research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 2| February 2016| Pages 174-177

Crystal structure of (n-but­yl)[2-(2,6-di­meth­­oxy­phen­yl)-6-methyl­phen­yl](2-meth­­oxy­phen­yl)phospho­nium chloride monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, the University of Chicago, 5735 South Ellis ave, Chicago, IL 60637, USA
*Correspondence e-mail: rfjordan@uchicago.edu

Edited by P. C. Healy, Griffith University, Australia (Received 22 December 2015; accepted 24 December 2015; online 13 January 2016)

The title hydrated salt, C26H32O3P+·Cl·H2O, contains four different substit­uents (H, alkyl, aryl, and biar­yl) on the P atom. The P—H hydrogen atom of the phospho­nium ion was located in a difference Fourier map and refined without imposing additional restraints. In the crystal, the Cl ions and water mol­ecules are linked by pairs of Owater—H⋯Cl hydrogen bonds and further linked to the phospho­nium cation by P—H+⋯Cl and CAr/OMe—H⋯Owater hydrogen bonds to form an infinite one-dimensional chain along the [010] direction.

1. Chemical context

Palladium(II) alkyl complexes that contain ortho-phosphino-arene­sulfonate ligands ([PO]) exhibit unique behavior in olefin polymerization (Nakamura et al., 2009[Nakamura, A., Ito, S. & Nozaki, K. (2009). Chem. Rev. 109, 5215-5244.]; Ito & Nozaki, 2010[Ito, S. & Nozaki, K. (2010). Chem. Rec. 10, 315-325.]; Nakamura et al., 2013[Nakamura, A., Anselment, T. M. J., Claverie, J., Goodall, B., Jordan, R. F., Mecking, S., Rieger, B., Sen, A., van Leeuwen, P. W. N. M. & Nozaki, K. (2013). Acc. Chem. Res. 46, 1438-1449.]). One of the main drawbacks of traditional (PO)Pd alkyl catalysts is that they produce polyethyl­ene with only low-to-moderate mol­ecular weight (Drent et al., 2002[Drent, E., van Dijk, R., van Ginkel, R., van Oort, B. & Pugh, R. I. (2002). Chem. Commun. pp. 744-745.]; Vela et al., 2007[Vela, J., Lief, G. R., Shen, Z. & Jordan, R. F. (2007). Organometallics, 26, 6624-6635.]). Studies have shown that incorporating bulky substituents on phospho­rous in the [PO] ligand is an effective strategy to increase the mol­ecular weight of the produced polymer (Skupov et al., 2007[Skupov, K. M., Marella, P. R., Simard, M., Yap, G. P. A., Allen, N., Conner, D., Goodall, B. L. & Claverie, J. P. (2007). Macromol. Rapid Commun. 28, 2033-2038.]; Shen & Jordan, 2009[Shen, Z. & Jordan, R. F. (2009). J. Am. Chem. Soc. 132, 52-53.]; Ota et al., 2014[Ota, Y., Ito, S., Kuroda, J.-I., Okumura, Y. & Nozaki, K. (2014). J. Am. Chem. Soc. 136, 11898-11901.]). Therefore we were inter­ested in developing the new [PO] ligand 2 that contains bulky P-substituents (see Scheme). We attempted to prepare 2 by the reaction of (2-{2,6-(OMe)2-Ph}-6-Me-Ph)(2-OMe-Ph)PCl (3) with in situ-generated dili­thia­ted benzene­sulfonate to generate 2′, followed by acidification with HCl. However, this procedure did not afford 2 but rather produced [(2-{2,6-(OMe)2-Ph}-6-Me-Ph)(2-OMe-Ph)(n-Bu)PH]Cl (1) in low yield after workup, which crystallizes as the monohydrate 1·H2O (I). 1 likely formed by the reaction of 3 with the slight excess of n-BuLi present in the dili­thia­ted benzene­sulfonate solution. Here we report the crystal structure of I.

[Scheme 1]

2. Structural commentary

Crystals of 1·H2O (I) suitable for X-ray diffraction analysis were obtained by recrystallization from wet CH2Cl2/Et2O (Fig. 1[link]a). The P—C bond lengths are almost equal for the alkyl, aryl, and biaryl substituents [1.7994 (14), 1.7824 (14), and 1.8043 (13) Å, respectively]. The C—P—H angles are also very similar [106.2 (7), 104.9 (7), and 107.5 (7)° for the alkyl, aryl, and biaryl substituents, respectively]. The aryl rings in the biaryl unit are essentially perpendicular to each other, with the angle between the mean planes passing through the six-membered rings being 88.60 (6)°. This conformation minimizes steric inter­actions between the ortho-meth­oxy groups and the ortho-hydrogens on the two rings. The mean planes passing through 2,6-di­meth­oxy­phenyl ring and the C-atoms of the 2-meth­oxy­phenyl and n-butyl groups are almost parallel to each other [the angle is 10.36 (5)°, Fig. 1[link]b]. The P—H hydrogen atom was located in a difference Fourier map and refined without additional restraints. The refined P—H bond length of 1.313 (16) Å is similar to those previously reported (Burke et al., 2000[Burke, J. M., Howard, J. A. K., Marder, T. B. & Wilson, C. (2000). Acta Cryst. C56, 1354-1355.], Zhu et al., 2007[Zhu, J., Dai, J.-X. & Zhang, Q.-F. (2007). Acta Cryst. E63, o363-o364.], Wucher et al., 2013[Wucher, P., Goldbach, S. & Mecking, S. (2013). Organometallics, 32, 4516-4522.]).

[Figure 1]
Figure 1
(a) The mol­ecular structure of I drawn with the 50% probability ellipsoids and showing the atom-labelling scheme. (b) A different view of I with H2O and Cl moieties omitted for clarity.

3. Supra­molecular features

The P—H+, Cl, and water mol­ecule are involved in inter­molecular hydrogen bonding (Fig. 2[link], Table 1[link]). Two Cl ions and two water mol­ecules form a rhombus (Fig. 3[link]) in which the O⋯Cl distances are almost equal [3.1717 (13) and 3.1841 (13) Å]. The Cl ions are further engaged in P—H+⋯Cl hydrogen bonds [2.523 (16) Å], and the water mol­ecules are also involved in CAr/OMe—H⋯Owater contacts [2.243 (16) and 2.254 (16) Å], forming infinite chains along the [010] direction (Fig. 3[link]). The involvement of the P—H hydrogen atom in hydrogen bonding stands in contrast to what has been observed in some related structures. For example, in the structures of tri­phenyl­phospho­nium perchlorate (Zhu et al., 2007[Zhu, J., Dai, J.-X. & Zhang, Q.-F. (2007). Acta Cryst. E63, o363-o364.]) and tris­(ortho-tol­yl)phospho­nium tetra­chloro­borate (Burke et al., 2000[Burke, J. M., Howard, J. A. K., Marder, T. B. & Wilson, C. (2000). Acta Cryst. C56, 1354-1355.]), there is no evidence for involvement of the P—H hydrogen atom in hydrogen bonding.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
P1—H1P⋯Cl1i 1.313 (16) 2.523 (16) 3.5798 (5) 135.5 (10)
C21—H21⋯O4 0.95 2.53 3.4594 (19) 167
C26—H26C⋯O4 0.98 2.53 3.2250 (19) 128
O4—H4X⋯Cl1ii 0.93 (2) 2.24 (2) 3.1717 (13) 173 (2)
O4—H4Y⋯Cl1iii 0.94 (2) 2.25 (2) 3.1841 (13) 173 (2)
Symmetry codes: (i) x-1, y+1, z; (ii) -x+1, -y, -z+1; (iii) x-1, y, z.
[Figure 2]
Figure 2
Hydrogen bonds in I. [Symmetry codes: (i) x − 1, y + 1, z; (ii) −x + 1, −y, −z + 1; (iii) x − 1, y, z.]
[Figure 3]
Figure 3
A fragment of the crystal packing of I.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.36, last update May 2015; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) revealed that structures of phospho­nium salts having different alk­yl/ar­yl/biaryl substituents on phospho­rous are rare [CSD refcodes: BZMNPB (Böhme et al., 1975[Böhme, R., Burzlaff, H., Gomm, M., Bestmann, H.-J. & Luckenbach, R. (1975). Chem. Ber. 108, 3525-3532.]), EDOSOF (Schiemenz et al., 2002[Schiemenz, G. P., Pörksen, S., Dominiak, P. M. & Wozniak, K. (2002). Z. Naturforsch. Teil B, 57, 8-19.]), SUXFUN (Dziuba et al., 2010[Dziuba, K., Flis, A., Szmigielska, A. & Pietrusiewicz, K. M. (2010). Tetrahedron Asymmetry, 21, 1401-1405.])]. To the best of our knowledge I is the first example of a crystallographically characterized phospho­nium salt having four different substituents at phospho­rous. Moreover, there are only three other examples of structures of protonated phospho­nium ar­yl/biaryl salts [CSD refcodes: WEMSIQ (Carre et al., 1997[Carre, F., Chauhan, M., Chuit, C., Corriu, R. J. P. & Reye, C. (1997). Phosphorus Sulfur Silicon, 123, 181-195.]), OCOWUY (Karaçar et al., 2001[Karaçar, A., Klaukien, V., Freytag, M., Thönnessen, H., Omelanczuk, J., Jones, P. G., Bartsch, R. & Schmutzler, R. (2001). Z. Anorg. Allg. Chem. 627, 2589-2603.]), TOMZIF (Wang et al., 2008[Wang, H., Fröhlich, R., Kehr, G. & Erker, G. (2008). Chem. Commun. pp. 5966-5968.])].

5. Synthesis and crystallization

(2-{2,6-(OMe)2-Ph}-6-Me-Ph)(2-OMe-Ph)PCl (3) was synthesized by a modification of a previously reported procedure (Neuwald et al., 2013[Neuwald, B., Caporaso, L., Cavallo, L. & Mecking, S. (2013). J. Am. Chem. Soc. 135, 1026-1036.]). The reaction of 3 with in situ-generated dili­thia­ted benzene­sulfonate was attempted to synthesize 2′ (see Scheme). However 31P and ESI–MS of the reaction mixture showed that 2′ was not formed. The reaction mixture was acidified with aqueous HCl and extracted with Et2O. After removal of volatiles from the Et2O fraction under vacuum, a yellow oil and white crystals (low yield) were obtained. Recrystallization of the white crystals from wet CH2Cl2/Et2O yielded crystals of [(2-{2,6-(OMe)2-Ph}-6-Me-Ph)(2-OMe-Ph)(n-Bu)PH]Cl·H2O (1·H2O, I), which was identified by X-ray crystallography analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Most of the carbon-bound H atoms were included in idealized positions for structure factor calculations [C—H = 0.95–0.98 Å, Uiso(H) set to 1.2–1.5Ueq(C)]. The PH hydrogen atom and the H atoms of the butyl group were located in a difference Fourier map and refined without additional restraints. The H atoms bound to oxygen atom O4 were also located in the difference Fourier map but were restrained to be at 0.96 Å from O4 (within 0.02 Å) with their thermal parameters set to 1.5Ueq of O4.

Table 2
Experimental details

Crystal data
Chemical formula C26H32O3P+·Cl·H2O
Mr 476.95
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.6920 (6), 10.2790 (6), 12.4154 (8)
α, β, γ (°) 96.836 (2), 98.481 (2), 94.188 (2)
V3) 1209.47 (13)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.25
Crystal size (mm) 0.22 × 0.15 × 0.14
 
Data collection
Diffractometer Bruker D8 Venture PHOTON 100 CMOS
Absorption correction Numerical (SADABS; Bruker, 2014[Bruker (2014). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.959, 0.987
No. of measured, independent and observed [I > 2σ(I)] reflections 33225, 6228, 5241
Rint 0.028
(sin θ/λ)max−1) 0.677
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.096, 1.04
No. of reflections 6228
No. of parameters 339
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.51, −0.18
Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Palladium(II) alkyl complexes that contain ortho-phosphino-arene­sulfonate ligands ([PO]) exhibit unique behavior in olefin polymerization (Nakamura et al., 2009; Ito & Nozaki, 2010; Nakamura et al., 2013). One of the main drawbacks of traditional (PO)Pd alkyl catalysts is that they produce polyethyl­ene with only low-to-moderate molecular weight (Drent et al., 2002; Vela et al., 2007). Studies have shown that incorporating bulky substituents on phospho­rous in the [PO] ligand is an effective strategy to increase the molecular weight of the produced polymer (Skupov et al., 2007; Shen & Jordan, 2009; Ota et al., 2014). Therefore we were inter­ested in developing the new [PO] ligand 2 that contains bulky P-substituents (see Scheme). We attempted to prepare 2 by the reaction of (2-{2,6-(OMe)2—Ph}-6-Me—Ph)(2-OMe-Ph)PCl (3) with in situ-generated dili­thia­ted benzene­sulfonate to generate 2', followed by acidification with HCl. However, this procedure did not afford 2 but rather produced [(2-{2,6-(OMe)2—Ph}-6-Me—Ph)(2-OMe-Ph)(n-Bu)PH]Cl (1) in low yield after workup, which crystallizes as the monohydrate 1·H2O (I). 1 likely formed by the reaction of 3 with the slight excess of n-BuLi present in the dili­thia­ted benzene­sulfonate solution. Here we report the crystal structure of I.

Structural commentary top

Crystals of 1·H2O (I) suitable for X-ray diffraction analysis were obtained by recrystallization from wet CH2Cl2/Et2O (Fig. 1a). The P—C bond lengths are almost equal for the alkyl, aryl, and bi­aryl substituents [1.7994 (14), 1.7824 (14), and 1.8043 (13) Å, respectively]. The C—P—H angles are also very similar [106.2 (7), 104.9 (7), and 107.5 (7)° for the alkyl, aryl, and bi­aryl substituents, respectively]. The aryl rings in the bi­aryl unit are essentially perpendicular to each other, with the angle between the mean planes passing through the six-membered rings being 88.60 (6)°. This conformation minimizes steric inter­actions between the ortho-meth­oxy groups and the ortho-H atoms on the two rings. The mean planes passing through 2,6-di­meth­oxy­phenyl ring and the C-atoms of the 2-meth­oxy­phenyl and n-butyl groups are almost parallel to each other [the angle is 10.36 (5)°, Fig. 1b]. The P—H hydrogen atom was located in a difference Fourier map and refined without additional restraints. The refined P—H bond length of 1.313 (16) Å is similar to those previously reported (Burke et al., 2000, Zhu et al., 2007, Wucher et al., 2013).

Supra­molecular features top

The P—H+, Cl, and water molecule are involved in inter­molecular hydrogen bonding (Fig. 2, Table 1). Two Cl ions and two water molecules form a rhombus (Fig. 3) in which the O···Cl distances are almost equal [3.1717 (13) and 3.1841 (13) Å]. The Cl ions are further engaged in P—H+···Cl hydrogen bonds [2.523 (16) Å], and the water molecules are also involved in CAr/OMe—H···Owater contacts [2.243 (16) and 2.254 (16) Å], forming infinite chains along the [010] direction (Fig. 3). The involvement of the P—H hydrogen atom in hydrogen bonding stands in contrast to what has been observed in some related structures. For example, in the structures of tri­phenyl­phospho­nium perchlorate (Zhu et al., 2007) and tris­(ortho-tolyl)­phospho­nium tetra­chloro­borate (Burke et al., 2000), there is no evidence for involvement of the P —H hydrogen atom in hydrogen bonding.

Database survey top

A search of the Cambridge Structural Database (CSD, Version 5.36, last update May 2015; Groom & Allen, 2014) revealed that structures of phospho­nium salts having different alkyl/aryl/bi­aryl substituents on phospho­rous are rare [CSD refcodes: BZMNPB (Böhme et al., 1975), EDOSOF (Schiemenz et al., 2002), SUXFUN (Dziuba et al., 2010)]. To the best of our knowledge I is the first example of a crystallographically characterized phospho­nium salt having four different substituents at phospho­rous. Moreover, there are only three other examples of structures of protonated phospho­nium aryl/bi­aryl salts [CSD refcodes: WEMSIQ (Carre et al., 1997), OCOWUY (Karaçar et al., 2001), TOMZIF (Wang et al., 2008)].

Synthesis and crystallization top

(2-{2,6-(OMe)2—Ph}-6-Me—Ph)(2-OMe-Ph)PCl (3) was synthesized by a modification of a previously reported procedure (Neuwald et al., 2013). The reaction of 3 with in situ-generated dili­thia­ted benzene­sulfonate was attempted to synthesize 2' (see Scheme). However 31P and ESI–MS of the reaction mixture showed that 2' was not formed. The reaction mixture was acidified with aqueous HCl and extracted with Et2O. After removal of volatiles from the Et2O fraction under vacuum, a yellow oil and white crystals (low yield) were obtained. Recrystallization of the white crystals from wet CH2Cl2/Et2O yielded crystals of [(2-{2,6-(OMe)2—Ph}-6-Me—Ph)(2-OMe-Ph)(n-Bu)PH]Cl·H2O (1·H2O, I), which was identified by X-ray crystallography analysis.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. Most of the carbon-bound H-atoms were included in idealized positions for structure factor calculations [C—H = 0.95–0.98 Å, Uiso(H) set to 1.2–1.5Ueq(C)]. The PH hydrogen atom and the H atoms of the butyl group were located in a difference Fourier map and refined without additional restraints. The H atoms bound to oxygen atom O4 were also located in the difference Fourier map but were restrained to be at 0.96 Å from O4 (within 0.02 Å) with their thermal parameters set to 1.5Ueq of O4.

Structure description top

Palladium(II) alkyl complexes that contain ortho-phosphino-arene­sulfonate ligands ([PO]) exhibit unique behavior in olefin polymerization (Nakamura et al., 2009; Ito & Nozaki, 2010; Nakamura et al., 2013). One of the main drawbacks of traditional (PO)Pd alkyl catalysts is that they produce polyethyl­ene with only low-to-moderate molecular weight (Drent et al., 2002; Vela et al., 2007). Studies have shown that incorporating bulky substituents on phospho­rous in the [PO] ligand is an effective strategy to increase the molecular weight of the produced polymer (Skupov et al., 2007; Shen & Jordan, 2009; Ota et al., 2014). Therefore we were inter­ested in developing the new [PO] ligand 2 that contains bulky P-substituents (see Scheme). We attempted to prepare 2 by the reaction of (2-{2,6-(OMe)2—Ph}-6-Me—Ph)(2-OMe-Ph)PCl (3) with in situ-generated dili­thia­ted benzene­sulfonate to generate 2', followed by acidification with HCl. However, this procedure did not afford 2 but rather produced [(2-{2,6-(OMe)2—Ph}-6-Me—Ph)(2-OMe-Ph)(n-Bu)PH]Cl (1) in low yield after workup, which crystallizes as the monohydrate 1·H2O (I). 1 likely formed by the reaction of 3 with the slight excess of n-BuLi present in the dili­thia­ted benzene­sulfonate solution. Here we report the crystal structure of I.

Crystals of 1·H2O (I) suitable for X-ray diffraction analysis were obtained by recrystallization from wet CH2Cl2/Et2O (Fig. 1a). The P—C bond lengths are almost equal for the alkyl, aryl, and bi­aryl substituents [1.7994 (14), 1.7824 (14), and 1.8043 (13) Å, respectively]. The C—P—H angles are also very similar [106.2 (7), 104.9 (7), and 107.5 (7)° for the alkyl, aryl, and bi­aryl substituents, respectively]. The aryl rings in the bi­aryl unit are essentially perpendicular to each other, with the angle between the mean planes passing through the six-membered rings being 88.60 (6)°. This conformation minimizes steric inter­actions between the ortho-meth­oxy groups and the ortho-H atoms on the two rings. The mean planes passing through 2,6-di­meth­oxy­phenyl ring and the C-atoms of the 2-meth­oxy­phenyl and n-butyl groups are almost parallel to each other [the angle is 10.36 (5)°, Fig. 1b]. The P—H hydrogen atom was located in a difference Fourier map and refined without additional restraints. The refined P—H bond length of 1.313 (16) Å is similar to those previously reported (Burke et al., 2000, Zhu et al., 2007, Wucher et al., 2013).

The P—H+, Cl, and water molecule are involved in inter­molecular hydrogen bonding (Fig. 2, Table 1). Two Cl ions and two water molecules form a rhombus (Fig. 3) in which the O···Cl distances are almost equal [3.1717 (13) and 3.1841 (13) Å]. The Cl ions are further engaged in P—H+···Cl hydrogen bonds [2.523 (16) Å], and the water molecules are also involved in CAr/OMe—H···Owater contacts [2.243 (16) and 2.254 (16) Å], forming infinite chains along the [010] direction (Fig. 3). The involvement of the P—H hydrogen atom in hydrogen bonding stands in contrast to what has been observed in some related structures. For example, in the structures of tri­phenyl­phospho­nium perchlorate (Zhu et al., 2007) and tris­(ortho-tolyl)­phospho­nium tetra­chloro­borate (Burke et al., 2000), there is no evidence for involvement of the P —H hydrogen atom in hydrogen bonding.

A search of the Cambridge Structural Database (CSD, Version 5.36, last update May 2015; Groom & Allen, 2014) revealed that structures of phospho­nium salts having different alkyl/aryl/bi­aryl substituents on phospho­rous are rare [CSD refcodes: BZMNPB (Böhme et al., 1975), EDOSOF (Schiemenz et al., 2002), SUXFUN (Dziuba et al., 2010)]. To the best of our knowledge I is the first example of a crystallographically characterized phospho­nium salt having four different substituents at phospho­rous. Moreover, there are only three other examples of structures of protonated phospho­nium aryl/bi­aryl salts [CSD refcodes: WEMSIQ (Carre et al., 1997), OCOWUY (Karaçar et al., 2001), TOMZIF (Wang et al., 2008)].

Synthesis and crystallization top

(2-{2,6-(OMe)2—Ph}-6-Me—Ph)(2-OMe-Ph)PCl (3) was synthesized by a modification of a previously reported procedure (Neuwald et al., 2013). The reaction of 3 with in situ-generated dili­thia­ted benzene­sulfonate was attempted to synthesize 2' (see Scheme). However 31P and ESI–MS of the reaction mixture showed that 2' was not formed. The reaction mixture was acidified with aqueous HCl and extracted with Et2O. After removal of volatiles from the Et2O fraction under vacuum, a yellow oil and white crystals (low yield) were obtained. Recrystallization of the white crystals from wet CH2Cl2/Et2O yielded crystals of [(2-{2,6-(OMe)2—Ph}-6-Me—Ph)(2-OMe-Ph)(n-Bu)PH]Cl·H2O (1·H2O, I), which was identified by X-ray crystallography analysis.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. Most of the carbon-bound H-atoms were included in idealized positions for structure factor calculations [C—H = 0.95–0.98 Å, Uiso(H) set to 1.2–1.5Ueq(C)]. The PH hydrogen atom and the H atoms of the butyl group were located in a difference Fourier map and refined without additional restraints. The H atoms bound to oxygen atom O4 were also located in the difference Fourier map but were restrained to be at 0.96 Å from O4 (within 0.02 Å) with their thermal parameters set to 1.5Ueq of O4.

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. (a) The molecular structure of I drawn with the 50% probability ellipsoids and showing the atom-labelling scheme. (b) A different view of I with H2O and Cl moieties omitted for clarity.
[Figure 2] Fig. 2. Hydrogen bonds in I. [Symmetry codes: (i) x − 1, y + 1, z; (ii) −x + 1, −y, −z + 1; (iii) x − 1, y, z.]
[Figure 3] Fig. 3. A fragment of the crystal packing of I.
(n-Butyl)[2-(2,6-dimethoxyphenyl)-6-methylphenyl](2-methoxyphenyl)phosphonium chloride monohydrate top
Crystal data top
C26H32O3P+·Cl·H2OZ = 2
Mr = 476.95F(000) = 508
Triclinic, P1Dx = 1.310 Mg m3
a = 9.6920 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.2790 (6) ÅCell parameters from 9958 reflections
c = 12.4154 (8) Åθ = 2.4–28.7°
α = 96.836 (2)°µ = 0.25 mm1
β = 98.481 (2)°T = 100 K
γ = 94.188 (2)°Block, colorless
V = 1209.47 (13) Å30.22 × 0.15 × 0.14 mm
Data collection top
Bruker D8 Venture PHOTON 100 CMOS
diffractometer
6228 independent reflections
Radiation source: INCOATEC IµS micro-focus source5241 reflections with I > 2σ(I)
Mirrors monochromatorRint = 0.028
Detector resolution: 10.4167 pixels mm-1θmax = 28.8°, θmin = 2.1°
ω and phi scansh = 1313
Absorption correction: numerical
(SADABS; Bruker, 2014)
k = 1313
Tmin = 0.959, Tmax = 0.987l = 1616
33225 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: mixed
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0446P)2 + 0.6272P]
where P = (Fo2 + 2Fc2)/3
6228 reflections(Δ/σ)max < 0.001
339 parametersΔρmax = 0.51 e Å3
2 restraintsΔρmin = 0.18 e Å3
Crystal data top
C26H32O3P+·Cl·H2Oγ = 94.188 (2)°
Mr = 476.95V = 1209.47 (13) Å3
Triclinic, P1Z = 2
a = 9.6920 (6) ÅMo Kα radiation
b = 10.2790 (6) ŵ = 0.25 mm1
c = 12.4154 (8) ÅT = 100 K
α = 96.836 (2)°0.22 × 0.15 × 0.14 mm
β = 98.481 (2)°
Data collection top
Bruker D8 Venture PHOTON 100 CMOS
diffractometer
6228 independent reflections
Absorption correction: numerical
(SADABS; Bruker, 2014)
5241 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.987Rint = 0.028
33225 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0382 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.51 e Å3
6228 reflectionsΔρmin = 0.18 e Å3
339 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.99543 (4)0.06475 (3)0.71011 (3)0.02320 (9)
P10.22865 (3)0.81030 (3)0.70834 (3)0.01537 (9)
H1P0.1976 (17)0.9280 (16)0.6876 (14)0.021 (4)*
O10.28474 (11)0.98104 (10)0.90415 (8)0.0218 (2)
O20.41677 (10)0.67819 (10)0.96813 (8)0.0191 (2)
O30.39185 (11)0.49203 (9)0.60356 (8)0.0202 (2)
C10.14332 (15)0.69712 (15)0.59177 (11)0.0191 (3)
H1A0.1528 (17)0.6081 (17)0.6062 (14)0.021 (4)*
H1B0.0437 (19)0.7148 (17)0.5838 (14)0.025 (4)*
C20.20590 (15)0.71909 (15)0.48809 (11)0.0200 (3)
H2A0.3053 (18)0.7053 (16)0.4998 (14)0.020 (4)*
H2B0.1977 (17)0.8097 (17)0.4745 (14)0.021 (4)*
C30.13321 (16)0.62469 (15)0.38878 (12)0.0228 (3)
H3A0.035 (2)0.6419 (17)0.3743 (15)0.028 (5)*
H3B0.1359 (19)0.5340 (19)0.4054 (15)0.029 (5)*
C40.20372 (19)0.63906 (17)0.28846 (13)0.0266 (3)
H4A0.300 (2)0.6220 (18)0.3021 (15)0.027 (5)*
H4B0.157 (2)0.581 (2)0.2247 (17)0.038 (5)*
H4C0.201 (2)0.725 (2)0.2709 (16)0.034 (5)*
C50.15371 (14)0.78501 (14)0.82781 (11)0.0165 (3)
C60.05961 (14)0.67784 (15)0.83277 (12)0.0201 (3)
H60.03670.61020.77210.024*
C70.00070 (15)0.67025 (16)0.92696 (13)0.0239 (3)
H70.06420.59690.93140.029*
C80.03227 (15)0.77041 (16)1.01452 (12)0.0245 (3)
H80.01040.76521.07820.029*
C90.12588 (15)0.87774 (15)1.01127 (12)0.0225 (3)
H90.14710.94561.07180.027*
C100.18838 (14)0.88450 (14)0.91790 (11)0.0186 (3)
C110.32790 (17)1.08374 (15)0.99388 (13)0.0269 (3)
H11A0.24591.12661.01250.040*
H11B0.39471.14860.97280.040*
H11C0.37271.04631.05770.040*
C120.43520 (17)1.03920 (15)0.66031 (14)0.0288 (3)
H12A0.51061.10350.65040.043*
H12B0.38301.07800.71600.043*
H12C0.37181.01450.59050.043*
C130.49738 (14)0.91817 (13)0.69739 (11)0.0173 (3)
C140.41672 (13)0.81018 (13)0.72460 (10)0.0141 (2)
C150.48062 (13)0.70142 (12)0.76063 (10)0.0138 (2)
C160.62572 (14)0.70164 (13)0.76972 (11)0.0165 (3)
H160.67030.62930.79520.020*
C170.70582 (14)0.80644 (14)0.74193 (11)0.0185 (3)
H170.80450.80520.74760.022*
C180.64171 (15)0.91265 (14)0.70595 (11)0.0192 (3)
H180.69740.98360.68660.023*
C190.39855 (13)0.58266 (13)0.78584 (11)0.0145 (3)
C200.35655 (14)0.47546 (13)0.70350 (11)0.0166 (3)
C210.28231 (14)0.36210 (13)0.72404 (12)0.0197 (3)
H210.25150.29130.66710.024*
C220.25470 (14)0.35547 (14)0.82964 (13)0.0212 (3)
H220.20440.27860.84460.025*
C230.29803 (14)0.45739 (14)0.91409 (12)0.0202 (3)
H230.27910.44990.98610.024*
C240.36994 (14)0.57144 (13)0.89184 (11)0.0164 (3)
C250.38278 (16)0.67481 (16)1.07612 (12)0.0233 (3)
H25A0.28110.65801.07160.035*
H25B0.41480.75951.12110.035*
H25C0.42910.60461.10970.035*
C260.36073 (17)0.38149 (15)0.51867 (12)0.0267 (3)
H26A0.40820.30660.54290.040*
H26B0.39340.40480.45180.040*
H26C0.25930.35770.50340.040*
O40.12871 (13)0.13559 (12)0.50244 (11)0.0373 (3)
H4X0.097 (2)0.072 (2)0.4420 (16)0.056*
H4Y0.085 (2)0.108 (2)0.5594 (16)0.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02306 (18)0.02389 (18)0.02263 (18)0.00422 (13)0.00472 (13)0.00038 (13)
P10.01430 (16)0.01926 (17)0.01294 (17)0.00220 (13)0.00277 (12)0.00249 (13)
O10.0250 (5)0.0225 (5)0.0166 (5)0.0003 (4)0.0035 (4)0.0008 (4)
O20.0213 (5)0.0242 (5)0.0124 (5)0.0012 (4)0.0050 (4)0.0025 (4)
O30.0268 (5)0.0180 (5)0.0148 (5)0.0052 (4)0.0061 (4)0.0008 (4)
C10.0161 (6)0.0259 (7)0.0145 (6)0.0002 (5)0.0012 (5)0.0024 (5)
C20.0201 (7)0.0246 (7)0.0150 (7)0.0006 (6)0.0029 (5)0.0020 (5)
C30.0250 (8)0.0263 (8)0.0167 (7)0.0005 (6)0.0029 (6)0.0021 (6)
C40.0359 (9)0.0280 (8)0.0164 (7)0.0028 (7)0.0079 (6)0.0002 (6)
C50.0138 (6)0.0232 (7)0.0138 (6)0.0049 (5)0.0038 (5)0.0038 (5)
C60.0148 (6)0.0265 (7)0.0192 (7)0.0026 (5)0.0027 (5)0.0034 (6)
C70.0148 (6)0.0341 (8)0.0250 (8)0.0013 (6)0.0059 (5)0.0094 (6)
C80.0177 (7)0.0401 (9)0.0192 (7)0.0092 (6)0.0076 (5)0.0086 (6)
C90.0211 (7)0.0301 (8)0.0172 (7)0.0100 (6)0.0041 (5)0.0013 (6)
C100.0169 (6)0.0223 (7)0.0172 (7)0.0058 (5)0.0015 (5)0.0042 (5)
C110.0322 (8)0.0238 (7)0.0219 (7)0.0016 (6)0.0004 (6)0.0036 (6)
C120.0285 (8)0.0207 (7)0.0391 (9)0.0007 (6)0.0052 (7)0.0133 (7)
C130.0210 (7)0.0156 (6)0.0151 (6)0.0004 (5)0.0032 (5)0.0018 (5)
C140.0137 (6)0.0167 (6)0.0118 (6)0.0001 (5)0.0030 (5)0.0006 (5)
C150.0155 (6)0.0155 (6)0.0098 (6)0.0016 (5)0.0031 (5)0.0001 (5)
C160.0161 (6)0.0180 (6)0.0155 (6)0.0026 (5)0.0032 (5)0.0013 (5)
C170.0151 (6)0.0222 (7)0.0176 (7)0.0010 (5)0.0048 (5)0.0009 (5)
C180.0204 (7)0.0184 (6)0.0182 (7)0.0058 (5)0.0058 (5)0.0012 (5)
C190.0123 (6)0.0161 (6)0.0159 (6)0.0013 (5)0.0024 (5)0.0047 (5)
C200.0146 (6)0.0181 (6)0.0173 (6)0.0011 (5)0.0026 (5)0.0041 (5)
C210.0168 (6)0.0163 (6)0.0257 (7)0.0007 (5)0.0021 (5)0.0045 (5)
C220.0154 (6)0.0210 (7)0.0296 (8)0.0004 (5)0.0056 (5)0.0113 (6)
C230.0166 (6)0.0268 (7)0.0208 (7)0.0035 (5)0.0071 (5)0.0114 (6)
C240.0134 (6)0.0200 (6)0.0171 (6)0.0041 (5)0.0035 (5)0.0050 (5)
C250.0236 (7)0.0348 (8)0.0147 (7)0.0091 (6)0.0079 (5)0.0059 (6)
C260.0329 (8)0.0233 (7)0.0209 (7)0.0081 (6)0.0074 (6)0.0062 (6)
O40.0384 (7)0.0375 (7)0.0322 (7)0.0162 (5)0.0104 (5)0.0042 (5)
Geometric parameters (Å, º) top
P1—C51.7824 (14)C11—H11B0.9800
P1—C11.7994 (14)C11—H11C0.9800
P1—C141.8043 (13)C12—C131.512 (2)
P1—H1P1.313 (16)C12—H12A0.9800
O1—C101.3557 (17)C12—H12B0.9800
O1—C111.4313 (17)C12—H12C0.9800
O2—C241.3639 (17)C13—C181.3930 (19)
O2—C251.4307 (16)C13—C141.4135 (18)
O3—C201.3611 (16)C14—C151.4042 (18)
O3—C261.4367 (17)C15—C161.3940 (18)
C1—C21.5347 (19)C15—C191.4979 (17)
C1—H1A0.962 (17)C16—C171.3884 (19)
C1—H1B0.988 (18)C16—H160.9500
C2—C31.522 (2)C17—C181.382 (2)
C2—H2A0.976 (17)C17—H170.9500
C2—H2B0.973 (17)C18—H180.9500
C3—C41.523 (2)C19—C241.4005 (18)
C3—H3A0.975 (19)C19—C201.4030 (18)
C3—H3B0.980 (19)C20—C211.3939 (19)
C4—H4A0.952 (19)C21—C221.385 (2)
C4—H4B0.96 (2)C21—H210.9500
C4—H4C0.94 (2)C22—C231.385 (2)
C5—C61.391 (2)C22—H220.9500
C5—C101.4058 (19)C23—C241.3967 (19)
C6—C71.390 (2)C23—H230.9500
C6—H60.9500C25—H25A0.9800
C7—C81.388 (2)C25—H25B0.9800
C7—H70.9500C25—H25C0.9800
C8—C91.385 (2)C26—H26A0.9800
C8—H80.9500C26—H26B0.9800
C9—C101.3913 (19)C26—H26C0.9800
C9—H90.9500O4—H4X0.933 (16)
C11—H11A0.9800O4—H4Y0.935 (16)
C5—P1—C1110.72 (7)H11B—C11—H11C109.5
C5—P1—C14115.02 (6)C13—C12—H12A109.5
C1—P1—C14111.73 (6)C13—C12—H12B109.5
C5—P1—H1P104.9 (7)H12A—C12—H12B109.5
C1—P1—H1P106.2 (7)C13—C12—H12C109.5
C14—P1—H1P107.5 (7)H12A—C12—H12C109.5
C10—O1—C11117.40 (11)H12B—C12—H12C109.5
C24—O2—C25117.30 (11)C18—C13—C14118.04 (12)
C20—O3—C26117.23 (11)C18—C13—C12118.55 (12)
C2—C1—P1111.17 (10)C14—C13—C12123.41 (12)
C2—C1—H1A109.2 (10)C15—C14—C13120.89 (12)
P1—C1—H1A110.0 (10)C15—C14—P1119.76 (10)
C2—C1—H1B111.4 (10)C13—C14—P1119.31 (10)
P1—C1—H1B105.0 (10)C16—C15—C14118.88 (12)
H1A—C1—H1B110.1 (14)C16—C15—C19118.49 (12)
C3—C2—C1111.50 (12)C14—C15—C19122.59 (11)
C3—C2—H2A108.6 (10)C17—C16—C15120.72 (13)
C1—C2—H2A109.4 (10)C17—C16—H16119.6
C3—C2—H2B110.2 (10)C15—C16—H16119.6
C1—C2—H2B109.0 (10)C18—C17—C16119.89 (13)
H2A—C2—H2B108.0 (14)C18—C17—H17120.1
C2—C3—C4111.23 (12)C16—C17—H17120.1
C2—C3—H3A108.7 (11)C17—C18—C13121.55 (12)
C4—C3—H3A110.7 (11)C17—C18—H18119.2
C2—C3—H3B109.5 (11)C13—C18—H18119.2
C4—C3—H3B109.1 (11)C24—C19—C20118.43 (12)
H3A—C3—H3B107.5 (15)C24—C19—C15121.77 (12)
C3—C4—H4A111.1 (11)C20—C19—C15119.66 (11)
C3—C4—H4B111.9 (12)O3—C20—C21123.42 (12)
H4A—C4—H4B108.7 (16)O3—C20—C19115.07 (11)
C3—C4—H4C110.1 (12)C21—C20—C19121.51 (13)
H4A—C4—H4C107.5 (16)C22—C21—C20118.23 (13)
H4B—C4—H4C107.3 (16)C22—C21—H21120.9
C6—C5—C10120.16 (12)C20—C21—H21120.9
C6—C5—P1123.45 (11)C21—C22—C23122.09 (13)
C10—C5—P1116.29 (10)C21—C22—H22119.0
C7—C6—C5119.61 (13)C23—C22—H22119.0
C7—C6—H6120.2C22—C23—C24119.05 (13)
C5—C6—H6120.2C22—C23—H23120.5
C8—C7—C6119.68 (14)C24—C23—H23120.5
C8—C7—H7120.2O2—C24—C23124.22 (12)
C6—C7—H7120.2O2—C24—C19115.16 (12)
C9—C8—C7121.58 (13)C23—C24—C19120.62 (13)
C9—C8—H8119.2O2—C25—H25A109.5
C7—C8—H8119.2O2—C25—H25B109.5
C8—C9—C10118.89 (14)H25A—C25—H25B109.5
C8—C9—H9120.6O2—C25—H25C109.5
C10—C9—H9120.6H25A—C25—H25C109.5
O1—C10—C9125.57 (13)H25B—C25—H25C109.5
O1—C10—C5114.38 (12)O3—C26—H26A109.5
C9—C10—C5120.05 (13)O3—C26—H26B109.5
O1—C11—H11A109.5H26A—C26—H26B109.5
O1—C11—H11B109.5O3—C26—H26C109.5
H11A—C11—H11B109.5H26A—C26—H26C109.5
O1—C11—H11C109.5H26B—C26—H26C109.5
H11A—C11—H11C109.5H4X—O4—H4Y105 (2)
C5—P1—C1—C2179.34 (10)C13—C14—C15—C19177.42 (12)
C14—P1—C1—C251.05 (12)P1—C14—C15—C190.53 (17)
P1—C1—C2—C3179.38 (10)C14—C15—C16—C171.07 (19)
C1—C2—C3—C4175.19 (13)C19—C15—C16—C17176.72 (12)
C1—P1—C5—C610.21 (14)C15—C16—C17—C180.7 (2)
C14—P1—C5—C6117.62 (12)C16—C17—C18—C130.5 (2)
C1—P1—C5—C10166.26 (10)C14—C13—C18—C171.2 (2)
C14—P1—C5—C1065.91 (12)C12—C13—C18—C17178.38 (13)
C10—C5—C6—C70.5 (2)C16—C15—C19—C2490.26 (16)
P1—C5—C6—C7175.84 (11)C14—C15—C19—C2492.04 (16)
C5—C6—C7—C80.8 (2)C16—C15—C19—C2085.45 (16)
C6—C7—C8—C90.9 (2)C14—C15—C19—C2092.25 (16)
C7—C8—C9—C100.2 (2)C26—O3—C20—C215.6 (2)
C11—O1—C10—C91.2 (2)C26—O3—C20—C19175.38 (12)
C11—O1—C10—C5178.31 (12)C24—C19—C20—O3178.00 (11)
C8—C9—C10—O1177.92 (13)C15—C19—C20—O32.15 (18)
C8—C9—C10—C51.5 (2)C24—C19—C20—C212.9 (2)
C6—C5—C10—O1177.84 (12)C15—C19—C20—C21178.79 (12)
P1—C5—C10—O15.57 (16)O3—C20—C21—C22178.79 (12)
C6—C5—C10—C91.7 (2)C19—C20—C21—C222.2 (2)
P1—C5—C10—C9174.93 (10)C20—C21—C22—C230.2 (2)
C18—C13—C14—C150.86 (19)C21—C22—C23—C241.0 (2)
C12—C13—C14—C15178.75 (13)C25—O2—C24—C233.54 (19)
C18—C13—C14—P1177.10 (10)C25—O2—C24—C19176.32 (11)
C12—C13—C14—P13.30 (18)C22—C23—C24—O2179.57 (12)
C5—P1—C14—C1555.82 (12)C22—C23—C24—C190.3 (2)
C1—P1—C14—C1571.50 (12)C20—C19—C24—O2178.49 (11)
C5—P1—C14—C13126.20 (11)C15—C19—C24—O22.72 (18)
C1—P1—C14—C13106.48 (11)C20—C19—C24—C231.65 (19)
C13—C14—C15—C160.27 (19)C15—C19—C24—C23177.41 (12)
P1—C14—C15—C16178.22 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
P1—H1P···Cl1i1.313 (16)2.523 (16)3.5798 (5)135.5 (10)
C21—H21···O40.952.533.4594 (19)167
C26—H26C···O40.982.533.2250 (19)128
O4—H4X···Cl1ii0.93 (2)2.24 (2)3.1717 (13)173 (2)
O4—H4Y···Cl1iii0.94 (2)2.25 (2)3.1841 (13)173 (2)
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y, z+1; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
P1—H1P···Cl1i1.313 (16)2.523 (16)3.5798 (5)135.5 (10)
C21—H21···O40.952.533.4594 (19)167.4
C26—H26C···O40.982.533.2250 (19)128.2
O4—H4X···Cl1ii0.933 (16)2.243 (16)3.1717 (13)173 (2)
O4—H4Y···Cl1iii0.935 (16)2.254 (16)3.1841 (13)173 (2)
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y, z+1; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC26H32O3P+·Cl·H2O
Mr476.95
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.6920 (6), 10.2790 (6), 12.4154 (8)
α, β, γ (°)96.836 (2), 98.481 (2), 94.188 (2)
V3)1209.47 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.22 × 0.15 × 0.14
Data collection
DiffractometerBruker D8 Venture PHOTON 100 CMOS
Absorption correctionNumerical
(SADABS; Bruker, 2014)
Tmin, Tmax0.959, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
33225, 6228, 5241
Rint0.028
(sin θ/λ)max1)0.677
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.096, 1.04
No. of reflections6228
No. of parameters339
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.18

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2012), SHELXT2014 (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008), publCIF (Westrip, 2010).

 

Acknowledgements

This work was supported by the National Science Foundation (grants CHE-0911180 and CHE-1048528).

References

First citationBöhme, R., Burzlaff, H., Gomm, M., Bestmann, H.-J. & Luckenbach, R. (1975). Chem. Ber. 108, 3525–3532.  Google Scholar
First citationBruker (2014). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurke, J. M., Howard, J. A. K., Marder, T. B. & Wilson, C. (2000). Acta Cryst. C56, 1354–1355.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCarre, F., Chauhan, M., Chuit, C., Corriu, R. J. P. & Reye, C. (1997). Phosphorus Sulfur Silicon, 123, 181–195.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDrent, E., van Dijk, R., van Ginkel, R., van Oort, B. & Pugh, R. I. (2002). Chem. Commun. pp. 744–745.  Web of Science CrossRef Google Scholar
First citationDziuba, K., Flis, A., Szmigielska, A. & Pietrusiewicz, K. M. (2010). Tetrahedron Asymmetry, 21, 1401–1405.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationIto, S. & Nozaki, K. (2010). Chem. Rec. 10, 315–325.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKaraçar, A., Klaukien, V., Freytag, M., Thönnessen, H., Omelanczuk, J., Jones, P. G., Bartsch, R. & Schmutzler, R. (2001). Z. Anorg. Allg. Chem. 627, 2589–2603.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNakamura, A., Anselment, T. M. J., Claverie, J., Goodall, B., Jordan, R. F., Mecking, S., Rieger, B., Sen, A., van Leeuwen, P. W. N. M. & Nozaki, K. (2013). Acc. Chem. Res. 46, 1438–1449.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNakamura, A., Ito, S. & Nozaki, K. (2009). Chem. Rev. 109, 5215–5244.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNeuwald, B., Caporaso, L., Cavallo, L. & Mecking, S. (2013). J. Am. Chem. Soc. 135, 1026–1036.  CSD CrossRef CAS PubMed Google Scholar
First citationOta, Y., Ito, S., Kuroda, J.-I., Okumura, Y. & Nozaki, K. (2014). J. Am. Chem. Soc. 136, 11898–11901.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSchiemenz, G. P., Pörksen, S., Dominiak, P. M. & Wozniak, K. (2002). Z. Naturforsch. Teil B, 57, 8–19.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShen, Z. & Jordan, R. F. (2009). J. Am. Chem. Soc. 132, 52–53.  Web of Science CSD CrossRef Google Scholar
First citationSkupov, K. M., Marella, P. R., Simard, M., Yap, G. P. A., Allen, N., Conner, D., Goodall, B. L. & Claverie, J. P. (2007). Macromol. Rapid Commun. 28, 2033–2038.  Web of Science CSD CrossRef CAS Google Scholar
First citationVela, J., Lief, G. R., Shen, Z. & Jordan, R. F. (2007). Organometallics, 26, 6624–6635.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, H., Fröhlich, R., Kehr, G. & Erker, G. (2008). Chem. Commun. pp. 5966–5968.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWucher, P., Goldbach, S. & Mecking, S. (2013). Organometallics, 32, 4516–4522.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, J., Dai, J.-X. & Zhang, Q.-F. (2007). Acta Cryst. E63, o363–o364.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 2| February 2016| Pages 174-177
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds