 | −175.8 (3) | C16—C15—N1—C4 | −178.3 (3) |
Fe1—C5—C9—C8 | 59.2 (2) | C20—C15—N1—C4 | 0.5 (4) |
C6—C5—C9—Fe1 | −58.38 (19) | C16—C15—N1—C1 | −1.6 (4) |
C2—C5—C9—Fe1 | 125.0 (3) | C20—C15—N1—C1 | 177.2 (3) |
C14—C10—C11—C12 | −0.3 (4) |
Acknowledgements
MK thanks the Fonds der Chemischen Industrie for a PhD Chemiefonds fellowship.
References
Choi, D.-S., Huang, S., Huang, M., Barnard, T. S., Adams, R. D., Seminario, J. M. & Tour, J. M. (1998). J. Org. Chem. 63, 2646–2655. CrossRef PubMed Google Scholar
Dhokale, B., Gautam, P., Mobin, S. M. & Misra, R. (2013). Dalton Trans. 42, 1512–1518. CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Goetsch, W. R., Solntsev, P. V., Van Stappen, C., Purchel, A. A., Dudkin, S. V. & Nemykin, V. N. (2014). Organometallics, 33, 145–157. CrossRef CAS Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Guillon, J., Mouray, E., Moreau, S., Mullié, C., Forfar, I., Desplat, V., Belisle-Fabre, S., Pinaud, N., Ravanello, F., Le-Naour, A., Léger, J.-M., Gosmann, G., Jarry, C., Déléris, G., Sonnet, P. & Grellier, P. (2011). Eur. J. Med. Chem. 46, 2310–2326. CrossRef CAS PubMed Google Scholar
Hildebrandt, A. & Lang, H. (2011). Dalton Trans. 40, 11831–11837. CrossRef CAS PubMed Google Scholar
Hildebrandt, A. & Lang, H. (2013). Organometallics, 32, 5640–5653. Web of Science CrossRef CAS Google Scholar
Hildebrandt, A., Lehrich, S. W., Schaarschmidt, D., Jaeschke, R., Schreiter, K., Spange, S. & Lang, H. (2012). Eur. J. Inorg. Chem. pp. 1114–1121. CrossRef Google Scholar
Hildebrandt, A., Rüffer, T., Erasmus, E., Swarts, J. C. & Lang, H. (2010). Organometallics, 29, 4900–4905. CrossRef CAS Google Scholar
Hildebrandt, A., Schaarschmidt, D., Claus, R. & Lang, H. (2011a). Inorg. Chem. pp. 10623–10632. CrossRef Google Scholar
Hildebrandt, A., Schaarschmidt, D. & Lang, H. (2011b). Organometallics, 30, 556–563. CrossRef CAS Google Scholar
Korb, M., Pfaff, U., Hildebrandt, A., Rüffer, T. & Lang, H. (2014). Eur. J. Inorg. Chem. pp. 1051–1061. CrossRef Google Scholar
Lehrich, S. W., Hildebrandt, A., Rüffer, T., Korb, M., Low, P. J. & Lang, H. (2014). Organometallics, 33, 4836–4845. CrossRef CAS Google Scholar
Mathur, P., Joshi, R. K., Rai, D. K., Jha, B. & Mobin, S. M. (2012). Dalton Trans. 41, 5045–5054. CrossRef CAS PubMed Google Scholar
Miesel, D., Hildebrandt, A., Korb, M., Low, P. J. & Lang, H. (2013). Organometallics, 32, 2993–3002. Web of Science CSD CrossRef CAS Google Scholar
Miesel, D., Hildebrandt, A., Korb, M., Wild, D. A., Low, P. J. & Lang, H. (2015). Chem. Eur. J. 21, 11545–11559. CrossRef CAS PubMed Google Scholar
Negishi, E., King, A. O. & Okukado, N. (1977). J. Org. Chem. 42, 1821–1823. CrossRef CAS Web of Science Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England. Google Scholar
Pfaff, U., Hildebrandt, A., Korb, M. & Lang, H. (2015a). Polyhedron, 86, 2–9. CrossRef CAS Google Scholar
Pfaff, U., Hildebrandt, A., Korb, M., Schaarschmidt, D., Rosenkranz, M., Popov, A. & Lang, H. (2015b). Organometallics, 34, 2826–2840. CrossRef CAS Google Scholar
Pfaff, U., Hildebrandt, A., Schaarschmidt, D., Rüffer, T., Low, P. J. & Lang, H. (2013). Organometallics, 32, 6106–6117. Web of Science CSD CrossRef CAS Google Scholar
Poppitz, E. A., Korb, M. & Lang, H. (2014). Acta Cryst. E70, 238–241. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Speck, J. M., Claus, R., Hildebrandt, A., Rüffer, T., Erasmus, E., van As, L., Swarts, J. C. & Lang, H. (2012a). Organometallics, 31, 6373–6380. CrossRef CAS Google Scholar
Speck, J. M., Korb, M., Rüffer, T., Hildebrandt, A. & Lang, H. (2014). Organometallics, 33, 4813–4823. CrossRef CAS Google Scholar
Speck, J. M., Korb, M., Schade, A., Spange, S. & Lang, H. (2015). Organometallics, 34, 3788–3798. CrossRef CAS Google Scholar
Speck, J. M., Schaarschmidt, D. & Lang, H. (2012b). Organometallics, 31, 1975–1982. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yu-Qiang, H., Ning, Z. & Li-Min, H. (2015). Acta Phys. Chim. Sin. 31, 227–236. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.