research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 2| February 2016| Pages 196-198

Poly[μ2-aqua-aqua­[μ3-N-butyl-N-(2-hy­dr­oxy­ethyl)di­thio­carbamato-κ3O,O′:S]sodium]

CROSSMARK_Color_square_no_text.svg

aSchool of Studies in Chemistry, Jiwaji University, Gwalior 474 011, India, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and cDepartment of Chemistry, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
*Correspondence e-mail: rbutcher99@yahoo.com

Edited by V. V. Chernyshev, Moscow State University, Russia (Received 27 November 2015; accepted 13 January 2016; online 20 January 2016)

In the title compound, [Na(C7H14NOS2)(H2O)2]n, the NaI cation is coordinated by five O atoms [Na—O = 2.3142 (11)–2.4677 (10) Å] from three aqua and two N-butyl-N-(2-hy­droxy­eth­yl)di­thio­carbamate (L) ligands and one S atom [Na—S = 3.0074 (6) Å] from a third L ligand in a highly distorted octa­hedral geometry. Two aqua ligands related by an inversion center bridge two NaI cations, and each L ligand coordinates three NaI cations, leading to a layered arrangement aligned parallel to the bc plane. Inter­molecular O—H⋯S hydrogen bonds are observed in the inner part of each polymeric layer; these are packed along the a axis and held together by weak van der Waals forces.

1. Chemical context

Di­thio­carbamates have recently drawn more attention due to their application in group-transfer radical cyclization reactions (Grainger & Innocenti, 2007[Grainger, R. S. & Innocenti, P. (2007). Heteroat. Chem. 18, 568-571.]) and as ligands for chelating metals (Greenwood & Earnshaw, 1997[Greenwood, N. N. & Earnshaw, A. (1997). In Chemistry of the elements, 2nd ed. London: Butterworth-Heinemann.]). In recent years, their applications have not only become apparent as pesticides and fungicides, but they have also been widely used as vulcanization accelerators in the rubber industry (Svetlik et al., 1955[Svetlik, J. F., Railsback, H. E., Biard, C. C. & Louthan, R. P. (1955). Ind. Eng. Chem. 47, 352-356.]). Di­thio­carbamates are also of biological importance due to their anti­cancer, anti­bacterial, anti­tuberculosis and anti­fungal properties (Li et al., 2015[Li, R.-D., Wang, H.-L., Li, Y.-B., Wang, Z.-Q., Wang, X., Wang, Y.-T., Ge, Z.-M. & Li, R.-T. (2015). Eur. J. Med. Chem. 93, 381-391.]; Sim et al., 2014[Sim, J.-H., Jamaludin, N. S., Khoo, C.-H., Cheah, Y.-K., Halim, S. N. B. A., Seng, H.-L. & Tiekink, E. R. T. (2014). Gold Bull. 47, 225-236.]; Chauhan et al., 2012[Chauhan, K., Sharma, M., Singh, P., Kumar, V., Shukla, P. K., Siddiqi, M. I. & Chauhan, P. M. S. (2012). MedChemComm, 3, 1104-1110.]; Byrne et al., 2007[Byrne, S. T., Gu, P., Zhou, J., Denkin, S. M., Chong, C., Sullivan, D., Liu, J. O. & Zhang, Y. (2007). Antimicrob. Agents Chemother. 51, 4495-4497.]). Their anti-oxidant properties make them even more valuable compounds. As part of our investigations on organotindi­thio complexes (Srivastava et al., 2007[Srivastava, S. K., Pandey, H. & Sharma, R. (2007). Ind. J. Chem. Sect. A, 46, 1105-1108.]), we herein report the synthesis and structure of the title compound.

[Scheme 1]

2. Structural commentary

The title compound is a two-dimensional polymer with formula [Na(μ3-C7H14NOS2)(μ2-H2O)(H2O)]. Within this polymer, each NaI ion exhibits a distorted octa­hedral geometry (Fig. 1[link]) made up from coordination by the S atom of one N-butyl-N-(2-hy­droxy­eth­yl)di­thio­carbamate (L) anion, two hy­droxy O atoms from two L ligands and three aqua ligands, of which two aqua ligands form bridging units between two NaI cations. The di­thio­carbamate anion acts as a triply bridging ligand, where one S atom coordinates one sodium atom and the Ohy­droxy atom coordinates two sodium atoms (Fig. 2[link]). The aforementioned feature of multiple coord­ination modes leads to the formation of polymeric layers parallel to the bc plane with the hydro­phobic butyl arms protruding up and down. In the L ligand, while the two S atoms are not chemically equivalent as only one is involved in bonding to the Na cation, the C—S bond lengths are identical at 1.726 (1) Å.

[Figure 1]
Figure 1
A portion of the title crystal structure showing the coordination environment for the NaI cation and the atomic labels [symmetry codes: (A) 1 − x, y − [{1\over 2}], [{1\over 2}] − z; (B) 1 − x, −y, 1 − z]. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Diagram showing the triply bridging nature of the di­thio­carbamate anion [symmetry codes: (A) 1 − x, −y, 1 − z; (B) 1 − x, y + [{1\over 2}], [{1\over 2}] − z].

3. Supra­molecular features

Inter­molecular O—H⋯S hydrogen bonds (Table 1[link]) are observed in the inner part of each polymeric layer (Fig. 3[link]). The layers are further packed along the a axis and held together by weak van der Waals forces.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯S1i 0.82 (2) 2.41 (2) 3.2227 (10) 167.6 (19)
O1W—H1W1⋯S2 0.82 (2) 2.48 (2) 3.2933 (10) 168 (2)
O1W—H1W2⋯S2ii 0.85 (3) 2.42 (3) 3.2605 (10) 171 (2)
O2W—H2W2⋯S1ii 0.78 (2) 2.48 (2) 3.2624 (11) 173 (2)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
A portion of the crystal packing showing the O—H⋯S hydrogen bonds (dashed lines) in the inner part of the polymeric layer [symmetry codes: (A) 1 − x, 1 − y, 1 − z; (B) 1 − x, y − [{1\over 2}], [{1\over 2}] − z; (C) 1 − x, −y, 1 − z; (D) x, [{3\over 2}] − y, [{1\over 2}] + z; (E) x, 1 + y, z; (F) x, [{1\over 2}] − y, [{1\over 2}] + x].

4. Database survey

In a recent publication, Howie et al. (2008[Howie, R. A., de Lima, G. M., Menezes, D. C., Wardell, J. L., Wardell, S. M. S. V., Young, D. J. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 1626-1637.]) reported a structurally similar compound where the butyl substituent was replaced by a propyl substituent. The crystal structures of other sodium salts of di­thio­carbamates, Na[S2CN(C2H5)2]·3H2O (Colapietro et al., 1968[Colapietro, M., Domenicano, A. & Vaciago, A. (1968). Chem. Commun. pp. 572-573.]), Na[S2CN(CH2)4]·2H2O (Albertsson et al., 1980[Albertsson, J., Oskarsson, Å., Ståhl, K., Svensson, C. & Ymén, I. (1980). Acta Cryst. B36, 3072-3078.]; Ymén, 1982[Ymén, I. (1982). Acta Cryst. B38, 2671-2674.]), Na[S2CN(C3H7)2]·5H2O (Ymén, 1983[Ymén, I. (1983). Acta Cryst. C39, 874-877.]) and Na[S2CN(CH3)2]·2H2O (Oskarsson & Ymén, 1983[Oskarsson, Å. & Ymén, I. (1983). Acta Cryst. C39, 66-68.]), Na[S2CN(CH2)5]·2H2O (Mafud & Gambardella, 2011[Mafud, A. C. & Gambardella, M. T. P. (2011). Acta Cryst. E67, m942.]), Na[S2CN(C8H5NS)]·3H2O (Téllez et al., 2004[Téllez, F., Cruz, A., López-Sandoval, H., Ramos-García, I., Gayosso, M., Castillo-Sierra, R. N., Paz-Michel, B., Nöth, H., Flores-Parra, A. & Contreras, R. (2004). Eur. J. Org. Chem. pp. 4203-4214.]) have been reported. All these structures are polymeric in nature and contain the μ(H2O)2Na2 unit.

5. Synthesis and crystallization

The title compound was prepared by the reaction of N-butyl N-hy­droxy­ethyl amine (0.01 mol), carbon di­sulfide (0.01 mol) and sodium hydroxide (0.01 mol) in dry diethyl ether and was stirred for 4 h at 253 K. The crude product was recrystallized from isopropyl alcohol. It was then dissolved in a hexa­ne:diethyl ether (1:1 v/v) mixture and put in a deep freezer overnight. Square transparent crystals suitable for X ray analysis were obtained in 80% yield (m.p.: 430 K). Analysis calculated for C7H18NO3S2 (%) S, 29.78; found: S, 29.84.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All C-bound H atoms were idealized with C—H distances of 0.99 Å for CH2 and 0.98 Å for CH3 groups with atomic displacement parameters of Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. The water and hydroxyl H atoms were freely refined.

Table 2
Experimental details

Crystal data
Chemical formula [Na(C7H14NOS2)(H2O)2]
Mr 251.33
Crystal system, space group Monoclinic, P21/c
Temperature (K) 120
a, b, c (Å) 15.6223 (3), 5.8379 (1), 14.7114 (3)
β (°) 101.868 (2)
V3) 1313.02 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.90
Crystal size (mm) 0.39 × 0.31 × 0.24
 
Data collection
Diffractometer Agilent SuperNova Dual Source diffractometer with an Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.660, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5973, 2731, 2617
Rint 0.019
(sin θ/λ)max−1) 0.631
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.080, 1.05
No. of reflections 2731
No. of parameters 149
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.39
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]).

Supporting information


Chemical context top

Di­thio­carbamates have recently drawn more attention due to their application in group-transfer radical cyclization reactions (Grainger & Innocenti, 2007) and as ligands for chelating metals (Greenwood & Earnshaw, 1997). In recent years, their applications have not only become apparent as pesticides and fungicides, but they have also been widely used as vulcanization accelerators in the rubber industry (Svetlik et al., 1955). Di­thio­carbamates are also of biological importance due to their anti­cancer, anti­bacterial, anti­tuberculosis and anti­fungal properties (Li et al., 2015; Sim et al., 2014; Chauhan et al., 2012; Byrne et al., 2007). Their anti-oxidant properties make them even more valuable compounds. As part of our investigations on organotindi­thio complexes (Srivastava et al., 2007), we herein report the synthesis and structure of the title compound.

Structural commentary top

The title compound with empirical formula, [Na(µ3-C6H14ONCS2)(µ2-H2O)(H2O)], is a two-dimensional polymer. Within this polymer, each NaI ion exhibits a distorted o­cta­hedral geometry (Fig. 1) made up from coordination by the S atom of one N-butyl-N-(2-hy­droxy­ethyl)­dithio­carbamate (L) anion, two hy­droxy O atoms from two L ligands and three aqua ligands, of which two aqua ligands form bridging units between two NaI cations. The di­thio­carbamate anion acts as a triply bridging ligand, where one S atom coordinates one sodium atom and the Ohy­droxy atom coordinates two sodium atoms (Fig. 2). The aforementioned feature of multiple coordination modes leads to the formation of polymeric layers parallel to the bc plane with the hydro­phobic butyl arms protruding up and down. In the L ligand, while the two S atoms are not chemically equivalent as only one is involved in bonding to the Na cation, the C—S bond lengths are identical at 1.726 (1) Å.

Supra­molecular features top

Inter­molecular O—H···S hydrogen bonds (Table 1) are observed in the inner part of each polymeric layer (Fig. 3). The layers are further packed along the a axis and held together by weak van der Waals forces.

Database survey top

In a recent publication, Howie et al. (2008) reported a structurally similar compound where the butyl substituent was replaced by a propyl substituent. The crystal structures of other sodium salts of di­thio­carbamates, Na[S2CN(C2H5)2]·3H2O (Colapietro et al., 1968), Na[S2CN(CH2)4]·2H2O (Albertsson et al., 1980; Ymén, 1982), Na[S2CN(C3H7)2]·5H2O (Ymén, 1983) and Na[S2CN(CH3)2]·2H2O (Oskarsson & Ymén, 1983), Na[S2CN(CH2)5]·2H2O (Mafud & Gambardella, 2011), Na[S2CN(C8H5NS)]·3H2O Téllez et al., 2004) have been reported. All these structures are polymeric in nature and contain the µ(H2O)2Na2 unit.

Synthesis and crystallization top

The title compound was prepared by the reaction of N-butyl N-hy­droxy­ethyl amine (0.01 mol), carbon di­sulfide (0.01 mol) and sodium hydroxide (0.01 mol) in a dry di­ethyl ether and was stirred for 4 h at 253 K. The crude product was recrystallized from iso­propyl alcohol. It was then dissolved in a hexane:di­ethyl ether (1:1) mixture and put in a deep freezer overnight. Square transparent crystals suitable for X ray analysis were obtained in 80% yield (m.p.: 430 K). Analysis calculated for C14H36N2O6S4 (%) S, 29.78; found: S, 29.84.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. A l l C-bound H atoms were idealized with C—H distances of 0.99 Å for CH2 and 0.98 Å for CH3 groups with atomic displacement parameters of Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. The water and hydroxyl H atoms were refined isotropically.

Structure description top

Di­thio­carbamates have recently drawn more attention due to their application in group-transfer radical cyclization reactions (Grainger & Innocenti, 2007) and as ligands for chelating metals (Greenwood & Earnshaw, 1997). In recent years, their applications have not only become apparent as pesticides and fungicides, but they have also been widely used as vulcanization accelerators in the rubber industry (Svetlik et al., 1955). Di­thio­carbamates are also of biological importance due to their anti­cancer, anti­bacterial, anti­tuberculosis and anti­fungal properties (Li et al., 2015; Sim et al., 2014; Chauhan et al., 2012; Byrne et al., 2007). Their anti-oxidant properties make them even more valuable compounds. As part of our investigations on organotindi­thio complexes (Srivastava et al., 2007), we herein report the synthesis and structure of the title compound.

The title compound with empirical formula, [Na(µ3-C6H14ONCS2)(µ2-H2O)(H2O)], is a two-dimensional polymer. Within this polymer, each NaI ion exhibits a distorted o­cta­hedral geometry (Fig. 1) made up from coordination by the S atom of one N-butyl-N-(2-hy­droxy­ethyl)­dithio­carbamate (L) anion, two hy­droxy O atoms from two L ligands and three aqua ligands, of which two aqua ligands form bridging units between two NaI cations. The di­thio­carbamate anion acts as a triply bridging ligand, where one S atom coordinates one sodium atom and the Ohy­droxy atom coordinates two sodium atoms (Fig. 2). The aforementioned feature of multiple coordination modes leads to the formation of polymeric layers parallel to the bc plane with the hydro­phobic butyl arms protruding up and down. In the L ligand, while the two S atoms are not chemically equivalent as only one is involved in bonding to the Na cation, the C—S bond lengths are identical at 1.726 (1) Å.

Inter­molecular O—H···S hydrogen bonds (Table 1) are observed in the inner part of each polymeric layer (Fig. 3). The layers are further packed along the a axis and held together by weak van der Waals forces.

In a recent publication, Howie et al. (2008) reported a structurally similar compound where the butyl substituent was replaced by a propyl substituent. The crystal structures of other sodium salts of di­thio­carbamates, Na[S2CN(C2H5)2]·3H2O (Colapietro et al., 1968), Na[S2CN(CH2)4]·2H2O (Albertsson et al., 1980; Ymén, 1982), Na[S2CN(C3H7)2]·5H2O (Ymén, 1983) and Na[S2CN(CH3)2]·2H2O (Oskarsson & Ymén, 1983), Na[S2CN(CH2)5]·2H2O (Mafud & Gambardella, 2011), Na[S2CN(C8H5NS)]·3H2O Téllez et al., 2004) have been reported. All these structures are polymeric in nature and contain the µ(H2O)2Na2 unit.

Synthesis and crystallization top

The title compound was prepared by the reaction of N-butyl N-hy­droxy­ethyl amine (0.01 mol), carbon di­sulfide (0.01 mol) and sodium hydroxide (0.01 mol) in a dry di­ethyl ether and was stirred for 4 h at 253 K. The crude product was recrystallized from iso­propyl alcohol. It was then dissolved in a hexane:di­ethyl ether (1:1) mixture and put in a deep freezer overnight. Square transparent crystals suitable for X ray analysis were obtained in 80% yield (m.p.: 430 K). Analysis calculated for C14H36N2O6S4 (%) S, 29.78; found: S, 29.84.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. A l l C-bound H atoms were idealized with C—H distances of 0.99 Å for CH2 and 0.98 Å for CH3 groups with atomic displacement parameters of Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. The water and hydroxyl H atoms were refined isotropically.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A portion of the title crystal structure showing the coordination geometry for one Na cation and the atomic labels [symmetry codes: (A) 1 − x, y − 1/2, 1/2 − z; (B) 1 − x, −y, 1 − z]. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Diagram showing the triply bridging nature of the dithiocarbamate anion [symmetry codes: (A) 1 − x, −y, 1 − z; (B) 1 − x, y + 1/2, 1/2 − z].
[Figure 3] Fig. 3. A portion of the crystal packing showing the O—H···S hydrogen bonds (dashed lines) in the inner part of the polymeric layer [symmetry codes: (A) 1 − x, 1 − y, 1 − z; (B) 1 − x, y − 1/2, 1/2 − z; (C) 1 − x, −y, 1 − z; (D) x, 3/2 − y, 1/2 + z; (E) x, 1 + y, z; (F) x, 1/2 − y, 1/2 + x].
Poly[µ2-aqua-aqua[µ3-N-butyl-N-(2-hydroxyethyl)dithiocarbamato-κ3O,O':S]sodium] top
Crystal data top
[Na(C7H14NOS2)(H2O)2]F(000) = 536
Mr = 251.33Dx = 1.271 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 15.6223 (3) ÅCell parameters from 4003 reflections
b = 5.8379 (1) Åθ = 3.1–76.6°
c = 14.7114 (3) ŵ = 3.90 mm1
β = 101.868 (2)°T = 120 K
V = 1313.02 (4) Å3Chunk, colorless
Z = 40.39 × 0.31 × 0.24 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
2731 independent reflections
Radiation source: sealed X-ray tube2617 reflections with I > 2σ(I)
Detector resolution: 10.6501 pixels mm-1Rint = 0.019
ω scansθmax = 76.4°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 1917
Tmin = 0.660, Tmax = 1.000k = 74
5973 measured reflectionsl = 1817
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0516P)2 + 0.3898P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.080(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.29 e Å3
2731 reflectionsΔρmin = 0.39 e Å3
149 parametersExtinction correction: SHELXL2014 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0041 (4)
Crystal data top
[Na(C7H14NOS2)(H2O)2]V = 1313.02 (4) Å3
Mr = 251.33Z = 4
Monoclinic, P21/cCu Kα radiation
a = 15.6223 (3) ŵ = 3.90 mm1
b = 5.8379 (1) ÅT = 120 K
c = 14.7114 (3) Å0.39 × 0.31 × 0.24 mm
β = 101.868 (2)°
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
2731 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2617 reflections with I > 2σ(I)
Tmin = 0.660, Tmax = 1.000Rint = 0.019
5973 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.29 e Å3
2731 reflectionsΔρmin = 0.39 e Å3
149 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.44835 (3)0.26004 (8)0.45654 (3)0.01595 (14)
S10.76058 (2)0.34854 (5)0.14289 (2)0.01645 (11)
S20.60961 (2)0.50629 (5)0.22351 (2)0.01569 (11)
O10.59309 (6)0.09872 (16)0.47496 (6)0.0155 (2)
H1O0.6306 (14)0.125 (4)0.5218 (15)0.035 (5)*
O1W0.50061 (6)0.58495 (17)0.39025 (6)0.0172 (2)
H1W10.5325 (15)0.551 (4)0.3542 (15)0.039 (6)*
H1W20.4670 (16)0.686 (4)0.3609 (16)0.046 (6)*
O2W0.30199 (7)0.34773 (19)0.44462 (7)0.0220 (2)
H2W10.2792 (15)0.233 (4)0.4121 (16)0.041 (6)*
H2W20.2843 (15)0.462 (4)0.4197 (15)0.036 (6)*
N10.73937 (7)0.23989 (18)0.31192 (7)0.0149 (2)
C10.70580 (8)0.3542 (2)0.23350 (8)0.0138 (2)
C20.70139 (8)0.2560 (2)0.39489 (8)0.0154 (3)
H2A0.67350.40790.39640.019*
H2B0.74850.24240.45100.019*
C30.63355 (8)0.0692 (2)0.39629 (8)0.0167 (3)
H3A0.58840.07580.33830.020*
H3B0.66210.08280.39960.020*
C40.82101 (9)0.1072 (2)0.32374 (9)0.0197 (3)
H4A0.82700.04400.26290.024*
H4B0.81840.02290.36620.024*
C50.90068 (9)0.2546 (3)0.36299 (10)0.0269 (3)
H5A0.90060.39060.32280.032*
H5B0.89630.30910.42560.032*
C60.98645 (11)0.1266 (4)0.36977 (15)0.0465 (5)
H6A0.99290.08110.30670.056*
H6B0.98520.01470.40670.056*
C71.06488 (12)0.2721 (5)0.41491 (19)0.0658 (8)
H7A1.11850.18090.42130.099*
H7B1.05760.32240.47640.099*
H7C1.06890.40630.37600.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0155 (3)0.0175 (3)0.0152 (2)0.00088 (18)0.00403 (19)0.00032 (18)
S10.01710 (17)0.02187 (18)0.01177 (17)0.00208 (11)0.00623 (12)0.00148 (10)
S20.01414 (17)0.02106 (18)0.01238 (17)0.00310 (10)0.00394 (11)0.00173 (10)
O10.0133 (4)0.0226 (5)0.0114 (4)0.0007 (3)0.0044 (3)0.0013 (3)
O1W0.0175 (4)0.0200 (5)0.0152 (4)0.0025 (4)0.0061 (4)0.0011 (4)
O2W0.0203 (5)0.0190 (5)0.0257 (5)0.0024 (4)0.0024 (4)0.0033 (4)
N10.0121 (5)0.0214 (5)0.0118 (5)0.0007 (4)0.0040 (4)0.0013 (4)
C10.0136 (6)0.0157 (6)0.0118 (5)0.0035 (4)0.0020 (4)0.0014 (4)
C20.0141 (6)0.0226 (6)0.0100 (5)0.0014 (5)0.0036 (4)0.0014 (4)
C30.0174 (6)0.0211 (6)0.0130 (6)0.0013 (5)0.0062 (4)0.0006 (5)
C40.0166 (6)0.0260 (6)0.0167 (6)0.0060 (5)0.0038 (5)0.0034 (5)
C50.0143 (7)0.0410 (9)0.0250 (7)0.0026 (6)0.0027 (5)0.0022 (6)
C60.0172 (8)0.0670 (13)0.0528 (11)0.0100 (8)0.0015 (7)0.0184 (10)
C70.0139 (8)0.0942 (19)0.0856 (18)0.0041 (10)0.0015 (9)0.0321 (15)
Geometric parameters (Å, º) top
Na1—O2W2.3142 (11)N1—C11.3425 (16)
Na1—O1W2.3544 (11)N1—C21.4658 (15)
Na1—O1Wi2.4074 (11)N1—C41.4717 (16)
Na1—O12.4128 (10)C2—C31.5237 (17)
Na1—O1ii2.4677 (10)C2—H2A0.9900
Na1—S2iii3.0074 (6)C2—H2B0.9900
Na1—Na1i3.3527 (10)C3—H3A0.9900
Na1—Na1ii3.5509 (10)C3—H3B0.9900
Na1—H2W12.59 (2)C4—C51.525 (2)
S1—C11.7261 (13)C4—H4A0.9900
S2—C11.7256 (13)C4—H4B0.9900
S2—Na1iv3.0073 (6)C5—C61.519 (2)
O1—C31.4386 (14)C5—H5A0.9900
O1—Na1ii2.4677 (10)C5—H5B0.9900
O1—H1O0.82 (2)C6—C71.526 (3)
O1W—Na1i2.4074 (10)C6—H6A0.9900
O1W—H1W10.82 (2)C6—H6B0.9900
O1W—H1W20.85 (3)C7—H7A0.9800
O2W—H2W10.86 (2)C7—H7B0.9800
O2W—H2W20.78 (2)C7—H7C0.9800
O2W—Na1—O1W102.22 (4)Na1i—O1W—H1W2105.5 (16)
O2W—Na1—O1Wi96.88 (4)H1W1—O1W—H1W2103 (2)
O1W—Na1—O1Wi90.49 (4)Na1—O2W—H2W199.2 (15)
O2W—Na1—O1169.54 (4)Na1—O2W—H2W2118.2 (16)
O1W—Na1—O187.95 (4)H2W1—O2W—H2W2110 (2)
O1Wi—Na1—O185.37 (4)C1—N1—C2122.02 (10)
O2W—Na1—O1ii83.15 (4)C1—N1—C4122.61 (11)
O1W—Na1—O1ii174.49 (4)C2—N1—C4115.15 (10)
O1Wi—Na1—O1ii90.05 (4)N1—C1—S2120.56 (9)
O1—Na1—O1ii86.64 (3)N1—C1—S1119.09 (9)
O2W—Na1—S2iii85.90 (3)S2—C1—S1120.36 (7)
O1W—Na1—S2iii95.69 (3)N1—C2—C3111.54 (10)
O1Wi—Na1—S2iii172.54 (3)N1—C2—H2A109.3
O1—Na1—S2iii90.69 (3)C3—C2—H2A109.3
O1ii—Na1—S2iii83.39 (3)N1—C2—H2B109.3
O2W—Na1—Na1i103.57 (4)C3—C2—H2B109.3
O1W—Na1—Na1i45.89 (3)H2A—C2—H2B108.0
O1Wi—Na1—Na1i44.60 (3)O1—C3—C2110.32 (10)
O1—Na1—Na1i85.23 (3)O1—C3—H3A109.6
O1ii—Na1—Na1i134.40 (3)C2—C3—H3A109.6
S2iii—Na1—Na1i141.41 (3)O1—C3—H3B109.6
O2W—Na1—Na1ii125.82 (4)C2—C3—H3B109.6
O1W—Na1—Na1ii131.86 (3)H3A—C3—H3B108.1
O1Wi—Na1—Na1ii86.89 (3)N1—C4—C5111.56 (12)
O1—Na1—Na1ii43.93 (2)N1—C4—H4A109.3
O1ii—Na1—Na1ii42.71 (2)C5—C4—H4A109.3
S2iii—Na1—Na1ii85.882 (19)N1—C4—H4B109.3
Na1i—Na1—Na1ii115.45 (3)C5—C4—H4B109.3
O2W—Na1—H2W119.0 (5)H4A—C4—H4B108.0
O1W—Na1—H2W1111.5 (5)C6—C5—C4112.80 (14)
O1Wi—Na1—H2W1112.5 (5)C6—C5—H5A109.0
O1—Na1—H2W1152.6 (6)C4—C5—H5A109.0
O1ii—Na1—H2W173.3 (5)C6—C5—H5B109.0
S2iii—Na1—H2W169.0 (5)C4—C5—H5B109.0
Na1i—Na1—H2W1122.2 (5)H5A—C5—H5B107.8
Na1ii—Na1—H2W1113.8 (5)C5—C6—C7111.93 (18)
C1—S2—Na1iv115.32 (4)C5—C6—H6A109.2
C3—O1—Na1120.87 (7)C7—C6—H6A109.2
C3—O1—Na1ii115.00 (8)C5—C6—H6B109.2
Na1—O1—Na1ii93.36 (3)C7—C6—H6B109.2
C3—O1—H1O109.9 (14)H6A—C6—H6B107.9
Na1—O1—H1O120.7 (14)C6—C7—H7A109.5
Na1ii—O1—H1O91.1 (15)C6—C7—H7B109.5
Na1—O1W—Na1i89.50 (4)H7A—C7—H7B109.5
Na1—O1W—H1W1112.5 (16)C6—C7—H7C109.5
Na1i—O1W—H1W1124.5 (15)H7A—C7—H7C109.5
Na1—O1W—H1W2122.7 (16)H7B—C7—H7C109.5
C2—N1—C1—S25.92 (16)Na1—O1—C3—C2102.88 (10)
C4—N1—C1—S2179.80 (9)Na1ii—O1—C3—C2146.38 (8)
C2—N1—C1—S1173.66 (9)N1—C2—C3—O1176.02 (9)
C4—N1—C1—S10.62 (16)C1—N1—C4—C589.35 (15)
Na1iv—S2—C1—N1178.00 (8)C2—N1—C4—C585.29 (13)
Na1iv—S2—C1—S11.57 (9)N1—C4—C5—C6176.06 (13)
C1—N1—C2—C391.65 (14)C4—C5—C6—C7176.34 (18)
C4—N1—C2—C393.68 (13)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···S1v0.82 (2)2.41 (2)3.2227 (10)167.6 (19)
O1W—H1W1···S20.82 (2)2.48 (2)3.2933 (10)168 (2)
O1W—H1W2···S2iv0.85 (3)2.42 (3)3.2605 (10)171 (2)
O2W—H2W2···S1iv0.78 (2)2.48 (2)3.2624 (11)173 (2)
Symmetry codes: (iv) x+1, y+1/2, z+1/2; (v) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···S1i0.82 (2)2.41 (2)3.2227 (10)167.6 (19)
O1W—H1W1···S20.82 (2)2.48 (2)3.2933 (10)168 (2)
O1W—H1W2···S2ii0.85 (3)2.42 (3)3.2605 (10)171 (2)
O2W—H2W2···S1ii0.78 (2)2.48 (2)3.2624 (11)173 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Na(C7H14NOS2)(H2O)2]
Mr251.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)15.6223 (3), 5.8379 (1), 14.7114 (3)
β (°) 101.868 (2)
V3)1313.02 (4)
Z4
Radiation typeCu Kα
µ (mm1)3.90
Crystal size (mm)0.39 × 0.31 × 0.24
Data collection
DiffractometerAgilent SuperNova Dual Source
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.660, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5973, 2731, 2617
Rint0.019
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.080, 1.05
No. of reflections2731
No. of parameters149
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.39

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXTL (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015).

 

Acknowledgements

RJB acknowledges NSF award 1205608, Partnership for Reduced Dimensional Materials, for partial funding of this research and the Department of Chemistry, University of Canterbury, New Zealand, for access to their diffractometer during the visit in 2014.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAlbertsson, J., Oskarsson, Å., Ståhl, K., Svensson, C. & Ymén, I. (1980). Acta Cryst. B36, 3072–3078.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationByrne, S. T., Gu, P., Zhou, J., Denkin, S. M., Chong, C., Sullivan, D., Liu, J. O. & Zhang, Y. (2007). Antimicrob. Agents Chemother. 51, 4495–4497.  CrossRef PubMed CAS Google Scholar
First citationChauhan, K., Sharma, M., Singh, P., Kumar, V., Shukla, P. K., Siddiqi, M. I. & Chauhan, P. M. S. (2012). MedChemComm, 3, 1104–1110.  CrossRef CAS Google Scholar
First citationColapietro, M., Domenicano, A. & Vaciago, A. (1968). Chem. Commun. pp. 572–573.  Google Scholar
First citationGrainger, R. S. & Innocenti, P. (2007). Heteroat. Chem. 18, 568–571.  CrossRef CAS Google Scholar
First citationGreenwood, N. N. & Earnshaw, A. (1997). In Chemistry of the elements, 2nd ed. London: Butterworth–Heinemann.  Google Scholar
First citationHowie, R. A., de Lima, G. M., Menezes, D. C., Wardell, J. L., Wardell, S. M. S. V., Young, D. J. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 1626–1637.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, R.-D., Wang, H.-L., Li, Y.-B., Wang, Z.-Q., Wang, X., Wang, Y.-T., Ge, Z.-M. & Li, R.-T. (2015). Eur. J. Med. Chem. 93, 381–391.  CrossRef CAS PubMed Google Scholar
First citationMafud, A. C. & Gambardella, M. T. P. (2011). Acta Cryst. E67, m942.  CSD CrossRef IUCr Journals Google Scholar
First citationOskarsson, Å. & Ymén, I. (1983). Acta Cryst. C39, 66–68.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSim, J.-H., Jamaludin, N. S., Khoo, C.-H., Cheah, Y.-K., Halim, S. N. B. A., Seng, H.-L. & Tiekink, E. R. T. (2014). Gold Bull. 47, 225–236.  Web of Science CrossRef CAS Google Scholar
First citationSrivastava, S. K., Pandey, H. & Sharma, R. (2007). Ind. J. Chem. Sect. A, 46, 1105–1108.  Google Scholar
First citationSvetlik, J. F., Railsback, H. E., Biard, C. C. & Louthan, R. P. (1955). Ind. Eng. Chem. 47, 352–356.  CrossRef CAS Google Scholar
First citationTéllez, F., Cruz, A., López-Sandoval, H., Ramos-García, I., Gayosso, M., Castillo-Sierra, R. N., Paz-Michel, B., Nöth, H., Flores-Parra, A. & Contreras, R. (2004). Eur. J. Org. Chem. pp. 4203–4214.  Google Scholar
First citationYmén, I. (1982). Acta Cryst. B38, 2671–2674.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationYmén, I. (1983). Acta Cryst. C39, 874–877.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 2| February 2016| Pages 196-198
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds