research communications
H)-thione
of 3-{[4-(2-methoxyphenyl)piperazin-1-yl]methyl}-5-(thiophen-2-yl)-1,3,4-oxadiazole-2(3aDepartment of Chemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, and cDepartment of Physical and Analytical Chemistry, Faculty of Chemistry, Oviedo University-CINN, Oviedo 33006, Spain
*Correspondence e-mail: sgg@uniovi,es
The title compound, C18H20N4O2S2, is a new 1,3,4-oxadiazole and a key pharmacophore of several biologically active agents. It is composed of a methyl(thiophen-2-yl)-1,3,4-oxadiazole-2(3H)-thione moiety linked to a 2-methoxyphenyl unit via a piperazine ring that has a chair conformation. The thiophene ring mean plane lies almost in the plane of the oxadiazole ring, with a dihedral angle of 4.35 (9)°. The 2-methoxyphenyl ring is almost normal to the oxadiazole ring, with a dihedral angle of 84.17 (10)°. In the crystal, molecules are linked by weak C—H⋯S hydrogen bonds and C—H⋯π interactions, forming layers parallel to the bc plane. The layers are linked via weak C—H⋯O hydrogen bonds and slipped parallel π–π interactions [intercentroid distance = 3.6729 (10) Å], forming a three-dimensional structure. The thiophene ring has an approximate 180° rotational disorder about the bridging C—C bond.
Keywords: crystal structure; 1,3,4-oxadiazole; thiophene; piperazine; disorder; hydrogen bonding.
CCDC reference: 1447823
1. Chemical context
1,3,4-Oxadiazole derivatives are structural motifs of particular value in material sciences (Zhang et al., 2011) and agrochemistry (Shi et al., 2001; Milinkevich et al., 2009; Li et al., 2014). In addition, they occupy a unique situation in the field of medicinal chemistry as pharmacophores possessing diverse pharmacological activities including antibacterial (Ogata et al., 1971; Rane et al., 2012; Al-Omar, 2010), anticancer (Pinna et al., 2009; Gamal El-Din et al., 2015; Zhang et al., 2014; Du et al., 2013), antiviral (Summa et al., 2008; Wu et al., 2015; El-Emam et al., 2004), antihypertensive (Vardan et al., 1983; Schlecker & Thieme, 1988), anti-inflammatory (Bansal et al., 2014; Kadi et al., 2007) and anti-oxidant (Ma et al., 2013) activities. In continuation to our previous studies on 1,3,4-oxadiazoles (El-Emam et al., 2012), we report herein on the synthesis and of the title compound.
2. Structural commentary
The title compound, Fig. 1, is composed of a methyl(thiophen-2-yl)-1,3,4-oxadiazole-2(3H)-thione moiety linked to a 2-methoxyphenyl unit via a bridging piperazine ring. The molecule is V-shaped with the mean plane of the piperazine ring, that has a chair conformation, making dihedral angles of 51.2 (1) and 77.8 (1)° with the 2-methoxyphenyl ring and the oxadiazole ring, respectively. The thiophene ring mean plane lies almost in the plane of the oxadiazole ring, with a dihedral angle of 4.35 (9)°. The thiophene ring has an approximate 180° rotational disorder about the bridging C14—C15 bond.
3. Supramolecular features
In the crystal, molecules are linked by weak C—H⋯S hydrogen bonds and C—H⋯π interactions, forming layers in the bc plane (Table 1 and Fig. 2). The layers are linked via C—H⋯O hydrogen bonds and slipped parallel π–π interactions [Cg3⋯ Cg1i = 3.6729 (10) Å, inter-planar distance = 3.4757 (7) Å, slippage = 0.967 Å; Cg1 and Cg3 are the centroids of the S2A/C15/C16A/C17/C18 and O1/ N3/N4/C13/C14 rings, respectively; symmetry code (i): −x + 2, −y + 1, −z + 2], forming a three-dimensional structure (Table 1 and Fig. 2).
4. Database survey
A search of the Cambridge Structural Database (Version 5.37, last update November 2015; Groom & Allen, 2014) for the 3-methyl-5-(thiophen-2-yl)-1,3,4-oxadiazole-2(3H)-thione moiety of the title compound gave three hits. Two of these compounds also contain a substituted piperazine ring, namely 3-[(4-phenylpiperazin-1-yl)methyl]-5-(2-thienyl)-1,3,4-oxadiazole-2(3H)-thione (IDOBUA; El-Emam et al., 2013) and 3-[(4-benzylpiperazin-1-yl)methyl]-5-(thiophen-2-yl)-2,3-dihydro-1,3,4-oxadiazole-2-thione (VUBYUO; Al-Omary et al., 2015). In both of these molecules, the conformation is very similar to that of the title compound.
5. Synthesis and crystallization
To a solution of 5-(thiophen-2-yl)-1,3,4-oxadiazole-2-thiol (920 mg, 5 mmol), in ethanol (15 ml), 1-(2-methoxyphenyl)piperazine (960 mg, 5 mmol) and 37% formaldehyde solution (1.0 ml) were added and the mixture was stirred at room temperature for 3 h and then allowed to stand overnight at room temperature. The precipitated crude product was filtered, washed with cold ethanol, dried, and crystallized from ethanol to yield the title compound as pale-yellow prismatic crystals(yield 1.67 g, 86%; m.p. 419–421 K). Single crystals suitable for X-ray analysis were obtained by slow evaporation of a CHCl3:EtOH solution (1:1; 15 ml) at room temperature. 1H NMR (CDCl3, 500.13 MHz): δ 3.10 (s, 8H, piperazine-H), 3.85 (s, 3H, OCH3), 5.15 (s, 2H, CH2), 6.85–6.87 (m, 1H, Ar-H), 6.92–6.95 (m, 2H, Ar-H), 7.01–7.03 (m, 1H, Ar-H), 7.18 (t, 1H, thiophene-H, J = 4.5 Hz), 7.59 (d, 1H, thiophene-H, J = 4.5 Hz), 7.75 (d, 1H, thiophene-H, J = 4.5 Hz). 13C NMR (CDCl3, 125.76 MHz): δ 50.43, 50.64 (piperazine-C), 55.33 (OCH3), 70.44 (CH2), 111.05, 118.28, 120.94, 123.17, 123.68, 128.32, 130.74, 130.95, 141.09, 152.23 (Ar & thiophene-C), 155.42 (C=N), 177.74 (C=S).
6. Refinement
Crystal data, data collection and structure . The C-bound H atoms were positioned geometrically and treated as riding atoms: C—H 0.95–0.97 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms. The thienyl ring is disordered over two positions and in the final cycles, the occupancy of atoms S2A and C16A, and S2B and C16B, were each fixed at 0.5.
details are summarized in Table 2Supporting information
CCDC reference: 1447823
10.1107/S2056989016000992/su5269sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989016000992/su5269Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989016000992/su5269Isup3.cml
1,3,4-Oxadiazole derivatives are structural motifs of particular value in material sciences (Zhang et al., 2011) and agrochemistry (Shi et al., 2001; Milinkevich et al., 2009; Li et al., 2014). In addition, they occupy a unique situation in the field of medicinal chemistry as pharmacophores possessing diverse pharmacological activities including antibacterial (Ogata et al., 1971; Rane et al., 2012; Al-Omar, 2010), anticancer (Pinna et al., 2009; Gamal El-Din et al., 2015; Zhang et al., 2014; Du et al., 2013), antiviral (Summa et al., 2008; Wu et al., 2015; El-Emam et al., 2004), antihypertensive (Vardan et al., 1983; Schlecker & Thieme, 1988), anti-inflammatory (Bansal et al., 2014; Kadi et al., 2007) and anti-oxidant (Ma et al., 2013) activities. In continuation to our previous studies on 1,3,4-oxadiazoles (El-Emam et al., 2012), we report herein on the synthesis and
of the title compound.The title compound, Fig. 1, is composed of a methyl(thiophen-2-yl)-1,3,4-oxadiazole-2(3H)-thione moiety linked to a 2-methoxyphenyl unit via a bridging piperazine ring. The molecule is V-shaped with the mean plane of the piperazine ring, that has a chair conformation, making dihedral angles of 51.2 (1) and 77.8 (1)° with the 2-methoxyphenyl ring and the oxadiazole ring, respectively. The thiophene ring mean plane lies almost in the plane of the oxadiazole ring, with a dihedral angle of 4.35 (9)°. The thiophene ring has an approximate 180 ° rotational disorder about the bridging C14—C15 bond.
In the crystal, molecules are linked by weak C—H···S hydrogen bonds and C—H···π interactions, forming layers in the bc plane (Table 1 and Fig. 2). The layers are linked via C—H···O hydrogen bonds and slipped parallel π–π interactions [Cg3··· Cg1i = 3.6729 (10) Å, inter-planar distance = 3.4757 (7) Å, slippage = 0.967 Å; Cg1 and Cg3 are the centroids of the S2A/C15/C16A/C17/C18 and O1/ N3/N4/C13/C14 rings, respectively; symmetry code (i): −x + 2, −y + 1, −z + 2], forming a three-dimensional structure (Table 1 and Fig. 2).
\ A search of the Cambridge Structural Database (Version 5.37, last update November 2015; Groom & Allen, 2014) for the 3-methyl-5-(thiophen-2-yl)-1,3,4-oxadiazole-2(3H)-thione moiety of the title compound gave three hits. Two of these compounds also contain a substituted piperazine ring, namely 3-[(4-phenylpiperazin-1-yl)methyl]-5-(2-thienyl)-1,3,4-oxadiazole-\ 2(3H)-thione (IDOBUA; El-Emam et al., 2013) and 3-[(4-benzylpiperazin-1-yl)methyl]-5-(thiophen-2-yl)-2,3-dihydro-1,3,4-\ oxadiazole-2-thione (VUBYUO; Al-Omary et al., 2015). In both of these molecules, the conformation is very similar to that of the title compound.
To a solution of 5-(thiophen-2-yl)-1,3,4-oxadiazole-2-thiol (920 mg, 5 mmol), in ethanol (15 ml), 1-(2-methoxyphenyl)piperazine (960 mg, 5 mmol) and 37% formaldehyde solution (1.0 ml) were added and the mixture was stirred at room temperature for 3 h and then allowed to stand overnight at room temperature. The precipitated crude product was filtered, washed with cold ethanol, dried, and crystallized from ethanol to yield the title compound as pale-yellow prismatic crystals(yield 1.67 g, 86%; m.p. 419–421 K). Single crystals suitable for X-ray analysis were obtained by slow evaporation of a CHCl3:EtOH solution (1:1; 15 ml) at room temperature. 1H NMR (CDCl3, 500.13 MHz): δ 3.10 (s, 8H, piperazine-H), 3.85 (s, 3H, OCH3), 5.15 (s, 2H, CH2), 6.85–6.87 (m, 1H, Ar—H), 6.92–6.95 (m, 2H, Ar—H), 7.01–7.03 (m, 1H, Ar—H), 7.18 (t, 1H, thiophene-H, J = 4.5 Hz), 7.59 (d, 1H, thiophene-H, J = 4.5 Hz), 7.75 (d, 1H, thiophene-H, J = 4.5 Hz). 13C NMR (CDCl3, 125.76 MHz): δ 50.43, 50.64 (piperazine-C), 55.33 (OCH3), 70.44 (CH2), 111.05, 118.28, 120.94, 123.17, 123.68, 128.32, 130.74, 130.95, 141.09, 152.23 (Ar & thiophene-C), 155.42 (C═N), 177.74 (C═S).
Crystal data, data collection and structure
details are summarized in Table 2. The C-bound H atoms were positioned geometrically and treated as riding atoms: C—H 0.95–0.97 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms. The thienyl ring is disordered over two positions and in the final cycles, the occupancy of atoms S2A and C16A, and S2B and C16B, were each fixed at 0.5.1,3,4-Oxadiazole derivatives are structural motifs of particular value in material sciences (Zhang et al., 2011) and agrochemistry (Shi et al., 2001; Milinkevich et al., 2009; Li et al., 2014). In addition, they occupy a unique situation in the field of medicinal chemistry as pharmacophores possessing diverse pharmacological activities including antibacterial (Ogata et al., 1971; Rane et al., 2012; Al-Omar, 2010), anticancer (Pinna et al., 2009; Gamal El-Din et al., 2015; Zhang et al., 2014; Du et al., 2013), antiviral (Summa et al., 2008; Wu et al., 2015; El-Emam et al., 2004), antihypertensive (Vardan et al., 1983; Schlecker & Thieme, 1988), anti-inflammatory (Bansal et al., 2014; Kadi et al., 2007) and anti-oxidant (Ma et al., 2013) activities. In continuation to our previous studies on 1,3,4-oxadiazoles (El-Emam et al., 2012), we report herein on the synthesis and
of the title compound.The title compound, Fig. 1, is composed of a methyl(thiophen-2-yl)-1,3,4-oxadiazole-2(3H)-thione moiety linked to a 2-methoxyphenyl unit via a bridging piperazine ring. The molecule is V-shaped with the mean plane of the piperazine ring, that has a chair conformation, making dihedral angles of 51.2 (1) and 77.8 (1)° with the 2-methoxyphenyl ring and the oxadiazole ring, respectively. The thiophene ring mean plane lies almost in the plane of the oxadiazole ring, with a dihedral angle of 4.35 (9)°. The thiophene ring has an approximate 180 ° rotational disorder about the bridging C14—C15 bond.
In the crystal, molecules are linked by weak C—H···S hydrogen bonds and C—H···π interactions, forming layers in the bc plane (Table 1 and Fig. 2). The layers are linked via C—H···O hydrogen bonds and slipped parallel π–π interactions [Cg3··· Cg1i = 3.6729 (10) Å, inter-planar distance = 3.4757 (7) Å, slippage = 0.967 Å; Cg1 and Cg3 are the centroids of the S2A/C15/C16A/C17/C18 and O1/ N3/N4/C13/C14 rings, respectively; symmetry code (i): −x + 2, −y + 1, −z + 2], forming a three-dimensional structure (Table 1 and Fig. 2).
\ A search of the Cambridge Structural Database (Version 5.37, last update November 2015; Groom & Allen, 2014) for the 3-methyl-5-(thiophen-2-yl)-1,3,4-oxadiazole-2(3H)-thione moiety of the title compound gave three hits. Two of these compounds also contain a substituted piperazine ring, namely 3-[(4-phenylpiperazin-1-yl)methyl]-5-(2-thienyl)-1,3,4-oxadiazole-\ 2(3H)-thione (IDOBUA; El-Emam et al., 2013) and 3-[(4-benzylpiperazin-1-yl)methyl]-5-(thiophen-2-yl)-2,3-dihydro-1,3,4-\ oxadiazole-2-thione (VUBYUO; Al-Omary et al., 2015). In both of these molecules, the conformation is very similar to that of the title compound.
To a solution of 5-(thiophen-2-yl)-1,3,4-oxadiazole-2-thiol (920 mg, 5 mmol), in ethanol (15 ml), 1-(2-methoxyphenyl)piperazine (960 mg, 5 mmol) and 37% formaldehyde solution (1.0 ml) were added and the mixture was stirred at room temperature for 3 h and then allowed to stand overnight at room temperature. The precipitated crude product was filtered, washed with cold ethanol, dried, and crystallized from ethanol to yield the title compound as pale-yellow prismatic crystals(yield 1.67 g, 86%; m.p. 419–421 K). Single crystals suitable for X-ray analysis were obtained by slow evaporation of a CHCl3:EtOH solution (1:1; 15 ml) at room temperature. 1H NMR (CDCl3, 500.13 MHz): δ 3.10 (s, 8H, piperazine-H), 3.85 (s, 3H, OCH3), 5.15 (s, 2H, CH2), 6.85–6.87 (m, 1H, Ar—H), 6.92–6.95 (m, 2H, Ar—H), 7.01–7.03 (m, 1H, Ar—H), 7.18 (t, 1H, thiophene-H, J = 4.5 Hz), 7.59 (d, 1H, thiophene-H, J = 4.5 Hz), 7.75 (d, 1H, thiophene-H, J = 4.5 Hz). 13C NMR (CDCl3, 125.76 MHz): δ 50.43, 50.64 (piperazine-C), 55.33 (OCH3), 70.44 (CH2), 111.05, 118.28, 120.94, 123.17, 123.68, 128.32, 130.74, 130.95, 141.09, 152.23 (Ar & thiophene-C), 155.42 (C═N), 177.74 (C═S).
detailsCrystal data, data collection and structure
details are summarized in Table 2. The C-bound H atoms were positioned geometrically and treated as riding atoms: C—H 0.95–0.97 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms. The thienyl ring is disordered over two positions and in the final cycles, the occupancy of atoms S2A and C16A, and S2B and C16B, were each fixed at 0.5.Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. | |
Fig. 2. Crystal packing of the title compound, viewed along the b axis, showing the C—H···S and C—H···O hydrogen bonds (Table 1) as dashed lines. Only H atoms involved in intermolecular interactions have been included. |
C18H20N4O2S2 | F(000) = 816 |
Mr = 388.5 | Dx = 1.401 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: -P 2ybc | Cell parameters from 11296 reflections |
a = 15.2925 (2) Å | θ = 3.7–70.5° |
b = 10.0745 (1) Å | µ = 2.80 mm−1 |
c = 11.9726 (1) Å | T = 100 K |
β = 93.413 (1)° | Prism, colourless |
V = 1841.28 (3) Å3 | 0.70 × 0.51 × 0.41 mm |
Z = 4 |
Agilent Xcalibur Ruby Gemini diffractometer | 3545 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 3401 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
Detector resolution: 10.2673 pixels mm-1 | θmax = 70.7°, θmin = 5.3° |
ω scans | h = −18→17 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | k = −8→12 |
Tmin = 0.225, Tmax = 0.315 | l = −14→14 |
13494 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0574P)2 + 2.048P] where P = (Fo2 + 2Fc2)/3 |
3494 reflections | (Δ/σ)max < 0.001 |
230 parameters | Δρmax = 0.95 e Å−3 |
0 restraints | Δρmin = −0.65 e Å−3 |
0 constraints |
C18H20N4O2S2 | V = 1841.28 (3) Å3 |
Mr = 388.5 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 15.2925 (2) Å | µ = 2.80 mm−1 |
b = 10.0745 (1) Å | T = 100 K |
c = 11.9726 (1) Å | 0.70 × 0.51 × 0.41 mm |
β = 93.413 (1)° |
Agilent Xcalibur Ruby Gemini diffractometer | 3545 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | 3401 reflections with I > 2σ(I) |
Tmin = 0.225, Tmax = 0.315 | Rint = 0.026 |
13494 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.95 e Å−3 |
3494 reflections | Δρmin = −0.65 e Å−3 |
230 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.89998 (3) | 0.09896 (5) | 0.99378 (4) | 0.02414 (15) | |
S2A | 0.87403 (4) | 0.74266 (6) | 1.04820 (5) | 0.02497 (16) | 0.7913 (14) |
C16A | 0.94021 (8) | 0.57554 (13) | 1.21094 (10) | 0.02497 (16) | 0.7913 (14) |
H16A | 0.9598 | 0.501 | 1.2508 | 0.03* | 0.7913 (14) |
S2B | 0.94021 (8) | 0.57554 (13) | 1.21094 (10) | 0.02497 (16) | 0.2087 (14) |
C16B | 0.87403 (4) | 0.74266 (6) | 1.04820 (5) | 0.02497 (16) | 0.2087 (14) |
H16B | 0.8502 | 0.779 | 0.9817 | 0.03* | 0.2087 (14) |
O1 | 0.90631 (8) | 0.35048 (13) | 1.06190 (11) | 0.0189 (3) | |
O2 | 0.43793 (9) | 0.38449 (17) | 0.90935 (12) | 0.0312 (4) | |
N3 | 0.85646 (10) | 0.33316 (16) | 0.89001 (13) | 0.0192 (3) | |
N1 | 0.55319 (10) | 0.37224 (16) | 0.74811 (13) | 0.0198 (3) | |
N4 | 0.85770 (10) | 0.46847 (16) | 0.91387 (13) | 0.0204 (3) | |
N2 | 0.73225 (10) | 0.29806 (17) | 0.75238 (13) | 0.0210 (3) | |
C1 | 0.46191 (12) | 0.37565 (18) | 0.71654 (16) | 0.0202 (4) | |
C15 | 0.90176 (11) | 0.58606 (19) | 1.08927 (15) | 0.0183 (4) | |
C14 | 0.88737 (11) | 0.47285 (19) | 1.01696 (15) | 0.0180 (4) | |
C13 | 0.88567 (12) | 0.26006 (19) | 0.97769 (15) | 0.0187 (4) | |
C6 | 0.40227 (13) | 0.3813 (2) | 0.80197 (17) | 0.0229 (4) | |
C9 | 0.67626 (13) | 0.2461 (2) | 0.83683 (17) | 0.0237 (4) | |
H9A | 0.6806 | 0.3025 | 0.9026 | 0.028* | |
H9B | 0.6955 | 0.1577 | 0.8589 | 0.028* | |
C11 | 0.61058 (12) | 0.4202 (2) | 0.66366 (16) | 0.0231 (4) | |
H11A | 0.5908 | 0.5066 | 0.6368 | 0.028* | |
H11B | 0.6088 | 0.3596 | 0.6007 | 0.028* | |
C4 | 0.28120 (13) | 0.3853 (2) | 0.66375 (19) | 0.0278 (5) | |
H4 | 0.2211 | 0.3875 | 0.6463 | 0.033* | |
C3 | 0.33874 (14) | 0.3826 (2) | 0.57913 (18) | 0.0284 (5) | |
H3 | 0.3177 | 0.3844 | 0.5046 | 0.034* | |
C2 | 0.42871 (13) | 0.3770 (2) | 0.60627 (17) | 0.0249 (4) | |
H2 | 0.4672 | 0.3741 | 0.5491 | 0.03* | |
C10 | 0.70379 (12) | 0.4304 (2) | 0.71497 (16) | 0.0228 (4) | |
H10A | 0.7424 | 0.4638 | 0.66 | 0.027* | |
H10B | 0.7058 | 0.4912 | 0.7779 | 0.027* | |
C8 | 0.58162 (13) | 0.2411 (2) | 0.78978 (18) | 0.0240 (4) | |
H8A | 0.5763 | 0.177 | 0.7292 | 0.029* | |
H8B | 0.5441 | 0.2125 | 0.8478 | 0.029* | |
C5 | 0.31283 (13) | 0.3849 (2) | 0.77469 (18) | 0.0275 (5) | |
H5 | 0.2738 | 0.3869 | 0.8313 | 0.033* | |
C12 | 0.82390 (12) | 0.2821 (2) | 0.77866 (15) | 0.0224 (4) | |
H12A | 0.8555 | 0.3268 | 0.7217 | 0.027* | |
H12B | 0.8379 | 0.1883 | 0.7749 | 0.027* | |
C17 | 0.93757 (13) | 0.7167 (2) | 1.24746 (17) | 0.0268 (4) | |
H17 | 0.9571 | 0.7421 | 1.3193 | 0.032* | |
C7 | 0.38537 (15) | 0.4430 (3) | 0.99152 (19) | 0.0342 (5) | |
H7A | 0.4167 | 0.4403 | 1.0634 | 0.051* | |
H7B | 0.3316 | 0.3943 | 0.9947 | 0.051* | |
H7C | 0.3726 | 0.5335 | 0.9715 | 0.051* | |
C18 | 0.90558 (13) | 0.8060 (2) | 1.1716 (2) | 0.0297 (5) | |
H18 | 0.9016 | 0.8961 | 1.1874 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0282 (3) | 0.0197 (3) | 0.0246 (3) | 0.00178 (18) | 0.00181 (19) | 0.00051 (18) |
S2A | 0.0229 (3) | 0.0257 (3) | 0.0265 (3) | −0.0011 (2) | 0.0022 (2) | −0.0008 (2) |
C16A | 0.0229 (3) | 0.0257 (3) | 0.0265 (3) | −0.0011 (2) | 0.0022 (2) | −0.0008 (2) |
S2B | 0.0229 (3) | 0.0257 (3) | 0.0265 (3) | −0.0011 (2) | 0.0022 (2) | −0.0008 (2) |
C16B | 0.0229 (3) | 0.0257 (3) | 0.0265 (3) | −0.0011 (2) | 0.0022 (2) | −0.0008 (2) |
O1 | 0.0189 (6) | 0.0199 (6) | 0.0177 (6) | 0.0015 (5) | 0.0001 (5) | 0.0003 (5) |
O2 | 0.0213 (7) | 0.0510 (10) | 0.0218 (7) | −0.0010 (6) | 0.0057 (6) | −0.0044 (6) |
N3 | 0.0175 (7) | 0.0216 (8) | 0.0184 (8) | 0.0028 (6) | 0.0006 (6) | −0.0007 (6) |
N1 | 0.0161 (8) | 0.0234 (8) | 0.0201 (8) | 0.0005 (6) | 0.0037 (6) | 0.0027 (6) |
N4 | 0.0196 (8) | 0.0219 (8) | 0.0197 (8) | 0.0030 (6) | 0.0022 (6) | 0.0002 (6) |
N2 | 0.0170 (8) | 0.0260 (8) | 0.0201 (8) | 0.0035 (6) | 0.0011 (6) | 0.0002 (7) |
C1 | 0.0175 (9) | 0.0190 (9) | 0.0244 (10) | −0.0012 (7) | 0.0030 (7) | 0.0003 (7) |
C15 | 0.0141 (8) | 0.0219 (9) | 0.0191 (9) | 0.0009 (7) | 0.0019 (7) | 0.0014 (7) |
C14 | 0.0128 (8) | 0.0209 (9) | 0.0204 (9) | 0.0022 (7) | 0.0029 (7) | 0.0023 (7) |
C13 | 0.0143 (8) | 0.0241 (10) | 0.0182 (9) | 0.0006 (7) | 0.0031 (7) | −0.0016 (7) |
C6 | 0.0216 (10) | 0.0233 (10) | 0.0239 (10) | −0.0022 (8) | 0.0034 (8) | 0.0000 (8) |
C9 | 0.0218 (10) | 0.0248 (10) | 0.0245 (10) | 0.0031 (8) | 0.0021 (8) | 0.0047 (8) |
C11 | 0.0177 (9) | 0.0309 (11) | 0.0211 (9) | 0.0008 (8) | 0.0031 (7) | 0.0060 (8) |
C4 | 0.0163 (9) | 0.0309 (11) | 0.0360 (11) | −0.0025 (8) | 0.0000 (8) | 0.0014 (9) |
C3 | 0.0228 (10) | 0.0351 (12) | 0.0267 (10) | −0.0024 (8) | −0.0019 (8) | 0.0032 (9) |
C2 | 0.0197 (9) | 0.0309 (11) | 0.0246 (10) | −0.0008 (8) | 0.0042 (8) | 0.0010 (8) |
C10 | 0.0177 (9) | 0.0284 (10) | 0.0224 (9) | −0.0002 (8) | 0.0024 (7) | 0.0055 (8) |
C8 | 0.0203 (9) | 0.0228 (10) | 0.0290 (10) | −0.0003 (7) | 0.0030 (8) | 0.0035 (8) |
C5 | 0.0197 (10) | 0.0331 (11) | 0.0307 (11) | −0.0032 (8) | 0.0087 (8) | −0.0001 (9) |
C12 | 0.0204 (9) | 0.0295 (10) | 0.0174 (9) | 0.0047 (8) | 0.0017 (7) | −0.0042 (8) |
C17 | 0.0173 (9) | 0.0420 (12) | 0.0211 (9) | −0.0069 (8) | 0.0027 (7) | −0.0057 (9) |
C7 | 0.0326 (11) | 0.0442 (13) | 0.0272 (11) | −0.0067 (10) | 0.0117 (9) | −0.0083 (10) |
C18 | 0.0240 (10) | 0.0230 (10) | 0.0432 (12) | −0.0017 (8) | 0.0102 (9) | −0.0017 (9) |
S1—C13 | 1.647 (2) | C9—H9A | 0.97 |
S2A—C18 | 1.655 (2) | C9—H9B | 0.97 |
S2A—C15 | 1.6988 (19) | C11—C10 | 1.522 (3) |
C16A—C17 | 1.489 (3) | C11—H11A | 0.97 |
C16A—C15 | 1.542 (2) | C11—H11B | 0.97 |
C16A—H16A | 0.93 | C4—C3 | 1.381 (3) |
O1—C14 | 1.369 (2) | C4—C5 | 1.386 (3) |
O1—C13 | 1.381 (2) | C4—H4 | 0.93 |
O2—C6 | 1.367 (3) | C3—C2 | 1.396 (3) |
O2—C7 | 1.434 (3) | C3—H3 | 0.93 |
N3—C13 | 1.337 (2) | C2—H2 | 0.93 |
N3—N4 | 1.393 (2) | C10—H10A | 0.97 |
N3—C12 | 1.487 (2) | C10—H10B | 0.97 |
N1—C1 | 1.425 (2) | C8—H8A | 0.97 |
N1—C11 | 1.460 (2) | C8—H8B | 0.97 |
N1—C8 | 1.469 (2) | C5—H5 | 0.93 |
N4—C14 | 1.290 (2) | C12—H12A | 0.97 |
N2—C12 | 1.427 (2) | C12—H12B | 0.97 |
N2—C9 | 1.460 (2) | C17—C18 | 1.349 (3) |
N2—C10 | 1.464 (3) | C17—H17 | 0.93 |
C1—C2 | 1.386 (3) | C7—H7A | 0.96 |
C1—C6 | 1.412 (3) | C7—H7B | 0.96 |
C15—C14 | 1.441 (3) | C7—H7C | 0.96 |
C6—C5 | 1.388 (3) | C18—H18 | 0.93 |
C9—C8 | 1.522 (3) | ||
C18—S2A—C15 | 92.58 (10) | C3—C4—C5 | 120.10 (19) |
C17—C16A—C15 | 101.32 (13) | C3—C4—H4 | 120 |
C17—C16A—H16A | 129.3 | C5—C4—H4 | 120 |
C15—C16A—H16A | 129.3 | C4—C3—C2 | 119.49 (19) |
C14—O1—C13 | 105.85 (14) | C4—C3—H3 | 120.3 |
C6—O2—C7 | 116.52 (17) | C2—C3—H3 | 120.3 |
C13—N3—N4 | 112.23 (15) | C1—C2—C3 | 121.48 (19) |
C13—N3—C12 | 126.27 (17) | C1—C2—H2 | 119.3 |
N4—N3—C12 | 121.49 (15) | C3—C2—H2 | 119.3 |
C1—N1—C11 | 115.34 (15) | N2—C10—C11 | 108.46 (16) |
C1—N1—C8 | 112.16 (15) | N2—C10—H10A | 110 |
C11—N1—C8 | 110.80 (15) | C11—C10—H10A | 110 |
C14—N4—N3 | 103.26 (15) | N2—C10—H10B | 110 |
C12—N2—C9 | 114.55 (15) | C11—C10—H10B | 110 |
C12—N2—C10 | 116.12 (16) | H10A—C10—H10B | 108.4 |
C9—N2—C10 | 111.25 (15) | N1—C8—C9 | 110.57 (16) |
C2—C1—C6 | 118.29 (18) | N1—C8—H8A | 109.5 |
C2—C1—N1 | 123.40 (17) | C9—C8—H8A | 109.5 |
C6—C1—N1 | 118.28 (17) | N1—C8—H8B | 109.5 |
C14—C15—C16A | 123.32 (15) | C9—C8—H8B | 109.5 |
C14—C15—S2A | 122.32 (14) | H8A—C8—H8B | 108.1 |
C16A—C15—S2A | 114.33 (12) | C4—C5—C6 | 120.56 (19) |
N4—C14—O1 | 113.53 (16) | C4—C5—H5 | 119.7 |
N4—C14—C15 | 129.37 (18) | C6—C5—H5 | 119.7 |
O1—C14—C15 | 117.09 (16) | N2—C12—N3 | 115.51 (15) |
N3—C13—O1 | 105.12 (16) | N2—C12—H12A | 108.4 |
N3—C13—S1 | 132.09 (15) | N3—C12—H12A | 108.4 |
O1—C13—S1 | 122.77 (14) | N2—C12—H12B | 108.4 |
O2—C6—C5 | 123.60 (18) | N3—C12—H12B | 108.4 |
O2—C6—C1 | 116.35 (17) | H12A—C12—H12B | 107.5 |
C5—C6—C1 | 120.05 (19) | C18—C17—C16A | 117.01 (18) |
N2—C9—C8 | 109.84 (16) | C18—C17—H17 | 121.5 |
N2—C9—H9A | 109.7 | C16A—C17—H17 | 121.5 |
C8—C9—H9A | 109.7 | O2—C7—H7A | 109.5 |
N2—C9—H9B | 109.7 | O2—C7—H7B | 109.5 |
C8—C9—H9B | 109.7 | H7A—C7—H7B | 109.5 |
H9A—C9—H9B | 108.2 | O2—C7—H7C | 109.5 |
N1—C11—C10 | 109.26 (15) | H7A—C7—H7C | 109.5 |
N1—C11—H11A | 109.8 | H7B—C7—H7C | 109.5 |
C10—C11—H11A | 109.8 | C17—C18—S2A | 114.76 (17) |
N1—C11—H11B | 109.8 | C17—C18—H18 | 122.6 |
C10—C11—H11B | 109.8 | S2A—C18—H18 | 122.6 |
H11A—C11—H11B | 108.3 | ||
C13—N3—N4—C14 | −0.5 (2) | N1—C1—C6—O2 | 0.7 (3) |
C12—N3—N4—C14 | 178.38 (15) | C2—C1—C6—C5 | 1.5 (3) |
C11—N1—C1—C2 | 22.5 (3) | N1—C1—C6—C5 | 179.97 (18) |
C8—N1—C1—C2 | −105.7 (2) | C12—N2—C9—C8 | −167.82 (16) |
C11—N1—C1—C6 | −155.90 (18) | C10—N2—C9—C8 | 58.0 (2) |
C8—N1—C1—C6 | 76.0 (2) | C1—N1—C11—C10 | 171.49 (16) |
C17—C16A—C15—C14 | −177.76 (16) | C8—N1—C11—C10 | −59.7 (2) |
C17—C16A—C15—S2A | 0.16 (15) | C5—C4—C3—C2 | 1.1 (3) |
C18—S2A—C15—C14 | 177.79 (16) | C6—C1—C2—C3 | −0.5 (3) |
C18—S2A—C15—C16A | −0.16 (13) | N1—C1—C2—C3 | −178.91 (19) |
N3—N4—C14—O1 | 0.53 (19) | C4—C3—C2—C1 | −0.8 (3) |
N3—N4—C14—C15 | −178.64 (17) | C12—N2—C10—C11 | 165.92 (15) |
C13—O1—C14—N4 | −0.4 (2) | C9—N2—C10—C11 | −60.7 (2) |
C13—O1—C14—C15 | 178.90 (15) | N1—C11—C10—N2 | 60.7 (2) |
C16A—C15—C14—N4 | −178.37 (16) | C1—N1—C8—C9 | −172.53 (16) |
S2A—C15—C14—N4 | 3.9 (3) | C11—N1—C8—C9 | 57.0 (2) |
C16A—C15—C14—O1 | 2.5 (2) | N2—C9—C8—N1 | −55.2 (2) |
S2A—C15—C14—O1 | −175.28 (13) | C3—C4—C5—C6 | −0.2 (3) |
N4—N3—C13—O1 | 0.29 (19) | O2—C6—C5—C4 | 178.1 (2) |
C12—N3—C13—O1 | −178.53 (15) | C1—C6—C5—C4 | −1.2 (3) |
N4—N3—C13—S1 | −178.25 (15) | C9—N2—C12—N3 | −52.8 (2) |
C12—N3—C13—S1 | 2.9 (3) | C10—N2—C12—N3 | 79.1 (2) |
C14—O1—C13—N3 | 0.03 (18) | C13—N3—C12—N2 | 110.8 (2) |
C14—O1—C13—S1 | 178.74 (13) | N4—N3—C12—N2 | −67.9 (2) |
C7—O2—C6—C5 | −24.0 (3) | C15—C16A—C17—C18 | −0.1 (2) |
C7—O2—C6—C1 | 155.31 (19) | C16A—C17—C18—S2A | 0.0 (2) |
C2—C1—C6—O2 | −177.78 (18) | C15—S2A—C18—C17 | 0.11 (17) |
Cg1 is the centroid of the S2A/C15/C16A/C17/C18 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12A···S1i | 0.97 | 2.95 | 3.860 (2) | 157 |
C17—H17···O1ii | 0.93 | 2.69 | 3.475 (2) | 143 |
C5—H5···Cg1iii | 0.93 | 2.95 | 3.660 (2) | 135 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+2, y+1/2, −z+5/2; (iii) −x+1, −y+1, −z+2. |
Cg1 is the centroid of the S2A/C15/C16A/C17/C18 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12A···S1i | 0.97 | 2.95 | 3.860 (2) | 157 |
C17—H17···O1ii | 0.93 | 2.69 | 3.475 (2) | 143 |
C5—H5···Cg1iii | 0.93 | 2.95 | 3.660 (2) | 135 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+2, y+1/2, −z+5/2; (iii) −x+1, −y+1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C18H20N4O2S2 |
Mr | 388.5 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 15.2925 (2), 10.0745 (1), 11.9726 (1) |
β (°) | 93.413 (1) |
V (Å3) | 1841.28 (3) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 2.80 |
Crystal size (mm) | 0.70 × 0.51 × 0.41 |
Data collection | |
Diffractometer | Agilent Xcalibur Ruby Gemini |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2014) |
Tmin, Tmax | 0.225, 0.315 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13494, 3545, 3401 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.612 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.113, 1.04 |
No. of reflections | 3494 |
No. of parameters | 230 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.95, −0.65 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).
Footnotes
‡Additional correspondence author, e-mail: elemam5@hotmail.com.
Acknowledgements
The authors extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this study through the Research Group Project No. PRG-1436–23. We also acknowledge financial support from the Spanish Ministerio de Economía y Competitividad (MINECO-13-MAT2013–40950-R, FPI grant BES-2011–046948 to MSMA).
References
Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Al-Omar, M. A. (2010). Molecules, 15, 502–514. Web of Science CAS PubMed Google Scholar
Al-Omary, F. A. M., El-Emam, A. A., Ghabbour, H. A., Chidan Kumar, C. S., Quah, C. K. & Fun, H.-K. (2015). Acta Cryst. E71, o175–o176. CrossRef IUCr Journals Google Scholar
Bansal, S., Bala, M., Suthar, S. K., Choudhary, S., Bhattacharya, S., Bhardwaj, V., Singla, S. & Joseph, A. (2014). Eur. J. Med. Chem. 80, 167–174. CrossRef CAS PubMed Google Scholar
Du, Q.-R., Li, D.-D., Pi, Y.-Z., Li, J.-R., Sun, J., Fang, F., Zhong, W.-Q., Gong, H.-B. & Zhu, H.-L. (2013). Eur. J. Med. Chem. 21, 2286–2297. CAS Google Scholar
El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113. Web of Science CrossRef PubMed CAS Google Scholar
El-Emam, A. A., Al-Omar, M. A., Al-Obaid, A.-R. M., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o684. CSD CrossRef IUCr Journals Google Scholar
El-Emam, A. A., El-Brollosy, N. R., Attia, M. I., Said-Abdelbaky, M. & García-Granda, S. (2012). Acta Cryst. E68, o2172–o2173. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gamal El-Din, M. M., El-Gamal, M. I., Abdel-Maksoud, M. S., Yoo, K. H. & Oh, C.-H. (2015). Eur. J. Med. Chem. 90, 45–52. CAS PubMed Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235–242. Web of Science CrossRef PubMed CAS Google Scholar
Li, P., Shi, L., Yang, X., Yang, L., Chen, X.-W., Wu, F., Shi, Q.-C., Xu, W.-M., He, M., Hu, D.-Y. & Song, B.-A. (2014). Bioorg. Med. Chem. Lett. 24, 1677–1680. CrossRef CAS PubMed Google Scholar
Ma, L., Xiao, Y., Li, C., Xie, Z.-L., Li, Z.-L., Wang, Y.-T., Ma, H.-T., Zhu, H.-L., Wang, M.-H. & Ye, Y.-H. (2013). Bioorg. Med. Chem. 21, 6763–6770. CrossRef CAS PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Milinkevich, K. A., Yoo, C. L., Sparks, T. C., Lorsbach, B. A. & Kurth, M. J. (2009). Bioorg. Med. Chem. Lett. 19, 5796–5798. CrossRef PubMed CAS Google Scholar
Ogata, M., Atobe, H., Kushida, H. & Yamamoto, K. (1971). J. Antibiot. 24, 443–451. CrossRef CAS PubMed Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Pinna, G. A., Murineddu, G., Murruzzu, C., Zuco, V., Zunino, F., Cappelletti, G., Artali, R., Cignarella, G., Solano, L. & Villa, S. (2009). ChemMedChem, 4, 998–1009. CrossRef PubMed CAS Google Scholar
Rane, R. A., Gutte, S. W. & Sahu, N. U. (2012). Bioorg. Med. Chem. Lett. 22, 6429–6432. CrossRef CAS PubMed Google Scholar
Schlecker, R. & Thieme, P. C. (1988). Tetrahedron, 44, 3289–3294. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shi, W., Qian, X., Zhang, R. & Song, G. (2001). J. Agric. Food Chem. 49, 124–130. CrossRef PubMed CAS Google Scholar
Summa, V., Petrocchi, A., Bonelli, F., Crescenzi, B., Donghi, M., Ferrara, M., Fiore, F., Gardelli, C., Gonzalez Paz, O., Hazuda, D. J., Jones, P., Kinzel, O., Laufer, R., Monteagudo, E., Muraglia, E., Nizi, E., Orvieto, F., Pace, P., Pescatore, G., Scarpelli, R., Stillmock, K., Witmer, M. V. & Rowley, M. (2008). J. Med. Chem. 51, 5843–5855. CrossRef PubMed CAS Google Scholar
Vardan, S., Smulyan, H., Mookherjee, S. & Eich, R. (1983). Clin. Pharmacol. Ther. 34, 290–296. CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, W., Chen, Q., Tai, A., Jiang, G. & Ouyang, G. (2015). Bioorg. Med. Chem. Lett. 25, 2243–2246. CrossRef CAS PubMed Google Scholar
Zhang, K., Wang, P., Xuan, L.-N., Fu, X.-Y., Jing, F., Li, S., Liu, Y.-M. & Chen, B.-Q. (2014). Bioorg. Med. Chem. Lett. 24, 5154–5156. CrossRef CAS PubMed Google Scholar
Zhang, Y., Zuniga, C., Kim, S.-J., Cai, D., Barlow, S., Salman, S., Coropceanu, V., Brédas, J.-L., Kippelen, B. & Marder, S. (2011). Chem. Mater. 23, 4002–4015. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.