research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a mixed-ligand terbium(III) coordination polymer containing oxalate and formate ligands, having a three-dimensional fcu topology

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani, 12120, Thailand, bDepartment of Chemistry, Faculty of Science, Naresuan University, Muang, Phitsanulok, 65000, Thailand, and cDepartment of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
*Correspondence e-mail: kc@tu.ac.th

Edited by G. Smith, Queensland University of Technology, Australia (Received 22 November 2015; accepted 14 December 2015; online 1 January 2016)

The title compound, poly[(μ3-formato)(μ4-oxalato)terbium(III)], [Tb(CHO2)(C2O4)]n, is a three-dimensional coordination polymer, and is isotypic with the LaIII, CeIII and SmIII analogues. The asymmetric unit contains one TbIII ion, one formate anion (CHO2) and half of an oxalate anion (C2O42−), the latter being completed by application of inversion symmetry. The TbIII ion is nine-coordinated in a distorted tricapped trigonal–prismatic manner by two chelating carboxyl­ate groups from two C2O42− ligands, two carboxyl­ate oxygen atoms from another two C2O42− ligands and three oxygen atoms from three CHO2 ligands, with the Tb—O bond lengths and the O—Tb—O bond angles ranging from 2.4165 (19) to 2.478 (3) Å and 64.53 (6) to 144.49 (4)°, respectively. The CHO2 and C2O42− anions adopt μ3-bridging and μ4-chelating-bridging coordination modes, respectively, linking adjacent TbIII ions into a three-dimensional 12-connected fcu topology with point symbol (324.436.56). The title compound exhibits thermal stability up to 623 K, and also displays strong green photoluminescence in the solid state at room temperature.

1. Chemical context

Owing to their high colour purity, high luminescence quantum yields, narrow bandwidths, relatively long lifetimes and large Stokes shifts arising from 4f orbitals, coordination polymers of lanthanide(III) ions and organic linker ligands have received much attention from chemists during the past decade for the development of fluorescent probes and electroluminescent devices (Hasegawa & Nakanishi, 2015[Hasegawa, Y. & Nakanishi, T. (2015). RSC Adv. 5, 338-353.]). In particular, polymeric EuIII and TbIII compounds with a range of organic linker ligands are the most intense emitters among the lanthanide(III) series, and they have been developed extensively as ion sensing and optical materials (Cui et al., 2014[Cui, Y., Chen, B. & Qian, G. (2014). Coord. Chem. Rev. 273-274, 76-86.]). Lanthan­ide(III) ions are known to have a high affinity and preference for hard donor atoms. Thus, di­carb­oxy­lic acid ligands containing aliphatic, aromatic and N-heterocyclic moieties have been widely employed in the construction of luminescent lanthanide coordination polymers (So et al., 2015[So, M. C., Wiederrecht, G. P., Mondloch, J. E., Hupp, J. T. & Farha, O. K. (2015). Chem. Commun. 51, 3501-3510.]). Among the ligands in this class, for instance, terephthalic acid is known to provide an efficient energy transfer to support strong lanthan­ide(III)-centered luminescent emission via the `antenna effect' (Samuel et al., 2009[Samuel, A. P. S., Xu, J. & Raymond, K. N. (2009). Inorg. Chem. 48, 687-698.]). On the other hand, small rigid planar species with versatile coordination oxygen donor sites such as oxalate, carbonate, nitrate, and formate anions are also a very important class of ligands for the preparation of lanthanide coordination polymers (Hong et al., 2014[Hong, F., Zhou, L., Li, L., Xia, Q. & Ye, M. (2014). Mater. Res. Bull. 60, 252-257.]; Gupta et al., 2015[Gupta, S. K., Rajeshwari, B., Achary, S. N., Patwe, S. J., Tyagi, A. K., Natarajan, V. & Kadam, R. M. (2015). Eur. J. Inorg. Chem. pp. 4429-4436.]). These small versatile ligands can bind to metals in different modes, resulting in the formation of multi-dimensional coordination networks with short inter­metallic distances, which can aid the energy-transfer process between chromophoric antenna ligands and lanthanide(III) ions (Wang et al., 2012[Wang, H., Liu, S.-J., Tian, D., Jia, J.-M. & Hu, T.-L. (2012). Cryst. Growth Des. 12, 3263-3270.]). In addition, the oxalate anion has proved to be an efficient sensitizer for lanthanide(III)-based emission (Cheng et al., 2007[Cheng, J. W., Zheng, S. T. & Yang, G. Y. (2007). Dalton Trans. pp. 4059-4066.]). Recently, many multi-dimensional luminescent lanthanide coordination polymers containing antenna and small rigid planar mixed ligands have been reported (Xu et al., 2013[Xu, X., Zhou, Y., Huang, D., Xiong, W., Su, M., Wang, K., Han, S. & Hong, M. (2013). Cryst. Growth Des. 13, 5420-5432.]; Wang et al., 2013[Wang, P., Fan, R.-Q., Liu, X.-R., Wang, L.-Y., Yang, Y.-L., Cao, W.-W., Yang, B., Hasi, W., Su, Q. & Mu, Y. (2013). CrystEngComm, 15, 1931-1949.]). However, only a few compounds with mixed small rigid planar ligands alone have been described in the literature (Zhang et al., 2007[Zhang, L.-Z., Gu, W., Li, B., Liu, X. & Liao, D.-Z. (2007). Inorg. Chem. 46, 622-624.]; Huang et al., 2013[Huang, D.-Q., Zhang, H., Sheng, L.-Q., Liu, Z.-D., Xu, H.-J. & Fan, S.-H. (2013). Chin. J. Inorg. Chem. 29, 1-6.]; Tang et al., 2014[Tang, Q., Liu, Y., Liu, S., He, D., Miao, J., Wang, X., Yang, G., Shi, Z. & Zheng, Z. (2014). J. Am. Chem. Soc. 136, 12444-12449.]).

[Scheme 1]

Herein, we report the synthesis and structure of a terbium(III) coordination polymer containing formate and oxalate mixed ligands, [Tb(CHO2)(C2O4)]n, (I)[link], having a three-dimensional 12-connected fcu topology with point symbol (324.436.56). The thermal stability and luminescent properties of compound (I)[link] have also been investigated.

2. Structural commentary

Single crystal X-ray diffraction analysis revealed that (I)[link] is isotypic in the ortho­rhom­bic Pnma space group with the LaIII, CeIII and SmIII analogues (Romero et al., 1996[Romero, S., Mosset, A. & Trombe, J. C. (1996). J. Solid State Chem. 127, 256-266.]). The asymmetric unit contains one TbIII ion, one formate anion, and half of an oxalate anion. As shown in Fig. 1[link], each TbIII ion is nine-coordinated in a distorted tricapped trigonal prismatic manner (Fig. 1[link]) by two chelating carboxyl­ate groups from two oxalate ligands, two carboxyl­ate oxygen atoms from another two oxalate ligands and three oxygen atoms from three formate ligands, with the O—Tb—O bond angles ranging from 64.53 (6) to 144.49 (4)°. The Tb—O bond lengths in (I)[link] are in the range of 2.4165 (19) to 2.478 (3) Å (Table 1[link]), which is in good agreement with the reported distances for other TbIII complexes containing oxygen donor ligands (Cheng et al., 2007[Cheng, J. W., Zheng, S. T. & Yang, G. Y. (2007). Dalton Trans. pp. 4059-4066.]; Zhu et al., 2007[Zhu, W. H., Wang, Z. M. & Gao, S. (2007). Inorg. Chem. 46, 1337-1342.]). All of the bond lengths and bond angles in the formate and oxalate anions are also within normal ranges (Rossin et al., 2012[Rossin, A., Giambastiani, G., Peruzzini, M. & Sessoli, R. (2012). Inorg. Chem. 51, 6962-6968.]; Hong et al., 2014[Hong, F., Zhou, L., Li, L., Xia, Q. & Ye, M. (2014). Mater. Res. Bull. 60, 252-257.]; Gupta et al., 2015[Gupta, S. K., Rajeshwari, B., Achary, S. N., Patwe, S. J., Tyagi, A. K., Natarajan, V. & Kadam, R. M. (2015). Eur. J. Inorg. Chem. pp. 4429-4436.]). The coordination modes of the formate and oxalate ligands in (I)[link] (Fig. 2[link]) are commonly observed in lanthanide coordination polymers (Zhang et al., 2007[Zhang, L.-Z., Gu, W., Li, B., Liu, X. & Liao, D.-Z. (2007). Inorg. Chem. 46, 622-624.]; Rossin et al., 2012[Rossin, A., Giambastiani, G., Peruzzini, M. & Sessoli, R. (2012). Inorg. Chem. 51, 6962-6968.]).

Table 1
Selected bond lengths (Å)

Tb1—O1 2.417 (3) Tb1—O4iv 2.4370 (18)
Tb1—O1i 2.478 (3) Tb1—O4v 2.4651 (17)
Tb1—O2ii 2.437 (3) Tb1—O4vi 2.4370 (17)
Tb1—O3iii 2.4165 (19) Tb1—O4vii 2.4651 (17)
Tb1—O3 2.4165 (19)    
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z]; (iv) -x, -y+1, -z+1; (v) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (vi) [-x, y+{\script{1\over 2}}, -z+1]; (vii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
Coordination environment of the TbIII ion in (I)[link]. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. For symmetry codes, see Table 1[link].
[Figure 2]
Figure 2
A view of the two-dimensional terbium-formate network in (I)[link], showing the monolayer structure projected in the ac plane. The dashed lines indicate the intra­layer C—H⋯O hydrogen bonds (Table 2[link]).

As shown in Fig. 2[link], each formate anion adopts a μ3-bridging coordination mode connecting three TbIII ions, forming a two-dimensional (2-D) layer in the ac plane. In the 2-D terbium-formate monolayer, the Tb1⋯Tb1 separations along the formate ligands in synanti and antianti O1,O2-bridging coordination modes (Rossin et al., 2012[Rossin, A., Giambastiani, G., Peruzzini, M. & Sessoli, R. (2012). Inorg. Chem. 51, 6962-6968.]) are 6.1567 (3) and 6.6021 (2) Å, respectively. The adjacent 2-D monolayers are stacked in an –ABA– sequence running perpendicular to the b axis with an inter­layer spacing of ca 5.3 Å (Fig. 3[link]). The oxalate ligand adopts a μ4-chelating-bridging coordination mode, linking four TbIII ions along the a axis to form a three-dimensional (3-D) terbium–oxalate open framework (Fig. 3[link]). The Tb1⋯Tb1 distance via the formate O1- and oxalate O4-bridging ligands is 3.8309 (2) Å with the Tb1—O1—Tb1 and Tb1—O4—Tb1 bond angles being 103.00 (9) and 102.79 (6)°, respectively. On the other hand, the channels in the 3-D open framework have an approximate rhombic shape with a Tb1⋯Tb1 separation of 6.2670 (2) Å, and are cross-linked parallel to the c axis by bridging formate ligands as shown in Fig. 4[link]. The presence of guest mol­ecules in the lattice as well as the formation of inter­penetrated networks of (I)[link] are thus prevented. Furthermore, the topology of the network in (I)[link] was analysed using TOPOS (Blatov et al., 2000[Blatov, V. A., Shevchenko, A. P. & Serezhkin, V. N. (2000). J. Appl. Cryst. 33, 1193.]). As schematically depicted in Fig. 5[link], the overall framework can be defined as a 12-connected fcu topology with point symbol (324.436.56) by linking each adjacent layer of TbIII atoms via formate and oxalate ligands.

[Figure 3]
Figure 3
The terbium-formate layered structure viewed along the c axis.
[Figure 4]
Figure 4
A perspective view along the a axis of the three-dimensional framework.
[Figure 5]
Figure 5
Schematic representation of the 12-connected fcu topology in (I)[link].

The infrared spectrum of (I)[link] was collected from a polycrystalline sample pelletized with KBr, in the range 4000–400 cm−1. This spectrum indicates the presence of the carboxyl­ate groups of the ligands by appearance of the strong absorption bands at 1630 and 1315 cm−1 for the asymmetric (νasymCOO) and the symmetric (νsymCOO) carboxyl­ate vibrations, respectively (Deacon & Phillips, 1980[Deacon, G. B. & Phillips, R. J. (1980). Coord. Chem. Rev. 33, 227-250.]). To examine the thermal stability of (I)[link], thermogravimetric analysis was performed on a polycrystalline sample under a nitro­gen atmosphere in the temperature range of 303–1273 K. There is no weight loss before 623 K due to the stability of the fcu-type 3-D frameworks. The decomposition of the framework, however, occurred rapidly at temperatures above 628 K.

The photoluminescence properties of (I)[link] were investigated in the solid state at room temperature. The emission spectrum is shown in Fig. 6[link]. The emission spectrum upon excitation at 305 nm exhibits the characteristic f–f transitions of TbIII ions (Bünzli, 2010[Bünzli, J. G. (2010). Chem. Rev. 110, 2729-2755.]). The emission peaks at 487, 543, 585, and 617 nm can be assigned to the 5D47FJ (J = 6, 5, 4, 3) transitions, respectively. The most intense transition is 5D47F5, which implies the emitted light is green. The emission lifetime of (I)[link] is 1.79 ms.

[Figure 6]
Figure 6
The solid-state emission spectrum of (I)[link] at room temperature.

3. Supra­molecular features

The two-dimensional terbium-formate monolayers are stabilized by weak intra-layer C1—H1⋯O2viii hydrogen bonds giving S(7) graph-set motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), in which each formate anion acts as a donor and acceptor for one hydrogen bond (Table 2[link], Fig. 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2viii 0.93 2.15 3.051 (5) 164
Symmetry code: (viii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+{\script{1\over 2}}].

4. Database survey

A search of the Cambridge Structural Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for lanthanide coordination polymers containing mixed oxalate and formate ligands gave four hits (RIFQIG, RIFRED, RIFRIH; Romero et al., 1996[Romero, S., Mosset, A. & Trombe, J. C. (1996). J. Solid State Chem. 127, 256-266.]; RIFQIG01; Tan et al., 2009[Tan, J. C., Furman, J. D. & Cheetham, A. K. (2009). J. Am. Chem. Soc. 131, 14252-14254.]), which are isotypic with the title compound (I)[link] as previously mentioned. The structures involving oxalate and acetate analogues have also been reported (AZOCIC; Di et al., 2011[Di, W.-J., Lan, S.-M., Zhang, Q. & Liang, Y.-X. (2011). Acta Cryst. E67, m1436-m1437.]; Gutkowski et al., 2011[Gutkowski, K., Freire, E. & Baggio, R. (2011). Acta Cryst. C67, m77-m80.]; SOPPIX; Zhang et al., 2009[Zhang, X., Xing, Y., Wang, C., Han, J., Li, J., Ge, M., Zeng, X. & Niu, S. (2009). Inorg. Chim. Acta, 362, 1058-1064.]; VORBUA; Koner & Goldberg, 2009[Koner, R. & Goldberg, I. (2009). Acta Cryst. C65, m160-m164.]).

5. Synthesis and crystallization

All reagents were of analytical grade and were used as obtained from commercial sources without further purification. Synthesis of (I)[link]: TbCl3·6H2O (0.187 g, 0.5 mmol), oxalic acid (0.045 g, 0.5 mmol), Na2CO3 (0.011 g, 0.1 mmol), and a mixture (1:1 v/v) of N,N′-di­methyl­formamide (DMF) and water (6 ml) was sealed in a 23 ml Teflon-lined stainless steel vessel and heated under autogenous pressure at 463 K for two days. After the reactor was cooled to room temperature, colorless block-shaped crystals were filtered off and dried in air. Yield: 0.118 g (63% based on the TbIII source). Analysis (%) calculated for C3HO6Tb (291.96): C, 12.34; H, 0.35%. Found: C, 12.40; H, 0.33%. IR (KBr, cm−1): 2823 (w), 2491 (w), 1630 (s), 1440 (w), 1315 (s), 1022 (m), 914 (w), 795 (s), 611 (w), 492 (s), 408 (w).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The formate H atom was found in a difference electron-density map and was refined using a riding-model approximation, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [Tb(CHO2)(C2O4)]
Mr 291.96
Crystal system, space group Orthorhombic, Pnma
Temperature (K) 296
a, b, c (Å) 7.0138 (3), 10.6077 (4), 6.6021 (2)
V3) 491.20 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 14.36
Crystal size (mm) 0.2 × 0.12 × 0.08
 
Data collection
Diffractometer Bruker D8 QUEST CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.655, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 6517, 638, 594
Rint 0.028
(sin θ/λ)max−1) 0.666
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.012, 0.025, 1.10
No. of reflections 638
No. of parameters 52
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.75, −0.63
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

Poly[(µ3-formato)(µ4-oxalato)terbium(III)] top
Crystal data top
[Tb(CHO2)(C2O4)]Dx = 3.948 Mg m3
Mr = 291.96Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 3952 reflections
a = 7.0138 (3) Åθ = 3.6–28.3°
b = 10.6077 (4) ŵ = 14.36 mm1
c = 6.6021 (2) ÅT = 296 K
V = 491.20 (3) Å3Block, colourless
Z = 40.2 × 0.12 × 0.08 mm
F(000) = 528
Data collection top
Bruker D8 QUEST CMOS
diffractometer
638 independent reflections
Radiation source: microfocus sealed x-ray tube, Incoatec Iµus594 reflections with I > 2σ(I)
Graphite Double Bounce Multilayer Mirror monochromatorRint = 0.028
Detector resolution: 10.5 pixels mm-1θmax = 28.3°, θmin = 3.6°
ω and φ scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1314
Tmin = 0.655, Tmax = 0.746l = 88
6517 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.012Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.025H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0092P)2 + 0.8666P]
where P = (Fo2 + 2Fc2)/3
638 reflections(Δ/σ)max = 0.001
52 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.63 e Å3
Special details top

Experimental. SADABS-2014 (Bruker, 2014) was used for absorption correction. wR2(int) was 0.0566 before and 0.0416 after correction. The ratio of minimum to maximum transmission is 0.8789. The λ/2 correction factor is 0.00150.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tb10.20226 (2)0.75000.63323 (2)0.00749 (6)
O10.5347 (4)0.75000.5364 (4)0.0132 (5)
O20.5527 (4)0.75000.2000 (4)0.0237 (7)
O30.2384 (3)0.54490 (18)0.4786 (3)0.0186 (4)
O40.0873 (3)0.37671 (16)0.3522 (3)0.0120 (4)
C10.6227 (6)0.75000.3693 (6)0.0197 (8)
H10.75510.75000.37610.024*
C20.0956 (4)0.4788 (2)0.4518 (4)0.0124 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb10.00799 (8)0.00750 (8)0.00698 (9)0.0000.00049 (7)0.000
O10.0110 (13)0.0209 (14)0.0076 (13)0.0000.0013 (10)0.000
O20.0235 (16)0.0381 (18)0.0096 (14)0.0000.0010 (12)0.000
O30.0133 (9)0.0143 (9)0.0282 (11)0.0028 (7)0.0010 (8)0.0093 (9)
O40.0136 (8)0.0093 (8)0.0131 (9)0.0011 (7)0.0027 (7)0.0041 (7)
C10.0141 (17)0.029 (2)0.016 (2)0.0000.0009 (16)0.000
C20.0151 (12)0.0112 (11)0.0109 (12)0.0003 (10)0.0002 (10)0.0020 (10)
Geometric parameters (Å, º) top
Tb1—O12.417 (3)Tb1—O4vii2.4651 (17)
Tb1—O1i2.478 (3)O1—C11.265 (5)
Tb1—O2ii2.437 (3)O2—C11.221 (5)
Tb1—O3iii2.4165 (19)O3—C21.235 (3)
Tb1—O32.4165 (19)O4—C21.268 (3)
Tb1—O4iv2.4370 (18)C1—H10.9300
Tb1—O4v2.4651 (17)C2—C2iv1.551 (5)
Tb1—O4vi2.4370 (17)
Tb1viii—Tb1—Tb1i132.533 (9)O4vi—Tb1—Tb1viii138.32 (4)
O1—Tb1—Tb1viii39.06 (6)O4v—Tb1—Tb1viii38.34 (4)
O1i—Tb1—Tb1i37.94 (6)O4vi—Tb1—Tb1i38.87 (4)
O1—Tb1—Tb1i171.60 (6)O4vii—Tb1—Tb1i108.19 (4)
O1i—Tb1—Tb1viii94.59 (6)O4iv—Tb1—Tb1i38.87 (4)
O1—Tb1—O1i133.65 (7)O4iv—Tb1—Tb1viii138.33 (4)
O1—Tb1—O2ii100.16 (9)O4v—Tb1—Tb1i108.19 (4)
O1—Tb1—O4vii65.01 (6)O4vii—Tb1—Tb1viii38.34 (4)
O1—Tb1—O4vi144.49 (4)O4iv—Tb1—O1i64.53 (6)
O1—Tb1—O4v65.01 (6)O4vii—Tb1—O1i76.57 (6)
O1—Tb1—O4iv144.49 (4)O4vi—Tb1—O1i64.53 (6)
O2ii—Tb1—Tb1viii139.22 (7)O4v—Tb1—O1i76.57 (6)
O2ii—Tb1—Tb1i88.25 (7)O4vi—Tb1—O2ii71.16 (7)
O2ii—Tb1—O1i126.19 (9)O4iv—Tb1—O2ii71.16 (7)
O2ii—Tb1—O4v141.92 (5)O4v—Tb1—O4vii66.08 (8)
O2ii—Tb1—O4vii141.92 (5)O4vi—Tb1—O4v140.95 (3)
O3—Tb1—Tb1viii94.25 (5)O4iv—Tb1—O4vi66.94 (8)
O3iii—Tb1—Tb1i105.42 (5)O4iv—Tb1—O4v100.09 (6)
O3iii—Tb1—Tb1viii94.25 (5)O4vi—Tb1—O4vii100.09 (6)
O3—Tb1—Tb1i105.42 (5)O4iv—Tb1—O4vii140.95 (3)
O3—Tb1—O177.72 (5)Tb1—O1—Tb1viii103.00 (9)
O3—Tb1—O1i114.93 (5)C1—O1—Tb1viii122.4 (2)
O3iii—Tb1—O1i114.93 (5)C1—O1—Tb1134.6 (2)
O3iii—Tb1—O177.72 (5)C1—O2—Tb1ix130.8 (3)
O3—Tb1—O2ii70.35 (5)C2—O3—Tb1119.13 (17)
O3iii—Tb1—O2ii70.35 (5)Tb1iv—O4—Tb1x102.79 (6)
O3—Tb1—O3iii128.40 (10)C2—O4—Tb1x137.90 (16)
O3—Tb1—O4vii132.53 (6)C2—O4—Tb1iv119.27 (16)
O3—Tb1—O4vi126.90 (6)O1—C1—H1116.5
O3iii—Tb1—O4iv126.90 (6)O2—C1—O1127.1 (4)
O3iii—Tb1—O4vi66.88 (6)O2—C1—H1116.5
O3iii—Tb1—O4v132.52 (6)O3—C2—O4126.6 (2)
O3iii—Tb1—O4vii72.19 (6)O3—C2—C2iv118.5 (3)
O3—Tb1—O4v72.19 (6)O4—C2—C2iv114.9 (3)
O3—Tb1—O4iv66.88 (6)
Tb1viii—Tb1—O1—C1180.0O2ii—Tb1—O3—C267.5 (2)
Tb1i—Tb1—O3—C214.9 (2)O3iii—Tb1—O1—Tb1viii112.87 (5)
Tb1viii—Tb1—O3—C2151.3 (2)O3—Tb1—O1—Tb1viii112.87 (5)
Tb1—O1—C1—O20.0O3iii—Tb1—O1—C167.13 (5)
Tb1viii—O1—C1—O2180.0O3—Tb1—O1—C167.13 (5)
Tb1ix—O2—C1—O1180.0O3iii—Tb1—O3—C2109.9 (2)
Tb1—O3—C2—O4171.1 (2)O4v—Tb1—O1—Tb1viii36.98 (5)
Tb1—O3—C2—C2iv9.4 (4)O4vi—Tb1—O1—Tb1viii108.29 (11)
Tb1x—O4—C2—O36.7 (5)O4vii—Tb1—O1—Tb1viii36.98 (5)
Tb1iv—O4—C2—O3170.9 (2)O4iv—Tb1—O1—Tb1viii108.29 (11)
Tb1iv—O4—C2—C2iv8.7 (4)O4v—Tb1—O1—C1143.02 (5)
Tb1x—O4—C2—C2iv173.74 (18)O4vi—Tb1—O1—C171.71 (11)
O1i—Tb1—O1—Tb1viii0.0O4vii—Tb1—O1—C1143.02 (5)
O1i—Tb1—O1—C1180.0O4iv—Tb1—O1—C171.71 (11)
O1i—Tb1—O3—C254.2 (2)O4iv—Tb1—O3—C29.75 (19)
O1—Tb1—O3—C2173.1 (2)O4vi—Tb1—O3—C221.7 (2)
O2ii—Tb1—O1—Tb1viii180.0O4v—Tb1—O3—C2119.5 (2)
O2ii—Tb1—O1—C10.0O4vii—Tb1—O3—C2148.72 (19)
Symmetry codes: (i) x1/2, y, z+3/2; (ii) x1/2, y, z+1/2; (iii) x, y+3/2, z; (iv) x, y+1, z+1; (v) x+1/2, y+1, z+1/2; (vi) x, y+1/2, z+1; (vii) x+1/2, y+1/2, z+1/2; (viii) x+1/2, y, z+3/2; (ix) x+1/2, y, z+1/2; (x) x+1/2, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2xi0.932.153.051 (5)164
Symmetry code: (xi) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

This research was supported financially by the National Research Council of Thailand through the Thammasat University Research Scholar (No. 216919). We thank Central Scientific Instrument Center (CSIC), Faculty of Science and Technology, Thammasat University, for providing access to the equipment.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlatov, V. A., Shevchenko, A. P. & Serezhkin, V. N. (2000). J. Appl. Cryst. 33, 1193.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBünzli, J. G. (2010). Chem. Rev. 110, 2729–2755.  PubMed Google Scholar
First citationCheng, J. W., Zheng, S. T. & Yang, G. Y. (2007). Dalton Trans. pp. 4059–4066.  Web of Science CSD CrossRef Google Scholar
First citationCui, Y., Chen, B. & Qian, G. (2014). Coord. Chem. Rev. 273–274, 76–86.  CrossRef CAS Google Scholar
First citationDeacon, G. B. & Phillips, R. J. (1980). Coord. Chem. Rev. 33, 227–250.  CrossRef CAS Web of Science Google Scholar
First citationDi, W.-J., Lan, S.-M., Zhang, Q. & Liang, Y.-X. (2011). Acta Cryst. E67, m1436–m1437.  CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationGupta, S. K., Rajeshwari, B., Achary, S. N., Patwe, S. J., Tyagi, A. K., Natarajan, V. & Kadam, R. M. (2015). Eur. J. Inorg. Chem. pp. 4429–4436.  CrossRef Google Scholar
First citationGutkowski, K., Freire, E. & Baggio, R. (2011). Acta Cryst. C67, m77–m80.  CSD CrossRef IUCr Journals Google Scholar
First citationHasegawa, Y. & Nakanishi, T. (2015). RSC Adv. 5, 338–353.  CrossRef CAS Google Scholar
First citationHong, F., Zhou, L., Li, L., Xia, Q. & Ye, M. (2014). Mater. Res. Bull. 60, 252–257.  CrossRef CAS Google Scholar
First citationHuang, D.-Q., Zhang, H., Sheng, L.-Q., Liu, Z.-D., Xu, H.-J. & Fan, S.-H. (2013). Chin. J. Inorg. Chem. 29, 1–6.  CAS Google Scholar
First citationKoner, R. & Goldberg, I. (2009). Acta Cryst. C65, m160–m164.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRomero, S., Mosset, A. & Trombe, J. C. (1996). J. Solid State Chem. 127, 256–266.  CSD CrossRef CAS Web of Science Google Scholar
First citationRossin, A., Giambastiani, G., Peruzzini, M. & Sessoli, R. (2012). Inorg. Chem. 51, 6962–6968.  CrossRef CAS PubMed Google Scholar
First citationSamuel, A. P. S., Xu, J. & Raymond, K. N. (2009). Inorg. Chem. 48, 687–698.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSo, M. C., Wiederrecht, G. P., Mondloch, J. E., Hupp, J. T. & Farha, O. K. (2015). Chem. Commun. 51, 3501–3510.  CrossRef CAS Google Scholar
First citationTan, J. C., Furman, J. D. & Cheetham, A. K. (2009). J. Am. Chem. Soc. 131, 14252–14254.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTang, Q., Liu, Y., Liu, S., He, D., Miao, J., Wang, X., Yang, G., Shi, Z. & Zheng, Z. (2014). J. Am. Chem. Soc. 136, 12444–12449.  CSD CrossRef CAS PubMed Google Scholar
First citationWang, P., Fan, R.-Q., Liu, X.-R., Wang, L.-Y., Yang, Y.-L., Cao, W.-W., Yang, B., Hasi, W., Su, Q. & Mu, Y. (2013). CrystEngComm, 15, 1931–1949.  CSD CrossRef CAS Google Scholar
First citationWang, H., Liu, S.-J., Tian, D., Jia, J.-M. & Hu, T.-L. (2012). Cryst. Growth Des. 12, 3263–3270.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, X., Zhou, Y., Huang, D., Xiong, W., Su, M., Wang, K., Han, S. & Hong, M. (2013). Cryst. Growth Des. 13, 5420–5432.  CSD CrossRef CAS Google Scholar
First citationZhang, L.-Z., Gu, W., Li, B., Liu, X. & Liao, D.-Z. (2007). Inorg. Chem. 46, 622–624.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, X., Xing, Y., Wang, C., Han, J., Li, J., Ge, M., Zeng, X. & Niu, S. (2009). Inorg. Chim. Acta, 362, 1058–1064.  CSD CrossRef CAS Google Scholar
First citationZhu, W. H., Wang, Z. M. & Gao, S. (2007). Inorg. Chem. 46, 1337–1342.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds