research communications
κN)[5,10,15,20-tetrakis(4-chlorophenyl)porphyrinato-κ4N]iron(II) n-hexane monosolvate
of bis(benzylamine-aLaboratoire de Physico-chimie des Matériaux, Faculté des Sciences de Monastir, Avenue de l'environnement, 5019 Monastir, University of Monastir, Tunisia, and bX-Ray Analysis Laboratory, Institute of Technical Biochemistry, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland
*Correspondence e-mail: hnasri1@gmail.com
In the title compound, [FeII(C44H24Cl4N4)(C6H5CH2NH2)2]·C6H14 or [FeII(TPP-Cl)(BzNH2)2]·n-hexane [where TPP-Cl and BzNH2 are 5,10,15,20-tetrakis(4-chlorophenyl)porphyrinate and benzylamine ligands, respectively], the FeII cation lies on an inversion centre and is octahedrally coordinated by the four pyrrole N atoms of the porphyrin ligand in the equatorial plane and by two amine N atoms of the benzylamine ligand in the axial sites. The also contains one inversion-symmetric n-hexane solvent molecule per complex molecule. The average Fe—Npyrrole bond length [1.994 (3) Å] indicates a low-spin complex. The crystal packing is sustained by N—H⋯Cl and C—H⋯Cl hydrogen-bonding interactions and by C—H⋯π intermolecular interactions, leading to a three-dimensional network structure.
CCDC reference: 1442707
1. Chemical context
The structure of turnip cytochrome f has been determined on the basis of X-ray measurements (Martinez et al., 1996), showing that the α-amino group of the Tyr-1 entity coordinates trans to the His-25 entity in the c-type heme protein. Thus, bis-amine FeII metalloporphyrins appear to be functionally significant as models for cytochrome f. On the other hand, it has been shown that the reaction of primary and secondary with iron(III) metalloporphyrins results in a base-catalysed one-electron reduction process and concomitant dissociation of the deprotonated amine radical (Del Gaudio & La Mar, 1978). It is also known that the addition of an excess of sterically unhindered alkylamines to an Fe(III) porphyrin derivative leads to bis(amine)–iron(II) with the central metal cation in a six-coordination (Morice et al., 1998). Notably, the number of published structures of these type of iron(II) metalloporphyrins is small. In the Cambridge Structural Database (CSD, Version 5.35; Groom & Allen, 2014), only six amine porphyrin structures are reported, including [FeII(TPP)(BzNH2)2] (TPP is the 5,10,15,20-tetraphenylporphyrinato ligand; Bz is benzyl) (Munro et al., 1999).
We report herein the synthesis, the molecular and crystal structures as well as UV-spectroscopic properties of bis(benzylamine)[5,10,15,20-tetra(para-chlorophenyl)porphyrinato]iron(II) n-hexane monosolvate, [FeII(TPP-Cl)(BzNH2)2])·n-hexane, (I).
2. Structural commentary
The molecular structure of (I) is illustrated in Fig. 1. The FeII cation is located on an inversion centre and shows an octahedral coordination environment. The equatorial plane is formed by the four nitrogen atoms of the porphyrin moiety whereas the axial positions are occupied by the N atoms of the two benzylamine ligands.
The Fe—Nbenzylamine bond length of 2.036 (2) Å is in the range of other iron(II)–bis(amine) porphyrin complexes [1.799-2.285 Å] reported in the literature (CSD refcodes FAVGUE: Godbout et al., 1999; IMELIV: Wyllie et al., 2003) and is slightly smaller than in the related structure of [FeII(TPP)(BzNH2)2] [2.043 (3) Å; Munro et al., 1999]. The porphyrin core of (I) is represented in Fig. 2. The porphyrin macrocycle presents a nearly planar conformation with maximum and minimum deviations from the C20N4 least-squares plane of 0.044 (2) and −0.051 (2) Å for atoms C3 and N1, respectively, while the FeII cation is co-planar with this plane with a minute deviation of 0.003 (1) Å. The α-CH2 group of the benzylamine ligand is inclined at 24.8 (1)° relative to the shortest Fe—Npyrrole bond (Fe—N1). This value is close to those of the related [FeII(TPP)(BzNH2)2] derivative [18.2 (4), 30.1 (4)°; Munro et al., 1999].
For iron(II) II cation and the value of the average equatorial Fe—Npyrrole bond length has been discussed (Scheidt & Reed, 1981). For high-spin (S = 2) complexes, the Fe—Npyrrole bond lengths are the longest, e.g. for the [Fe(TpivPP)(NO3)]− complex (TpivPP = picket-fence porphyrin), Fe—Npyrrole amounts to 2.070 (16) Å (Nasri et al., 2006). For low-spin (S = 0) complexes, the average Fe—Npyrrole bond length is shorter, e.g. for the [Fe(TPP)(4-MePip)2] complex (4-MePip is 4-methyl piperidine), the Fe—Npyrrole bond length is 1.994 (4) Å (Munro & Ntshangase, 2003) and 1.990 (15) Å for the [FeII(TpivPP)(NO2)(pyridine)]− species (Nasri et al., 2000). The intermediate spin state (S = 1) of FeII porphyrin complexes is represented by the shortest Fe—Npyrrole distances, e.g. Fe(TTP) exhibits an Fe—Npyrrole bond length of 1.979 (6) Å (Hu et al., 2007). The averaged Fe—Npyrrole bond length of 1.994 (3) Å for (I) is an indication that this species has a low-spin state (S = 0). This value is virtually the same as in the related [FeII(TPP)(BzNH2)2] derivative [Fe—Npyrrole = 1.992 (4) Å; Munro et al., 1999].
the relationship between the spin-state of the Fe3. Supramolecular features
The complex molecules are packed in such a way that channels are formed parallel to [010] in which the n-hexane molecules are situated. The linkage of the molecular components in the of (I) is accomplished by C—H⋯Cl, N—H⋯Cl hydrogen-bonding interactions as well as C—H⋯π interactions (Figs. 3 and 4; Table 1). Each [FeII(TPP-Cl)(BzNH2)2] complex is linked to neighbouring complexes through N—H⋯Cl hydrogen bonds between the N3 atom of the benzylamine ligand and the Cl2 atom of a TPP-Cl moiety and by C—H⋯Cl interactions between the pyrrole C7 atom and the Cl2 atom. In addition, the phenyl C19 atom of the [FeII(TClPP)(BzNH2)2] complex interacts with the centroid Cg1 of the (N1/C1–C4) pyrrole ring through C—H⋯π interactions. The three-dimensional supramolecular network is consolidated by another C—H⋯π intramolecular interaction involving the C31 atom of the n-hexane solvent molecule and the centroid Cg7 of the (C11–C16) phenyl ring.
4. Synthesis
4.1. Synthesis of 5,10,15,20-tetra(para-chlorophenyl)porphyrin
In a 100 ml two-necked flask, 4-chlorobenzaldehyde (6 g, 42 mmol) was dissolved in 50 ml of propionic acid. The solution was heated under reflex at 413 K. Freshly distilled pyrrole (3.36 ml, 42 mmol) was added dropwise and the mixture stirred for another 40 min. The mixture was then cooled overnight to 277 K and filtered in vacuo. The crude product was purified using (chloroform/hexane = 4/1 v/v as an eluent). A purple solid was obtained that was dried in vacuo (1.5 g, yield 25%). UV–vis spectrum in CHCl3: λmax (10−3·∊) 420 (512.7), 516 (16.7), 552 (7.4), 591 (4.7), 646 (4.0).
4.2. Metallation of the porphyrin and synthesis of (triflato)[5,10,15,20-tetra(para-chlorophenyl)porphyrinato]iron(III)
The metallation of the porphyrin was performed using the literature method to yield the chlorido–iron(III) derivative [FeIII(TPP-Cl)Cl] (Collman et al., 1975). We used the triflato–iron(III) TPP-Cl derivative [FeIII(TPP-Cl)(SO3CF3)] as starting material because the triflato ligand (SO3CF3−) is much easier to substitute than the chlorido ligand. This complex was prepared according to a literature protocol (Gismelseed et al., 1990).
4.3. Synthesis and crystallization of bis(benzylamine-κN)[5,10,15,20-tetrakis(4-chlorophenyl)porphyrinato-κ4N]iron(II) n-hexane monosolvate complex, (I)
To a solution of [FeIII(TPP-Cl)(SO3CF3)] (Gismelseed et al., 1990) (15 mg, 0.0156 mmol) in dichloromethane (15 ml) was added an excess of benzylamine (50 mg, 0.48 mmol). The reaction mixture was stirred at room temperature for 2 h. Crystals of the title complex were obtained by diffusion of n-hexane through the dichloromethane solution.
5. UV–vis spectra
The UV–visible spectra with absorption bands at λmax 425/426, 532/527, 562/566 nm (CHCl3 solution/solid state) were recorded on a WinASPECT PLUS (validation for SPECORD PLUS version 4.2) scanning spectrophotometer. In Fig. 5 are illustrated the electronic spectra of the solid [FeIII(TPP-Cl)(SO3CF3)] complex, used as starting material, and complex (I) which shows that the of the latter species is red-shifted compared to the one of the starting material. The λmax values of the Soret and Q bands of (I) in the solid state and in chloroform solution are very close. These values also compare well with those of the related [FeII(TPP)(L)2] (L = 1-BuNH2, BzNH2, PhCH2CH2NH2) species (Munro et al., 1999).
6. Refinement
Crystal data, data collection and structure . H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å (aromatic), 0.97 Å (methylene), 0.96 Å (methyl) and N—H = 0.89 Å for the axial ligand, with Uiso(Hphenyl, Hmethylene, Hamine) = 1.2Ueq(C/N) and Uiso(Hmethyl) = 1.5Ueq(C).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1442707
10.1107/S2056989015024135/wm5253sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015024135/wm5253Isup2.hkl
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).[Fe(C44H24Cl4N4)(C7H9N)2]·C6H14 | Z = 1 |
Mr = 1106.79 | F(000) = 576 |
Triclinic, P1 | Dx = 1.382 Mg m−3 |
a = 10.7986 (6) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 11.0555 (6) Å | Cell parameters from 10827 reflections |
c = 11.4118 (4) Å | θ = 4.1–74.9° |
α = 87.918 (4)° | µ = 4.50 mm−1 |
β = 82.785 (4)° | T = 100 K |
γ = 79.815 (5)° | Prism, dark red |
V = 1330.16 (12) Å3 | 0.4 × 0.3 × 0.1 mm |
Agilent SuperNova Dual Source diffractometer with a TitanS2 detector | 5355 independent reflections |
Radiation source: sealed X-ray tube | 4825 reflections with I > 2σ(I) |
Detector resolution: 4.1685 pixels mm-1 | Rint = 0.028 |
ω scans | θmax = 75.3°, θmin = 3.9° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | h = −13→13 |
Tmin = 0.416, Tmax = 1.000 | k = −13→10 |
12765 measured reflections | l = −14→12 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.133 | w = 1/[σ2(Fo2) + (0.0771P)2 + 0.8782P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
5355 reflections | Δρmax = 1.09 e Å−3 |
340 parameters | Δρmin = −0.54 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Fe | 0.5000 | 0.5000 | 0.5000 | 0.01855 (14) | |
N1 | 0.65294 (17) | 0.39615 (18) | 0.55478 (16) | 0.0209 (4) | |
N2 | 0.40204 (17) | 0.47595 (18) | 0.65683 (16) | 0.0210 (4) | |
N3 | 0.43283 (18) | 0.35548 (18) | 0.44078 (17) | 0.0238 (4) | |
H3A | 0.3486 | 0.3738 | 0.4512 | 0.029* | |
H3B | 0.4563 | 0.3509 | 0.3632 | 0.029* | |
C1 | 0.7729 (2) | 0.3693 (2) | 0.4932 (2) | 0.0224 (4) | |
C2 | 0.8596 (2) | 0.2991 (2) | 0.5658 (2) | 0.0242 (5) | |
H2 | 0.9452 | 0.2700 | 0.5437 | 0.029* | |
C3 | 0.7939 (2) | 0.2831 (2) | 0.6725 (2) | 0.0242 (5) | |
H3 | 0.8255 | 0.2414 | 0.7377 | 0.029* | |
C4 | 0.6649 (2) | 0.3434 (2) | 0.6655 (2) | 0.0221 (4) | |
C5 | 0.5680 (2) | 0.3471 (2) | 0.75867 (19) | 0.0219 (4) | |
C6 | 0.4447 (2) | 0.4080 (2) | 0.75297 (19) | 0.0226 (5) | |
C7 | 0.3420 (2) | 0.4066 (2) | 0.8463 (2) | 0.0250 (5) | |
H7 | 0.3468 | 0.3666 | 0.9191 | 0.030* | |
C8 | 0.2375 (2) | 0.4742 (2) | 0.8080 (2) | 0.0254 (5) | |
H8 | 0.1568 | 0.4897 | 0.8497 | 0.030* | |
C9 | 0.2745 (2) | 0.5176 (2) | 0.6907 (2) | 0.0225 (4) | |
C10 | 0.1926 (2) | 0.5909 (2) | 0.6214 (2) | 0.0232 (5) | |
C11 | 0.59738 (19) | 0.2788 (2) | 0.87045 (19) | 0.0220 (5) | |
C12 | 0.6263 (2) | 0.3395 (2) | 0.9655 (2) | 0.0269 (5) | |
H12 | 0.6267 | 0.4236 | 0.9597 | 0.032* | |
C13 | 0.6548 (2) | 0.2760 (3) | 1.0695 (2) | 0.0295 (5) | |
H13 | 0.6735 | 0.3172 | 1.1329 | 0.035* | |
C14 | 0.6547 (2) | 0.1513 (3) | 1.0766 (2) | 0.0281 (5) | |
C15 | 0.6267 (2) | 0.0882 (2) | 0.9836 (2) | 0.0302 (5) | |
H15 | 0.6276 | 0.0039 | 0.9895 | 0.036* | |
C16 | 0.5972 (2) | 0.1531 (2) | 0.8810 (2) | 0.0289 (5) | |
H16 | 0.5770 | 0.1117 | 0.8185 | 0.035* | |
C17 | 0.0571 (2) | 0.6294 (2) | 0.6735 (2) | 0.0252 (5) | |
C18 | −0.0257 (2) | 0.5459 (3) | 0.6854 (2) | 0.0306 (5) | |
H18 | 0.0029 | 0.4657 | 0.6600 | 0.037* | |
C19 | −0.1513 (2) | 0.5807 (3) | 0.7349 (2) | 0.0329 (6) | |
H19 | −0.2063 | 0.5242 | 0.7431 | 0.039* | |
C20 | −0.1927 (2) | 0.6994 (3) | 0.7714 (2) | 0.0296 (5) | |
C21 | −0.1134 (3) | 0.7858 (3) | 0.7565 (3) | 0.0384 (6) | |
H21 | −0.1433 | 0.8668 | 0.7788 | 0.046* | |
C22 | 0.0120 (2) | 0.7492 (3) | 0.7077 (3) | 0.0352 (6) | |
H22 | 0.0662 | 0.8065 | 0.6980 | 0.042* | |
C23 | 0.4696 (2) | 0.2302 (2) | 0.4923 (2) | 0.0276 (5) | |
H23A | 0.4913 | 0.2379 | 0.5713 | 0.033* | |
H23B | 0.5444 | 0.1877 | 0.4449 | 0.033* | |
C24 | 0.3655 (2) | 0.1546 (2) | 0.4982 (2) | 0.0258 (5) | |
C25 | 0.3711 (2) | 0.0611 (2) | 0.4198 (2) | 0.0304 (5) | |
H25 | 0.4395 | 0.0450 | 0.3611 | 0.036* | |
C26 | 0.2759 (3) | −0.0093 (3) | 0.4274 (3) | 0.0397 (6) | |
H26 | 0.2810 | −0.0722 | 0.3741 | 0.048* | |
C27 | 0.1738 (3) | 0.0136 (3) | 0.5138 (3) | 0.0423 (7) | |
H27 | 0.1102 | −0.0339 | 0.5191 | 0.051* | |
C28 | 0.1663 (3) | 0.1070 (3) | 0.5921 (3) | 0.0428 (7) | |
H28 | 0.0971 | 0.1230 | 0.6500 | 0.051* | |
C29 | 0.2623 (3) | 0.1784 (3) | 0.5854 (2) | 0.0347 (6) | |
H29 | 0.2570 | 0.2412 | 0.6389 | 0.042* | |
Cl1 | 0.69094 (6) | 0.07092 (7) | 1.20562 (5) | 0.03984 (18) | |
Cl2 | −0.34861 (5) | 0.74242 (7) | 0.83650 (5) | 0.03639 (17) | |
C30 | −0.0017 (4) | 0.2924 (5) | 0.9519 (4) | 0.0738 (12) | |
H30A | −0.0290 | 0.3479 | 0.8900 | 0.111* | |
H30B | −0.0494 | 0.3193 | 1.0259 | 0.111* | |
H30C | 0.0868 | 0.2909 | 0.9562 | 0.111* | |
C31 | −0.0232 (4) | 0.1616 (5) | 0.9258 (4) | 0.0739 (13) | |
H31A | −0.1125 | 0.1668 | 0.9185 | 0.089* | |
H31B | 0.0230 | 0.1384 | 0.8492 | 0.089* | |
C32 | 0.0130 (3) | 0.0575 (4) | 1.0118 (3) | 0.0581 (9) | |
H32A | 0.1032 | 0.0489 | 1.0161 | 0.070* | |
H32B | −0.0301 | 0.0817 | 1.0893 | 0.070* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe | 0.0152 (2) | 0.0252 (3) | 0.0155 (2) | −0.00339 (18) | −0.00488 (17) | 0.00556 (18) |
N1 | 0.0167 (8) | 0.0284 (10) | 0.0176 (9) | −0.0040 (7) | −0.0038 (7) | 0.0055 (7) |
N2 | 0.0171 (8) | 0.0276 (10) | 0.0181 (9) | −0.0025 (7) | −0.0056 (7) | 0.0058 (7) |
N3 | 0.0236 (9) | 0.0278 (10) | 0.0217 (9) | −0.0068 (8) | −0.0083 (7) | 0.0063 (7) |
C1 | 0.0178 (10) | 0.0269 (11) | 0.0231 (11) | −0.0038 (8) | −0.0067 (8) | 0.0056 (9) |
C2 | 0.0174 (10) | 0.0299 (12) | 0.0252 (11) | −0.0028 (8) | −0.0062 (8) | 0.0058 (9) |
C3 | 0.0208 (11) | 0.0291 (12) | 0.0239 (11) | −0.0046 (9) | −0.0095 (8) | 0.0080 (9) |
C4 | 0.0208 (10) | 0.0268 (11) | 0.0198 (10) | −0.0046 (8) | −0.0075 (8) | 0.0053 (8) |
C5 | 0.0221 (10) | 0.0269 (11) | 0.0179 (10) | −0.0055 (8) | −0.0073 (8) | 0.0055 (8) |
C6 | 0.0228 (11) | 0.0281 (12) | 0.0172 (10) | −0.0046 (9) | −0.0046 (8) | 0.0049 (8) |
C7 | 0.0242 (11) | 0.0316 (12) | 0.0185 (10) | −0.0035 (9) | −0.0040 (8) | 0.0073 (9) |
C8 | 0.0210 (10) | 0.0336 (13) | 0.0200 (11) | −0.0027 (9) | −0.0010 (8) | 0.0051 (9) |
C9 | 0.0199 (10) | 0.0277 (11) | 0.0198 (10) | −0.0041 (8) | −0.0033 (8) | 0.0041 (8) |
C10 | 0.0178 (10) | 0.0290 (12) | 0.0224 (11) | −0.0029 (8) | −0.0038 (8) | 0.0035 (9) |
C11 | 0.0160 (10) | 0.0312 (12) | 0.0183 (10) | −0.0021 (8) | −0.0044 (8) | 0.0068 (9) |
C12 | 0.0244 (11) | 0.0342 (13) | 0.0220 (11) | −0.0047 (9) | −0.0051 (9) | 0.0052 (9) |
C13 | 0.0262 (11) | 0.0444 (15) | 0.0184 (11) | −0.0054 (10) | −0.0068 (9) | 0.0037 (10) |
C14 | 0.0177 (10) | 0.0451 (14) | 0.0197 (11) | −0.0021 (9) | −0.0038 (8) | 0.0121 (10) |
C15 | 0.0294 (12) | 0.0327 (13) | 0.0277 (12) | −0.0039 (10) | −0.0050 (10) | 0.0100 (10) |
C16 | 0.0305 (12) | 0.0348 (13) | 0.0224 (11) | −0.0069 (10) | −0.0072 (9) | 0.0064 (10) |
C17 | 0.0201 (11) | 0.0347 (13) | 0.0201 (11) | −0.0028 (9) | −0.0049 (8) | 0.0087 (9) |
C18 | 0.0225 (11) | 0.0369 (14) | 0.0318 (13) | −0.0038 (10) | −0.0030 (9) | 0.0001 (10) |
C19 | 0.0214 (11) | 0.0459 (15) | 0.0322 (13) | −0.0093 (10) | −0.0038 (10) | 0.0050 (11) |
C20 | 0.0166 (10) | 0.0465 (15) | 0.0229 (11) | 0.0009 (10) | −0.0026 (8) | 0.0079 (10) |
C21 | 0.0279 (13) | 0.0364 (15) | 0.0464 (16) | 0.0011 (11) | 0.0021 (11) | 0.0017 (12) |
C22 | 0.0232 (12) | 0.0342 (14) | 0.0474 (16) | −0.0051 (10) | −0.0024 (11) | 0.0060 (11) |
C23 | 0.0253 (11) | 0.0303 (12) | 0.0285 (12) | −0.0045 (9) | −0.0104 (9) | 0.0049 (9) |
C24 | 0.0231 (11) | 0.0284 (12) | 0.0262 (11) | −0.0027 (9) | −0.0095 (9) | 0.0102 (9) |
C25 | 0.0273 (12) | 0.0308 (13) | 0.0336 (13) | −0.0052 (10) | −0.0072 (10) | 0.0050 (10) |
C26 | 0.0365 (14) | 0.0335 (14) | 0.0526 (17) | −0.0088 (11) | −0.0167 (13) | 0.0054 (12) |
C27 | 0.0281 (13) | 0.0420 (16) | 0.0606 (19) | −0.0124 (11) | −0.0183 (13) | 0.0248 (14) |
C28 | 0.0233 (12) | 0.0570 (19) | 0.0416 (15) | 0.0028 (11) | −0.0005 (11) | 0.0270 (14) |
C29 | 0.0326 (13) | 0.0393 (14) | 0.0289 (13) | 0.0012 (11) | −0.0035 (10) | 0.0085 (11) |
Cl1 | 0.0326 (3) | 0.0590 (4) | 0.0244 (3) | −0.0004 (3) | −0.0064 (2) | 0.0208 (3) |
Cl2 | 0.0187 (3) | 0.0606 (4) | 0.0256 (3) | 0.0012 (2) | 0.0002 (2) | 0.0068 (3) |
C30 | 0.070 (3) | 0.086 (3) | 0.074 (3) | −0.035 (2) | −0.018 (2) | 0.021 (2) |
C31 | 0.053 (2) | 0.105 (4) | 0.060 (2) | −0.003 (2) | −0.0111 (18) | 0.014 (2) |
C32 | 0.0321 (15) | 0.088 (3) | 0.0495 (19) | 0.0010 (16) | −0.0071 (14) | 0.0095 (19) |
Fe—N1 | 1.9932 (18) | C15—C16 | 1.393 (3) |
Fe—N1i | 1.9932 (18) | C15—H15 | 0.9300 |
Fe—N2 | 1.9955 (18) | C16—H16 | 0.9300 |
Fe—N2i | 1.9956 (18) | C17—C22 | 1.381 (4) |
Fe—N3i | 2.036 (2) | C17—C18 | 1.386 (4) |
Fe—N3 | 2.036 (2) | C18—C19 | 1.396 (3) |
N1—C1 | 1.382 (3) | C18—H18 | 0.9300 |
N1—C4 | 1.384 (3) | C19—C20 | 1.371 (4) |
N2—C9 | 1.383 (3) | C19—H19 | 0.9300 |
N2—C6 | 1.387 (3) | C20—C21 | 1.384 (4) |
N3—C23 | 1.492 (3) | C20—Cl2 | 1.744 (2) |
N3—H3A | 0.8900 | C21—C22 | 1.393 (4) |
N3—H3B | 0.8900 | C21—H21 | 0.9300 |
C1—C10i | 1.391 (3) | C22—H22 | 0.9300 |
C1—C2 | 1.435 (3) | C23—C24 | 1.509 (3) |
C2—C3 | 1.353 (3) | C23—H23A | 0.9700 |
C2—H2 | 0.9300 | C23—H23B | 0.9700 |
C3—C4 | 1.444 (3) | C24—C25 | 1.380 (4) |
C3—H3 | 0.9300 | C24—C29 | 1.392 (4) |
C4—C5 | 1.391 (3) | C25—C26 | 1.388 (4) |
C5—C6 | 1.390 (3) | C25—H25 | 0.9300 |
C5—C11 | 1.498 (3) | C26—C27 | 1.377 (5) |
C6—C7 | 1.439 (3) | C26—H26 | 0.9300 |
C7—C8 | 1.351 (3) | C27—C28 | 1.375 (5) |
C7—H7 | 0.9300 | C27—H27 | 0.9300 |
C8—C9 | 1.438 (3) | C28—C29 | 1.403 (4) |
C8—H8 | 0.9300 | C28—H28 | 0.9300 |
C9—C10 | 1.393 (3) | C29—H29 | 0.9300 |
C10—C1i | 1.391 (3) | C30—C31 | 1.550 (7) |
C10—C17 | 1.502 (3) | C30—H30A | 0.9600 |
C11—C16 | 1.391 (4) | C30—H30B | 0.9600 |
C11—C12 | 1.392 (3) | C30—H30C | 0.9600 |
C12—C13 | 1.396 (3) | C31—C32 | 1.514 (6) |
C12—H12 | 0.9300 | C31—H31A | 0.9700 |
C13—C14 | 1.378 (4) | C31—H31B | 0.9700 |
C13—H13 | 0.9300 | C32—C32ii | 1.392 (9) |
C14—C15 | 1.384 (4) | C32—H32A | 0.9700 |
C14—Cl1 | 1.742 (2) | C32—H32B | 0.9700 |
N1—Fe—N1i | 180.0 | C15—C14—Cl1 | 119.1 (2) |
N1—Fe—N2 | 89.69 (8) | C14—C15—C16 | 118.8 (2) |
N1i—Fe—N2 | 90.31 (8) | C14—C15—H15 | 120.6 |
N1—Fe—N2i | 90.31 (8) | C16—C15—H15 | 120.6 |
N1i—Fe—N2i | 89.69 (8) | C11—C16—C15 | 121.2 (2) |
N2—Fe—N2i | 180.0 | C11—C16—H16 | 119.4 |
N1—Fe—N3i | 85.61 (8) | C15—C16—H16 | 119.4 |
N1i—Fe—N3i | 94.39 (8) | C22—C17—C18 | 118.9 (2) |
N2—Fe—N3i | 92.04 (8) | C22—C17—C10 | 120.6 (2) |
N2i—Fe—N3i | 87.96 (8) | C18—C17—C10 | 120.5 (2) |
N1—Fe—N3 | 94.39 (8) | C17—C18—C19 | 120.8 (3) |
N1i—Fe—N3 | 85.61 (8) | C17—C18—H18 | 119.6 |
N2—Fe—N3 | 87.96 (8) | C19—C18—H18 | 119.6 |
N2i—Fe—N3 | 92.04 (8) | C20—C19—C18 | 119.1 (2) |
N3i—Fe—N3 | 180.0 | C20—C19—H19 | 120.4 |
C1—N1—C4 | 104.92 (18) | C18—C19—H19 | 120.4 |
C1—N1—Fe | 127.30 (15) | C19—C20—C21 | 121.2 (2) |
C4—N1—Fe | 127.61 (15) | C19—C20—Cl2 | 119.3 (2) |
C9—N2—C6 | 104.94 (18) | C21—C20—Cl2 | 119.5 (2) |
C9—N2—Fe | 127.24 (15) | C20—C21—C22 | 118.8 (3) |
C6—N2—Fe | 127.72 (15) | C20—C21—H21 | 120.6 |
C23—N3—Fe | 119.69 (15) | C22—C21—H21 | 120.6 |
C23—N3—H3A | 107.4 | C17—C22—C21 | 121.1 (3) |
Fe—N3—H3A | 107.4 | C17—C22—H22 | 119.5 |
C23—N3—H3B | 107.4 | C21—C22—H22 | 119.5 |
Fe—N3—H3B | 107.4 | N3—C23—C24 | 112.64 (19) |
H3A—N3—H3B | 106.9 | N3—C23—H23A | 109.1 |
N1—C1—C10i | 125.2 (2) | C24—C23—H23A | 109.1 |
N1—C1—C2 | 110.57 (19) | N3—C23—H23B | 109.1 |
C10i—C1—C2 | 124.1 (2) | C24—C23—H23B | 109.1 |
C3—C2—C1 | 107.4 (2) | H23A—C23—H23B | 107.8 |
C3—C2—H2 | 126.3 | C25—C24—C29 | 119.2 (2) |
C1—C2—H2 | 126.3 | C25—C24—C23 | 121.4 (2) |
C2—C3—C4 | 106.6 (2) | C29—C24—C23 | 119.4 (2) |
C2—C3—H3 | 126.7 | C24—C25—C26 | 120.9 (3) |
C4—C3—H3 | 126.7 | C24—C25—H25 | 119.6 |
N1—C4—C5 | 125.7 (2) | C26—C25—H25 | 119.6 |
N1—C4—C3 | 110.55 (19) | C27—C26—C25 | 120.2 (3) |
C5—C4—C3 | 123.7 (2) | C27—C26—H26 | 119.9 |
C6—C5—C4 | 123.7 (2) | C25—C26—H26 | 119.9 |
C6—C5—C11 | 118.1 (2) | C28—C27—C26 | 119.6 (3) |
C4—C5—C11 | 118.13 (19) | C28—C27—H27 | 120.2 |
N2—C6—C5 | 125.4 (2) | C26—C27—H27 | 120.2 |
N2—C6—C7 | 110.37 (19) | C27—C28—C29 | 120.6 (3) |
C5—C6—C7 | 124.2 (2) | C27—C28—H28 | 119.7 |
C8—C7—C6 | 107.1 (2) | C29—C28—H28 | 119.7 |
C8—C7—H7 | 126.5 | C24—C29—C28 | 119.5 (3) |
C6—C7—H7 | 126.5 | C24—C29—H29 | 120.3 |
C7—C8—C9 | 107.2 (2) | C28—C29—H29 | 120.3 |
C7—C8—H8 | 126.4 | C31—C30—H30A | 109.5 |
C9—C8—H8 | 126.4 | C31—C30—H30B | 109.5 |
N2—C9—C10 | 125.1 (2) | H30A—C30—H30B | 109.5 |
N2—C9—C8 | 110.46 (19) | C31—C30—H30C | 109.5 |
C10—C9—C8 | 124.4 (2) | H30A—C30—H30C | 109.5 |
C1i—C10—C9 | 124.7 (2) | H30B—C30—H30C | 109.5 |
C1i—C10—C17 | 117.5 (2) | C32—C31—C30 | 119.2 (4) |
C9—C10—C17 | 117.8 (2) | C32—C31—H31A | 107.5 |
C16—C11—C12 | 118.6 (2) | C30—C31—H31A | 107.5 |
C16—C11—C5 | 120.6 (2) | C32—C31—H31B | 107.5 |
C12—C11—C5 | 120.8 (2) | C30—C31—H31B | 107.5 |
C11—C12—C13 | 120.9 (2) | H31A—C31—H31B | 107.0 |
C11—C12—H12 | 119.5 | C32ii—C32—C31 | 117.6 (4) |
C13—C12—H12 | 119.5 | C32ii—C32—H32A | 107.9 |
C14—C13—C12 | 119.0 (2) | C31—C32—H32A | 107.9 |
C14—C13—H13 | 120.5 | C32ii—C32—H32B | 107.9 |
C12—C13—H13 | 120.5 | C31—C32—H32B | 107.9 |
C13—C14—C15 | 121.5 (2) | H32A—C32—H32B | 107.2 |
C13—C14—Cl1 | 119.4 (2) | ||
C4—N1—C1—C10i | −176.9 (2) | C4—C5—C11—C16 | −82.1 (3) |
Fe—N1—C1—C10i | −1.4 (3) | C6—C5—C11—C12 | −84.1 (3) |
C4—N1—C1—C2 | 0.2 (3) | C4—C5—C11—C12 | 97.5 (3) |
Fe—N1—C1—C2 | 175.67 (16) | C16—C11—C12—C13 | 0.1 (3) |
N1—C1—C2—C3 | −0.3 (3) | C5—C11—C12—C13 | −179.5 (2) |
C10i—C1—C2—C3 | 176.8 (2) | C11—C12—C13—C14 | 0.4 (4) |
C1—C2—C3—C4 | 0.3 (3) | C12—C13—C14—C15 | −0.3 (4) |
C1—N1—C4—C5 | 179.8 (2) | C12—C13—C14—Cl1 | 179.66 (18) |
Fe—N1—C4—C5 | 4.3 (3) | C13—C14—C15—C16 | −0.4 (4) |
C1—N1—C4—C3 | 0.0 (3) | Cl1—C14—C15—C16 | 179.65 (19) |
Fe—N1—C4—C3 | −175.45 (16) | C12—C11—C16—C15 | −0.8 (4) |
C2—C3—C4—N1 | −0.2 (3) | C5—C11—C16—C15 | 178.7 (2) |
C2—C3—C4—C5 | −180.0 (2) | C14—C15—C16—C11 | 1.0 (4) |
N1—C4—C5—C6 | −1.6 (4) | C1i—C10—C17—C22 | −72.8 (3) |
C3—C4—C5—C6 | 178.2 (2) | C9—C10—C17—C22 | 107.5 (3) |
N1—C4—C5—C11 | 176.8 (2) | C1i—C10—C17—C18 | 105.6 (3) |
C3—C4—C5—C11 | −3.4 (3) | C9—C10—C17—C18 | −74.1 (3) |
C9—N2—C6—C5 | 179.4 (2) | C22—C17—C18—C19 | −2.3 (4) |
Fe—N2—C6—C5 | 2.9 (3) | C10—C17—C18—C19 | 179.3 (2) |
C9—N2—C6—C7 | 0.7 (3) | C17—C18—C19—C20 | 0.4 (4) |
Fe—N2—C6—C7 | −175.80 (16) | C18—C19—C20—C21 | 2.0 (4) |
C4—C5—C6—N2 | −2.2 (4) | C18—C19—C20—Cl2 | −178.5 (2) |
C11—C5—C6—N2 | 179.4 (2) | C19—C20—C21—C22 | −2.5 (4) |
C4—C5—C6—C7 | 176.3 (2) | Cl2—C20—C21—C22 | 178.0 (2) |
C11—C5—C6—C7 | −2.1 (4) | C18—C17—C22—C21 | 1.8 (4) |
N2—C6—C7—C8 | −0.6 (3) | C10—C17—C22—C21 | −179.8 (2) |
C5—C6—C7—C8 | −179.3 (2) | C20—C21—C22—C17 | 0.5 (4) |
C6—C7—C8—C9 | 0.2 (3) | Fe—N3—C23—C24 | 146.34 (17) |
C6—N2—C9—C10 | 179.6 (2) | N3—C23—C24—C25 | 104.7 (3) |
Fe—N2—C9—C10 | −3.9 (4) | N3—C23—C24—C29 | −76.1 (3) |
C6—N2—C9—C8 | −0.6 (3) | C29—C24—C25—C26 | −0.4 (4) |
Fe—N2—C9—C8 | 175.94 (16) | C23—C24—C25—C26 | 178.8 (2) |
C7—C8—C9—N2 | 0.2 (3) | C24—C25—C26—C27 | 0.2 (4) |
C7—C8—C9—C10 | −179.9 (2) | C25—C26—C27—C28 | 0.3 (4) |
N2—C9—C10—C1i | 1.4 (4) | C26—C27—C28—C29 | −0.5 (4) |
C8—C9—C10—C1i | −178.4 (2) | C25—C24—C29—C28 | 0.1 (4) |
N2—C9—C10—C17 | −178.9 (2) | C23—C24—C29—C28 | −179.1 (2) |
C8—C9—C10—C17 | 1.3 (4) | C27—C28—C29—C24 | 0.3 (4) |
C6—C5—C11—C16 | 96.4 (3) | C30—C31—C32—C32ii | 177.2 (4) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y, −z+2. |
Cg1 and Cg7 are the centroids of the N1/C1–C4 and C11–C16 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C19—H19···Cg1iii | 0.93 | 2.66 | 3.586 (3) | 133 |
C31—H31A···Cg7iii | 0.97 | 2.63 | 3.701 (5) | 160 |
N3—H3B···Cl2iv | 0.89 | 2.68 | 3.651 (2) | 133 |
C7—H7···Cl2v | 0.93 | 3.00 | 3.926 (2) | 175 |
Symmetry codes: (iii) x−1, y, z; (iv) −x, −y+1, −z+1; (v) −x, −y+1, −z+2. |
Acknowledgements
The authors gratefully acknowledge financial support from the Ministry of Higher Education and Scientific Research of Tunisia.
References
Agilent (2014). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Collman, J. P., Gagne, R. R., Reed, C. A., Halbert, T. R., Lang, G. & Robinson, W. T. (1975). J. Am. Chem. Soc. 97, 1427–1439. CrossRef PubMed CAS Google Scholar
Del Gaudio, J. & La Mar, G. N. (1978). J. Am. Chem. Soc. 100, 1112–1119. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gismelseed, A., Bominaar, E. L., Bill, E., Trautwein, A. X., Winkler, H., Nasri, H., Doppelt, P., Mandon, D., Fischer, J. & Weiss, R. (1990). Inorg. Chem. 29, 2741–2749. CSD CrossRef CAS Web of Science Google Scholar
Godbout, N., Sanders, L. K., Salzmann, R., Havlin, R. H., Wojdelski, M. & Oldfield, E. (1999). J. Am. Chem. Soc. 121, 3829–3844. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Hu, C., Noll, B. C., Schulz, C. E. & Scheidt, W. R. (2007). Inorg. Chem. 46, 619–621. CrossRef PubMed CAS Google Scholar
Martinez, S. E., Huang, D., Ponomarev, M., Cramer, W. A. & Smith, J. L. (1996). Protein Sci. 5, 1081–1092. CrossRef CAS PubMed Web of Science Google Scholar
Morice, C., Le Maux, P. & Simonneaux, G. (1998). Inorg. Chem. 37, 6100–6103. Web of Science CrossRef PubMed CAS Google Scholar
Munro, O. Q., Madlala, P. S., Warby, R. A. F., Seda, T. B. & Hearne, G. (1999). Inorg. Chem. 38, 4724–4736. Web of Science CSD CrossRef PubMed CAS Google Scholar
Munro, O. Q. & Ntshangase, M. M. (2003). Acta Cryst. C59, m224–m227. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nasri, H., Ellison, M. K., Krebs, C., Huynh, B. H. & Scheidt, W. R. (2000). J. Am. Chem. Soc. 122, 10795–10804. CrossRef CAS Google Scholar
Nasri, H., Ellison, M. K., Shaevitz, B., Gupta, G. P. & Scheidt, W. R. (2006). J. Am. Chem. Soc. 45, 5284–5290. CAS Google Scholar
Scheidt, W. R. & Reed, C. A. (1981). J. Am. Chem. Soc. 81, 543–555. CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Wyllie, G. R. A., Schulz, C. E. & Scheidt, W. R. J. (2003). Inorg. Chem. 42, 5722–5734. CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.