research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 2| February 2016| Pages 191-195

Two mixed-ligand lanthanide–hydrazone complexes: [Pr(NCS)3(pbh)2]·H2O and [Nd(NCS)(NO3)(pbh)2(H2O)]NO3·2.33H2O [pbh is N′-(pyridin-2-ylmethyl­idene)benzo­hydrazide, C13H11N3O]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Aristotle University, 541 24 Thessaloniki, Greece, and bDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 23 December 2015; accepted 31 December 2015; online 16 January 2016)

The gel-mediated syntheses and crystal structures of [N′-(pyridin-2-ylmethylidene-κN)benzohydrazide-κ2N′,O]tris(thiocyanato-κN)praseodymium(III) mono­hydrate, [Pr(NCS)3(C13H11N3O)2]·H2O, (I), and aqua(nitrato-κ2O,O′)[N′-(pyri­din-2-ylmethylidene-κN)benzohydrazide-κ2N′,O](thiocyanato-κN)neo­dym­ium(III) nitrate 2.33-hydrate, [Nd(NCS)(NO3)(C13H11N3O)2(H2O)]NO3·2.33H2O, (II), are reported. The Pr3+ ion in (I) is coordinated by two N,N,O-tridentate N′-(pyridin-2-ylmethylidene)benzohydrazide (pbh) ligands and three N-bonded thio­cyanate ions to generate an irregular PrN7O2 coordination polyhedron. The Nd3+ ion in (II) is coordinated by two N,N,O-tridentate pbh ligands, an N-bonded thio­cyanate ion, a bidentate nitrate ion and a water mol­ecule to generate a distorted NdN5O5 bicapped square anti­prism. The crystal structures of (I) and (II) feature numerous hydrogen bonds, which lead to the formation of three-dimensional networks in each case.

1. Chemical context

Hydrazones and their metal complexes show a wide range of properties and applications ranging from catalysts (Shibasaki & Yoshikawa, 2002[Shibasaki, M. & Yoshikawa, N. (2002). Chem. Rev. 102, 2187-2210.]), magnetization-transfer contrast agents (Zhang & Sherry, 2003[Zhang, S. & Sherry, A. D. (2003). J. Solid State Chem. 171, 38-43.]) to light-emitting diodes (Kenyon, 2002[Kenyon, A. J. (2002). Prog. Quantum Electron. 26, 225-284.]). Our own studies in this area have focused on the syntheses and crystal structures of high-coordination-number lanthanide–hydrazone complexes including [Ce(NO3)3(pbh)2]C3H6O·2H2O (Christidis et al., 1999[Christidis, P. C., Tossidis, I. A. & Paschalidis, D. G. (1999). Acta Cryst. C55, 707-710.]), [Er(NO3)2(pbh)2]NO3·1.5H2O (Paschalidis et al., 2000[Paschalidis, D., Tossidis, I. & Gdaniec, M. (2000). Polyhedron, 19, 2629-2637.]) and [Ce(pbh)2(NO3)(NCS)(H2O)]NO3·2.35H2O (Paschalidis & Gdaniec, 2004[Paschalidis, D. & Gdaniec, M. (2004). Struct. Chem. 15, 605-612.]) [where pbh is pyridine-2-carboxaldehyde benzoyl­hydrazone].

As a continuation of these studies, we now describe the syntheses and crystal structures of the title mixed-ligand complexes [Pr(NCS)3(pbh)2]·H2O, (I),[link] and [Nd(NCS)(NO3)(pbh)2(H2O)](NO3)·2.33H2O, (II)[link].

2. Structural commentary

Compound (I)[link] is a new neutral mixed-ligand complex of Pr3+: selected geometrical data are given in Table 1[link]. The praseodymium ion is coordinated by two N,N,O-tridentate (via the pyridine nitro­gen atom, the azomethine nitro­gen atom and the carbonyl oxygen atom) pbh ligands and three N-bonded thio­cyanate anions (Fig. 1[link]), to yield a PrO2N7 coordination polyhedron for the metal ion (Fig. 2[link]). Its geometry is irregular, but an approximate penta­gon of atoms N1/N4/N5/O1/N7 can be identified and a triangle of N3/N8/O2. The dihedral angle between these groups is 7.4 (2)° and the metal ion lies −1.898 (2) Å from the triangle and 0.5371 (13) Å from the mean plane of the penta­gon. Finally, atom N2 caps through the penta­gon at a distance of 1.947 (3) Å from its mean plane.

[Scheme 1]
[Scheme 2]

Table 1
Selected bond lengths (Å) for (I)[link]

Pr1—N2 2.485 (3) Pr1—N8 2.646 (3)
Pr1—O2 2.498 (2) Pr1—N5 2.666 (3)
Pr1—N1 2.517 (3) Pr1—N4 2.674 (3)
Pr1—O1 2.529 (2) Pr1—N7 2.679 (3)
Pr1—N3 2.550 (3)    
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] showing 50% displacement ellipsoids and atom labelling.
[Figure 2]
Figure 2
Detail of (I)[link] showing the irregular PrO2N7 coordination polyhedron (contacts between the penta­gon and triangle of coordinated atoms shown as green lines). Displacement ellipsoids are shown at the 50% probability level.

The first pbh ligand (containing C4) in (I)[link] bonds to the metal ion from its atoms N4, N5 and O1, thus generating a pair of five-membered chelate rings. The first of these (N4/C8/C9/N5/Pr1) is almost planar (r.m.s. deviation = 0.011 Å) and the second (N5/N6/C10/O1/Pr1) can be described as a shallow envelope with O1 as the flap [displaced by 0.278 (4) Å from the mean plane through the other atoms with an r.m.s. deviation of 0.052 Å]. The dihedral angle between the N4/C4–C8 and C11–C16 aromatic rings of 49.44 (13)° indicates a substantial twisting to the ligand conformation: the major component to this occurs about the C10–C11 bond [N6—C10—C11—C12 = −37.1 (5)°]. For the second (C17) pbh ligand, atoms N7, N8 and O2 bond to the metal ion and the resulting chelate rings are both almost planar (for N7/C21/C22/N8/Pr1, r.m.s. deviation = 0.017 Å; for N8/N9/C23/O2/Pr1, r.m.s. deviation = 0.016 Å). The dihedral angle of 7.39 (9)° between the N7/C17–C21 and C24–C29 mean planes indicates that the second ligand is far less twisted than the first: the major component to this is reflected in the N9—C23—C24—C25 torsion angle of −11.3 (5)°. The dihedral angle between the near-planar parts of the pbh ligands (central chain plus pyridine ring) is 54.08 (6)°. The three thio­cyanate ligands show normal geometrical parameters (mean S=C bond length = 1.641 Å, mean C=N bond length = 1.169 Å, mean S=C=N bond angle = 179.0°): their Pr—N bond lengths are all shorter than the pbh Pr—N distances, which can be justified electrostatically if it is not a steric effect. The three Pr—N=C bond angles [159.0 (3), 150.7 (3) and 150.6 (3)°] are all substanti­ally less than 180°. A single water mol­ecule of crystallization completes the structure of (I)[link].

Compound (II)[link] is a new mixed-ligand cationic complex of Nd3+: selected geometrical data are given in Table 2[link]. The neodymium ion is coordinated by two N,N,O-tridentate pbh ligands, an N-bonded thio­cyanate anion, a bidentate nitrate anion and a water mol­ecule (Fig. 3[link]), to yield a 10-coordinate NdN5O5 coordination polyhedron. The coordination geometry about the Nd3+ ion (Fig. 4[link]) at least approximates to a bicapped square anti­prism (Kepert, 1982[Kepert, D. L. (1982). Inorganic Stereochemistry, p. 189. New York: Springer Verlag.]) with the square faces defined by O1/O4/N1/O9 (r.m.s. deviation = 0.157 Å) and O2/O3/N4/N7 (r.m.s. deviation = 0.105 Å) and the capping atoms represented by N2 and N5 [N2—Nd1—N5 = 168.03 (6)°]. The dihedral angle between the nominal squares defined in the previous sentence is 8.11 (8)° and Nd1 is displaced from the afore-stated mean planes by −1.1431 (9) and 1.1762 (9) Å, respectively.

Table 2
Selected bond lengths (Å) for (II)[link]

Nd1—O9 2.4459 (16) Nd1—N5 2.6479 (19)
Nd1—O2 2.4796 (15) Nd1—N2 2.6491 (18)
Nd1—O1 2.5063 (15) Nd1—O4 2.6558 (17)
Nd1—N7 2.512 (2) Nd1—N4 2.6985 (18)
Nd1—O3 2.5568 (17) Nd1—N1 2.7051 (19)
[Figure 3]
Figure 3
The mol­ecular structure of (II)[link] showing 50% displacement ellipsoids and atom labelling.
[Figure 4]
Figure 4
Detail of (II)[link] showing the distorted bicapped square-anti­prismatic NdO5N5 coordination polyhedron (contacts between the atoms forming the square anti­prism indicated with tan lines). Displacement ellipsoids are shown at the 50% probability level.

The first pbh ligand (containing C1) in (II)[link] bonds to the metal ion from its atoms N1, N2 and O1. The two five-membered chelate rings that result are both close to planar (for N1/C5/C6/N2/Nd1, the r.m.s. deviation = 0.011 Å and for N2/N3/C7/O1/Nd1, the r.m.s. deviation = 0.019 Å). The dihedral angle between the N1/C1–C5 and C8–C13 aromatic rings is 21.71 (8)° and the metal ion is displaced from the pyridine ring by −0.204 (4) Å. For the second (C14) pbh ligand, atoms N4, N5 and O2 bond to the metal ion: one of the resulting chelate rings is close to planar (N4/C18/C19/N5/Nd1: r.m.s. deviation = 0.022 Å). The second (N5/N6/C20/O2/Nd1) is probably better described as a shallow envelope, with O2 displaced from the other atoms by −0.131 (3) Å. The dihedral angle of 9.52 (10)° between N4/C14–C18 and C21–C26 indicates that the second ligand is less twisted than the first. The metal ion is displaced by −0.045 (4) Å from the pyridine ring. The dihedral angle between the near-planar parts of the pbh ligands (central chain + pyridine ring) is 37.75 (3)°. The Nd—N—C bond angle of 149.40 (19)° is very similar to two of the corresponding angles in (I)[link]. The crystal structure of (II)[link] is completed by a non-coordinating nitrate anion (also ensuring charge balance) and three water mol­ecules, one of which (O12) is partially occupied [refined occupancy = 0.328 (7)], although there are no close contacts that enforce this crystallographically.

3. Supra­molecular features

In the crystal of (I)[link], the components are linked by N—H⋯Ow, N—H⋯S and Ow—H⋯S (w = water) hydrogen bonds (Table 3[link]). The N—H⋯S bond generates [001] chains of complexes and the hydrogen bonds to and from the water mol­ecules generate a three-dimensional network. Aromatic ππ stacking between the N7-pyridine and C24-phenyl rings is suggested by the centroid–centroid separations of 3.524 (2) and 3.628 (2) Å between rings in nearby mol­ecules in the crystal and a short C—H⋯O contact (Table 3[link]) also occurs.

Table 3
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6⋯O3 0.88 1.94 2.806 (4) 167
N9—H9⋯S3i 0.88 2.65 3.485 (3) 160
O3—H1⋯S2ii 0.84 2.46 3.278 (3) 164
O3—H2⋯S3iii 0.85 2.60 3.451 (3) 180
C26—H26⋯O1iv 0.95 2.53 3.450 (4) 162
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y, -z; (iii) -x+1, -y, -z; (iv) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

In the crystal of (II)[link], numerous hydrogen bonds occur (Table 4[link]), to link the components into a three-dimensional network. Any aromatic ππ stacking must be very weak, as the minimum ring-centroid separation in the crystal is 3.9800 (13) Å.

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O6 0.88 1.98 2.847 (2) 168
N6—H6⋯O10i 0.88 1.92 2.754 (3) 159
O9—H1W⋯O11 0.90 1.86 2.760 (3) 174
O9—H2W⋯O6ii 0.90 1.93 2.816 (2) 168
O10—H3W⋯O5iii 0.99 2.07 3.055 (3) 171
O10—H4W⋯O8 0.94 1.95 2.824 (3) 154
O11—H5W⋯O5iv 0.94 1.94 2.859 (3) 166
O11—H6W⋯S1 0.93 2.58 3.460 (2) 159
O12—H7W⋯O7iii 0.95 1.95 2.902 (7) 180
O12—H8W⋯O5iii 0.90 2.25 3.072 (7) 151
O12—H8W⋯O4iii 0.90 2.14 2.957 (7) 149
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) -x, -y+1, -z; (iv) x+1, y, z.

4. Database survey

A search of the Cambridge Structural Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for complexes incorporating pbh ligand(s) revealed 21 matches [two Group 1/2 metal ions (N,O-bidentate or N,N-tridentate), 16 transition metals (N,N-bidentate, N,O-bidentate or N,N,O-tridentate) and three lanthanides (all N,N,O-tridentate)]. The structure of the hydrated free ligand is also known (Richardson et al., 1999[Richardson, D. R., Becker, E. & Bernhardt, P. V. (1999). Acta Cryst. C55, 2102-2105.]). Based on this search, compound (I)[link] appears to be a new structure type, whereas compound (II)[link] is isostructural with its cerium analogue (refcode FEBDOG; Paschalidis & Gdaniec, 2004[Paschalidis, D. & Gdaniec, M. (2004). Struct. Chem. 15, 605-612.]). Inter­estingly, both (II)[link] and FEBDOG have almost the same occupancy factor for the partially occupied water mol­ecule.

5. Synthesis and crystallization

To prepare (I)[link], gelled tetra­meth­oxy­silane (Arend & Connelly, 1982[Arend, H. & Connelly, J. J. (1982). J. Cryst. Growth, 56, 642-644.]) was placed in the bend of a U-tube. A solution of 37.3 mg (0.1 mmol) PrCl3·6H2O and 22.8 mg (0.3 mmol) NH4SCN in 10 ml of methanol was placed in one arm of the tube and a solution of 45.0 mg (0.2 mmol) of pbh in 10 ml of methanol in the other. Green slabs of (I)[link] were obtained after four months as the components slowly diffused through the gel. Analysis (%) calculated for C29H24N9O3PrS3: C, 44.44; H, 3.08; N, 16.08%. Found: C, 44.27; H, 3.01; N, 16.22%. IR (cm−1, KBr): 3445 vw, b, 2048 vs (NCS C≡N stretch), 1627 s, 1536 s, 1477 m, 1439 m, 1362 m, 1288 m, 1148 m, 1087 w, 1008 w, 919 w, 771 w, 710 m, 633 w.

To prepare (II)[link], solutions of 43.8 mg (0.1 mmol) Nd(NO3)3·6H2O and 22.8 mg (0.3 mmol) NH4SCN in 10 ml of methanol and 45.0 mg (0.2 mmol) of pbh in 10 ml of methanol were placed in the arms of a U-tube filled with gelled tetra­meth­oxy­silane. Pale yellow slabs of (II)[link] were obtained after four months. Analysis calculated for C27H28.65N9NdO11.33S: C, 38.75; H, 3.45; N, 15.06%. Found: C, 38.62; H, 3.41; N, 15.13%. IR (cm−1, KBr): 3447 vw, b, 2050 vs (NCS C≡N stretch), 1625 s, 1570 s, 1475 m, 1438 m, 1364 m, 1296 m, 1149 m, 1088 w, 1006 w, 920 w, 776 w, 700 m, 632 w.

6. Refinement

Crystal data, data collection and structure refinement details for (I)[link] and (II)[link] are summarized in Table 5[link]. Atom O12 in (II)[link] showed unrealistically large displacement parameters and its occupancy was refined to 0.327 (8). The O-bound H atoms were located in difference Fourier maps and refined as riding atoms in their as-found relative positions. The C- and N-bound H atoms were geometrically placed (C—H = 0.95–1.00 Å; N—H = 0.88 Å) and refined as riding atoms. The constraint Uiso(H) = 1.2Ueq(carrier) was applied in all cases.

Table 5
Experimental details

  (I) (II)
Crystal data
Chemical formula [Pr(NCS)3(C13H11N3O)2]·H2O [Nd(NCS)(NO3)(C13H11N3O)2(H2O)](NO3)·2.33H2O
Mr 783.66 836.78
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/n
Temperature (K) 120 120
a, b, c (Å) 9.6999 (4), 25.8275 (13), 13.5791 (7) 11.2796 (3), 17.3802 (3), 17.4298 (4)
β (°) 110.222 (2) 96.8035 (9)
V3) 3192.2 (3) 3392.91 (13)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.77 1.66
Crystal size (mm) 0.24 × 0.22 × 0.10 0.20 × 0.18 × 0.05
 
Data collection
Diffractometer Nonius KappaCCD Nonius KappaCCD
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.676, 0.843 0.732, 0.922
No. of measured, independent and observed [I > 2σ(I)] reflections 33021, 7291, 5239 41570, 7796, 6473
Rint 0.059 0.038
(sin θ/λ)max−1) 0.650 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.079, 1.04 0.026, 0.060, 1.03
No. of reflections 7291 7796
No. of parameters 406 447
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.21, −0.99 0.64, −0.50
Computer programs: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), HKL, SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter, Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) & SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Hydrazones and their metal complexes show a wide range of properties and applications ranging from catalysts (Shibasaki & Yoshikawa, 2002), magnetization-transfer contrast agents (Zhang & Sherry, 2003) to light-emitting diodes (Kenyon, 2002). Our own studies in this area have focused on the syntheses and crystal structures of high-coordination-number lanthanide–hydrazone complexes including [Ce(NO3)3(pbh)2](C3H6O)·2H2O (Christidis et al., 1999), [Er(NO3)2(pbh)2]NO3·1.5H2O (Paschalidis et al., 2000) and [Ce(pbh)2(NO3)(NCS)(H2O)]NO3·2.35H2O (Paschalidis & Gdaniec, 2004) [where pbh is N'-(pyridin-2-yl­methyl­idene)benzohydrazide].

As a continuation of these studies, we now describe the syntheses and crystal structures of the title mixed-ligand complexes [Pr(pbh)2(NCS)3]·H2O (I) and [Nd(pbh)2(NCS)(NO3)(H2O)](NO3)·2.33H2O, (II).

Structural commentary top

Compound (I) is a new neutral mixed-ligand complex of Pr3+: selected geometrical data are given in Table 1. The praseodymium ion is coordinated by two N,N,O-tridentate (via the pyridine nitro­gen atom, the azomethine nitro­gen atom and the carbonyl oxygen atom) pbh ligands and three N-bonded thio­cyanate anions (Fig. 1), to yield a PrO2N7 coordination polyhedron for the metal ion (Fig. 2). Its geometry is irregular, but an approximate penta­gon of atoms N1/N4/N5/N7/O1 can be identified and a triangle of N3/N8/O2. The dihedral angle between these groups is 7.4 (2)° and the metal ion lies –1.898 (2) Å from the triangle and 0.5371 (13) Å from the mean plane of the penta­gon. Finally, atom N2 caps through the penta­gon at a distance of 1.947 (3) Å from its mean plane.

The first pbh ligand (containing C4) in (I) bonds to the metal ion from its atoms N4, N5 and O1, thus generating a pair of five-membered chelate rings. The first of these (N4/C8/C9/N5/Pr1) is almost planar (r.m.s. deviation = 0.011 Å) and the second (N5/N6/C10/O1/Pr1) can be described as a shallow envelope with O1 as the flap [displaced by 0.278 (4) Å from the mean plane through the other atoms with an r.m.s. deviation of 0.052 Å]. The dihedral angle between the N4/C4–C8 and C11–C16 aromatic rings of 49.44 (13)° indicates a substantial twisting to the ligand conformation: the major component to this occurs about the C10–C11 bond [N6—C10—C11—C12 = –37.1 (5)°]. For the second (C17) pbh ligand, atoms N7, N8 and O2 bond to the metal ion and the resulting chelate rings are both almost planar (for N7/C21/C22/N8/Pr1, r.m.s. deviation = 0.017 Å; for N8/N9/C23/O2/Pr1, r.m.s. deviation = 0.016 Å). The dihedral angle of 7.39 (9)° between the N7/C17–C21 and C24–C29 mean planes indicates that the second ligand is far less twisted than the first: the major component to this is reflected in the N9—C23—C24—C25 torsion angle of –11.3 (5)°. The dihedral angle between the near-planar parts of the pbh ligands (central chain + pyridine ring) is 54.08 (6)°. The three thio­cyanate ligands show normal geometrical parameters (mean SC bond length = 1.641 Å, mean CN bond length = 1.169 Å, mean SCN bond angle = 179.0°): their Pr—N bond lengths are all shorter than the pbh Pr—N distances, which can be justified electrostatically if it is not a steric effect. The three Pr—NC bond angles [159.0 (3), 150.7 (3) and 150.6 (3)°] are all substanti­ally less than 180°. A single water molecule of crystallization completes the structure of (I).

Compound (II) is a new mixed-ligand cationic complex of Nd3+: selected geometrical data are given in Table 2. The neodymium ion is coordinated by two N,N,O-tridentate pbh ligands, an N-bonded thio­cyanate anion, a bidentate nitrate anion and a water molecule (Fig. 3), to yield a 10-coordinate NdN5O5 coordination polyhedron. The coordination geometry about the Nd3+ ion (Fig. 4) at least approximates to a bicapped square anti­prism (Kepert, 1982) with the square faces defined by O1/O4/O9/N1 (r.m.s. deviation = 0.157 Å) and O2/O3/N4/N7 (r.m.s. deviation = 0.105 Å) and the capping atoms represented by N2 and N5 [N2—Nd1—N5 = 168.03 (6)°]. The dihedral angle between the nominal squares defined in the previous sentence is 8.11 (8)° and Nd1 is displaced from the afore-stated mean planes by –1.1431 (9) and 1.1762 (9) Å, respectively.

The first pbh ligand (containing C1) in (II) bonds to the metal ion from its atoms N1, N2 and O1. The two five-membered chelate rings that result are both close to planar (for N1/C5/C6/N2/Nd1, the r.m.s. deviation = 0.011 Å and for N2/N3/C7/O1/Nd1, the r.m.s. deviation = 0.019 Å). The dihedral angle between the N1/C1–C5 and C8–C13 aromatic rings is 21.71 (8)° and the metal ion is displaced from the pyridine ring by –0.204 (4) Å. For the second (C14) pbh ligand, atoms N4, N5 and O2 bond to the metal ion: one of the resulting chelate rings is close to planar (N4/C18/C19/N5/Nd1: r.m.s. deviation = 0.022 Å). The second (N5/N6/C20/O2/Nd1) is probably better described as a shallow envelope, with O2 displaced from the other atoms by –0.131 (3) Å. The dihedral angle of 9.52 (10)° between N4/C14–C18 and C21–C26 indicates that the second ligand is less twisted than the first. The metal ion is displaced by –0.045 (4) Å from the pyridine ring. The dihedral angle between the near-planar parts of the pbh ligands (central chain + pyridine ring) is 37.75 (3)°. The Nd—N—C bond angle of 149.40 (19)° is very similar to two of the corresponding angles in (I). The crystal structure of (II) is completed by an uncoordinated nitrate anion (also ensuring charge balance) and three water molecules, one of which (O12) is partially occupied [refined occupancy = 0.328 (7)], although there are no close contacts that enforce this crystallographically.

Supra­molecular features top

In the crystal of (I), the components are linked by N—H···Ow, N—H···S and Ow—H···S (w = water) hydrogen bonds (Table 3). The N—H···S bond generates [001] chains of complexes and the hydrogen bonds to and from the water molecules generate a three-dimensional network. Aromatic ππ stacking between the N7-pyridine and C24-phenyl rings is suggested by the centroid–centroid separations of 3.524 (2) and 3.628 (2) Å between rings in nearby molecules in the crystal and a short C—H···O contact (Table 3) also occurs.

In the crystal of (II), numerous hydrogen bonds occur (Table 4), to link the components into a three-dimensional network. Any aromatic ππ stacking must be very weak, as the minimum ring-centroid separation in the crystal is 3.9800 (13) Å.

Database survey top

A search of the Cambridge Structural Database (Groom & Allen, 2014) for complexes incorporating pbh ligand(s) revealed 21 matches [two Group 1/2 metal ions (N,O-bidentate or N,N-tridentate), 16 transition metals (N,N-bidentate, N,O-bidentate or N,N,O-tridentate) and three lanthanides (all N,N,O-tridentate)]. The structure of the hydrated free ligand is also known (Richardson et al., 1999). Based on this search, compound (I) appears to be a new structure type, whereas compound (II) is isostructural with its cerium analogue (refcode FEBDOG; Paschalidis & Gdaniec, 2004). Inter­estingly, both (II) and FEBDOG have almost the same occupancy factor for the partially occupied water molecule.

Synthesis and crystallization top

To prepare (I), gelled tetra­meth­oxy­silane (Arend & Connelly, 1982) was placed in the bend of a U-tube. A solution of 37.3 mg (0.1 mmol) PrCl3·6H2O and 22.8 mg (0.3 mmol) NH4SCN in 10 ml of methanol was placed in one arm of the tube and a solution of 45.0 mg (0.2 mmol) of pbh in 10 ml of methanol in the other. Green slabs of (I) were obtained after four months as the components slowly diffused through the gel. Analysis (%) calculated for C29H24N9O3PrS3: C, 44.44; H, 3.08; N, 16.08 %. Found: C, 44.27; H, 3.01; N, 16.22 %. IR (cm-1, KBr): 3445 vw, b, 2048 vs (NCS- CN stretch), 1627 s, 1536 s, 1477 m, 1439 m, 1362 m, 1288 m, 1148 m, 1087 w, 1008 w, 919 w, 771 w, 710 m, 633 w.

To prepare (II), solutions of 43.8 mg (0.1 mmol) Nd(NO3)3·6H2O and 22.8 mg (0.3 mmol) NH4SCN in 10 ml of methanol and 45.0 mg (0.2 mmol) of pbh in 10 ml of methanol were placed in the arms of a U-tube filled with gelled tetra­meth­oxy­silane. Pale yellow slabs of (II) were obtained after four months. Analysis calculated for C27H28.65N9NdO11.33S: C, 38.75; H, 3.45; N, 15.06 %. Found: C, 38.62; H, 3.41; N, 15.13 %. IR (cm-1, KBr): 3447 vw, b, 2050 vs (NCS- CN stretch), 1625 s, 1570 s, 1475 m, 1438 m, 1364 m, 1296 m, 1149 m, 1088 w, 1006 w, 920 w, 776 w, 700 m, 632 w.

Refinement top

Crystal data, data collection and structure refinement details for (I) and (II) are summarized in Table 5. Atom O12 in (II) showed unrealistically large displacement parameters and its occupancy was refined to 0.327 (8). The O-bound H atoms were located in difference Fourier maps and refined as riding atoms in their as-found relative positions. The C- and N-bound H atoms were geometrically placed (C—H = 0.95–1.00 Å; N—H = 0.88 Å) and refined as riding atoms. The constraint Uiso(H) = 1.2Ueq(carrier) was applied in all cases.

Structure description top

Hydrazones and their metal complexes show a wide range of properties and applications ranging from catalysts (Shibasaki & Yoshikawa, 2002), magnetization-transfer contrast agents (Zhang & Sherry, 2003) to light-emitting diodes (Kenyon, 2002). Our own studies in this area have focused on the syntheses and crystal structures of high-coordination-number lanthanide–hydrazone complexes including [Ce(NO3)3(pbh)2](C3H6O)·2H2O (Christidis et al., 1999), [Er(NO3)2(pbh)2]NO3·1.5H2O (Paschalidis et al., 2000) and [Ce(pbh)2(NO3)(NCS)(H2O)]NO3·2.35H2O (Paschalidis & Gdaniec, 2004) [where pbh is N'-(pyridin-2-yl­methyl­idene)benzohydrazide].

As a continuation of these studies, we now describe the syntheses and crystal structures of the title mixed-ligand complexes [Pr(pbh)2(NCS)3]·H2O (I) and [Nd(pbh)2(NCS)(NO3)(H2O)](NO3)·2.33H2O, (II).

Compound (I) is a new neutral mixed-ligand complex of Pr3+: selected geometrical data are given in Table 1. The praseodymium ion is coordinated by two N,N,O-tridentate (via the pyridine nitro­gen atom, the azomethine nitro­gen atom and the carbonyl oxygen atom) pbh ligands and three N-bonded thio­cyanate anions (Fig. 1), to yield a PrO2N7 coordination polyhedron for the metal ion (Fig. 2). Its geometry is irregular, but an approximate penta­gon of atoms N1/N4/N5/N7/O1 can be identified and a triangle of N3/N8/O2. The dihedral angle between these groups is 7.4 (2)° and the metal ion lies –1.898 (2) Å from the triangle and 0.5371 (13) Å from the mean plane of the penta­gon. Finally, atom N2 caps through the penta­gon at a distance of 1.947 (3) Å from its mean plane.

The first pbh ligand (containing C4) in (I) bonds to the metal ion from its atoms N4, N5 and O1, thus generating a pair of five-membered chelate rings. The first of these (N4/C8/C9/N5/Pr1) is almost planar (r.m.s. deviation = 0.011 Å) and the second (N5/N6/C10/O1/Pr1) can be described as a shallow envelope with O1 as the flap [displaced by 0.278 (4) Å from the mean plane through the other atoms with an r.m.s. deviation of 0.052 Å]. The dihedral angle between the N4/C4–C8 and C11–C16 aromatic rings of 49.44 (13)° indicates a substantial twisting to the ligand conformation: the major component to this occurs about the C10–C11 bond [N6—C10—C11—C12 = –37.1 (5)°]. For the second (C17) pbh ligand, atoms N7, N8 and O2 bond to the metal ion and the resulting chelate rings are both almost planar (for N7/C21/C22/N8/Pr1, r.m.s. deviation = 0.017 Å; for N8/N9/C23/O2/Pr1, r.m.s. deviation = 0.016 Å). The dihedral angle of 7.39 (9)° between the N7/C17–C21 and C24–C29 mean planes indicates that the second ligand is far less twisted than the first: the major component to this is reflected in the N9—C23—C24—C25 torsion angle of –11.3 (5)°. The dihedral angle between the near-planar parts of the pbh ligands (central chain + pyridine ring) is 54.08 (6)°. The three thio­cyanate ligands show normal geometrical parameters (mean SC bond length = 1.641 Å, mean CN bond length = 1.169 Å, mean SCN bond angle = 179.0°): their Pr—N bond lengths are all shorter than the pbh Pr—N distances, which can be justified electrostatically if it is not a steric effect. The three Pr—NC bond angles [159.0 (3), 150.7 (3) and 150.6 (3)°] are all substanti­ally less than 180°. A single water molecule of crystallization completes the structure of (I).

Compound (II) is a new mixed-ligand cationic complex of Nd3+: selected geometrical data are given in Table 2. The neodymium ion is coordinated by two N,N,O-tridentate pbh ligands, an N-bonded thio­cyanate anion, a bidentate nitrate anion and a water molecule (Fig. 3), to yield a 10-coordinate NdN5O5 coordination polyhedron. The coordination geometry about the Nd3+ ion (Fig. 4) at least approximates to a bicapped square anti­prism (Kepert, 1982) with the square faces defined by O1/O4/O9/N1 (r.m.s. deviation = 0.157 Å) and O2/O3/N4/N7 (r.m.s. deviation = 0.105 Å) and the capping atoms represented by N2 and N5 [N2—Nd1—N5 = 168.03 (6)°]. The dihedral angle between the nominal squares defined in the previous sentence is 8.11 (8)° and Nd1 is displaced from the afore-stated mean planes by –1.1431 (9) and 1.1762 (9) Å, respectively.

The first pbh ligand (containing C1) in (II) bonds to the metal ion from its atoms N1, N2 and O1. The two five-membered chelate rings that result are both close to planar (for N1/C5/C6/N2/Nd1, the r.m.s. deviation = 0.011 Å and for N2/N3/C7/O1/Nd1, the r.m.s. deviation = 0.019 Å). The dihedral angle between the N1/C1–C5 and C8–C13 aromatic rings is 21.71 (8)° and the metal ion is displaced from the pyridine ring by –0.204 (4) Å. For the second (C14) pbh ligand, atoms N4, N5 and O2 bond to the metal ion: one of the resulting chelate rings is close to planar (N4/C18/C19/N5/Nd1: r.m.s. deviation = 0.022 Å). The second (N5/N6/C20/O2/Nd1) is probably better described as a shallow envelope, with O2 displaced from the other atoms by –0.131 (3) Å. The dihedral angle of 9.52 (10)° between N4/C14–C18 and C21–C26 indicates that the second ligand is less twisted than the first. The metal ion is displaced by –0.045 (4) Å from the pyridine ring. The dihedral angle between the near-planar parts of the pbh ligands (central chain + pyridine ring) is 37.75 (3)°. The Nd—N—C bond angle of 149.40 (19)° is very similar to two of the corresponding angles in (I). The crystal structure of (II) is completed by an uncoordinated nitrate anion (also ensuring charge balance) and three water molecules, one of which (O12) is partially occupied [refined occupancy = 0.328 (7)], although there are no close contacts that enforce this crystallographically.

In the crystal of (I), the components are linked by N—H···Ow, N—H···S and Ow—H···S (w = water) hydrogen bonds (Table 3). The N—H···S bond generates [001] chains of complexes and the hydrogen bonds to and from the water molecules generate a three-dimensional network. Aromatic ππ stacking between the N7-pyridine and C24-phenyl rings is suggested by the centroid–centroid separations of 3.524 (2) and 3.628 (2) Å between rings in nearby molecules in the crystal and a short C—H···O contact (Table 3) also occurs.

In the crystal of (II), numerous hydrogen bonds occur (Table 4), to link the components into a three-dimensional network. Any aromatic ππ stacking must be very weak, as the minimum ring-centroid separation in the crystal is 3.9800 (13) Å.

A search of the Cambridge Structural Database (Groom & Allen, 2014) for complexes incorporating pbh ligand(s) revealed 21 matches [two Group 1/2 metal ions (N,O-bidentate or N,N-tridentate), 16 transition metals (N,N-bidentate, N,O-bidentate or N,N,O-tridentate) and three lanthanides (all N,N,O-tridentate)]. The structure of the hydrated free ligand is also known (Richardson et al., 1999). Based on this search, compound (I) appears to be a new structure type, whereas compound (II) is isostructural with its cerium analogue (refcode FEBDOG; Paschalidis & Gdaniec, 2004). Inter­estingly, both (II) and FEBDOG have almost the same occupancy factor for the partially occupied water molecule.

Synthesis and crystallization top

To prepare (I), gelled tetra­meth­oxy­silane (Arend & Connelly, 1982) was placed in the bend of a U-tube. A solution of 37.3 mg (0.1 mmol) PrCl3·6H2O and 22.8 mg (0.3 mmol) NH4SCN in 10 ml of methanol was placed in one arm of the tube and a solution of 45.0 mg (0.2 mmol) of pbh in 10 ml of methanol in the other. Green slabs of (I) were obtained after four months as the components slowly diffused through the gel. Analysis (%) calculated for C29H24N9O3PrS3: C, 44.44; H, 3.08; N, 16.08 %. Found: C, 44.27; H, 3.01; N, 16.22 %. IR (cm-1, KBr): 3445 vw, b, 2048 vs (NCS- CN stretch), 1627 s, 1536 s, 1477 m, 1439 m, 1362 m, 1288 m, 1148 m, 1087 w, 1008 w, 919 w, 771 w, 710 m, 633 w.

To prepare (II), solutions of 43.8 mg (0.1 mmol) Nd(NO3)3·6H2O and 22.8 mg (0.3 mmol) NH4SCN in 10 ml of methanol and 45.0 mg (0.2 mmol) of pbh in 10 ml of methanol were placed in the arms of a U-tube filled with gelled tetra­meth­oxy­silane. Pale yellow slabs of (II) were obtained after four months. Analysis calculated for C27H28.65N9NdO11.33S: C, 38.75; H, 3.45; N, 15.06 %. Found: C, 38.62; H, 3.41; N, 15.13 %. IR (cm-1, KBr): 3447 vw, b, 2050 vs (NCS- CN stretch), 1625 s, 1570 s, 1475 m, 1438 m, 1364 m, 1296 m, 1149 m, 1088 w, 1006 w, 920 w, 776 w, 700 m, 632 w.

Refinement details top

Crystal data, data collection and structure refinement details for (I) and (II) are summarized in Table 5. Atom O12 in (II) showed unrealistically large displacement parameters and its occupancy was refined to 0.327 (8). The O-bound H atoms were located in difference Fourier maps and refined as riding atoms in their as-found relative positions. The C- and N-bound H atoms were geometrically placed (C—H = 0.95–1.00 Å; N—H = 0.88 Å) and refined as riding atoms. The constraint Uiso(H) = 1.2Ueq(carrier) was applied in all cases.

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1998). Cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997) for (I); HKL SCALEPACK (Otwinowski & Minor 1997) for (II). Data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997) & SORTAV (Blessing, 1995) for (I); HKL DENZO and SCALEPACK (Otwinowski & Minor 1997) & SORTAV (Blessing 1995) for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% displacement ellipsoids and atom labelling.
[Figure 2] Fig. 2. Detail of (I) showing the irregular PrO2N7 coordination polyhedron (contacts between the pentagon and triangle of coordinated atoms shown as green lines).
[Figure 3] Fig. 3. The molecular structure of (II) showing 50% displacement ellipsoids and atom labelling.
[Figure 4] Fig. 4. Detail of (II) showing the bicapped square-antiprismatic NdO5N5 coordination polyhedron (contacts between the atoms forming the square antiprism indicated with tan lines).
(I) [N'-(Pyridin-2-ylmethylidene-κN)benzohydrazide-κ2N',O]tris(thiocyanato-κN)praseodymium(III) monohydrate top
Crystal data top
[Pr(NCS)3(C13H11N3O)2]·H2OF(000) = 1568
Mr = 783.66Dx = 1.631 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.6999 (4) ÅCell parameters from 6998 reflections
b = 25.8275 (13) Åθ = 1.0–27.5°
c = 13.5791 (7) ŵ = 1.77 mm1
β = 110.222 (2)°T = 120 K
V = 3192.2 (3) Å3Slab, green
Z = 40.24 × 0.22 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
5239 reflections with I > 2σ(I)
ω scansRint = 0.059
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
θmax = 27.5°, θmin = 1.8°
Tmin = 0.676, Tmax = 0.843h = 1212
33021 measured reflectionsk = 3333
7291 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: mixed
wR(F2) = 0.079H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0324P)2 + 1.6778P]
where P = (Fo2 + 2Fc2)/3
7291 reflections(Δ/σ)max < 0.001
406 parametersΔρmax = 1.21 e Å3
0 restraintsΔρmin = 0.99 e Å3
Crystal data top
[Pr(NCS)3(C13H11N3O)2]·H2OV = 3192.2 (3) Å3
Mr = 783.66Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6999 (4) ŵ = 1.77 mm1
b = 25.8275 (13) ÅT = 120 K
c = 13.5791 (7) Å0.24 × 0.22 × 0.10 mm
β = 110.222 (2)°
Data collection top
Nonius KappaCCD
diffractometer
7291 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
5239 reflections with I > 2σ(I)
Tmin = 0.676, Tmax = 0.843Rint = 0.059
33021 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.04Δρmax = 1.21 e Å3
7291 reflectionsΔρmin = 0.99 e Å3
406 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pr10.31829 (2)0.12253 (2)0.24529 (2)0.02007 (7)
N10.3645 (3)0.13940 (12)0.4366 (2)0.0280 (7)
C10.4060 (4)0.16047 (14)0.5174 (3)0.0241 (8)
S10.46404 (11)0.19006 (4)0.63040 (8)0.0403 (3)
N20.1460 (3)0.06122 (12)0.2837 (2)0.0315 (7)
C20.0465 (4)0.05319 (14)0.3096 (3)0.0264 (8)
S20.09479 (11)0.04185 (4)0.34602 (8)0.0351 (2)
N30.4011 (4)0.15427 (16)0.0968 (3)0.0477 (10)
C30.4470 (4)0.14588 (16)0.0277 (3)0.0398 (10)
S30.51589 (11)0.13680 (4)0.06694 (7)0.0295 (2)
C40.5853 (4)0.04394 (15)0.4307 (3)0.0267 (8)
H40.58250.07340.47190.032*
C50.6773 (4)0.00334 (15)0.4786 (3)0.0270 (8)
H50.73540.00500.55100.032*
C60.6833 (4)0.03941 (15)0.4198 (3)0.0283 (9)
H6A0.74610.06760.45070.034*
C70.5962 (4)0.04060 (14)0.3149 (3)0.0271 (8)
H70.59770.06970.27250.033*
C80.5075 (4)0.00113 (14)0.2732 (3)0.0232 (8)
C90.4120 (4)0.00156 (14)0.1624 (3)0.0251 (8)
H9A0.41410.02610.11670.030*
C100.1273 (4)0.07720 (14)0.0022 (3)0.0244 (8)
C110.0251 (4)0.08091 (13)0.1085 (3)0.0244 (8)
C120.0722 (4)0.07241 (14)0.1933 (3)0.0327 (9)
H120.16910.06060.18230.039*
C130.0250 (5)0.08149 (15)0.2936 (3)0.0397 (10)
H130.00600.07620.35200.048*
C140.1662 (5)0.09819 (15)0.3101 (3)0.0421 (11)
H140.23110.10480.37950.051*
C150.2136 (4)0.10539 (15)0.2260 (3)0.0381 (10)
H150.31170.11600.23760.046*
C160.1178 (4)0.09704 (14)0.1251 (3)0.0309 (9)
H160.14960.10230.06710.037*
N40.5000 (3)0.04383 (11)0.3292 (2)0.0224 (6)
N50.3262 (3)0.04014 (11)0.1291 (2)0.0244 (7)
N60.2323 (3)0.04032 (11)0.0262 (2)0.0264 (7)
H60.24030.01800.02050.032*
O10.1171 (3)0.10740 (9)0.07046 (18)0.0269 (6)
C170.0481 (4)0.16983 (15)0.1854 (3)0.0257 (8)
H170.06570.13390.17180.031*
C180.1687 (4)0.20226 (15)0.1677 (3)0.0279 (9)
H180.26560.18870.14320.034*
C190.1448 (4)0.25442 (16)0.1862 (3)0.0283 (9)
H190.22500.27770.17290.034*
C200.0019 (4)0.27227 (15)0.2246 (3)0.0269 (8)
H200.01760.30800.23980.032*
C210.1131 (4)0.23752 (14)0.2409 (2)0.0227 (8)
C220.2649 (4)0.25490 (14)0.2843 (3)0.0239 (8)
H220.28780.28990.30470.029*
C230.6139 (4)0.19972 (14)0.3548 (2)0.0224 (8)
C240.7707 (4)0.21404 (14)0.4054 (3)0.0218 (8)
C250.8208 (4)0.26462 (14)0.4237 (3)0.0240 (8)
H250.75260.29240.40700.029*
C260.9700 (4)0.27478 (15)0.4663 (3)0.0256 (8)
H261.00390.30950.47880.031*
C271.0695 (4)0.23443 (15)0.4904 (3)0.0279 (8)
H271.17180.24140.51940.033*
C281.0206 (4)0.18410 (16)0.4726 (3)0.0319 (9)
H281.08950.15650.48950.038*
C290.8718 (4)0.17344 (15)0.4304 (3)0.0276 (8)
H290.83860.13860.41850.033*
N70.0910 (3)0.18629 (11)0.2205 (2)0.0213 (6)
N80.3669 (3)0.22167 (11)0.2942 (2)0.0219 (6)
N90.5105 (3)0.23700 (11)0.3409 (2)0.0231 (7)
H90.53400.26920.36070.028*
O20.5758 (2)0.15496 (9)0.32451 (18)0.0253 (6)
O30.2910 (3)0.03882 (11)0.0952 (2)0.0510 (8)
H10.25110.04520.15950.061*
H20.33810.06300.05530.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.01872 (10)0.02491 (11)0.01514 (9)0.00104 (9)0.00403 (7)0.00080 (9)
N10.0310 (18)0.0321 (18)0.0210 (16)0.0026 (14)0.0091 (14)0.0054 (14)
C10.0181 (18)0.032 (2)0.024 (2)0.0050 (16)0.0094 (16)0.0070 (17)
S10.0298 (5)0.0551 (7)0.0285 (5)0.0078 (5)0.0007 (4)0.0129 (5)
N20.0279 (18)0.035 (2)0.0290 (17)0.0020 (15)0.0068 (15)0.0071 (15)
C20.027 (2)0.022 (2)0.0213 (18)0.0017 (16)0.0028 (16)0.0030 (15)
S20.0350 (6)0.0357 (6)0.0403 (6)0.0043 (5)0.0201 (5)0.0058 (5)
N30.039 (2)0.086 (3)0.0230 (18)0.019 (2)0.0159 (17)0.0056 (18)
C30.034 (2)0.032 (2)0.045 (3)0.0041 (19)0.003 (2)0.008 (2)
S30.0361 (5)0.0276 (5)0.0291 (5)0.0015 (4)0.0168 (4)0.0014 (4)
C40.025 (2)0.034 (2)0.0201 (18)0.0026 (17)0.0062 (16)0.0016 (16)
C50.0196 (19)0.039 (2)0.0193 (18)0.0004 (17)0.0029 (15)0.0072 (16)
C60.0195 (19)0.031 (2)0.031 (2)0.0015 (16)0.0047 (16)0.0109 (17)
C70.0206 (18)0.028 (2)0.030 (2)0.0002 (16)0.0057 (16)0.0039 (16)
C80.0165 (18)0.025 (2)0.0241 (18)0.0015 (15)0.0017 (15)0.0059 (16)
C90.0239 (19)0.027 (2)0.0227 (18)0.0046 (17)0.0062 (16)0.0008 (16)
C100.0227 (19)0.027 (2)0.0209 (18)0.0005 (16)0.0050 (15)0.0017 (16)
C110.029 (2)0.0182 (19)0.0191 (18)0.0003 (16)0.0001 (16)0.0025 (15)
C120.039 (2)0.028 (2)0.026 (2)0.0067 (18)0.0046 (18)0.0018 (17)
C130.062 (3)0.030 (2)0.020 (2)0.006 (2)0.005 (2)0.0011 (17)
C140.052 (3)0.026 (2)0.027 (2)0.001 (2)0.014 (2)0.0004 (18)
C150.028 (2)0.027 (2)0.041 (2)0.0034 (17)0.0104 (19)0.0016 (18)
C160.025 (2)0.026 (2)0.033 (2)0.0006 (17)0.0004 (17)0.0002 (18)
N40.0200 (15)0.0239 (17)0.0216 (15)0.0010 (13)0.0048 (13)0.0035 (13)
N50.0229 (16)0.0271 (17)0.0185 (15)0.0019 (14)0.0013 (13)0.0009 (13)
N60.0256 (16)0.0316 (18)0.0142 (14)0.0077 (14)0.0028 (13)0.0033 (13)
O10.0263 (14)0.0326 (15)0.0182 (12)0.0063 (11)0.0030 (11)0.0023 (11)
C170.026 (2)0.033 (2)0.0187 (18)0.0000 (17)0.0079 (16)0.0017 (16)
C180.0202 (19)0.043 (3)0.0195 (18)0.0029 (18)0.0053 (15)0.0014 (17)
C190.0209 (19)0.046 (3)0.0193 (18)0.0108 (18)0.0079 (16)0.0027 (17)
C200.028 (2)0.031 (2)0.0229 (18)0.0050 (17)0.0100 (16)0.0006 (16)
C210.0214 (18)0.031 (2)0.0150 (17)0.0049 (16)0.0057 (15)0.0028 (15)
C220.025 (2)0.025 (2)0.0202 (18)0.0016 (16)0.0062 (16)0.0010 (15)
C230.027 (2)0.028 (2)0.0145 (16)0.0005 (17)0.0105 (15)0.0006 (15)
C240.0206 (18)0.031 (2)0.0167 (17)0.0008 (16)0.0096 (15)0.0020 (15)
C250.0228 (19)0.029 (2)0.0203 (18)0.0006 (16)0.0080 (15)0.0010 (15)
C260.026 (2)0.031 (2)0.0213 (18)0.0048 (17)0.0093 (16)0.0019 (16)
C270.0202 (19)0.040 (2)0.0215 (18)0.0010 (17)0.0052 (16)0.0009 (17)
C280.024 (2)0.040 (3)0.031 (2)0.0070 (18)0.0078 (17)0.0007 (18)
C290.026 (2)0.031 (2)0.0257 (19)0.0005 (17)0.0086 (17)0.0044 (16)
N70.0194 (15)0.0293 (18)0.0151 (14)0.0004 (13)0.0061 (12)0.0004 (12)
N80.0170 (15)0.0282 (18)0.0186 (15)0.0024 (13)0.0039 (12)0.0021 (13)
N90.0215 (16)0.0224 (17)0.0242 (16)0.0026 (13)0.0065 (13)0.0009 (13)
O20.0240 (13)0.0246 (14)0.0266 (13)0.0003 (11)0.0078 (11)0.0034 (11)
O30.061 (2)0.0457 (19)0.0356 (17)0.0210 (16)0.0030 (15)0.0086 (14)
Geometric parameters (Å, º) top
Pr1—N22.485 (3)C14—H140.9500
Pr1—O22.498 (2)C15—C161.381 (5)
Pr1—N12.517 (3)C15—H150.9500
Pr1—O12.529 (2)C16—H160.9500
Pr1—N32.550 (3)N5—N61.380 (4)
Pr1—N82.646 (3)N6—H60.8800
Pr1—N52.666 (3)C17—N71.335 (4)
Pr1—N42.674 (3)C17—C181.390 (5)
Pr1—N72.679 (3)C17—H170.9500
N1—C11.165 (4)C18—C191.375 (5)
C1—S11.630 (4)C18—H180.9500
N2—C21.154 (4)C19—C201.381 (5)
C2—S21.636 (4)C19—H190.9500
N3—C31.189 (5)C20—C211.388 (5)
C3—S31.658 (5)C20—H200.9500
C4—N41.340 (4)C21—N71.353 (4)
C4—C51.385 (5)C21—C221.455 (5)
C4—H40.9500C22—N81.281 (4)
C5—C61.376 (5)C22—H220.9500
C5—H50.9500C23—O21.240 (4)
C6—C71.382 (5)C23—N91.356 (4)
C6—H6A0.9500C23—C241.483 (5)
C7—C81.373 (5)C24—C251.386 (5)
C7—H70.9500C24—C291.395 (5)
C8—N41.355 (4)C25—C261.386 (5)
C8—C91.470 (5)C25—H250.9500
C9—N51.276 (4)C26—C271.380 (5)
C9—H9A0.9500C26—H260.9500
C10—O11.241 (4)C27—C281.376 (5)
C10—N61.350 (4)C27—H270.9500
C10—C111.490 (5)C28—C291.384 (5)
C11—C161.389 (5)C28—H280.9500
C11—C121.395 (5)C29—H290.9500
C12—C131.383 (5)N8—N91.374 (4)
C12—H120.9500N9—H90.8800
C13—C141.378 (6)O3—H10.8395
C13—H130.9500O3—H20.8498
C14—C151.384 (6)
N2—Pr1—O2140.19 (9)C12—C13—H13119.5
N2—Pr1—N177.66 (10)C13—C14—C15120.2 (4)
O2—Pr1—N172.71 (9)C13—C14—H14119.9
N2—Pr1—O175.04 (9)C15—C14—H14119.9
O2—Pr1—O1142.03 (8)C16—C15—C14119.7 (4)
N1—Pr1—O1143.14 (9)C16—C15—H15120.1
N2—Pr1—N3142.12 (11)C14—C15—H15120.1
O2—Pr1—N372.02 (9)C15—C16—C11120.0 (4)
N1—Pr1—N3140.19 (11)C15—C16—H16120.0
O1—Pr1—N370.07 (9)C11—C16—H16120.0
N2—Pr1—N8129.67 (9)C4—N4—C8116.4 (3)
O2—Pr1—N860.17 (8)C4—N4—Pr1121.2 (2)
N1—Pr1—N867.72 (9)C8—N4—Pr1122.3 (2)
O1—Pr1—N8113.44 (8)C9—N5—N6118.8 (3)
N3—Pr1—N879.03 (11)C9—N5—Pr1124.2 (2)
N2—Pr1—N576.96 (10)N6—N5—Pr1116.9 (2)
O2—Pr1—N5107.07 (8)C10—N6—N5115.2 (3)
N1—Pr1—N5135.86 (9)C10—N6—H6122.4
O1—Pr1—N559.45 (8)N5—N6—H6122.4
N3—Pr1—N572.99 (11)C10—O1—Pr1124.3 (2)
N8—Pr1—N5151.86 (8)N7—C17—C18123.7 (4)
N2—Pr1—N479.53 (9)N7—C17—H17118.1
O2—Pr1—N469.97 (8)C18—C17—H17118.1
N1—Pr1—N480.55 (9)C19—C18—C17118.7 (3)
O1—Pr1—N4117.63 (8)C19—C18—H18120.6
N3—Pr1—N4103.88 (11)C17—C18—H18120.6
N8—Pr1—N4126.48 (8)C18—C19—C20118.7 (3)
N5—Pr1—N459.72 (9)C18—C19—H19120.7
N2—Pr1—N780.44 (10)C20—C19—H19120.7
O2—Pr1—N7120.34 (8)C19—C20—C21119.4 (4)
N1—Pr1—N782.42 (9)C19—C20—H20120.3
O1—Pr1—N769.06 (8)C21—C20—H20120.3
N3—Pr1—N7100.01 (10)N7—C21—C20122.5 (3)
N8—Pr1—N760.28 (8)N7—C21—C22116.8 (3)
N5—Pr1—N7127.39 (8)C20—C21—C22120.6 (3)
N4—Pr1—N7156.03 (8)N8—C22—C21118.2 (3)
C1—N1—Pr1159.0 (3)N8—C22—H22120.9
N1—C1—S1179.9 (4)C21—C22—H22120.9
C2—N2—Pr1150.7 (3)O2—C23—N9119.7 (3)
N2—C2—S2179.9 (4)O2—C23—C24121.8 (3)
C3—N3—Pr1150.6 (3)N9—C23—C24118.6 (3)
N3—C3—S3177.2 (4)C25—C24—C29119.4 (3)
N4—C4—C5123.4 (4)C25—C24—C23123.9 (3)
N4—C4—H4118.3C29—C24—C23116.6 (3)
C5—C4—H4118.3C26—C25—C24120.3 (3)
C6—C5—C4119.0 (3)C26—C25—H25119.9
C6—C5—H5120.5C24—C25—H25119.9
C4—C5—H5120.5C27—C26—C25120.0 (3)
C5—C6—C7118.9 (3)C27—C26—H26120.0
C5—C6—H6A120.6C25—C26—H26120.0
C7—C6—H6A120.6C28—C27—C26120.1 (3)
C8—C7—C6118.7 (4)C28—C27—H27120.0
C8—C7—H7120.7C26—C27—H27120.0
C6—C7—H7120.7C27—C28—C29120.5 (4)
N4—C8—C7123.7 (3)C27—C28—H28119.8
N4—C8—C9115.5 (3)C29—C28—H28119.8
C7—C8—C9120.8 (3)C28—C29—C24119.7 (4)
N5—C9—C8118.1 (3)C28—C29—H29120.1
N5—C9—H9A121.0C24—C29—H29120.1
C8—C9—H9A121.0C17—N7—C21117.0 (3)
O1—C10—N6120.8 (3)C17—N7—Pr1122.4 (2)
O1—C10—C11121.1 (3)C21—N7—Pr1120.6 (2)
N6—C10—C11118.2 (3)C22—N8—N9118.6 (3)
C16—C11—C12120.4 (3)C22—N8—Pr1123.9 (2)
C16—C11—C10117.5 (3)N9—N8—Pr1117.3 (2)
C12—C11—C10121.9 (3)C23—N9—N8116.3 (3)
C13—C12—C11118.7 (4)C23—N9—H9121.9
C13—C12—H12120.6N8—N9—H9121.9
C11—C12—H12120.6C23—O2—Pr1126.5 (2)
C14—C13—C12121.0 (4)H1—O3—H2118.2
C14—C13—H13119.5
N4—C4—C5—C60.4 (5)N7—C17—C18—C190.6 (5)
C4—C5—C6—C70.5 (5)C17—C18—C19—C201.8 (5)
C5—C6—C7—C80.3 (5)C18—C19—C20—C211.6 (5)
C6—C7—C8—N40.0 (5)C19—C20—C21—N70.1 (5)
C6—C7—C8—C9179.5 (3)C19—C20—C21—C22178.1 (3)
N4—C8—C9—N53.2 (5)N7—C21—C22—N84.3 (5)
C7—C8—C9—N5176.4 (3)C20—C21—C22—N8177.5 (3)
O1—C10—C11—C1632.9 (5)O2—C23—C24—C25168.1 (3)
N6—C10—C11—C16147.6 (3)N9—C23—C24—C2511.3 (5)
O1—C10—C11—C12142.3 (4)O2—C23—C24—C298.7 (5)
N6—C10—C11—C1237.1 (5)N9—C23—C24—C29171.9 (3)
C16—C11—C12—C131.5 (6)C29—C24—C25—C260.2 (5)
C10—C11—C12—C13173.7 (4)C23—C24—C25—C26176.5 (3)
C11—C12—C13—C140.6 (6)C24—C25—C26—C270.1 (5)
C12—C13—C14—C151.0 (6)C25—C26—C27—C280.2 (5)
C13—C14—C15—C161.6 (6)C26—C27—C28—C290.0 (5)
C14—C15—C16—C110.7 (6)C27—C28—C29—C240.2 (5)
C12—C11—C16—C150.8 (6)C25—C24—C29—C280.3 (5)
C10—C11—C16—C15174.5 (3)C23—C24—C29—C28176.6 (3)
C5—C4—N4—C80.1 (5)C18—C17—N7—C211.0 (5)
C5—C4—N4—Pr1177.7 (2)C18—C17—N7—Pr1177.3 (2)
C7—C8—N4—C40.1 (5)C20—C21—N7—C171.2 (5)
C9—C8—N4—C4179.4 (3)C22—C21—N7—C17176.9 (3)
C7—C8—N4—Pr1177.9 (2)C20—C21—N7—Pr1177.1 (2)
C9—C8—N4—Pr11.7 (4)C22—C21—N7—Pr14.8 (4)
C8—C9—N5—N6177.9 (3)C21—C22—N8—N9176.1 (3)
C8—C9—N5—Pr13.3 (4)C21—C22—N8—Pr11.8 (4)
O1—C10—N6—N51.5 (5)O2—C23—N9—N80.9 (4)
C11—C10—N6—N5177.9 (3)C24—C23—N9—N8179.7 (3)
C9—N5—N6—C10168.3 (3)C22—N8—N9—C23176.5 (3)
Pr1—N5—N6—C1012.7 (4)Pr1—N8—N9—C231.7 (3)
N6—C10—O1—Pr117.0 (5)N9—C23—O2—Pr13.5 (4)
C11—C10—O1—Pr1162.4 (2)C24—C23—O2—Pr1177.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6···O30.881.942.806 (4)167
N9—H9···S3i0.882.653.485 (3)160
O3—H1···S2ii0.842.463.278 (3)164
O3—H2···S3iii0.852.603.451 (3)180
C26—H26···O1iv0.952.533.450 (4)162
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y, z; (iii) x+1, y, z; (iv) x+1, y+1/2, z+1/2.
(II) Aqua(nitrato-κ2O,O')[N'-(pyridin-2-ylmethylidene-κN)benzohydrazide-κ2N',O](thiocyanato-κN)neodymium(III) nitrate 2.33-hydrate top
Crystal data top
[Nd(NCS)(NO3)(C13H11N3O)2(H2O)]NO3·2.33H2OF(000) = 1681
Mr = 836.78Dx = 1.638 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.70173 Å
a = 11.2796 (3) ÅCell parameters from 7981 reflections
b = 17.3802 (3) Åθ = 2.9–27.5°
c = 17.4298 (4) ŵ = 1.66 mm1
β = 96.8035 (9)°T = 120 K
V = 3392.91 (13) Å3Slab, light yellow-brown
Z = 40.20 × 0.18 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
6473 reflections with I > 2σ(I)
ω scansRint = 0.038
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
θmax = 27.2°, θmin = 2.9°
Tmin = 0.732, Tmax = 0.922h = 1414
41570 measured reflectionsk = 2222
7796 independent reflectionsl = 2222
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.0194P)2 + 4.1799P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
7796 reflectionsΔρmax = 0.64 e Å3
447 parametersΔρmin = 0.50 e Å3
Crystal data top
[Nd(NCS)(NO3)(C13H11N3O)2(H2O)]NO3·2.33H2OV = 3392.91 (13) Å3
Mr = 836.78Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.2796 (3) ŵ = 1.66 mm1
b = 17.3802 (3) ÅT = 120 K
c = 17.4298 (4) Å0.20 × 0.18 × 0.05 mm
β = 96.8035 (9)°
Data collection top
Nonius KappaCCD
diffractometer
7796 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
6473 reflections with I > 2σ(I)
Tmin = 0.732, Tmax = 0.922Rint = 0.038
41570 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 1.03Δρmax = 0.64 e Å3
7796 reflectionsΔρmin = 0.50 e Å3
447 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Nd10.44943 (2)0.25257 (2)0.12087 (2)0.01344 (4)
C10.4747 (2)0.12840 (14)0.04159 (15)0.0224 (5)
H10.49300.09370.00020.027*
C20.4687 (2)0.10014 (15)0.11614 (15)0.0262 (5)
H20.48110.04700.12500.031*
C30.4443 (2)0.14999 (15)0.17748 (15)0.0280 (6)
H3A0.44060.13200.22920.034*
C40.4255 (2)0.22674 (15)0.16222 (14)0.0256 (5)
H40.40860.26240.20330.031*
C50.4314 (2)0.25089 (13)0.08627 (13)0.0180 (5)
C60.4103 (2)0.33129 (13)0.06820 (13)0.0187 (5)
H6A0.39520.36870.10790.022*
C70.39161 (19)0.44243 (13)0.09589 (13)0.0165 (5)
C80.3629 (2)0.52246 (13)0.11605 (13)0.0187 (5)
C90.2952 (3)0.57111 (15)0.06426 (15)0.0291 (6)
H90.26530.55290.01430.035*
C100.2715 (3)0.64582 (16)0.08559 (16)0.0338 (7)
H100.22670.67900.04980.041*
C110.3125 (2)0.67218 (15)0.15852 (16)0.0284 (6)
H110.29610.72340.17300.034*
C120.3775 (2)0.62378 (15)0.21046 (16)0.0271 (6)
H120.40490.64180.26090.032*
C130.4033 (2)0.54927 (14)0.18963 (14)0.0208 (5)
H130.44860.51650.22560.025*
N10.45601 (17)0.20273 (11)0.02559 (11)0.0180 (4)
N20.41293 (17)0.34981 (11)0.00340 (11)0.0165 (4)
N30.39226 (17)0.42549 (11)0.02046 (11)0.0182 (4)
H30.38020.46080.01580.022*
O10.41579 (14)0.39231 (9)0.14645 (9)0.0177 (3)
C140.6017 (2)0.35445 (14)0.28346 (13)0.0201 (5)
H140.60540.39120.24340.024*
C150.6504 (2)0.37410 (14)0.35775 (14)0.0226 (5)
H150.68410.42370.36820.027*
C160.6493 (2)0.32084 (15)0.41608 (14)0.0242 (5)
H160.68340.33260.46720.029*
C170.5975 (2)0.24962 (14)0.39862 (14)0.0217 (5)
H170.59620.21150.43760.026*
C180.5477 (2)0.23490 (13)0.32337 (13)0.0176 (5)
C190.4872 (2)0.16192 (13)0.30408 (13)0.0183 (5)
H190.48520.12240.34160.022*
C200.3255 (2)0.07922 (13)0.14288 (13)0.0177 (5)
C210.2646 (2)0.00601 (13)0.11886 (13)0.0171 (5)
C220.2388 (2)0.05078 (13)0.17076 (14)0.0201 (5)
H220.25770.04280.22470.024*
C230.1856 (2)0.11876 (14)0.14364 (15)0.0238 (5)
H230.16770.15740.17910.029*
C240.1585 (2)0.13070 (15)0.06519 (15)0.0280 (6)
H240.12260.17770.04680.034*
C250.1834 (2)0.07436 (15)0.01314 (15)0.0306 (6)
H250.16430.08250.04080.037*
C260.2360 (2)0.00630 (14)0.04003 (14)0.0251 (5)
H260.25280.03240.00440.030*
N40.54975 (16)0.28668 (11)0.26515 (11)0.0169 (4)
N50.43675 (16)0.15311 (11)0.23469 (11)0.0166 (4)
N60.37943 (17)0.08470 (11)0.21587 (11)0.0182 (4)
H60.37810.04690.24940.022*
O20.32882 (14)0.13387 (9)0.09676 (9)0.0185 (3)
N70.60837 (18)0.15065 (12)0.13028 (12)0.0241 (5)
C270.6953 (2)0.12439 (14)0.16274 (14)0.0205 (5)
S10.82003 (6)0.09015 (4)0.20678 (4)0.03524 (17)
N80.19349 (18)0.28742 (12)0.14346 (12)0.0224 (4)
O30.27176 (15)0.26897 (10)0.19789 (9)0.0215 (4)
O40.22281 (15)0.28812 (10)0.07601 (9)0.0231 (4)
O50.09194 (16)0.30532 (14)0.15714 (13)0.0452 (6)
N90.23513 (19)0.50814 (12)0.13305 (12)0.0253 (5)
O60.34435 (15)0.52196 (10)0.11161 (10)0.0233 (4)
O70.19053 (16)0.44694 (11)0.11330 (11)0.0348 (5)
O80.17479 (18)0.55663 (12)0.17225 (13)0.0476 (6)
O90.63720 (14)0.31663 (9)0.10280 (9)0.0221 (4)
H1W0.70790.29270.10300.026*
H2W0.65490.36710.10670.026*
O100.06785 (18)0.51994 (11)0.16636 (11)0.0367 (5)
H3W0.08340.57580.16010.044*
H4W0.01360.53020.15210.044*
O110.85954 (17)0.25203 (11)0.09708 (13)0.0391 (5)
H5W0.93480.27460.10910.047*
H6W0.87050.21130.13150.047*
O120.0686 (6)0.5805 (4)0.0217 (4)0.048 (2)*0.328 (7)
H7W0.10830.57130.02260.057*0.328 (7)
H8W0.09640.62040.05170.057*0.328 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.01406 (6)0.01405 (7)0.01184 (6)0.00045 (5)0.00001 (4)0.00071 (5)
C10.0212 (12)0.0197 (12)0.0262 (13)0.0032 (10)0.0029 (10)0.0030 (10)
C20.0256 (13)0.0228 (13)0.0306 (14)0.0014 (10)0.0051 (11)0.0083 (11)
C30.0309 (14)0.0337 (15)0.0203 (13)0.0041 (11)0.0070 (11)0.0114 (11)
C40.0313 (14)0.0292 (13)0.0166 (12)0.0056 (11)0.0038 (10)0.0014 (10)
C50.0154 (10)0.0212 (12)0.0174 (11)0.0031 (9)0.0018 (9)0.0002 (9)
C60.0203 (12)0.0193 (12)0.0160 (11)0.0030 (9)0.0008 (9)0.0026 (9)
C70.0145 (11)0.0183 (11)0.0167 (11)0.0032 (9)0.0015 (9)0.0003 (9)
C80.0195 (11)0.0175 (11)0.0201 (12)0.0011 (9)0.0064 (9)0.0007 (9)
C90.0415 (16)0.0279 (14)0.0183 (12)0.0108 (12)0.0047 (11)0.0009 (10)
C100.0474 (17)0.0265 (14)0.0297 (15)0.0148 (13)0.0135 (13)0.0068 (12)
C110.0336 (14)0.0175 (12)0.0377 (15)0.0028 (11)0.0194 (12)0.0021 (11)
C120.0278 (14)0.0256 (13)0.0288 (14)0.0054 (11)0.0073 (11)0.0086 (11)
C130.0195 (12)0.0206 (12)0.0224 (12)0.0019 (9)0.0035 (10)0.0011 (10)
N10.0169 (9)0.0197 (10)0.0176 (10)0.0004 (8)0.0026 (8)0.0006 (8)
N20.0183 (9)0.0148 (9)0.0164 (9)0.0000 (8)0.0015 (8)0.0003 (8)
N30.0249 (10)0.0142 (9)0.0154 (9)0.0010 (8)0.0017 (8)0.0016 (8)
O10.0220 (8)0.0162 (8)0.0146 (8)0.0004 (7)0.0004 (7)0.0008 (6)
C140.0186 (11)0.0219 (12)0.0187 (12)0.0030 (9)0.0013 (9)0.0012 (10)
C150.0199 (12)0.0233 (13)0.0231 (13)0.0022 (10)0.0031 (10)0.0024 (10)
C160.0225 (12)0.0319 (14)0.0165 (12)0.0001 (11)0.0043 (10)0.0027 (10)
C170.0224 (12)0.0256 (13)0.0162 (11)0.0018 (10)0.0014 (9)0.0028 (10)
C180.0167 (11)0.0191 (12)0.0167 (11)0.0025 (9)0.0011 (9)0.0005 (9)
C190.0191 (11)0.0181 (12)0.0172 (11)0.0013 (9)0.0001 (9)0.0033 (9)
C200.0167 (11)0.0169 (11)0.0195 (11)0.0023 (9)0.0020 (9)0.0000 (9)
C210.0175 (11)0.0151 (11)0.0192 (12)0.0000 (9)0.0036 (9)0.0016 (9)
C220.0217 (12)0.0205 (12)0.0183 (12)0.0006 (10)0.0033 (10)0.0008 (9)
C230.0250 (13)0.0191 (12)0.0282 (13)0.0024 (10)0.0064 (11)0.0031 (10)
C240.0311 (14)0.0206 (13)0.0330 (15)0.0074 (11)0.0061 (12)0.0061 (11)
C250.0400 (16)0.0287 (14)0.0222 (13)0.0096 (12)0.0008 (12)0.0030 (11)
C260.0325 (14)0.0216 (13)0.0211 (13)0.0045 (11)0.0025 (11)0.0025 (10)
N40.0159 (9)0.0196 (10)0.0148 (9)0.0006 (8)0.0005 (8)0.0006 (8)
N50.0153 (9)0.0159 (9)0.0183 (10)0.0002 (7)0.0001 (8)0.0002 (8)
N60.0213 (10)0.0143 (9)0.0184 (10)0.0018 (8)0.0001 (8)0.0039 (8)
O20.0222 (8)0.0169 (8)0.0156 (8)0.0018 (7)0.0009 (7)0.0019 (6)
N70.0209 (11)0.0265 (11)0.0250 (11)0.0033 (9)0.0027 (9)0.0005 (9)
C270.0247 (13)0.0194 (12)0.0183 (12)0.0004 (10)0.0059 (10)0.0025 (9)
S10.0328 (4)0.0426 (4)0.0277 (4)0.0155 (3)0.0071 (3)0.0002 (3)
N80.0184 (10)0.0214 (11)0.0269 (11)0.0003 (8)0.0011 (9)0.0031 (9)
O30.0208 (8)0.0259 (9)0.0174 (8)0.0010 (7)0.0008 (7)0.0026 (7)
O40.0253 (9)0.0251 (9)0.0180 (8)0.0002 (7)0.0014 (7)0.0013 (7)
O50.0179 (10)0.0695 (16)0.0482 (13)0.0084 (10)0.0046 (9)0.0150 (11)
N90.0264 (11)0.0280 (12)0.0201 (11)0.0027 (9)0.0031 (9)0.0032 (9)
O60.0213 (9)0.0255 (9)0.0224 (9)0.0044 (7)0.0006 (7)0.0032 (7)
O70.0306 (10)0.0330 (11)0.0393 (11)0.0134 (8)0.0022 (9)0.0082 (9)
O80.0330 (11)0.0454 (13)0.0599 (15)0.0010 (10)0.0136 (10)0.0258 (11)
O90.0184 (8)0.0200 (9)0.0280 (9)0.0016 (7)0.0036 (7)0.0013 (7)
O100.0356 (11)0.0296 (10)0.0425 (12)0.0019 (9)0.0059 (9)0.0125 (9)
O110.0233 (10)0.0345 (11)0.0588 (14)0.0023 (8)0.0013 (9)0.0024 (10)
Geometric parameters (Å, º) top
Nd1—O92.4459 (16)C15—C161.376 (3)
Nd1—O22.4796 (15)C15—H150.9500
Nd1—O12.5063 (15)C16—C171.387 (3)
Nd1—N72.512 (2)C16—H160.9500
Nd1—O32.5568 (17)C17—C181.388 (3)
Nd1—N52.6479 (19)C17—H170.9500
Nd1—N22.6491 (18)C18—N41.358 (3)
Nd1—O42.6558 (17)C18—C191.461 (3)
Nd1—N42.6985 (18)C19—N51.283 (3)
Nd1—N12.7051 (19)C19—H190.9500
C1—N11.344 (3)C20—O21.248 (3)
C1—C21.383 (3)C20—N61.347 (3)
C1—H10.9500C20—C211.482 (3)
C2—C31.378 (4)C21—C261.390 (3)
C2—H20.9500C21—C221.393 (3)
C3—C41.382 (4)C22—C231.383 (3)
C3—H3A0.9500C22—H220.9500
C4—C51.383 (3)C23—C241.381 (4)
C4—H40.9500C23—H230.9500
C5—N11.352 (3)C24—C251.386 (4)
C5—C61.458 (3)C24—H240.9500
C6—N21.286 (3)C25—C261.380 (3)
C6—H6A0.9500C25—H250.9500
C7—O11.246 (3)C26—H260.9500
C7—N31.348 (3)N5—N61.374 (3)
C7—C81.480 (3)N6—H60.8800
C8—C131.390 (3)N7—C271.166 (3)
C8—C91.396 (3)C27—S11.633 (3)
C9—C101.385 (4)N8—O51.237 (3)
C9—H90.9500N8—O31.258 (3)
C10—C111.379 (4)N8—O41.259 (3)
C10—H100.9500N9—O81.237 (3)
C11—C121.381 (4)N9—O71.242 (3)
C11—H110.9500N9—O61.267 (3)
C12—C131.385 (3)O9—H1W0.8997
C12—H120.9500O9—H2W0.9000
C13—H130.9500O10—H3W0.9942
N2—N31.374 (3)O10—H4W0.9400
N3—H30.8800O11—H5W0.9362
C14—N41.337 (3)O11—H6W0.9263
C14—C151.388 (3)O12—H7W0.9498
C14—H140.9500O12—H8W0.9021
O9—Nd1—O2145.38 (5)C13—C12—H12119.7
O9—Nd1—O174.54 (5)C12—C13—C8120.0 (2)
O2—Nd1—O1138.15 (5)C12—C13—H13120.0
O9—Nd1—N772.97 (6)C8—C13—H13120.0
O2—Nd1—N778.31 (6)C1—N1—C5117.1 (2)
O1—Nd1—N7142.53 (6)C1—N1—Nd1121.75 (16)
O9—Nd1—O3139.59 (5)C5—N1—Nd1120.94 (15)
O2—Nd1—O374.53 (5)C6—N2—N3117.68 (19)
O1—Nd1—O369.76 (5)C6—N2—Nd1125.03 (15)
N7—Nd1—O3129.95 (6)N3—N2—Nd1117.27 (13)
O9—Nd1—N5121.20 (6)C7—N3—N2116.14 (18)
O2—Nd1—N560.43 (5)C7—N3—H3121.9
O1—Nd1—N5118.47 (5)N2—N3—H3121.9
N7—Nd1—N565.93 (6)C7—O1—Nd1125.22 (14)
O3—Nd1—N564.16 (5)N4—C14—C15123.6 (2)
O9—Nd1—N270.60 (6)N4—C14—H14118.2
O2—Nd1—N2111.58 (5)C15—C14—H14118.2
O1—Nd1—N260.42 (5)C16—C15—C14119.1 (2)
N7—Nd1—N2123.01 (6)C16—C15—H15120.4
O3—Nd1—N2105.96 (5)C14—C15—H15120.4
N5—Nd1—N2168.03 (6)C15—C16—C17118.6 (2)
O9—Nd1—O4132.39 (5)C15—C16—H16120.7
O2—Nd1—O469.76 (5)C17—C16—H16120.7
O1—Nd1—O470.50 (5)C16—C17—C18119.0 (2)
N7—Nd1—O4146.92 (6)C16—C17—H17120.5
O3—Nd1—O448.83 (5)C18—C17—H17120.5
N5—Nd1—O4103.70 (5)N4—C18—C17122.9 (2)
N2—Nd1—O464.41 (5)N4—C18—C19116.9 (2)
O9—Nd1—N475.29 (6)C17—C18—C19120.2 (2)
O2—Nd1—N4120.12 (5)N5—C19—C18117.6 (2)
O1—Nd1—N471.15 (5)N5—C19—H19121.2
N7—Nd1—N482.92 (6)C18—C19—H19121.2
O3—Nd1—N475.78 (5)O2—C20—N6120.7 (2)
N5—Nd1—N459.94 (6)O2—C20—C21121.3 (2)
N2—Nd1—N4126.14 (6)N6—C20—C21118.0 (2)
O4—Nd1—N4120.40 (5)C26—C21—C22119.4 (2)
O9—Nd1—N184.45 (6)C26—C21—C20117.2 (2)
O2—Nd1—N169.48 (5)C22—C21—C20123.4 (2)
O1—Nd1—N1119.99 (5)C23—C22—C21119.9 (2)
N7—Nd1—N174.73 (6)C23—C22—H22120.0
O3—Nd1—N1129.94 (5)C21—C22—H22120.0
N5—Nd1—N1120.52 (6)C24—C23—C22120.2 (2)
N2—Nd1—N159.61 (6)C24—C23—H23119.9
O4—Nd1—N185.97 (5)C22—C23—H23119.9
N4—Nd1—N1153.44 (6)C23—C24—C25120.2 (2)
N1—C1—C2123.0 (2)C23—C24—H24119.9
N1—C1—H1118.5C25—C24—H24119.9
C2—C1—H1118.5C26—C25—C24119.7 (2)
C3—C2—C1119.3 (2)C26—C25—H25120.2
C3—C2—H2120.4C24—C25—H25120.2
C1—C2—H2120.4C25—C26—C21120.5 (2)
C2—C3—C4118.6 (2)C25—C26—H26119.7
C2—C3—H3A120.7C21—C26—H26119.7
C4—C3—H3A120.7C14—N4—C18116.8 (2)
C3—C4—C5119.1 (2)C14—N4—Nd1122.63 (15)
C3—C4—H4120.5C18—N4—Nd1120.55 (14)
C5—C4—H4120.5C19—N5—N6118.13 (19)
N1—C5—C4122.9 (2)C19—N5—Nd1124.82 (15)
N1—C5—C6116.6 (2)N6—N5—Nd1116.85 (13)
C4—C5—C6120.5 (2)C20—N6—N5115.70 (18)
N2—C6—C5117.6 (2)C20—N6—H6122.2
N2—C6—H6A121.2N5—N6—H6122.2
C5—C6—H6A121.2C20—O2—Nd1125.59 (14)
O1—C7—N3120.7 (2)C27—N7—Nd1149.40 (19)
O1—C7—C8121.7 (2)N7—C27—S1177.8 (2)
N3—C7—C8117.6 (2)O5—N8—O3120.1 (2)
C13—C8—C9119.2 (2)O5—N8—O4122.0 (2)
C13—C8—C7118.5 (2)O3—N8—O4117.91 (19)
C9—C8—C7122.3 (2)N8—O3—Nd198.98 (13)
C10—C9—C8120.1 (2)N8—O4—Nd194.19 (12)
C10—C9—H9119.9O8—N9—O7121.5 (2)
C8—C9—H9119.9O8—N9—O6119.1 (2)
C11—C10—C9120.3 (3)O7—N9—O6119.5 (2)
C11—C10—H10119.8Nd1—O9—H1W124.7
C9—C10—H10119.8Nd1—O9—H2W128.4
C10—C11—C12119.7 (2)H1W—O9—H2W105.2
C10—C11—H11120.1H3W—O10—H4W88.1
C12—C11—H11120.1H5W—O11—H6W97.3
C11—C12—C13120.6 (2)H7W—O12—H8W115.9
C11—C12—H12119.7
N1—C1—C2—C31.1 (4)C15—C16—C17—C180.6 (4)
C1—C2—C3—C40.7 (4)C16—C17—C18—N41.6 (4)
C2—C3—C4—C50.1 (4)C16—C17—C18—C19176.9 (2)
C3—C4—C5—N10.5 (4)N4—C18—C19—N52.5 (3)
C3—C4—C5—C6179.1 (2)C17—C18—C19—N5176.0 (2)
N1—C5—C6—N22.1 (3)O2—C20—C21—C2614.5 (3)
C4—C5—C6—N2177.6 (2)N6—C20—C21—C26164.2 (2)
O1—C7—C8—C1322.9 (3)O2—C20—C21—C22167.5 (2)
N3—C7—C8—C13156.3 (2)N6—C20—C21—C2213.8 (3)
O1—C7—C8—C9156.0 (2)C26—C21—C22—C230.3 (4)
N3—C7—C8—C924.8 (3)C20—C21—C22—C23177.7 (2)
C13—C8—C9—C101.6 (4)C21—C22—C23—C240.3 (4)
C7—C8—C9—C10179.4 (2)C22—C23—C24—C250.6 (4)
C8—C9—C10—C111.3 (4)C23—C24—C25—C260.3 (4)
C9—C10—C11—C120.0 (4)C24—C25—C26—C210.2 (4)
C10—C11—C12—C130.9 (4)C22—C21—C26—C250.5 (4)
C11—C12—C13—C80.5 (4)C20—C21—C26—C25177.5 (2)
C9—C8—C13—C120.8 (4)C15—C14—N4—C181.1 (3)
C7—C8—C13—C12179.7 (2)C15—C14—N4—Nd1177.88 (18)
C2—C1—N1—C50.7 (3)C17—C18—N4—C140.7 (3)
C2—C1—N1—Nd1174.43 (18)C19—C18—N4—C14177.8 (2)
C4—C5—N1—C10.2 (3)C17—C18—N4—Nd1179.75 (17)
C6—C5—N1—C1179.5 (2)C19—C18—N4—Nd11.2 (3)
C4—C5—N1—Nd1175.31 (18)C18—C19—N5—N6179.94 (19)
C6—C5—N1—Nd14.4 (3)C18—C19—N5—Nd15.4 (3)
C5—C6—N2—N3179.59 (19)O2—C20—N6—N50.1 (3)
C5—C6—N2—Nd11.3 (3)C21—C20—N6—N5178.61 (19)
O1—C7—N3—N24.2 (3)C19—N5—N6—C20178.4 (2)
C8—C7—N3—N2176.61 (19)Nd1—N5—N6—C206.5 (2)
C6—N2—N3—C7177.8 (2)N6—C20—O2—Nd17.8 (3)
Nd1—N2—N3—C70.6 (2)C21—C20—O2—Nd1170.89 (15)
N3—C7—O1—Nd16.2 (3)O5—N8—O3—Nd1175.8 (2)
C8—C7—O1—Nd1174.64 (15)O4—N8—O3—Nd13.1 (2)
N4—C14—C15—C162.1 (4)O5—N8—O4—Nd1175.9 (2)
C14—C15—C16—C171.1 (4)O3—N8—O4—Nd12.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O60.881.982.847 (2)168
N6—H6···O10i0.881.922.754 (3)159
O9—H1W···O110.901.862.760 (3)174
O9—H2W···O6ii0.901.932.816 (2)168
O10—H3W···O5iii0.992.073.055 (3)171
O10—H4W···O80.941.952.824 (3)154
O11—H5W···O5iv0.941.942.859 (3)166
O11—H6W···S10.932.583.460 (2)159
O12—H7W···O7iii0.951.952.902 (7)180
O12—H8W···O5iii0.902.253.072 (7)151
O12—H8W···O4iii0.902.142.957 (7)149
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z; (iii) x, y+1, z; (iv) x+1, y, z.
Selected bond lengths (Å) for (I) top
Pr1—N22.485 (3)Pr1—N82.646 (3)
Pr1—O22.498 (2)Pr1—N52.666 (3)
Pr1—N12.517 (3)Pr1—N42.674 (3)
Pr1—O12.529 (2)Pr1—N72.679 (3)
Pr1—N32.550 (3)
Selected bond lengths (Å) for (II) top
Nd1—O92.4459 (16)Nd1—N52.6479 (19)
Nd1—O22.4796 (15)Nd1—N22.6491 (18)
Nd1—O12.5063 (15)Nd1—O42.6558 (17)
Nd1—N72.512 (2)Nd1—N42.6985 (18)
Nd1—O32.5568 (17)Nd1—N12.7051 (19)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N6—H6···O30.881.942.806 (4)167
N9—H9···S3i0.882.653.485 (3)160
O3—H1···S2ii0.842.463.278 (3)164
O3—H2···S3iii0.852.603.451 (3)180
C26—H26···O1iv0.952.533.450 (4)162
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y, z; (iii) x+1, y, z; (iv) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O60.881.982.847 (2)168
N6—H6···O10i0.881.922.754 (3)159
O9—H1W···O110.901.862.760 (3)174
O9—H2W···O6ii0.901.932.816 (2)168
O10—H3W···O5iii0.992.073.055 (3)171
O10—H4W···O80.941.952.824 (3)154
O11—H5W···O5iv0.941.942.859 (3)166
O11—H6W···S10.932.583.460 (2)159
O12—H7W···O7iii0.951.952.902 (7)180
O12—H8W···O5iii0.902.253.072 (7)151
O12—H8W···O4iii0.902.142.957 (7)149
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z; (iii) x, y+1, z; (iv) x+1, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Pr(NCS)3(C13H11N3O)2]·H2O[Nd(NCS)(NO3)(C13H11N3O)2(H2O)]NO3·2.33H2O
Mr783.66836.78
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/n
Temperature (K)120120
a, b, c (Å)9.6999 (4), 25.8275 (13), 13.5791 (7)11.2796 (3), 17.3802 (3), 17.4298 (4)
β (°) 110.222 (2) 96.8035 (9)
V3)3192.2 (3)3392.91 (13)
Z44
Radiation typeMo KαMo Kα
µ (mm1)1.771.66
Crystal size (mm)0.24 × 0.22 × 0.100.20 × 0.18 × 0.05
Data collection
DiffractometerNonius KappaCCDNonius KappaCCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Multi-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.676, 0.8430.732, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
33021, 7291, 5239 41570, 7796, 6473
Rint0.0590.038
(sin θ/λ)max1)0.6500.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.079, 1.04 0.026, 0.060, 1.03
No. of reflections72917796
No. of parameters406447
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.21, 0.990.64, 0.50

Computer programs: COLLECT (Nonius, 1998), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL SCALEPACK (Otwinowski & Minor 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997) & SORTAV (Blessing, 1995), HKL DENZO and SCALEPACK (Otwinowski & Minor 1997) & SORTAV (Blessing 1995), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), publCIF (Westrip, 2010).

 

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton) for the data collections.

References

First citationArend, H. & Connelly, J. J. (1982). J. Cryst. Growth, 56, 642–644.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChristidis, P. C., Tossidis, I. A. & Paschalidis, D. G. (1999). Acta Cryst. C55, 707–710.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationKenyon, A. J. (2002). Prog. Quantum Electron. 26, 225–284.  Web of Science CrossRef CAS Google Scholar
First citationKepert, D. L. (1982). Inorganic Stereochemistry, p. 189. New York: Springer Verlag.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter, Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPaschalidis, D. & Gdaniec, M. (2004). Struct. Chem. 15, 605–612.  Web of Science CSD CrossRef CAS Google Scholar
First citationPaschalidis, D., Tossidis, I. & Gdaniec, M. (2000). Polyhedron, 19, 2629–2637.  Web of Science CSD CrossRef CAS Google Scholar
First citationRichardson, D. R., Becker, E. & Bernhardt, P. V. (1999). Acta Cryst. C55, 2102–2105.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShibasaki, M. & Yoshikawa, N. (2002). Chem. Rev. 102, 2187–2210.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S. & Sherry, A. D. (2003). J. Solid State Chem. 171, 38–43.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 2| February 2016| Pages 191-195
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds