research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 2| February 2016| Pages 111-113

Crystal structure of aqua­(nitrato-κO)dioxido{2-[3-(pyridin-2-yl-κN)-1H-1,2,4-triazol-5-yl-κN4]phenolato-κO}uranium(VI) aceto­nitrile monosolvate monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Str., Kyiv, 01601, Ukraine, and bSTC "Institute for Single Crystals", National Academy of Science of Ukraine, 60 Lenina Ave., Kharkiv 61001, Ukraine
*Correspondence e-mail: lana_@univ.kiev.ua

Edited by H. Ishida, Okayama University, Japan (Received 30 November 2015; accepted 18 December 2015; online 6 January 2016)

In the title compound, [U(C13H9N4O)(NO3)O2(H2O)]·CH3CN·H2O, the UVI atom is seven-coordinated in a distorted penta­gonal–bipyramidal N2O5 manner by one tridentate triazole ligand, one monodentate nitrate anion and one water mol­ecule in the equatorial plane and by two uran­yl(VI) O atoms in the axial positions. In the crystal, the UVI complex mol­ecule is linked to the water and aceto­nitrile solvent mol­ecules through N—H⋯N, O—H⋯O and O—H⋯N hydrogen bonds, forming a sheet structure parallel to the bc plane. The sheets are further linked by an additional O—H⋯O hydrogen bond, forming a three-dimensional network.

1. Chemical context

The synthesis of coordination compounds with N-donor heterocyclic ligands is one of the fastest growing areas of coordination chemistry. 1,2,4-Triazoles and their derivatives can be assigned for such types of ligands. The presence of the 1,2,4-triazole ring in the organic ligand provides an additional site for coordination (Aromí et al., 2011[Aromí, G., Barrios, L. A., Roubeau, O. & Gamez, P. (2011). Coord. Chem. Rev. 255, 485-546.]). The presence of additional donor groups in the 3- and 5-positions of the triazole moiety provides a greater number of possibilities for chelation of metal ions, involving tridentate bis-chelate functions.

[Scheme 1]

It should be noted that UO22+ complexes with such types of ligands have rarely been investigated. Thus, only three uranyl complexes with 1,2,4-triazole derivatives have been characterized (Daro et al., 2001[Daro, N., Guionneau, P., Golhen, S., Chasseau, D., Ouahab, L. & Sutter, J.-P. (2001). Inorg. Chim. Acta, 326, 47-52.]; Weng et al., 2012[Weng, Z., Wang, S., Ling, J., Morrison, J. M. & Burns, P. C. (2012). Inorg. Chem. 51, 7185-7191.]; Raspertova et al., 2012[Raspertova, I., Doroschuk, R., Khomenko, D. & Lampeka, R. (2012). Acta Cryst. C68, m61-m63.]). As part of our continuing study of uranium coordination compounds with nitro­gen-donor ligands (Raspertova et al., 2012[Raspertova, I., Doroschuk, R., Khomenko, D. & Lampeka, R. (2012). Acta Cryst. C68, m61-m63.]), we report here the structure of the title compound.

2. Structural commentary

The coordination polyhedron of the UVI atom in the title complex is a distorted penta­gonal bipyramid. It is coordinated in a tridentate manner by the 1,2,4,-triazole ligand together with the water mol­ecule and the monodentate nitrate anion in the equatorial plane. Two oxido ligands are placed in the axial positions (Fig. 1[link]). The U1—O1 bond length [2.206 (3) Å] is comparable with those reported for related six-membered chelate fragments involving phenolate and N-atom donors (Sopo et al., 2008[Sopo, H., Lehtonen, A. & Sillanpää, R. (2008). Polyhedron, 27, 95-104.]; Ahmadi et al., 2012[Ahmadi, M., Mague, J., Akbari, A. & Takjoo, R. (2012). Polyhedron, 42, 128-134.]). The U—N bond lengths [2.489 (4) and 2.658 (4) Å] are consistent with the situation in other pyridine-bonded uranium complexes (Amoroso et al., 1996[Amoroso, A. J., Jeffery, J. C., Jones, P. L., McCleverty, J. A. & Ward, M. D. (1996). Polyhedron, 15, 2023-2027.]; Gatto et al., 2004[Gatto, C. C., Schulz Lang, E., Kupfer, A., Hagenbach, A. & Abram, U. (2004). Z. Anorg. Allg. Chem. 630, 1286-1295.]). The uranyl group is not exactly linear [O2=U1=O3 = 175.36 (14)°]. Non-linear O=U= groups are generally found in uranyl complexes with five non-symmetrically bonding equatorial ligands. All non-hydrogen atoms of the organic ligand are coplanar within 0.01 Å. The N1—C7 and C7—N2 bond lengths of the triazole ring are equalized [1.336 (5) Å for both]. This value is longer than a Csp2 =N double bond (1.276 Å) and shorter than a Csp2—N single bond (1.347 Å) (Orpen et al., 1994[Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1994). Structure Correlation, edited by H.-B. Bürgi & J. D. Dunitz, Vol. 2, pp. 751-858. VCH: Weinheim.]). It can be assumed that the structure of the triazole ring is the superposition of two possible resonance structures as shown in Fig. 2[link].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, shown with 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.
[Figure 2]
Figure 2
Scheme showing two possible resonance structures in the triazole ligand.

3. Supra­molecular features

In the crystal, the complex mol­ecule is linked to the water and aceto­nitrile solvent mol­ecules through N2—H2⋯N6, O4—H4B⋯O8, O8—H8A⋯N3ii and O8—H8B⋯O6iii hydrogen bonds (symmetry codes in Table 1[link]), forming a sheet structure parallel to the bc plane. The sheets are further linked by an O4—H4A⋯O5i hydrogen bond (Table 1[link]), forming a three-dimensional network (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O5i 0.86 (1) 1.92 (2) 2.752 (4) 162 (5)
O4—H4B⋯O8 0.86 (1) 1.73 (1) 2.581 (5) 168 (5)
N2—H2⋯N6 0.86 2.07 2.909 (5) 165
O8—H8A⋯N3ii 0.86 (1) 2.05 (2) 2.890 (5) 164 (6)
O8—H8B⋯O6iii 0.86 (1) 2.22 (3) 3.001 (5) 150 (6)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) x, y+1, z.
[Figure 3]
Figure 3
Packing diagram of the title compound, viewed along the b axis. Inter­molecular hydrogen bonds are shown as dashed lines.

4. Database survey

In the Cambridge Structural Database (Version 5.36, November 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]), only three uranyl complexes with derivatives of 1,2,4-triazole are reported (Daro et al., 2001[Daro, N., Guionneau, P., Golhen, S., Chasseau, D., Ouahab, L. & Sutter, J.-P. (2001). Inorg. Chim. Acta, 326, 47-52.]; Weng et al., 2012[Weng, Z., Wang, S., Ling, J., Morrison, J. M. & Burns, P. C. (2012). Inorg. Chem. 51, 7185-7191.]; Raspertova et al., 2012[Raspertova, I., Doroschuk, R., Khomenko, D. & Lampeka, R. (2012). Acta Cryst. C68, m61-m63.]). 72 structures containing a 5-pyridin-1H-1,2,4-triazole fragment are found. A search for the 3-hy­droxy­phenyl-1,2,4-triazole fragment yielded 14 hits, including: 2,2′-[1-(2,4,6-tri­chloro­phen­yl)-1H-1,2,4-triazole-3,5-di­yl]diphenol (Li et al., 2008[Li, Z.-S., Li, X.-B. & Sun, B.-W. (2008). Acta Cryst. E64, o491.]); 2-[5-(2-pyrid­yl)-1,2,4-triazole-3-yl]phenol 2-[3-(2-pyrid­yl)-1,2,4-triazole-5-yl]phenol bis­(7,7,8,8-tetra­cyano­quinodi­methane) (Bentiss et al., 2002[Bentiss, F., Lagrenée, M., Mentré, O., Wignacourt, J. P., Vezin, H. & Holt, E. M. (2002). J. Mol. Struct. 607, 31-41.]); bis­[μ2-1-phenyl-3,5-bis­(2-oxyphen­yl)-1,2,4-triazole]bis­(pyridine)­dicopper (Steinhauser et al., 2004[Steinhauser, S., Heinz, U., Bartholoma, M., Weyhermuller, T., Nick, H. & Hegetschweiler, K. (2004). Eur. J. Inorg. Chem. pp. 4177-4192.]). Only one compound containing both hy­droxy­phenyl and pyridyl, as substituents in the 3- and 5-positions of 1,2,4-triazole, was found (Bentiss et al., 2002[Bentiss, F., Lagrenée, M., Mentré, O., Wignacourt, J. P., Vezin, H. & Holt, E. M. (2002). J. Mol. Struct. 607, 31-41.]).

5. Synthesis and crystallization

A mixture of 3-(2-hy­droxy­phen­yl)-5-(pyridin-2-yl)-1H-1,2,4-triazole (0.5 mmol) and [UO2(NO3)2]·2H2O (0.5 mmol) in aceto­nitrile (20 ml) was stirred for 20 min. The solution was left to evaporate slowly at room temperature. Red single crystals suitable for X-ray analysis were obtained after 2 d.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were located in a difference Fourier map. The positional parameters of water H atoms were refined, with the restraint O—H = 0.860 (2) Å and the constraint Uiso(H) = 1.5Ueq(O). All other H atoms were constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C, N).

Table 2
Experimental details

Crystal data
Chemical formula [U(C13H9N4O)(NO3)O2(H2O)]·CH3CN·H2O
Mr 646.37
Crystal system, space group Monoclinic, P21/c
Temperature (K) 294
a, b, c (Å) 12.0962 (3), 7.87839 (17), 20.4041 (4)
β (°) 94.829 (2)
V3) 1937.57 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 8.44
Crystal size (mm) 0.5 × 0.3 × 0.2
 
Data collection
Diffractometer Agilent Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.055, 0.185
No. of measured, independent and observed [I > 2σ(I)] reflections 9385, 4446, 3936
Rint 0.032
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.064, 1.05
No. of reflections 4446
No. of parameters 284
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.81, −0.88
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Chemical context top

The synthesis of coordination compounds with N-donor heterocyclic ligands is one of the fastest growing areas of coordination chemistry. 1,2,4-Triazoles and their derivatives can be assigned for such types of ligands. The presence of the 1,2,4-triazole ring in the organic ligand provides an additional site for coordination (Aromí et al., 2011). The presence of additional donor groups in the 3- and 5-positions of the triazole moiety provides a greater number of possibilities for chelation of metal ions, involving tridentate bis-chelate functions.

It should be note that UO22+ complexes with such types of ligands have rarely been investigated. Thus, only three uranyl complexes with 1,2,4-triazole derivatives have been characterized (Daro et al., 2001; Weng et al., 2012; Raspertova et al., 2012). As part of our continuing study of uranium coordination compounds with nitro­gen-donor ligands (Raspertova et al., 2012), we report here the structure of the title compound.

Structural commentary top

The coordination polyhedron of the UVI atom in the title complex is a distorted penta­gonal bipyramid. It is coordinated in a tridentate manner by the 1,2,4,-triazole ligand together with the water molecule and the monodentate nitrate anion in the equatorial plane. Two oxo ligands are placed in the axial positions (Fig. 1). The U1—O1 bond length [2.206 (3) Å] is comparable with those reported for related six-membered chelate fragments involving phenolate and N-atom donors (Sopo et al., 2008; Ahmadi et al., 2012). The U—N bond lengths [2.489 (4) and 2.658 (4) Å] are consistent with the situation in other pyridine-bonded uranium complexes (Amoroso et al., 1996; Gatto et al., 2004). The uranyl group is not exactly linear [O2U1O3 = 175.36 (14)°]. Non-linear OUO bonds are generally found in uranyl complexes with five non-symmetrically bonding equatorial ligands. All non-hydrogen atoms of the organic ligand are coplanar within 0.01 Å. The N1—C7 and C7—N2 bond lengths of the triazole ring are equalized [1.336 (5) Å for both]. This value is longer than a Csp2 N double bond (1.276 Å) and shorter than a Csp2—N single bond (1.347 Å) (Orpen et al., 1994). It can be assumed that the structure of the triazole ring is the superposition of two resonance structures as shown in Fig. 2.

Supra­molecular features top

In the crystal, the complex molecule is linked to the water and aceto­nitrile solvent molecules through N2—H2···N6, O4—H4B···O8, O8—H8A···N3ii and O8—H8B···O6iii hydrogen bonds (symmetry codes in Table 1), forming a sheet structure parallel to the bc plane. The sheets are further linked by an O4—H4A···O5i hydrogen bond (Table 1), forming a three-dimensional network (Fig. 3).

Database survey top

In the Cambridge Structural Database (Version 5.36, November 2014; Groom & Allen, 2014), only three uranyl complexes with derivatives of 1,2,4-triazole are reported (Daro et al., 2001; Weng et al., 2012; Raspertova et al., 2012). 72 structures containing a 5-pyridin-1H-1,2,4-triazole fragment are found. A search for the 3-hy­droxy­phenyl-1,2,4-triazole fragment yielded 14 hits, including: 2,2'-[1-(2,4,6-tri­chloro­phenyl)-1H-1,2,4-triazole-3,5-diyl]diphenol (Li et al., 2008); 2-[5-(2-pyridyl)-1,2,4-triazole-3-yl]phenol 2-[3-(2-pyridyl)-1,2,4-triazole-5-yl]phenol bis­(7,7,8,8-tetra­cyano­quinodi­methane) (Bentiss et al., 2002); bis­[µ2-1-phenyl-3,5-bis­(2-oxyphenyl)-1,2,4-triazole]bis­(pyridine)­dicopper (Steinhauser et al., 2004). Only one compound containing both hy­droxy­phenyl and pyridyl, as substituents in the 3- and 5-positions of 1,2,4-triazole, was found (Bentiss et al., 2002).

Synthesis and crystallization top

A mixture of 3-(2-hy­droxy­phenyl)-5-(pyridin-2-yl)-1H-1,2,4-triazole (0.5 mmol) and [UO2(NO3)2]·2H2O (0.5 mmol) in aceto­nitrile (20 ml) was stirred for 20 min. The solution was left to evaporate slowly at room temperature. Red single crystals suitable for X-ray analysis were obtained after 2 d.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. A l l hydrogen atoms were located in a difference Fourier map. The positional parameters of water H atoms were refined, with the restraint O—H = 0.860 (2) Å and the constraint Uiso(H) = 1.5Ueq(O). All other H atoms were constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C, N).

Related literature top

For related literature, see: Ahmadi et al. (2012); Amoroso et al. (1996); Aromí et al. (2011); Bentiss et al. (2002); Orpen et al. (1994); Daro et al. (2001); Gatto et al. (2004); Groom & Allen (2014); Li et al. (2008); Raspertova et al. (2012); Sopo et al. (2008); Steinhauser et al. (2004); Weng et al. (2012).

Structure description top

The synthesis of coordination compounds with N-donor heterocyclic ligands is one of the fastest growing areas of coordination chemistry. 1,2,4-Triazoles and their derivatives can be assigned for such types of ligands. The presence of the 1,2,4-triazole ring in the organic ligand provides an additional site for coordination (Aromí et al., 2011). The presence of additional donor groups in the 3- and 5-positions of the triazole moiety provides a greater number of possibilities for chelation of metal ions, involving tridentate bis-chelate functions.

It should be note that UO22+ complexes with such types of ligands have rarely been investigated. Thus, only three uranyl complexes with 1,2,4-triazole derivatives have been characterized (Daro et al., 2001; Weng et al., 2012; Raspertova et al., 2012). As part of our continuing study of uranium coordination compounds with nitro­gen-donor ligands (Raspertova et al., 2012), we report here the structure of the title compound.

The coordination polyhedron of the UVI atom in the title complex is a distorted penta­gonal bipyramid. It is coordinated in a tridentate manner by the 1,2,4,-triazole ligand together with the water molecule and the monodentate nitrate anion in the equatorial plane. Two oxo ligands are placed in the axial positions (Fig. 1). The U1—O1 bond length [2.206 (3) Å] is comparable with those reported for related six-membered chelate fragments involving phenolate and N-atom donors (Sopo et al., 2008; Ahmadi et al., 2012). The U—N bond lengths [2.489 (4) and 2.658 (4) Å] are consistent with the situation in other pyridine-bonded uranium complexes (Amoroso et al., 1996; Gatto et al., 2004). The uranyl group is not exactly linear [O2U1O3 = 175.36 (14)°]. Non-linear OUO bonds are generally found in uranyl complexes with five non-symmetrically bonding equatorial ligands. All non-hydrogen atoms of the organic ligand are coplanar within 0.01 Å. The N1—C7 and C7—N2 bond lengths of the triazole ring are equalized [1.336 (5) Å for both]. This value is longer than a Csp2 N double bond (1.276 Å) and shorter than a Csp2—N single bond (1.347 Å) (Orpen et al., 1994). It can be assumed that the structure of the triazole ring is the superposition of two resonance structures as shown in Fig. 2.

In the crystal, the complex molecule is linked to the water and aceto­nitrile solvent molecules through N2—H2···N6, O4—H4B···O8, O8—H8A···N3ii and O8—H8B···O6iii hydrogen bonds (symmetry codes in Table 1), forming a sheet structure parallel to the bc plane. The sheets are further linked by an O4—H4A···O5i hydrogen bond (Table 1), forming a three-dimensional network (Fig. 3).

In the Cambridge Structural Database (Version 5.36, November 2014; Groom & Allen, 2014), only three uranyl complexes with derivatives of 1,2,4-triazole are reported (Daro et al., 2001; Weng et al., 2012; Raspertova et al., 2012). 72 structures containing a 5-pyridin-1H-1,2,4-triazole fragment are found. A search for the 3-hy­droxy­phenyl-1,2,4-triazole fragment yielded 14 hits, including: 2,2'-[1-(2,4,6-tri­chloro­phenyl)-1H-1,2,4-triazole-3,5-diyl]diphenol (Li et al., 2008); 2-[5-(2-pyridyl)-1,2,4-triazole-3-yl]phenol 2-[3-(2-pyridyl)-1,2,4-triazole-5-yl]phenol bis­(7,7,8,8-tetra­cyano­quinodi­methane) (Bentiss et al., 2002); bis­[µ2-1-phenyl-3,5-bis­(2-oxyphenyl)-1,2,4-triazole]bis­(pyridine)­dicopper (Steinhauser et al., 2004). Only one compound containing both hy­droxy­phenyl and pyridyl, as substituents in the 3- and 5-positions of 1,2,4-triazole, was found (Bentiss et al., 2002).

For related literature, see: Ahmadi et al. (2012); Amoroso et al. (1996); Aromí et al. (2011); Bentiss et al. (2002); Orpen et al. (1994); Daro et al. (2001); Gatto et al. (2004); Groom & Allen (2014); Li et al. (2008); Raspertova et al. (2012); Sopo et al. (2008); Steinhauser et al. (2004); Weng et al. (2012).

Synthesis and crystallization top

A mixture of 3-(2-hy­droxy­phenyl)-5-(pyridin-2-yl)-1H-1,2,4-triazole (0.5 mmol) and [UO2(NO3)2]·2H2O (0.5 mmol) in aceto­nitrile (20 ml) was stirred for 20 min. The solution was left to evaporate slowly at room temperature. Red single crystals suitable for X-ray analysis were obtained after 2 d.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. A l l hydrogen atoms were located in a difference Fourier map. The positional parameters of water H atoms were refined, with the restraint O—H = 0.860 (2) Å and the constraint Uiso(H) = 1.5Ueq(O). All other H atoms were constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, shown with 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. Scheme showing the resonance structures in the triazole ligand.
[Figure 3] Fig. 3. Packing diagram of the title compound, viewed along the b axis. Intermolecular hydrogen bonds are shown as dashed lines.
Aqua(nitrato-κO)dioxido{2-[3-(pyridin-2-yl-κN)-1H-1,2,4-triazol-5-yl-κN4]phenolato-κO}uranium(VI) acetonitrile monosolvate monohydrate top
Crystal data top
[U(C13H9N4O)(NO3)O2(H2O)]·CH3CN·H2OF(000) = 1216
Mr = 646.37Dx = 2.216 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.0962 (3) ÅCell parameters from 4414 reflections
b = 7.87839 (17) Åθ = 3.3–31.9°
c = 20.4041 (4) ŵ = 8.44 mm1
β = 94.829 (2)°T = 294 K
V = 1937.57 (7) Å3Block, red
Z = 40.5 × 0.3 × 0.2 mm
Data collection top
Agilent Xcalibur, Sapphire3
diffractometer
4446 independent reflections
Radiation source: Enhance (Mo) X-ray Source3936 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 16.1827 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1515
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 510
Tmin = 0.055, Tmax = 0.185l = 2626
9385 measured reflections
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0276P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4446 reflectionsΔρmax = 1.81 e Å3
284 parametersΔρmin = 0.88 e Å3
Crystal data top
[U(C13H9N4O)(NO3)O2(H2O)]·CH3CN·H2OV = 1937.57 (7) Å3
Mr = 646.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0962 (3) ŵ = 8.44 mm1
b = 7.87839 (17) ÅT = 294 K
c = 20.4041 (4) Å0.5 × 0.3 × 0.2 mm
β = 94.829 (2)°
Data collection top
Agilent Xcalibur, Sapphire3
diffractometer
4446 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
3936 reflections with I > 2σ(I)
Tmin = 0.055, Tmax = 0.185Rint = 0.032
9385 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0294 restraints
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.81 e Å3
4446 reflectionsΔρmin = 0.88 e Å3
284 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U10.81873 (2)0.51832 (2)0.40174 (2)0.01286 (6)
O10.7272 (3)0.2815 (4)0.37710 (15)0.0193 (7)
O20.6934 (2)0.6205 (4)0.41869 (15)0.0189 (7)
O30.9494 (2)0.4323 (4)0.38551 (15)0.0179 (6)
O40.9187 (2)0.7071 (4)0.47688 (15)0.0164 (6)
H4A0.9886 (8)0.709 (7)0.489 (2)0.025*
H4B0.890 (3)0.768 (5)0.5061 (16)0.025*
O50.8563 (2)0.3461 (4)0.50215 (14)0.0186 (7)
O60.8368 (3)0.2773 (4)0.60322 (15)0.0234 (7)
O70.7619 (3)0.5091 (4)0.56334 (18)0.0258 (8)
N10.7589 (3)0.5025 (4)0.28218 (18)0.0128 (7)
N20.6933 (3)0.4457 (5)0.18299 (18)0.0162 (7)
H20.66080.39200.15010.019*
N30.7399 (3)0.6016 (4)0.17900 (18)0.0159 (8)
N40.8707 (3)0.7819 (4)0.32904 (18)0.0134 (7)
N50.8162 (3)0.3796 (5)0.55859 (18)0.0174 (8)
N60.5829 (3)0.3255 (5)0.0595 (2)0.0266 (9)
C10.6794 (3)0.1782 (5)0.3324 (2)0.0138 (8)
C20.6414 (3)0.0177 (5)0.3517 (2)0.0184 (9)
H2A0.65030.01410.39570.022*
C30.5915 (3)0.0919 (5)0.3057 (2)0.0183 (9)
H30.56610.19650.31940.022*
C40.5781 (3)0.0498 (5)0.2396 (2)0.0166 (9)
H40.54430.12500.20900.020*
C50.6158 (3)0.1056 (5)0.2200 (2)0.0155 (9)
H50.60810.13430.17560.019*
C60.6654 (3)0.2206 (5)0.2653 (2)0.0126 (8)
C70.7042 (3)0.3861 (5)0.2445 (2)0.0114 (8)
C80.7785 (3)0.6308 (5)0.2401 (2)0.0142 (9)
C90.8385 (3)0.7813 (5)0.2635 (2)0.0142 (9)
C100.8617 (3)0.9142 (5)0.2225 (2)0.0163 (9)
H100.83860.91050.17780.020*
C110.9198 (3)1.0527 (6)0.2489 (2)0.0184 (9)
H110.93611.14350.22220.022*
C120.9532 (3)1.0555 (6)0.3147 (2)0.0169 (9)
H120.99231.14780.33310.020*
C130.9277 (3)0.9180 (5)0.3534 (2)0.0176 (9)
H130.95100.92010.39800.021*
C140.5369 (4)0.2758 (6)0.0120 (2)0.0199 (10)
C150.4767 (4)0.2097 (6)0.0472 (2)0.0271 (11)
H15A0.45670.30170.07670.041*
H15B0.41070.15310.03580.041*
H15C0.52270.13080.06820.041*
O80.8271 (3)0.9203 (5)0.55170 (19)0.0344 (9)
H8A0.811 (5)0.899 (8)0.5911 (11)0.052*
H8B0.844 (5)1.026 (2)0.554 (3)0.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.01190 (9)0.01556 (9)0.01102 (9)0.00016 (6)0.00039 (6)0.00106 (6)
O10.0240 (17)0.0209 (15)0.0128 (16)0.0051 (14)0.0006 (13)0.0014 (13)
O20.0149 (15)0.0223 (16)0.0193 (16)0.0039 (13)0.0005 (13)0.0015 (14)
O30.0129 (14)0.0216 (15)0.0190 (17)0.0029 (13)0.0000 (13)0.0040 (14)
O40.0138 (15)0.0233 (15)0.0120 (16)0.0025 (14)0.0002 (13)0.0054 (13)
O50.0216 (16)0.0249 (16)0.0089 (15)0.0012 (13)0.0011 (13)0.0012 (13)
O60.0261 (18)0.0266 (17)0.0173 (17)0.0002 (15)0.0008 (14)0.0083 (15)
O70.0230 (17)0.0289 (18)0.0260 (19)0.0110 (14)0.0042 (15)0.0026 (15)
N10.0115 (16)0.0133 (17)0.0135 (18)0.0012 (14)0.0007 (14)0.0015 (14)
N20.0154 (17)0.0184 (17)0.0144 (19)0.0051 (15)0.0009 (15)0.0043 (16)
N30.0167 (18)0.0177 (18)0.0134 (19)0.0033 (15)0.0017 (15)0.0001 (15)
N40.0104 (16)0.0174 (17)0.0120 (18)0.0003 (14)0.0015 (14)0.0026 (15)
N50.0140 (18)0.0236 (19)0.0150 (19)0.0034 (16)0.0033 (15)0.0007 (16)
N60.027 (2)0.033 (2)0.019 (2)0.0034 (19)0.0013 (18)0.0018 (19)
C10.0110 (19)0.0156 (19)0.015 (2)0.0022 (16)0.0003 (16)0.0033 (18)
C20.012 (2)0.023 (2)0.020 (2)0.0018 (18)0.0005 (18)0.0047 (19)
C30.013 (2)0.016 (2)0.027 (3)0.0022 (18)0.0048 (19)0.0059 (19)
C40.013 (2)0.016 (2)0.020 (2)0.0016 (18)0.0021 (17)0.0070 (19)
C50.0103 (19)0.020 (2)0.017 (2)0.0040 (17)0.0032 (17)0.0005 (18)
C60.0065 (18)0.017 (2)0.015 (2)0.0020 (16)0.0026 (16)0.0008 (17)
C70.0084 (18)0.0141 (19)0.012 (2)0.0010 (16)0.0011 (16)0.0027 (17)
C80.0112 (19)0.018 (2)0.014 (2)0.0017 (17)0.0039 (17)0.0002 (18)
C90.0075 (19)0.020 (2)0.016 (2)0.0015 (17)0.0026 (17)0.0018 (18)
C100.013 (2)0.023 (2)0.014 (2)0.0004 (18)0.0044 (17)0.0014 (19)
C110.014 (2)0.020 (2)0.022 (2)0.0016 (18)0.0037 (18)0.004 (2)
C120.013 (2)0.0138 (19)0.024 (2)0.0029 (17)0.0018 (18)0.0033 (19)
C130.013 (2)0.017 (2)0.022 (2)0.0021 (18)0.0002 (18)0.0036 (19)
C140.019 (2)0.022 (2)0.020 (2)0.0022 (19)0.0042 (19)0.001 (2)
C150.030 (3)0.029 (3)0.022 (3)0.007 (2)0.002 (2)0.000 (2)
O80.049 (2)0.0243 (18)0.033 (2)0.0018 (18)0.0193 (19)0.0056 (18)
Geometric parameters (Å, º) top
U1—O12.206 (3)C2—H2A0.9300
U1—O21.776 (3)C2—C31.376 (6)
U1—O31.777 (3)C3—H30.9300
U1—O42.390 (3)C3—C41.386 (6)
U1—O52.467 (3)C4—H40.9300
U1—N12.489 (4)C4—C51.378 (6)
U1—N42.658 (4)C5—H50.9300
O1—C11.319 (5)C5—C61.394 (6)
O4—H4A0.860 (2)C6—C71.461 (5)
O4—H4B0.860 (2)C8—C91.451 (6)
O5—N51.313 (4)C9—C101.385 (6)
O6—N51.226 (5)C10—H100.9300
O7—N51.221 (5)C10—C111.383 (6)
N1—C71.336 (5)C11—H110.9300
N1—C81.360 (5)C11—C121.368 (6)
N2—H20.8600C12—H120.9300
N2—N31.357 (5)C12—C131.391 (6)
N2—C71.336 (5)C13—H130.9300
N3—C81.314 (5)C14—C151.453 (6)
N4—C91.360 (5)C15—H15A0.9600
N4—C131.347 (5)C15—H15B0.9600
N6—C141.146 (6)C15—H15C0.9600
C1—C21.413 (6)O8—H8A0.860 (2)
C1—C61.405 (6)O8—H8B0.860 (2)
O1—U1—O4152.83 (11)C3—C2—C1120.4 (4)
O1—U1—O577.17 (10)C3—C2—H2A119.8
O1—U1—N168.61 (11)C2—C3—H3119.3
O1—U1—N4132.17 (11)C2—C3—C4121.5 (4)
O2—U1—O190.45 (12)C4—C3—H3119.3
O2—U1—O3175.36 (14)C3—C4—H4120.6
O2—U1—O489.24 (12)C5—C4—C3118.8 (4)
O2—U1—O5100.84 (12)C5—C4—H4120.6
O2—U1—N191.78 (13)C4—C5—H5119.3
O2—U1—N490.02 (12)C4—C5—C6121.3 (4)
O3—U1—O194.15 (13)C6—C5—H5119.3
O3—U1—O486.96 (12)C1—C6—C7118.7 (4)
O3—U1—O580.83 (12)C5—C6—C1120.1 (4)
O3—U1—N189.32 (13)C5—C6—C7121.2 (4)
O3—U1—N486.43 (13)N1—C7—C6126.9 (4)
O4—U1—O576.21 (10)N2—C7—N1107.7 (4)
O4—U1—N1138.56 (11)N2—C7—C6125.3 (4)
O4—U1—N475.00 (11)N1—C8—C9120.5 (4)
O5—U1—N1143.57 (10)N3—C8—N1113.7 (4)
O5—U1—N4149.01 (10)N3—C8—C9125.7 (4)
N1—U1—N463.57 (10)N4—C9—C8114.9 (4)
C1—O1—U1149.5 (3)N4—C9—C10122.4 (4)
U1—O4—H4A129 (4)C10—C9—C8122.7 (4)
U1—O4—H4B126 (3)C9—C10—H10120.6
H4A—O4—H4B104 (4)C11—C10—C9118.8 (4)
N5—O5—U1124.2 (2)C11—C10—H10120.6
C7—N1—U1133.5 (3)C10—C11—H11120.2
C7—N1—C8104.5 (4)C12—C11—C10119.6 (4)
C8—N1—U1122.0 (3)C12—C11—H11120.2
N3—N2—H2124.3C11—C12—H12120.5
C7—N2—H2124.3C11—C12—C13119.0 (4)
C7—N2—N3111.5 (3)C13—C12—H12120.5
C8—N3—N2102.6 (3)N4—C13—C12122.7 (4)
C9—N4—U1118.9 (3)N4—C13—H13118.6
C13—N4—U1123.6 (3)C12—C13—H13118.6
C13—N4—C9117.5 (4)N6—C14—C15178.4 (5)
O6—N5—O5116.9 (4)C14—C15—H15A109.5
O7—N5—O5118.6 (4)C14—C15—H15B109.5
O7—N5—O6124.6 (4)C14—C15—H15C109.5
O1—C1—C2119.5 (4)H15A—C15—H15B109.5
O1—C1—C6122.5 (4)H15A—C15—H15C109.5
C6—C1—C2118.0 (4)H15B—C15—H15C109.5
C1—C2—H2A119.8H8A—O8—H8B102 (6)
U1—O1—C1—C2172.3 (4)C1—C6—C7—N14.2 (6)
U1—O1—C1—C67.1 (8)C1—C6—C7—N2177.7 (4)
U1—O5—N5—O6175.9 (2)C2—C1—C6—C50.3 (6)
U1—O5—N5—O74.3 (5)C2—C1—C6—C7180.0 (4)
U1—N1—C7—N2179.1 (3)C2—C3—C4—C50.1 (6)
U1—N1—C7—C62.6 (6)C3—C4—C5—C60.8 (6)
U1—N1—C8—N3179.2 (3)C4—C5—C6—C11.0 (6)
U1—N1—C8—C91.8 (5)C4—C5—C6—C7179.3 (4)
U1—N4—C9—C80.6 (4)C5—C6—C7—N1175.5 (4)
U1—N4—C9—C10179.5 (3)C5—C6—C7—N22.6 (6)
U1—N4—C13—C12179.3 (3)C6—C1—C2—C30.6 (6)
O1—C1—C2—C3180.0 (4)C7—N1—C8—N30.1 (5)
O1—C1—C6—C5179.0 (4)C7—N1—C8—C9179.2 (4)
O1—C1—C6—C70.7 (6)C7—N2—N3—C80.1 (4)
N1—C8—C9—N40.7 (5)C8—N1—C7—N20.2 (4)
N1—C8—C9—C10179.2 (4)C8—N1—C7—C6178.5 (4)
N2—N3—C8—N10.0 (4)C8—C9—C10—C11179.8 (4)
N2—N3—C8—C9179.0 (4)C9—N4—C13—C120.6 (6)
N3—N2—C7—N10.2 (5)C9—C10—C11—C120.1 (6)
N3—N2—C7—C6178.6 (4)C10—C11—C12—C130.0 (6)
N3—C8—C9—N4179.6 (4)C11—C12—C13—N40.4 (6)
N3—C8—C9—C100.2 (6)C13—N4—C9—C8179.4 (4)
N4—C9—C10—C110.1 (6)C13—N4—C9—C100.4 (6)
C1—C2—C3—C40.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O5i0.86 (1)1.92 (2)2.752 (4)162 (5)
O4—H4B···O80.86 (1)1.73 (1)2.581 (5)168 (5)
N2—H2···N60.862.072.909 (5)165
O8—H8A···N3ii0.86 (1)2.05 (2)2.890 (5)164 (6)
O8—H8B···O6iii0.86 (1)2.22 (3)3.001 (5)150 (6)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+3/2, z+1/2; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O5i0.860 (2)1.920 (16)2.752 (4)162 (5)
O4—H4B···O80.860 (2)1.733 (10)2.581 (5)168 (5)
N2—H2···N60.862.072.909 (5)165
O8—H8A···N3ii0.860 (2)2.053 (18)2.890 (5)164 (6)
O8—H8B···O6iii0.860 (2)2.22 (3)3.001 (5)150 (6)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+3/2, z+1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[U(C13H9N4O)(NO3)O2(H2O)]·CH3CN·H2O
Mr646.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)12.0962 (3), 7.87839 (17), 20.4041 (4)
β (°) 94.829 (2)
V3)1937.57 (7)
Z4
Radiation typeMo Kα
µ (mm1)8.44
Crystal size (mm)0.5 × 0.3 × 0.2
Data collection
DiffractometerAgilent Xcalibur, Sapphire3
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2014)
Tmin, Tmax0.055, 0.185
No. of measured, independent and
observed [I > 2σ(I)] reflections
9385, 4446, 3936
Rint0.032
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.064, 1.05
No. of reflections4446
No. of parameters284
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.81, 0.88

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009).

 

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAhmadi, M., Mague, J., Akbari, A. & Takjoo, R. (2012). Polyhedron, 42, 128–134.  Web of Science CSD CrossRef CAS Google Scholar
First citationAmoroso, A. J., Jeffery, J. C., Jones, P. L., McCleverty, J. A. & Ward, M. D. (1996). Polyhedron, 15, 2023–2027.  CSD CrossRef CAS Web of Science Google Scholar
First citationAromí, G., Barrios, L. A., Roubeau, O. & Gamez, P. (2011). Coord. Chem. Rev. 255, 485–546.  Google Scholar
First citationBentiss, F., Lagrenée, M., Mentré, O., Wignacourt, J. P., Vezin, H. & Holt, E. M. (2002). J. Mol. Struct. 607, 31–41.  Web of Science CSD CrossRef CAS Google Scholar
First citationDaro, N., Guionneau, P., Golhen, S., Chasseau, D., Ouahab, L. & Sutter, J.-P. (2001). Inorg. Chim. Acta, 326, 47–52.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGatto, C. C., Schulz Lang, E., Kupfer, A., Hagenbach, A. & Abram, U. (2004). Z. Anorg. Allg. Chem. 630, 1286–1295.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Z.-S., Li, X.-B. & Sun, B.-W. (2008). Acta Cryst. E64, o491.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOrpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1994). Structure Correlation, edited by H.-B. Bürgi & J. D. Dunitz, Vol. 2, pp. 751–858. VCH: Weinheim.  Google Scholar
First citationRaspertova, I., Doroschuk, R., Khomenko, D. & Lampeka, R. (2012). Acta Cryst. C68, m61–m63.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSopo, H., Lehtonen, A. & Sillanpää, R. (2008). Polyhedron, 27, 95–104.  Web of Science CSD CrossRef CAS Google Scholar
First citationSteinhauser, S., Heinz, U., Bartholoma, M., Weyhermuller, T., Nick, H. & Hegetschweiler, K. (2004). Eur. J. Inorg. Chem. pp. 4177–4192.  Web of Science CSD CrossRef Google Scholar
First citationWeng, Z., Wang, S., Ling, J., Morrison, J. M. & Burns, P. C. (2012). Inorg. Chem. 51, 7185–7191.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 2| February 2016| Pages 111-113
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds