research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 1| January 2016| Pages 102-105

Crystal structure of bis­­(benzyl­amine-κN)[5,10,15,20-tetra­kis­(4-chloro­phen­yl)porphyrinato-κ4N]iron(II) n-hexane monosolvate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Physico-chimie des Matériaux, Faculté des Sciences de Monastir, Avenue de l'environnement, 5019 Monastir, University of Monastir, Tunisia, and bX-Ray Analysis Laboratory, Institute of Technical Biochemistry, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland
*Correspondence e-mail: hnasri1@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 9 December 2015; accepted 15 December 2015; online 1 January 2016)

In the title compound, [FeII(C44H24Cl4N4)(C6H5CH2NH2)2]·C6H14 or [FeII(TPP-Cl)(BzNH2)2n-hexane [where TPP-Cl and BzNH2 are 5,10,15,20-tetra­kis­(4-chloro­phen­yl)porphyrinate and benzyl­amine ligands, respectively], the FeII cation lies on an inversion centre and is octa­hedrally coordinated by the four pyrrole N atoms of the porphyrin ligand in the equatorial plane and by two amine N atoms of the benzyl­amine ligand in the axial sites. The crystal structure also contains one inversion-symmetric n-hexane solvent mol­ecule per complex mol­ecule. The average Fe—Npyrrole bond length [1.994 (3) Å] indicates a low-spin complex. The crystal packing is sustained by N—H⋯Cl and C—H⋯Cl hydrogen-bonding inter­actions and by C—H⋯π inter­molecular inter­actions, leading to a three-dimensional network structure.

1. Chemical context

The structure of turnip cytochrome f has been determined on the basis of X-ray measurements (Martinez et al., 1996[Martinez, S. E., Huang, D., Ponomarev, M., Cramer, W. A. & Smith, J. L. (1996). Protein Sci. 5, 1081-1092.]), showing that the α-amino group of the Tyr-1 entity coordinates trans to the His-25 entity in the c-type heme protein. Thus, bis-amine FeII metalloporphyrins appear to be functionally significant as models for cytochrome f. On the other hand, it has been shown that the reaction of primary and secondary amines with iron(III) metalloporphyrins results in a base-catalysed one-electron reduction process and concomitant dissociation of the deprotonated amine radical (Del Gaudio & La Mar, 1978[Del Gaudio, J. & La Mar, G. N. (1978). J. Am. Chem. Soc. 100, 1112-1119.]). It is also known that the addition of an excess of sterically unhindered alkylamines to an Fe(III) porphyrin derivative leads to bis­(amine)–iron(II) porphyrins with the central metal cation in a six-coordination (Morice et al., 1998[Morice, C., Le Maux, P. & Simonneaux, G. (1998). Inorg. Chem. 37, 6100-6103.]). Notably, the number of published structures of these type of iron(II) metalloporphyrins is small. In the Cambridge Structural Database (CSD, Version 5.35; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]), only six amine porphyrin structures are reported, including [FeII(TPP)(BzNH2)2] (TPP is the 5,10,15,20-tetra­phenyl­porphyrinato ligand; Bz is benz­yl) (Munro et al., 1999[Munro, O. Q., Madlala, P. S., Warby, R. A. F., Seda, T. B. & Hearne, G. (1999). Inorg. Chem. 38, 4724-4736.]).

We report herein the synthesis, the mol­ecular and crystal structures as well as UV-spectroscopic properties of bis(benzyl­amine)[5,10,15,20-tetra­(para-chloro­phen­yl)porphyrinato]iron(II) n-hexane monosolvate, [FeII(TPP-Cl)(BzNH2)2])·n-hexane, (I)[link].

2. Structural commentary

The mol­ecular structure of (I)[link] is illustrated in Fig. 1[link]. The FeII cation is located on an inversion centre and shows an octa­hedral coordination environment. The equatorial plane is formed by the four nitro­gen atoms of the porphyrin moiety whereas the axial positions are occupied by the N atoms of the two benzyl­amine ligands.

[Scheme 1]
[Figure 1]
Figure 1
The structures of the mol­ecular entities in the title compound. Displacement ellipsoids are drawn at the 60% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) −x + 1, −y + 1, −z + 1.]

The Fe—Nbenzyl­amine bond length of 2.036 (2) Å is in the range of other iron(II)–bis­(amine) porphyrin complexes [1.799-2.285 Å] reported in the literature (CSD refcodes FAVGUE: Godbout et al., 1999[Godbout, N., Sanders, L. K., Salzmann, R., Havlin, R. H., Wojdelski, M. & Oldfield, E. (1999). J. Am. Chem. Soc. 121, 3829-3844.]; IMELIV: Wyllie et al., 2003[Wyllie, G. R. A., Schulz, C. E. & Scheidt, W. R. J. (2003). Inorg. Chem. 42, 5722-5734.]) and is slightly smaller than in the related structure of [FeII(TPP)(BzNH2)2] [2.043 (3) Å; Munro et al., 1999[Munro, O. Q., Madlala, P. S., Warby, R. A. F., Seda, T. B. & Hearne, G. (1999). Inorg. Chem. 38, 4724-4736.]]. The porphyrin core of (I)[link] is represented in Fig. 2[link]. The porphyrin macrocycle presents a nearly planar conformation with maximum and minimum deviations from the C20N4 least-squares plane of 0.044 (2) and −0.051 (2) Å for atoms C3 and N1, respectively, while the FeII cation is co-planar with this plane with a minute deviation of 0.003 (1) Å. The α-CH2 group of the benzyl­amine ligand is inclined at 24.8 (1)° relative to the shortest Fe—Npyrrole bond (Fe—N1). This value is close to those of the related [FeII(TPP)(BzNH2)2] derivative [18.2 (4), 30.1 (4)°; Munro et al., 1999[Munro, O. Q., Madlala, P. S., Warby, R. A. F., Seda, T. B. & Hearne, G. (1999). Inorg. Chem. 38, 4724-4736.]].

[Figure 2]
Figure 2
Schematic representation of the porphyrin core illustrating the displacements of each atom from the 24-atom plane in units of 0.01 Å.

For iron(II) porphyrins, the relationship between the spin-state of the FeII cation and the value of the average equatorial Fe—Npyrrole bond length has been discussed (Scheidt & Reed, 1981[Scheidt, W. R. & Reed, C. A. (1981). J. Am. Chem. Soc. 81, 543-555.]). For high-spin (S = 2) complexes, the Fe—Npyrrole bond lengths are the longest, e.g. for the [Fe(TpivPP)(NO3)] complex (TpivPP = picket-fence porphyrin), Fe—Npyrrole amounts to 2.070 (16) Å (Nasri et al., 2006[Nasri, H., Ellison, M. K., Shaevitz, B., Gupta, G. P. & Scheidt, W. R. (2006). J. Am. Chem. Soc. 45, 5284-5290.]). For low-spin (S = 0) complexes, the average Fe—Npyrrole bond length is shorter, e.g. for the [Fe(TPP)(4-MePip)2] complex (4-MePip is 4-methyl piperidine), the Fe—Npyrrole bond length is 1.994 (4) Å (Munro & Ntshangase, 2003[Munro, O. Q. & Ntshangase, M. M. (2003). Acta Cryst. C59, m224-m227.]) and 1.990 (15) Å for the [FeII(TpivPP)(NO2)(pyridine)] species (Nasri et al., 2000[Nasri, H., Ellison, M. K., Krebs, C., Huynh, B. H. & Scheidt, W. R. (2000). J. Am. Chem. Soc. 122, 10795-10804.]). The inter­mediate spin state (S = 1) of FeII porphyrin complexes is represented by the shortest Fe—Npyrrole distances, e.g. Fe(TTP) exhibits an Fe—Npyrrole bond length of 1.979 (6) Å (Hu et al., 2007[Hu, C., Noll, B. C., Schulz, C. E. & Scheidt, W. R. (2007). Inorg. Chem. 46, 619-621.]). The averaged Fe—Npyrrole bond length of 1.994 (3) Å for (I)[link] is an indication that this species has a low-spin state (S = 0). This value is virtually the same as in the related [FeII(TPP)(BzNH2)2] derivative [Fe—Npyrrole = 1.992 (4) Å; Munro et al., 1999[Munro, O. Q., Madlala, P. S., Warby, R. A. F., Seda, T. B. & Hearne, G. (1999). Inorg. Chem. 38, 4724-4736.]].

3. Supra­molecular features

The complex mol­ecules are packed in such a way that channels are formed parallel to [010] in which the n-hexane mol­ecules are situated. The linkage of the mol­ecular components in the crystal structure of (I)[link] is accomplished by C—H⋯Cl, N—H⋯Cl hydrogen-bonding inter­actions as well as C—H⋯π inter­actions (Figs. 3[link] and 4[link]; Table 1[link]). Each [FeII(TPP-Cl)(BzNH2)2] complex is linked to neighbouring complexes through N—H⋯Cl hydrogen bonds between the N3 atom of the benzyl­amine ligand and the Cl2 atom of a TPP-Cl moiety and by C—H⋯Cl inter­actions between the pyrrole C7 atom and the Cl2 atom. In addition, the phenyl C19 atom of the [FeII(TClPP)(BzNH2)2] complex inter­acts with the centroid Cg1 of the (N1/C1–C4) pyrrole ring through C—H⋯π inter­actions. The three-dimensional supra­molecular network is consolidated by another C—H⋯π intra­molecular inter­action involving the C31 atom of the n-hexane solvent mol­ecule and the centroid Cg7 of the (C11–C16) phenyl ring.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg7 are the centroids of the N1/C1–C4 and C11–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯Cg1i 0.93 2.66 3.586 (3) 133
C31—H31ACg7i 0.97 2.63 3.701 (5) 160
N3—H3B⋯Cl2ii 0.89 2.68 3.651 (2) 133
C7—H7⋯Cl2iii 0.93 3.00 3.926 (2) 175
Symmetry codes: (i) x-1, y, z; (ii) -x, -y+1, -z+1; (iii) -x, -y+1, -z+2.
[Figure 3]
Figure 3
A partial view of the crystal packing of (I)[link], showing the linkage between the [FeII(TPP-Cl)(BzNH2)2] complexes through C—H⋯Cl and N—H⋯Cl hydrogen bonds. The n-hexane solvent mol­ecules have been omitted for clarity.
[Figure 4]
Figure 4
The crystal structure of the title compound plotted in a projection along [010]. Contacts between the entities are given as dashed lines.

4. Synthesis

4.1. Synthesis of 5,10,15,20-tetra­(para-chloro­phen­yl)porph­yrin

In a 100 ml two-necked flask, 4-chloro­benzaldehyde (6 g, 42 mmol) was dissolved in 50 ml of propionic acid. The solution was heated under reflex at 413 K. Freshly distilled pyrrole (3.36 ml, 42 mmol) was added dropwise and the mixture stirred for another 40 min. The mixture was then cooled overnight to 277 K and filtered in vacuo. The crude product was purified using column chromatography (chloro­form/hexane = 4/1 v/v as an eluent). A purple solid was obtained that was dried in vacuo (1.5 g, yield 25%). UV–vis spectrum in CHCl3: λmax (10−3·) 420 (512.7), 516 (16.7), 552 (7.4), 591 (4.7), 646 (4.0).

4.2. Metallation of the porphyrin and synthesis of (triflato)[5,10,15,20-tetra­(para-chloro­phen­yl)porphyrin­ato]iron(III)

The metallation of the porphyrin was performed using the literature method to yield the chlorido–iron(III) derivative [FeIII(TPP-Cl)Cl] (Collman et al., 1975[Collman, J. P., Gagne, R. R., Reed, C. A., Halbert, T. R., Lang, G. & Robinson, W. T. (1975). J. Am. Chem. Soc. 97, 1427-1439.]). We used the triflato–iron(III) TPP-Cl derivative [FeIII(TPP-Cl)(SO3CF3)] as starting material because the triflato ligand (SO3CF3) is much easier to substitute than the chlorido ligand. This complex was prepared according to a literature protocol (Gismelseed et al., 1990[Gismelseed, A., Bominaar, E. L., Bill, E., Trautwein, A. X., Winkler, H., Nasri, H., Doppelt, P., Mandon, D., Fischer, J. & Weiss, R. (1990). Inorg. Chem. 29, 2741-2749.]).

4.3. Synthesis and crystallization of bis­(benzyl­amine-κN)[5,10,15,20-tetra­kis­(4-chloro­phen­yl)porphyrinato-κ4N]iron(II) n-hexane monosolvate complex, (I)

To a solution of [FeIII(TPP-Cl)(SO3CF3)] (Gismelseed et al., 1990[Gismelseed, A., Bominaar, E. L., Bill, E., Trautwein, A. X., Winkler, H., Nasri, H., Doppelt, P., Mandon, D., Fischer, J. & Weiss, R. (1990). Inorg. Chem. 29, 2741-2749.]) (15 mg, 0.0156 mmol) in di­chloro­methane (15 ml) was added an excess of benzyl­amine (50 mg, 0.48 mmol). The reaction mixture was stirred at room temperature for 2 h. Crystals of the title complex were obtained by diffusion of n-hexane through the di­chloro­methane solution.

5. UV–vis spectra

The UV–visible spectra with absorption bands at λmax 425/426, 532/527, 562/566 nm (CHCl3 solution/solid state) were recorded on a WinASPECT PLUS (validation for SPECORD PLUS version 4.2) scanning spectrophotometer. In Fig. 5[link] are illustrated the electronic spectra of the solid [FeIII(TPP-Cl)(SO3CF3)] complex, used as starting material, and complex (I)[link] which shows that the Soret band of the latter species is red-shifted compared to the one of the starting material. The λmax values of the Soret and Q bands of (I)[link] in the solid state and in chloro­form solution are very close. These values also compare well with those of the related [FeII(TPP)(L)2] (L = 1-BuNH2, BzNH2, PhCH2CH2NH2) species (Munro et al., 1999[Munro, O. Q., Madlala, P. S., Warby, R. A. F., Seda, T. B. & Hearne, G. (1999). Inorg. Chem. 38, 4724-4736.]).

[Figure 5]
Figure 5
UV–vis spectra of the solid [FeIII(TClPP)(SO3CF3)] starting material (black) and solid (I)[link] (blue).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å (aromatic), 0.97 Å (methyl­ene), 0.96 Å (meth­yl) and N—H = 0.89 Å for the axial ligand, with Uiso(Hphen­yl, Hmethyl­ene, Hamine) = 1.2Ueq(C/N) and Uiso(Hmeth­yl) = 1.5Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Fe(C44H24Cl4N4)(C7H9N)2]·C6H14
Mr 1106.79
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 10.7986 (6), 11.0555 (6), 11.4118 (4)
α, β, γ (°) 87.918 (4), 82.785 (4), 79.815 (5)
V3) 1330.16 (12)
Z 1
Radiation type Cu Kα
μ (mm−1) 4.50
Crystal size (mm) 0.4 × 0.3 × 0.1
 
Data collection
Diffractometer Agilent SuperNova Dual Source diffractometer with a TitanS2 detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.])
Tmin, Tmax 0.416, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12765, 5355, 4825
Rint 0.028
(sin θ/λ)max−1) 0.627
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.133, 1.06
No. of reflections 5355
No. of parameters 340
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.09, −0.54
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]), SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Bis(benzylamine-κN)[5,10,15,20-tetrakis(4-chlorophenyl)porphyrinato-κ4N]iron(II) n-hexane monosolvate top
Crystal data top
[Fe(C44H24Cl4N4)(C7H9N)2]·C6H14Z = 1
Mr = 1106.79F(000) = 576
Triclinic, P1Dx = 1.382 Mg m3
a = 10.7986 (6) ÅCu Kα radiation, λ = 1.54184 Å
b = 11.0555 (6) ÅCell parameters from 10827 reflections
c = 11.4118 (4) Åθ = 4.1–74.9°
α = 87.918 (4)°µ = 4.50 mm1
β = 82.785 (4)°T = 100 K
γ = 79.815 (5)°Prism, dark red
V = 1330.16 (12) Å30.4 × 0.3 × 0.1 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with a TitanS2 detector
5355 independent reflections
Radiation source: sealed X-ray tube4825 reflections with I > 2σ(I)
Detector resolution: 4.1685 pixels mm-1Rint = 0.028
ω scansθmax = 75.3°, θmin = 3.9°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 1313
Tmin = 0.416, Tmax = 1.000k = 1310
12765 measured reflectionsl = 1412
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0771P)2 + 0.8782P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
5355 reflectionsΔρmax = 1.09 e Å3
340 parametersΔρmin = 0.54 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe0.50000.50000.50000.01855 (14)
N10.65294 (17)0.39615 (18)0.55478 (16)0.0209 (4)
N20.40204 (17)0.47595 (18)0.65683 (16)0.0210 (4)
N30.43283 (18)0.35548 (18)0.44078 (17)0.0238 (4)
H3A0.34860.37380.45120.029*
H3B0.45630.35090.36320.029*
C10.7729 (2)0.3693 (2)0.4932 (2)0.0224 (4)
C20.8596 (2)0.2991 (2)0.5658 (2)0.0242 (5)
H20.94520.27000.54370.029*
C30.7939 (2)0.2831 (2)0.6725 (2)0.0242 (5)
H30.82550.24140.73770.029*
C40.6649 (2)0.3434 (2)0.6655 (2)0.0221 (4)
C50.5680 (2)0.3471 (2)0.75867 (19)0.0219 (4)
C60.4447 (2)0.4080 (2)0.75297 (19)0.0226 (5)
C70.3420 (2)0.4066 (2)0.8463 (2)0.0250 (5)
H70.34680.36660.91910.030*
C80.2375 (2)0.4742 (2)0.8080 (2)0.0254 (5)
H80.15680.48970.84970.030*
C90.2745 (2)0.5176 (2)0.6907 (2)0.0225 (4)
C100.1926 (2)0.5909 (2)0.6214 (2)0.0232 (5)
C110.59738 (19)0.2788 (2)0.87045 (19)0.0220 (5)
C120.6263 (2)0.3395 (2)0.9655 (2)0.0269 (5)
H120.62670.42360.95970.032*
C130.6548 (2)0.2760 (3)1.0695 (2)0.0295 (5)
H130.67350.31721.13290.035*
C140.6547 (2)0.1513 (3)1.0766 (2)0.0281 (5)
C150.6267 (2)0.0882 (2)0.9836 (2)0.0302 (5)
H150.62760.00390.98950.036*
C160.5972 (2)0.1531 (2)0.8810 (2)0.0289 (5)
H160.57700.11170.81850.035*
C170.0571 (2)0.6294 (2)0.6735 (2)0.0252 (5)
C180.0257 (2)0.5459 (3)0.6854 (2)0.0306 (5)
H180.00290.46570.66000.037*
C190.1513 (2)0.5807 (3)0.7349 (2)0.0329 (6)
H190.20630.52420.74310.039*
C200.1927 (2)0.6994 (3)0.7714 (2)0.0296 (5)
C210.1134 (3)0.7858 (3)0.7565 (3)0.0384 (6)
H210.14330.86680.77880.046*
C220.0120 (2)0.7492 (3)0.7077 (3)0.0352 (6)
H220.06620.80650.69800.042*
C230.4696 (2)0.2302 (2)0.4923 (2)0.0276 (5)
H23A0.49130.23790.57130.033*
H23B0.54440.18770.44490.033*
C240.3655 (2)0.1546 (2)0.4982 (2)0.0258 (5)
C250.3711 (2)0.0611 (2)0.4198 (2)0.0304 (5)
H250.43950.04500.36110.036*
C260.2759 (3)0.0093 (3)0.4274 (3)0.0397 (6)
H260.28100.07220.37410.048*
C270.1738 (3)0.0136 (3)0.5138 (3)0.0423 (7)
H270.11020.03390.51910.051*
C280.1663 (3)0.1070 (3)0.5921 (3)0.0428 (7)
H280.09710.12300.65000.051*
C290.2623 (3)0.1784 (3)0.5854 (2)0.0347 (6)
H290.25700.24120.63890.042*
Cl10.69094 (6)0.07092 (7)1.20562 (5)0.03984 (18)
Cl20.34861 (5)0.74242 (7)0.83650 (5)0.03639 (17)
C300.0017 (4)0.2924 (5)0.9519 (4)0.0738 (12)
H30A0.02900.34790.89000.111*
H30B0.04940.31931.02590.111*
H30C0.08680.29090.95620.111*
C310.0232 (4)0.1616 (5)0.9258 (4)0.0739 (13)
H31A0.11250.16680.91850.089*
H31B0.02300.13840.84920.089*
C320.0130 (3)0.0575 (4)1.0118 (3)0.0581 (9)
H32A0.10320.04891.01610.070*
H32B0.03010.08171.08930.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.0152 (2)0.0252 (3)0.0155 (2)0.00339 (18)0.00488 (17)0.00556 (18)
N10.0167 (8)0.0284 (10)0.0176 (9)0.0040 (7)0.0038 (7)0.0055 (7)
N20.0171 (8)0.0276 (10)0.0181 (9)0.0025 (7)0.0056 (7)0.0058 (7)
N30.0236 (9)0.0278 (10)0.0217 (9)0.0068 (8)0.0083 (7)0.0063 (7)
C10.0178 (10)0.0269 (11)0.0231 (11)0.0038 (8)0.0067 (8)0.0056 (9)
C20.0174 (10)0.0299 (12)0.0252 (11)0.0028 (8)0.0062 (8)0.0058 (9)
C30.0208 (11)0.0291 (12)0.0239 (11)0.0046 (9)0.0095 (8)0.0080 (9)
C40.0208 (10)0.0268 (11)0.0198 (10)0.0046 (8)0.0075 (8)0.0053 (8)
C50.0221 (10)0.0269 (11)0.0179 (10)0.0055 (8)0.0073 (8)0.0055 (8)
C60.0228 (11)0.0281 (12)0.0172 (10)0.0046 (9)0.0046 (8)0.0049 (8)
C70.0242 (11)0.0316 (12)0.0185 (10)0.0035 (9)0.0040 (8)0.0073 (9)
C80.0210 (10)0.0336 (13)0.0200 (11)0.0027 (9)0.0010 (8)0.0051 (9)
C90.0199 (10)0.0277 (11)0.0198 (10)0.0041 (8)0.0033 (8)0.0041 (8)
C100.0178 (10)0.0290 (12)0.0224 (11)0.0029 (8)0.0038 (8)0.0035 (9)
C110.0160 (10)0.0312 (12)0.0183 (10)0.0021 (8)0.0044 (8)0.0068 (9)
C120.0244 (11)0.0342 (13)0.0220 (11)0.0047 (9)0.0051 (9)0.0052 (9)
C130.0262 (11)0.0444 (15)0.0184 (11)0.0054 (10)0.0068 (9)0.0037 (10)
C140.0177 (10)0.0451 (14)0.0197 (11)0.0021 (9)0.0038 (8)0.0121 (10)
C150.0294 (12)0.0327 (13)0.0277 (12)0.0039 (10)0.0050 (10)0.0100 (10)
C160.0305 (12)0.0348 (13)0.0224 (11)0.0069 (10)0.0072 (9)0.0064 (10)
C170.0201 (11)0.0347 (13)0.0201 (11)0.0028 (9)0.0049 (8)0.0087 (9)
C180.0225 (11)0.0369 (14)0.0318 (13)0.0038 (10)0.0030 (9)0.0001 (10)
C190.0214 (11)0.0459 (15)0.0322 (13)0.0093 (10)0.0038 (10)0.0050 (11)
C200.0166 (10)0.0465 (15)0.0229 (11)0.0009 (10)0.0026 (8)0.0079 (10)
C210.0279 (13)0.0364 (15)0.0464 (16)0.0011 (11)0.0021 (11)0.0017 (12)
C220.0232 (12)0.0342 (14)0.0474 (16)0.0051 (10)0.0024 (11)0.0060 (11)
C230.0253 (11)0.0303 (12)0.0285 (12)0.0045 (9)0.0104 (9)0.0049 (9)
C240.0231 (11)0.0284 (12)0.0262 (11)0.0027 (9)0.0095 (9)0.0102 (9)
C250.0273 (12)0.0308 (13)0.0336 (13)0.0052 (10)0.0072 (10)0.0050 (10)
C260.0365 (14)0.0335 (14)0.0526 (17)0.0088 (11)0.0167 (13)0.0054 (12)
C270.0281 (13)0.0420 (16)0.0606 (19)0.0124 (11)0.0183 (13)0.0248 (14)
C280.0233 (12)0.0570 (19)0.0416 (15)0.0028 (11)0.0005 (11)0.0270 (14)
C290.0326 (13)0.0393 (14)0.0289 (13)0.0012 (11)0.0035 (10)0.0085 (11)
Cl10.0326 (3)0.0590 (4)0.0244 (3)0.0004 (3)0.0064 (2)0.0208 (3)
Cl20.0187 (3)0.0606 (4)0.0256 (3)0.0012 (2)0.0002 (2)0.0068 (3)
C300.070 (3)0.086 (3)0.074 (3)0.035 (2)0.018 (2)0.021 (2)
C310.053 (2)0.105 (4)0.060 (2)0.003 (2)0.0111 (18)0.014 (2)
C320.0321 (15)0.088 (3)0.0495 (19)0.0010 (16)0.0071 (14)0.0095 (19)
Geometric parameters (Å, º) top
Fe—N11.9932 (18)C15—C161.393 (3)
Fe—N1i1.9932 (18)C15—H150.9300
Fe—N21.9955 (18)C16—H160.9300
Fe—N2i1.9956 (18)C17—C221.381 (4)
Fe—N3i2.036 (2)C17—C181.386 (4)
Fe—N32.036 (2)C18—C191.396 (3)
N1—C11.382 (3)C18—H180.9300
N1—C41.384 (3)C19—C201.371 (4)
N2—C91.383 (3)C19—H190.9300
N2—C61.387 (3)C20—C211.384 (4)
N3—C231.492 (3)C20—Cl21.744 (2)
N3—H3A0.8900C21—C221.393 (4)
N3—H3B0.8900C21—H210.9300
C1—C10i1.391 (3)C22—H220.9300
C1—C21.435 (3)C23—C241.509 (3)
C2—C31.353 (3)C23—H23A0.9700
C2—H20.9300C23—H23B0.9700
C3—C41.444 (3)C24—C251.380 (4)
C3—H30.9300C24—C291.392 (4)
C4—C51.391 (3)C25—C261.388 (4)
C5—C61.390 (3)C25—H250.9300
C5—C111.498 (3)C26—C271.377 (5)
C6—C71.439 (3)C26—H260.9300
C7—C81.351 (3)C27—C281.375 (5)
C7—H70.9300C27—H270.9300
C8—C91.438 (3)C28—C291.403 (4)
C8—H80.9300C28—H280.9300
C9—C101.393 (3)C29—H290.9300
C10—C1i1.391 (3)C30—C311.550 (7)
C10—C171.502 (3)C30—H30A0.9600
C11—C161.391 (4)C30—H30B0.9600
C11—C121.392 (3)C30—H30C0.9600
C12—C131.396 (3)C31—C321.514 (6)
C12—H120.9300C31—H31A0.9700
C13—C141.378 (4)C31—H31B0.9700
C13—H130.9300C32—C32ii1.392 (9)
C14—C151.384 (4)C32—H32A0.9700
C14—Cl11.742 (2)C32—H32B0.9700
N1—Fe—N1i180.0C15—C14—Cl1119.1 (2)
N1—Fe—N289.69 (8)C14—C15—C16118.8 (2)
N1i—Fe—N290.31 (8)C14—C15—H15120.6
N1—Fe—N2i90.31 (8)C16—C15—H15120.6
N1i—Fe—N2i89.69 (8)C11—C16—C15121.2 (2)
N2—Fe—N2i180.0C11—C16—H16119.4
N1—Fe—N3i85.61 (8)C15—C16—H16119.4
N1i—Fe—N3i94.39 (8)C22—C17—C18118.9 (2)
N2—Fe—N3i92.04 (8)C22—C17—C10120.6 (2)
N2i—Fe—N3i87.96 (8)C18—C17—C10120.5 (2)
N1—Fe—N394.39 (8)C17—C18—C19120.8 (3)
N1i—Fe—N385.61 (8)C17—C18—H18119.6
N2—Fe—N387.96 (8)C19—C18—H18119.6
N2i—Fe—N392.04 (8)C20—C19—C18119.1 (2)
N3i—Fe—N3180.0C20—C19—H19120.4
C1—N1—C4104.92 (18)C18—C19—H19120.4
C1—N1—Fe127.30 (15)C19—C20—C21121.2 (2)
C4—N1—Fe127.61 (15)C19—C20—Cl2119.3 (2)
C9—N2—C6104.94 (18)C21—C20—Cl2119.5 (2)
C9—N2—Fe127.24 (15)C20—C21—C22118.8 (3)
C6—N2—Fe127.72 (15)C20—C21—H21120.6
C23—N3—Fe119.69 (15)C22—C21—H21120.6
C23—N3—H3A107.4C17—C22—C21121.1 (3)
Fe—N3—H3A107.4C17—C22—H22119.5
C23—N3—H3B107.4C21—C22—H22119.5
Fe—N3—H3B107.4N3—C23—C24112.64 (19)
H3A—N3—H3B106.9N3—C23—H23A109.1
N1—C1—C10i125.2 (2)C24—C23—H23A109.1
N1—C1—C2110.57 (19)N3—C23—H23B109.1
C10i—C1—C2124.1 (2)C24—C23—H23B109.1
C3—C2—C1107.4 (2)H23A—C23—H23B107.8
C3—C2—H2126.3C25—C24—C29119.2 (2)
C1—C2—H2126.3C25—C24—C23121.4 (2)
C2—C3—C4106.6 (2)C29—C24—C23119.4 (2)
C2—C3—H3126.7C24—C25—C26120.9 (3)
C4—C3—H3126.7C24—C25—H25119.6
N1—C4—C5125.7 (2)C26—C25—H25119.6
N1—C4—C3110.55 (19)C27—C26—C25120.2 (3)
C5—C4—C3123.7 (2)C27—C26—H26119.9
C6—C5—C4123.7 (2)C25—C26—H26119.9
C6—C5—C11118.1 (2)C28—C27—C26119.6 (3)
C4—C5—C11118.13 (19)C28—C27—H27120.2
N2—C6—C5125.4 (2)C26—C27—H27120.2
N2—C6—C7110.37 (19)C27—C28—C29120.6 (3)
C5—C6—C7124.2 (2)C27—C28—H28119.7
C8—C7—C6107.1 (2)C29—C28—H28119.7
C8—C7—H7126.5C24—C29—C28119.5 (3)
C6—C7—H7126.5C24—C29—H29120.3
C7—C8—C9107.2 (2)C28—C29—H29120.3
C7—C8—H8126.4C31—C30—H30A109.5
C9—C8—H8126.4C31—C30—H30B109.5
N2—C9—C10125.1 (2)H30A—C30—H30B109.5
N2—C9—C8110.46 (19)C31—C30—H30C109.5
C10—C9—C8124.4 (2)H30A—C30—H30C109.5
C1i—C10—C9124.7 (2)H30B—C30—H30C109.5
C1i—C10—C17117.5 (2)C32—C31—C30119.2 (4)
C9—C10—C17117.8 (2)C32—C31—H31A107.5
C16—C11—C12118.6 (2)C30—C31—H31A107.5
C16—C11—C5120.6 (2)C32—C31—H31B107.5
C12—C11—C5120.8 (2)C30—C31—H31B107.5
C11—C12—C13120.9 (2)H31A—C31—H31B107.0
C11—C12—H12119.5C32ii—C32—C31117.6 (4)
C13—C12—H12119.5C32ii—C32—H32A107.9
C14—C13—C12119.0 (2)C31—C32—H32A107.9
C14—C13—H13120.5C32ii—C32—H32B107.9
C12—C13—H13120.5C31—C32—H32B107.9
C13—C14—C15121.5 (2)H32A—C32—H32B107.2
C13—C14—Cl1119.4 (2)
C4—N1—C1—C10i176.9 (2)C4—C5—C11—C1682.1 (3)
Fe—N1—C1—C10i1.4 (3)C6—C5—C11—C1284.1 (3)
C4—N1—C1—C20.2 (3)C4—C5—C11—C1297.5 (3)
Fe—N1—C1—C2175.67 (16)C16—C11—C12—C130.1 (3)
N1—C1—C2—C30.3 (3)C5—C11—C12—C13179.5 (2)
C10i—C1—C2—C3176.8 (2)C11—C12—C13—C140.4 (4)
C1—C2—C3—C40.3 (3)C12—C13—C14—C150.3 (4)
C1—N1—C4—C5179.8 (2)C12—C13—C14—Cl1179.66 (18)
Fe—N1—C4—C54.3 (3)C13—C14—C15—C160.4 (4)
C1—N1—C4—C30.0 (3)Cl1—C14—C15—C16179.65 (19)
Fe—N1—C4—C3175.45 (16)C12—C11—C16—C150.8 (4)
C2—C3—C4—N10.2 (3)C5—C11—C16—C15178.7 (2)
C2—C3—C4—C5180.0 (2)C14—C15—C16—C111.0 (4)
N1—C4—C5—C61.6 (4)C1i—C10—C17—C2272.8 (3)
C3—C4—C5—C6178.2 (2)C9—C10—C17—C22107.5 (3)
N1—C4—C5—C11176.8 (2)C1i—C10—C17—C18105.6 (3)
C3—C4—C5—C113.4 (3)C9—C10—C17—C1874.1 (3)
C9—N2—C6—C5179.4 (2)C22—C17—C18—C192.3 (4)
Fe—N2—C6—C52.9 (3)C10—C17—C18—C19179.3 (2)
C9—N2—C6—C70.7 (3)C17—C18—C19—C200.4 (4)
Fe—N2—C6—C7175.80 (16)C18—C19—C20—C212.0 (4)
C4—C5—C6—N22.2 (4)C18—C19—C20—Cl2178.5 (2)
C11—C5—C6—N2179.4 (2)C19—C20—C21—C222.5 (4)
C4—C5—C6—C7176.3 (2)Cl2—C20—C21—C22178.0 (2)
C11—C5—C6—C72.1 (4)C18—C17—C22—C211.8 (4)
N2—C6—C7—C80.6 (3)C10—C17—C22—C21179.8 (2)
C5—C6—C7—C8179.3 (2)C20—C21—C22—C170.5 (4)
C6—C7—C8—C90.2 (3)Fe—N3—C23—C24146.34 (17)
C6—N2—C9—C10179.6 (2)N3—C23—C24—C25104.7 (3)
Fe—N2—C9—C103.9 (4)N3—C23—C24—C2976.1 (3)
C6—N2—C9—C80.6 (3)C29—C24—C25—C260.4 (4)
Fe—N2—C9—C8175.94 (16)C23—C24—C25—C26178.8 (2)
C7—C8—C9—N20.2 (3)C24—C25—C26—C270.2 (4)
C7—C8—C9—C10179.9 (2)C25—C26—C27—C280.3 (4)
N2—C9—C10—C1i1.4 (4)C26—C27—C28—C290.5 (4)
C8—C9—C10—C1i178.4 (2)C25—C24—C29—C280.1 (4)
N2—C9—C10—C17178.9 (2)C23—C24—C29—C28179.1 (2)
C8—C9—C10—C171.3 (4)C27—C28—C29—C240.3 (4)
C6—C5—C11—C1696.4 (3)C30—C31—C32—C32ii177.2 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg7 are the centroids of the N1/C1–C4 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C19—H19···Cg1iii0.932.663.586 (3)133
C31—H31A···Cg7iii0.972.633.701 (5)160
N3—H3B···Cl2iv0.892.683.651 (2)133
C7—H7···Cl2v0.933.003.926 (2)175
Symmetry codes: (iii) x1, y, z; (iv) x, y+1, z+1; (v) x, y+1, z+2.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Ministry of Higher Education and Scientific Research of Tunisia.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCollman, J. P., Gagne, R. R., Reed, C. A., Halbert, T. R., Lang, G. & Robinson, W. T. (1975). J. Am. Chem. Soc. 97, 1427–1439.  CrossRef PubMed CAS Google Scholar
First citationDel Gaudio, J. & La Mar, G. N. (1978). J. Am. Chem. Soc. 100, 1112–1119.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGismelseed, A., Bominaar, E. L., Bill, E., Trautwein, A. X., Winkler, H., Nasri, H., Doppelt, P., Mandon, D., Fischer, J. & Weiss, R. (1990). Inorg. Chem. 29, 2741–2749.  CSD CrossRef CAS Web of Science Google Scholar
First citationGodbout, N., Sanders, L. K., Salzmann, R., Havlin, R. H., Wojdelski, M. & Oldfield, E. (1999). J. Am. Chem. Soc. 121, 3829–3844.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHu, C., Noll, B. C., Schulz, C. E. & Scheidt, W. R. (2007). Inorg. Chem. 46, 619–621.  CrossRef PubMed CAS Google Scholar
First citationMartinez, S. E., Huang, D., Ponomarev, M., Cramer, W. A. & Smith, J. L. (1996). Protein Sci. 5, 1081–1092.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMorice, C., Le Maux, P. & Simonneaux, G. (1998). Inorg. Chem. 37, 6100–6103.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMunro, O. Q., Madlala, P. S., Warby, R. A. F., Seda, T. B. & Hearne, G. (1999). Inorg. Chem. 38, 4724–4736.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMunro, O. Q. & Ntshangase, M. M. (2003). Acta Cryst. C59, m224–m227.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNasri, H., Ellison, M. K., Krebs, C., Huynh, B. H. & Scheidt, W. R. (2000). J. Am. Chem. Soc. 122, 10795–10804.  CrossRef CAS Google Scholar
First citationNasri, H., Ellison, M. K., Shaevitz, B., Gupta, G. P. & Scheidt, W. R. (2006). J. Am. Chem. Soc. 45, 5284–5290.  CAS Google Scholar
First citationScheidt, W. R. & Reed, C. A. (1981). J. Am. Chem. Soc. 81, 543–555.  CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWyllie, G. R. A., Schulz, C. E. & Scheidt, W. R. J. (2003). Inorg. Chem. 42, 5722–5734.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 1| January 2016| Pages 102-105
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds