research communications
Z,5Z)-3-(4-methoxyphenyl)-2-[(4-methoxyphenyl)imino]-5-[(E)-3-(2-nitrophenyl)allylidene]-1,3-thiazolidin-4-one
of (2aLaboratory of Technology and Properties of Solids, Abdelhamid Ibn Badis University, BP 227 Mostaganem 27000, Algeria, bLaboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse Cedex, France, and cLaboratoire de Synthèse Organique Appliquée (LSOA), Département de Chimie, Faculté de Sciences, University of Oran Es-Sénia, 31000 Oran, Algeria
*Correspondence e-mail: achouaih@gmail.com
In the title compound, C26H21N3O5S, the thiazole ring is nearly planar with a maximum deviation of 0.017 (2) Å, and is twisted with respect to the three benzene rings, making dihedral angles of 25.52 (12), 85.77 (12) and 81.85 (13)°. In the crystal, weak C—H⋯O hydrogen bonds and C—H⋯π interactions link the molecules into a three-dimensional supramolecular architecture. Aromatic π–π stacking is also observed between the parallel nitrobenzene rings of neighbouring molecules, the centroid-to-centroid distance being 3.5872 (15) Å.
Keywords: crystal structure; thiazolidinone; hydrogen bonding; π–π stacking.
CCDC reference: 1402626
1. Chemical context
Heterocycles containing a thiazole ring are found to exhibit a wide spectrum of biological activities (Gautam et al., 2015; Asif, 2015; Abhinit et al., 2009). The thiazolidinones that are used widely in medication are derived from thiazolidines containing sulfur and nitrogen in a five-membered ring (Meera et al., 2014; Nowaczyk et al., 2014; Toubal et al., 2012). Knowledge of the crystal structures of these compounds is crucial for understanding the related biological phenomena (Singh et al., 1981; Ameta et al., 2014; Gouda et al., 2011). As part of our studies in this area, we herein report the synthesis and of the title compound.
2. Structural commentary
The molecular structure with atomic numbering scheme for the title compound is given in Fig. 1. The N2—C11 and N2—C12 bond lengths [1.385 (3) and 1.389 (3) Å] are intermediate between the classical C—N single-bond length (1.47 Å) and C=N double-bond length (1.27 Å) (Bhagavan, 2002), indicating that the thiazole moiety is an effective electron-conjugated The C—S bond lengths in the thiazol rings [S1—C10 = 1.753 (3) and S1—C12 = 1.777 (2) Å] are consistant with the normal Csp2—S single bond length of 1.76 Å (Sarkar et al., 1984). The C16—O4 bond length [1.365 (3) Å] and C22—O5 bond length [1.375 (3) Å] are notably shorter than the normal O—C single bond (1.427 Å) (Rong Wan et al., 2008), indicating that the p orbital occupied lone pair electrons of the oxygen atom in CH3O and the π orbital in the benzene ring has p–π conjugation. The shorter bond length of C26—O5 [1.385 (5) Å] might be also caused by the delocalized electron density of the conjugated benzene ring. The C25—O4 [1.431 (3) Å] bond length is normal for a C—O single bond.
The thiazole ring is nearly planar with a maximum deviation of 0.017 (2) Å, and is twisted with respect to the three benzene rings, making dihedral angles of 25.52 (12), 85.77 (12) and 81.85 (13)°with the C1–C6, C13–C18 and C19–C24 rings, respectively.
3. Supramolecular features
In the crystal, weak C—H⋯O hydrogen bonds and C—H⋯π interactions (Table 1, Fig. 2) link the molecules into a three-dimensional supramolecular architecture. π–π stacking is also observed between the nearly parallel benzene rings of neighbouring molecules, the centroid-to-centroid distance being 3.5872 (15) Å.
4. Synthesis and crystallization
The synthesis of the title compound was performed according to the scheme in Fig. 3. To a solution of 3 (0.01 mol) in 10 mL of acetic acid and three equivalents of anhydrous sodium acetate was added 2-nitrophenylcinamaldehyde (0.01 mol). The mixture was heated at reflux with stirring, using CH2Cl2 (20 mL) for 4 h. The reaction was monitored by TLC using CH2Cl2/CH3CO2C2H5 (9/1) as solvent system. The separated solid was filtered, washed with cold water and dried to give a yellow solid with a moderate yield 75% and melting point 484 K. Single crystals of the title compound suitable for X-ray diffraction were obtained from an ethanol solution.
IR (KBr, cm−1): 3423.03, 2951 (C—H), 1712 (C=O), 1640.16 (C=N), 1509.93 (C=C), 1030 (C—N), 741(C—S). 1H NMR, (CDCl3, 300 MHz) δ (p.p.m.) J (Hz): 3.81 (s, 3H, OCH3), 3.85 (s, 3H, OCH3), 6.71 (dd, 1H, J = 15.0 Hz, J = 11.55 Hz, CH), 6.90 (s, 4H, Ar-H), 7.04 (d, 2H, J = 8.8 Hz, Ar-H), 7.35 (d, 2H, J = 8.8 Hz, Ar-H), 7.43–7.67 (m, 5H, Ar-H), 8.0 (d, 1H, J = 8.72 Hz, Chet=CH). 13C NMR, (CDCl3, 300 MHz) δ (p.p.m.): 55.57 (O—CH3), 55.65 (O—CH3), 114.57, 114.85, 122.34, 125.22, 126.37, 127.35, 127.99, 128.50, 129.20, 129.57, 129.60, 131.61, 133.36, 135.79, 141.83, 148.13, 150.72, 157.20 (Chet=C), 159.90 (C=N), 165.87 (C=O).
5. Refinement
Crystal data, data collection and structure . H atoms in the title compound were placed in calculated positions (C—H = 0.96–1.08 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.
details are summarized in Table 2Supporting information
CCDC reference: 1402626
10.1107/S2056989016000207/xu5881sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989016000207/xu5881Isup2.hkl
Heterocycles containing a thiazole ring are found to exhibit a wide spectrum of biological activities (Gautam et al., 2015; Asif, 2015; Abhinit et al., 2009). The thiazolidinones used largely in medication are derived from the thiazolidine containing sulfur and nitrogen in a five-membered ring (Meera et al., 2014; Nowaczyk et al., 2014; Toubal et al., 2012). The structures of these compounds are crucial for understanding the related biological phenomena (Singh et al., 1981; Ameta et al., 2014; Gouda et al., 2011). We herein report the synthesis and structure investigation of the title compound, which is a considered to be a potential intermediate for incorporating thiazole unit used in the synthesis of some thiazolidinone compounds.
The molecular structure with atomic numbering scheme for the title compound is given in Fig. 1. The N2—C11 and N2—C12 bond lengths [1.385 (3) and 1.389 (3) Å] are intermediate between the classical C—N single-bond length (1.47 Å) and C═N double-bond length (1.27 Å) (Bhagavan, 2002), indicating that the thiazole moiety is an effective electron-conjugated The C—S bond lengths in the thiazol rings [S1—C10 = 1.753 (3) and S1—C12 = 1.777 (2) Å] are consistant with the normal Csp2—S single bond length of 1.76 Å (Sarkar et al., 1984). The O4—C16 bond length [1.365 (3) Å] and O5—C22 bond length [1.375 (3) Å] are notably shorter than the normal O—C single bond (1.427 Å) (Rong Wan et al., 2008), indicating that the p orbital occupied lone pair electrons of the oxygen atom in CH3O and the π orbital in the benzene ring has p–π conjugation. The shorter bond length of O5—C26 [1.385 (5) Å] might be also caused by the delocalized electron density of the conjugated benzene ring. The O4—C25 [1.431 (3) Å] bond length is normal for a C—O single bond.
In the crystal, weak C—H···O hydrogen bonds and C—H···π interactions (Table 1, Fig. 2) link the molecules into a three-dimensional supramolecular architecture. π–π stacking is also observed between the nearly parallel benzene rings of neighbouring molecules, the centroid-to-centroid distance being 3.5872 (15) Å.
The synthesis of the title compound was performed as given in the Fig. 3. To a solution of 3 (0.01 mol) in 10 ml of acetic acid and three equivalents of anhydrous sodium acetate was added 2-nitrophenylcinamaldehyde (0.01 mol). The mixture was heated at reflux with stirring, using CH2Cl2 (20 ml) for 4 h. The reaction was monitored by TLC using CH2Cl2/CH3CO2C2H5 (9/1) as solvent system. The separated solid was filtered, washed with cold water and dried to give yellow solid with moderate yield 75% and melting point 484 K. Single crystals of the title compound suitable for X-ray diffraction were obtained from an ethanol solution.
IR (KBr, cm−1): 3423.03, 2951 (C—H), 1712 (C═O), 1640.16 (C═N), 1509.93 (C═C), 1030 (C—N), 741(C—S). 1H NMR, (CDCl3, 300 MHz) δ (p.p.m.) J (Hz): 3.81 (s, 3H, OCH3), 3.85 (s, 3H, OCH3), 6.71 (dd, 1H, J = 15.0 Hz, J = 11.55 Hz, CH), 6.90 (s, 4H, Ar—H), 7.04 (d, 2H, J = 8.8 Hz, Ar—H), 7.35 (d, 2H, J = 8.8 Hz, Ar—H), 7.43–7.67 (m, 5H, Ar—H), 8.0 (d, 1H, J = 8.72 Hz, Chet═CH). 13C NMR, (CDCl3, 300 MHz) δ (p.p.m.): 55.57 (O—CH3), 55.65 (O—CH3), 114.57, 114.85, 122.34, 125.22, 126.37, 127.35, 127.99, 128.50, 129.20, 129.57, 129.60, 131.61, 133.36, 135.79, 141.83, 148.13, 150.72, 157.20 (Chet═C), 159.90 (C═N), 165.87 (C═O).
Heterocycles containing a thiazole ring are found to exhibit a wide spectrum of biological activities (Gautam et al., 2015; Asif, 2015; Abhinit et al., 2009). The thiazolidinones used largely in medication are derived from the thiazolidine containing sulfur and nitrogen in a five-membered ring (Meera et al., 2014; Nowaczyk et al., 2014; Toubal et al., 2012). The structures of these compounds are crucial for understanding the related biological phenomena (Singh et al., 1981; Ameta et al., 2014; Gouda et al., 2011). We herein report the synthesis and structure investigation of the title compound, which is a considered to be a potential intermediate for incorporating thiazole unit used in the synthesis of some thiazolidinone compounds.
The molecular structure with atomic numbering scheme for the title compound is given in Fig. 1. The N2—C11 and N2—C12 bond lengths [1.385 (3) and 1.389 (3) Å] are intermediate between the classical C—N single-bond length (1.47 Å) and C═N double-bond length (1.27 Å) (Bhagavan, 2002), indicating that the thiazole moiety is an effective electron-conjugated The C—S bond lengths in the thiazol rings [S1—C10 = 1.753 (3) and S1—C12 = 1.777 (2) Å] are consistant with the normal Csp2—S single bond length of 1.76 Å (Sarkar et al., 1984). The O4—C16 bond length [1.365 (3) Å] and O5—C22 bond length [1.375 (3) Å] are notably shorter than the normal O—C single bond (1.427 Å) (Rong Wan et al., 2008), indicating that the p orbital occupied lone pair electrons of the oxygen atom in CH3O and the π orbital in the benzene ring has p–π conjugation. The shorter bond length of O5—C26 [1.385 (5) Å] might be also caused by the delocalized electron density of the conjugated benzene ring. The O4—C25 [1.431 (3) Å] bond length is normal for a C—O single bond.
In the crystal, weak C—H···O hydrogen bonds and C—H···π interactions (Table 1, Fig. 2) link the molecules into a three-dimensional supramolecular architecture. π–π stacking is also observed between the nearly parallel benzene rings of neighbouring molecules, the centroid-to-centroid distance being 3.5872 (15) Å.
The synthesis of the title compound was performed as given in the Fig. 3. To a solution of 3 (0.01 mol) in 10 ml of acetic acid and three equivalents of anhydrous sodium acetate was added 2-nitrophenylcinamaldehyde (0.01 mol). The mixture was heated at reflux with stirring, using CH2Cl2 (20 ml) for 4 h. The reaction was monitored by TLC using CH2Cl2/CH3CO2C2H5 (9/1) as solvent system. The separated solid was filtered, washed with cold water and dried to give yellow solid with moderate yield 75% and melting point 484 K. Single crystals of the title compound suitable for X-ray diffraction were obtained from an ethanol solution.
IR (KBr, cm−1): 3423.03, 2951 (C—H), 1712 (C═O), 1640.16 (C═N), 1509.93 (C═C), 1030 (C—N), 741(C—S). 1H NMR, (CDCl3, 300 MHz) δ (p.p.m.) J (Hz): 3.81 (s, 3H, OCH3), 3.85 (s, 3H, OCH3), 6.71 (dd, 1H, J = 15.0 Hz, J = 11.55 Hz, CH), 6.90 (s, 4H, Ar—H), 7.04 (d, 2H, J = 8.8 Hz, Ar—H), 7.35 (d, 2H, J = 8.8 Hz, Ar—H), 7.43–7.67 (m, 5H, Ar—H), 8.0 (d, 1H, J = 8.72 Hz, Chet═CH). 13C NMR, (CDCl3, 300 MHz) δ (p.p.m.): 55.57 (O—CH3), 55.65 (O—CH3), 114.57, 114.85, 122.34, 125.22, 126.37, 127.35, 127.99, 128.50, 129.20, 129.57, 129.60, 131.61, 133.36, 135.79, 141.83, 148.13, 150.72, 157.20 (Chet═C), 159.90 (C═N), 165.87 (C═O).
detailsH atoms in the title compound were placed in calculated positions (C—H = 0.96–1.08 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.
Data collection: Kappa CCD (Nonius, 1998); cell
DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. The crystal packing diagram showing π–π stacking between the nitrobenzene rings of the neighbouring molecules. | |
Fig. 3. Chemical pathway showing the formation of the title compound. |
C26H21N3O5S | F(000) = 1016 |
Mr = 487.52 | Dx = 1.374 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.2727 (10) Å | Cell parameters from 100 reflections |
b = 8.6401 (4) Å | θ = 2–29° |
c = 21.3018 (12) Å | µ = 0.18 mm−1 |
β = 105.316 (7)° | T = 173 K |
V = 2356.1 (3) Å3 | Prism, yellow |
Z = 4 | 0.25 × 0.21 × 0.12 mm |
Nonius Kappa CCD diffractometer | 3690 reflections with I > 2σ(I) |
θ/2θ scans | Rint = 0.062 |
Absorption correction: ψ scan (North et al., 1968) | θmax = 29.5°, θmin = 2.9° |
Tmin = 0.856, Tmax = 0.919 | h = −17→17 |
26882 measured reflections | k = −11→11 |
5954 independent reflections | l = −29→27 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.064 | H-atom parameters not refined |
wR(F2) = 0.166 | w = 1/[σ2(Fo2) + (0.0731P)2 + 0.7139P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
5954 reflections | Δρmax = 0.49 e Å−3 |
322 parameters | Δρmin = −0.34 e Å−3 |
C26H21N3O5S | V = 2356.1 (3) Å3 |
Mr = 487.52 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.2727 (10) Å | µ = 0.18 mm−1 |
b = 8.6401 (4) Å | T = 173 K |
c = 21.3018 (12) Å | 0.25 × 0.21 × 0.12 mm |
β = 105.316 (7)° |
Nonius Kappa CCD diffractometer | 5954 independent reflections |
Absorption correction: ψ scan (North et al., 1968) | 3690 reflections with I > 2σ(I) |
Tmin = 0.856, Tmax = 0.919 | Rint = 0.062 |
26882 measured reflections |
R[F2 > 2σ(F2)] = 0.064 | 0 restraints |
wR(F2) = 0.166 | H-atom parameters not refined |
S = 1.02 | Δρmax = 0.49 e Å−3 |
5954 reflections | Δρmin = −0.34 e Å−3 |
322 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.28022 (6) | 0.41002 (7) | 0.22265 (3) | 0.0317 (2) | |
O3 | 0.14135 (16) | 0.4595 (2) | 0.35874 (8) | 0.0356 (5) | |
O4 | 0.29886 (17) | −0.0889 (2) | 0.54702 (9) | 0.0448 (5) | |
O2 | 0.08864 (16) | 1.1504 (2) | 0.22010 (8) | 0.0389 (5) | |
N2 | 0.25988 (18) | 0.2956 (2) | 0.33219 (9) | 0.0294 (5) | |
O1 | −0.00470 (18) | 1.3059 (2) | 0.14901 (10) | 0.0498 (6) | |
N3 | 0.37138 (19) | 0.1521 (2) | 0.28522 (10) | 0.0345 (5) | |
N1 | 0.05420 (18) | 1.1947 (2) | 0.16354 (11) | 0.0335 (5) | |
C11 | 0.1930 (2) | 0.4215 (3) | 0.32243 (12) | 0.0287 (6) | |
C18 | 0.3513 (2) | 0.2234 (3) | 0.44293 (12) | 0.0320 (6) | |
H18 | 0.3978 | 0.3040 | 0.4433 | 0.038* | |
C13 | 0.2708 (2) | 0.1963 (3) | 0.38783 (11) | 0.0283 (6) | |
C10 | 0.1968 (2) | 0.5044 (3) | 0.26177 (12) | 0.0295 (6) | |
C1 | 0.0854 (2) | 1.1147 (3) | 0.11192 (11) | 0.0277 (6) | |
C8 | 0.1515 (2) | 0.7251 (3) | 0.18670 (12) | 0.0326 (6) | |
H8 | 0.1950 (14) | 0.6898 (12) | 0.1613 (8) | 0.039* | |
C19 | 0.4160 (2) | 0.1407 (3) | 0.23137 (12) | 0.0335 (6) | |
C17 | 0.3631 (2) | 0.1318 (3) | 0.49738 (12) | 0.0295 (6) | |
H17 | 0.4172 | 0.1505 | 0.5344 | 0.035* | |
C6 | 0.1071 (2) | 0.9552 (3) | 0.11536 (11) | 0.0290 (6) | |
C9 | 0.1448 (2) | 0.6358 (3) | 0.24244 (12) | 0.0324 (6) | |
H9 | 0.0994 (15) | 0.6736 (12) | 0.2677 (8) | 0.039* | |
O5 | 0.5431 (2) | 0.0888 (3) | 0.07390 (10) | 0.0618 (7) | |
C7 | 0.0979 (2) | 0.8569 (3) | 0.16964 (12) | 0.0304 (6) | |
H7 | 0.0486 (15) | 0.8903 (10) | 0.1956 (8) | 0.037* | |
C12 | 0.3111 (2) | 0.2662 (3) | 0.28442 (11) | 0.0300 (6) | |
C16 | 0.2929 (2) | 0.0105 (3) | 0.49635 (12) | 0.0325 (6) | |
C2 | 0.0961 (2) | 1.2058 (3) | 0.06006 (12) | 0.0370 (7) | |
H2 | 0.0823 | 1.3114 | 0.0597 | 0.044* | |
C14 | 0.2003 (2) | 0.0780 (3) | 0.38674 (13) | 0.0396 (7) | |
H14 | 0.1461 | 0.0606 | 0.3496 | 0.047* | |
C5 | 0.1365 (2) | 0.8925 (3) | 0.06228 (12) | 0.0363 (6) | |
H5 | 0.1494 | 0.7867 | 0.0618 | 0.044* | |
C3 | 0.1275 (2) | 1.1394 (3) | 0.00918 (12) | 0.0368 (7) | |
H3 | 0.1354 | 1.1995 | −0.0254 | 0.044* | |
C4 | 0.1471 (2) | 0.9813 (4) | 0.01070 (13) | 0.0412 (7) | |
H4 | 0.1675 | 0.9350 | −0.0234 | 0.049* | |
C25 | 0.3914 (2) | −0.0808 (3) | 0.59982 (12) | 0.0404 (7) | |
H25A | 0.4516 | −0.0953 | 0.5835 | 0.061* | |
H25B | 0.3894 | −0.1603 | 0.6310 | 0.061* | |
H25C | 0.3952 | 0.0187 | 0.6204 | 0.061* | |
C24 | 0.3733 (2) | 0.0413 (3) | 0.18017 (14) | 0.0422 (7) | |
H24 | 0.3152 | −0.0181 | 0.1807 | 0.051* | |
C21 | 0.5481 (2) | 0.2158 (4) | 0.17753 (14) | 0.0438 (7) | |
H21 | 0.6056 | 0.2763 | 0.1764 | 0.053* | |
C22 | 0.5053 (3) | 0.1118 (3) | 0.12736 (13) | 0.0414 (7) | |
C15 | 0.2106 (2) | −0.0143 (3) | 0.44110 (13) | 0.0424 (7) | |
H15 | 0.1627 | −0.0930 | 0.4408 | 0.051* | |
C20 | 0.5029 (2) | 0.2266 (3) | 0.22887 (14) | 0.0410 (7) | |
H20 | 0.5319 | 0.2939 | 0.2629 | 0.049* | |
C23 | 0.4174 (3) | 0.0305 (3) | 0.12806 (13) | 0.0457 (8) | |
H23 | 0.3865 | −0.0331 | 0.0931 | 0.055* | |
C26 | 0.6246 (3) | 0.1806 (5) | 0.06639 (18) | 0.0720 (12) | |
H26A | 0.6056 | 0.2876 | 0.0670 | 0.108* | |
H26B | 0.6391 | 0.1571 | 0.0256 | 0.108* | |
H26C | 0.6857 | 0.1606 | 0.1013 | 0.108* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0421 (4) | 0.0288 (3) | 0.0284 (3) | 0.0034 (3) | 0.0165 (3) | 0.0052 (3) |
O3 | 0.0422 (12) | 0.0378 (10) | 0.0313 (10) | 0.0025 (8) | 0.0177 (9) | 0.0018 (8) |
O4 | 0.0505 (14) | 0.0465 (11) | 0.0335 (10) | −0.0113 (10) | 0.0043 (10) | 0.0158 (9) |
O2 | 0.0459 (13) | 0.0443 (10) | 0.0261 (10) | −0.0015 (9) | 0.0085 (9) | 0.0007 (8) |
N2 | 0.0369 (13) | 0.0303 (10) | 0.0229 (10) | 0.0013 (9) | 0.0111 (9) | 0.0047 (8) |
O1 | 0.0568 (15) | 0.0421 (11) | 0.0519 (12) | 0.0192 (10) | 0.0171 (11) | 0.0056 (9) |
N3 | 0.0391 (14) | 0.0349 (11) | 0.0330 (12) | 0.0076 (10) | 0.0156 (10) | 0.0088 (9) |
N1 | 0.0333 (14) | 0.0305 (11) | 0.0363 (13) | −0.0008 (10) | 0.0083 (10) | 0.0018 (9) |
C11 | 0.0331 (15) | 0.0287 (12) | 0.0250 (12) | −0.0039 (11) | 0.0094 (11) | −0.0006 (10) |
C18 | 0.0321 (16) | 0.0310 (13) | 0.0339 (14) | −0.0072 (11) | 0.0108 (12) | 0.0003 (10) |
C13 | 0.0353 (15) | 0.0286 (12) | 0.0228 (12) | 0.0006 (11) | 0.0108 (11) | 0.0028 (9) |
C10 | 0.0336 (15) | 0.0283 (12) | 0.0282 (13) | −0.0023 (11) | 0.0113 (11) | −0.0012 (10) |
C1 | 0.0249 (14) | 0.0339 (13) | 0.0228 (12) | −0.0027 (10) | 0.0033 (10) | 0.0022 (10) |
C8 | 0.0355 (16) | 0.0331 (13) | 0.0323 (14) | 0.0046 (11) | 0.0145 (12) | 0.0038 (11) |
C19 | 0.0382 (17) | 0.0325 (13) | 0.0287 (14) | 0.0069 (12) | 0.0070 (12) | 0.0057 (11) |
C17 | 0.0277 (14) | 0.0369 (13) | 0.0220 (12) | −0.0031 (11) | 0.0029 (10) | 0.0009 (10) |
C6 | 0.0246 (14) | 0.0360 (13) | 0.0262 (13) | 0.0024 (11) | 0.0066 (11) | 0.0043 (10) |
C9 | 0.0350 (16) | 0.0328 (13) | 0.0320 (14) | 0.0012 (11) | 0.0136 (12) | 0.0034 (11) |
O5 | 0.089 (2) | 0.0627 (14) | 0.0466 (13) | 0.0304 (14) | 0.0413 (13) | 0.0104 (11) |
C7 | 0.0301 (15) | 0.0332 (13) | 0.0292 (13) | 0.0020 (11) | 0.0099 (11) | 0.0042 (10) |
C12 | 0.0347 (16) | 0.0289 (12) | 0.0251 (13) | −0.0029 (11) | 0.0057 (11) | 0.0043 (10) |
C16 | 0.0380 (16) | 0.0322 (13) | 0.0267 (13) | −0.0032 (11) | 0.0076 (12) | 0.0060 (10) |
C2 | 0.0367 (17) | 0.0378 (14) | 0.0358 (15) | −0.0016 (12) | 0.0083 (13) | 0.0088 (12) |
C14 | 0.0439 (18) | 0.0400 (14) | 0.0280 (14) | −0.0110 (13) | −0.0023 (12) | 0.0029 (11) |
C5 | 0.0344 (16) | 0.0417 (15) | 0.0334 (14) | 0.0056 (12) | 0.0102 (12) | −0.0001 (11) |
C3 | 0.0363 (17) | 0.0498 (16) | 0.0250 (13) | −0.0067 (13) | 0.0095 (12) | 0.0083 (12) |
C4 | 0.0393 (18) | 0.0611 (18) | 0.0259 (14) | 0.0010 (14) | 0.0134 (12) | −0.0010 (13) |
C25 | 0.0487 (19) | 0.0479 (16) | 0.0231 (13) | 0.0058 (14) | 0.0069 (13) | 0.0086 (11) |
C24 | 0.0420 (18) | 0.0426 (15) | 0.0404 (16) | −0.0018 (13) | 0.0081 (14) | 0.0027 (13) |
C21 | 0.0327 (17) | 0.0575 (18) | 0.0430 (17) | 0.0041 (14) | 0.0133 (14) | 0.0133 (14) |
C22 | 0.055 (2) | 0.0394 (15) | 0.0338 (15) | 0.0207 (14) | 0.0188 (14) | 0.0103 (12) |
C15 | 0.0464 (19) | 0.0370 (14) | 0.0399 (16) | −0.0170 (13) | 0.0044 (14) | 0.0069 (12) |
C20 | 0.0431 (18) | 0.0414 (15) | 0.0373 (16) | −0.0006 (13) | 0.0086 (14) | −0.0011 (12) |
C23 | 0.059 (2) | 0.0449 (16) | 0.0297 (15) | −0.0013 (15) | 0.0048 (14) | −0.0069 (12) |
C26 | 0.065 (3) | 0.100 (3) | 0.065 (2) | 0.041 (2) | 0.042 (2) | 0.040 (2) |
S1—C10 | 1.753 (3) | C9—H9 | 0.96 (3) |
S1—C12 | 1.777 (2) | O5—C22 | 1.375 (3) |
O3—C11 | 1.206 (3) | O5—C26 | 1.385 (5) |
O4—C16 | 1.365 (3) | C7—H7 | 1.00 (3) |
O4—C25 | 1.431 (3) | C16—C15 | 1.395 (4) |
O2—N1 | 1.232 (3) | C2—C3 | 1.384 (4) |
N2—C11 | 1.385 (3) | C2—H2 | 0.9300 |
N2—C12 | 1.389 (3) | C14—C15 | 1.383 (4) |
N2—C13 | 1.439 (3) | C14—H14 | 0.9300 |
O1—N1 | 1.226 (3) | C5—C4 | 1.377 (4) |
N3—C12 | 1.267 (3) | C5—H5 | 0.9300 |
N3—C19 | 1.426 (3) | C3—C4 | 1.389 (4) |
N1—C1 | 1.449 (3) | C3—H3 | 0.9300 |
C11—C10 | 1.490 (3) | C4—H4 | 0.9300 |
C18—C17 | 1.378 (3) | C25—H25A | 0.9600 |
C18—C13 | 1.383 (4) | C25—H25B | 0.9600 |
C18—H18 | 0.9300 | C25—H25C | 0.9600 |
C13—C14 | 1.382 (4) | C24—C23 | 1.388 (4) |
C10—C9 | 1.336 (4) | C24—H24 | 0.9300 |
C1—C2 | 1.394 (3) | C21—C20 | 1.383 (4) |
C1—C6 | 1.406 (3) | C21—C22 | 1.397 (4) |
C8—C7 | 1.341 (3) | C21—H21 | 0.9300 |
C8—C9 | 1.438 (3) | C22—C23 | 1.365 (4) |
C8—H8 | 0.94 (3) | C15—H15 | 0.9300 |
C19—C20 | 1.385 (4) | C20—H20 | 0.9300 |
C19—C24 | 1.386 (4) | C23—H23 | 0.9300 |
C17—C16 | 1.399 (4) | C26—H26A | 0.9600 |
C17—H17 | 0.9300 | C26—H26B | 0.9600 |
C6—C5 | 1.399 (4) | C26—H26C | 0.9600 |
C6—C7 | 1.465 (3) | ||
C10—S1—C12 | 91.41 (12) | O4—C16—C17 | 124.0 (2) |
C16—O4—C25 | 116.7 (2) | C15—C16—C17 | 119.9 (2) |
C11—N2—C12 | 116.9 (2) | C3—C2—C1 | 120.1 (3) |
C11—N2—C13 | 120.9 (2) | C3—C2—H2 | 120.0 |
C12—N2—C13 | 122.1 (2) | C1—C2—H2 | 120.0 |
C12—N3—C19 | 116.0 (2) | C13—C14—C15 | 119.7 (2) |
O1—N1—O2 | 122.5 (2) | C13—C14—H14 | 120.1 |
O1—N1—C1 | 118.3 (2) | C15—C14—H14 | 120.1 |
O2—N1—C1 | 119.2 (2) | C4—C5—C6 | 122.5 (3) |
O3—C11—N2 | 124.6 (2) | C4—C5—H5 | 118.7 |
O3—C11—C10 | 125.5 (2) | C6—C5—H5 | 118.7 |
N2—C11—C10 | 109.9 (2) | C2—C3—C4 | 118.9 (2) |
C17—C18—C13 | 120.5 (2) | C2—C3—H3 | 120.6 |
C17—C18—H18 | 119.7 | C4—C3—H3 | 120.6 |
C13—C18—H18 | 119.8 | C5—C4—C3 | 120.6 (3) |
C14—C13—C18 | 120.5 (2) | C5—C4—H4 | 119.7 |
C14—C13—N2 | 120.5 (2) | C3—C4—H4 | 119.7 |
C18—C13—N2 | 119.0 (2) | O4—C25—H25A | 109.5 |
C9—C10—C11 | 122.8 (2) | O4—C25—H25B | 109.5 |
C9—C10—S1 | 126.1 (2) | H25A—C25—H25B | 109.5 |
C11—C10—S1 | 111.07 (18) | O4—C25—H25C | 109.5 |
C2—C1—C6 | 122.2 (2) | H25A—C25—H25C | 109.5 |
C2—C1—N1 | 116.2 (2) | H25B—C25—H25C | 109.5 |
C6—C1—N1 | 121.6 (2) | C19—C24—C23 | 120.0 (3) |
C7—C8—C9 | 122.4 (3) | C19—C24—H24 | 120.0 |
C7—C8—H8 | 118.8 | C23—C24—H24 | 120.0 |
C9—C8—H8 | 118.8 | C20—C21—C22 | 118.3 (3) |
C20—C19—C24 | 118.2 (3) | C20—C21—H21 | 120.8 |
C20—C19—N3 | 121.4 (2) | C22—C21—H21 | 120.8 |
C24—C19—N3 | 120.4 (3) | C23—C22—O5 | 115.8 (3) |
C18—C17—C16 | 119.3 (2) | C23—C22—C21 | 119.9 (3) |
C18—C17—H17 | 120.3 | O5—C22—C21 | 124.3 (3) |
C16—C17—H17 | 120.3 | C14—C15—C16 | 120.0 (2) |
C5—C6—C1 | 115.8 (2) | C14—C15—H15 | 120.0 |
C5—C6—C7 | 120.8 (2) | C16—C15—H15 | 120.0 |
C1—C6—C7 | 123.4 (2) | C21—C20—C19 | 122.3 (3) |
C10—C9—C8 | 124.8 (3) | C21—C20—H20 | 118.8 |
C10—C9—H9 | 117.6 | C19—C20—H20 | 118.8 |
C8—C9—H9 | 117.6 | C22—C23—C24 | 121.1 (3) |
C22—O5—C26 | 118.7 (3) | C22—C23—H23 | 119.5 |
C8—C7—C6 | 123.9 (3) | C24—C23—H23 | 119.5 |
C8—C7—H7 | 118.1 | O5—C26—H26A | 109.5 |
C6—C7—H7 | 118.0 | O5—C26—H26B | 109.5 |
N3—C12—N2 | 124.2 (2) | H26A—C26—H26B | 109.5 |
N3—C12—S1 | 125.1 (2) | O5—C26—H26C | 109.5 |
N2—C12—S1 | 110.65 (18) | H26A—C26—H26C | 109.5 |
O4—C16—C15 | 116.1 (2) | H26B—C26—H26C | 109.5 |
C12—N2—C11—O3 | 178.2 (2) | C11—N2—C12—N3 | −177.1 (2) |
C13—N2—C11—O3 | 1.4 (4) | C13—N2—C12—N3 | −0.3 (4) |
C12—N2—C11—C10 | −3.3 (3) | C11—N2—C12—S1 | 2.9 (3) |
C13—N2—C11—C10 | 179.8 (2) | C13—N2—C12—S1 | 179.67 (18) |
C17—C18—C13—C14 | 0.7 (4) | C10—S1—C12—N3 | 178.9 (2) |
C17—C18—C13—N2 | 179.1 (2) | C10—S1—C12—N2 | −1.16 (19) |
C11—N2—C13—C14 | 83.3 (3) | C25—O4—C16—C15 | 170.5 (3) |
C12—N2—C13—C14 | −93.4 (3) | C25—O4—C16—C17 | −9.6 (4) |
C11—N2—C13—C18 | −95.1 (3) | C18—C17—C16—O4 | 178.6 (3) |
C12—N2—C13—C18 | 88.2 (3) | C18—C17—C16—C15 | −1.5 (4) |
O3—C11—C10—C9 | 2.6 (4) | C6—C1—C2—C3 | 1.1 (4) |
N2—C11—C10—C9 | −175.9 (2) | N1—C1—C2—C3 | 178.8 (2) |
O3—C11—C10—S1 | −179.3 (2) | C18—C13—C14—C15 | −0.3 (4) |
N2—C11—C10—S1 | 2.3 (3) | N2—C13—C14—C15 | −178.7 (3) |
C12—S1—C10—C9 | 177.4 (3) | C1—C6—C5—C4 | 2.1 (4) |
C12—S1—C10—C11 | −0.63 (19) | C7—C6—C5—C4 | −179.2 (3) |
O1—N1—C1—C2 | 33.4 (4) | C1—C2—C3—C4 | 0.4 (4) |
O2—N1—C1—C2 | −145.6 (2) | C6—C5—C4—C3 | −0.7 (5) |
O1—N1—C1—C6 | −148.8 (2) | C2—C3—C4—C5 | −0.7 (4) |
O2—N1—C1—C6 | 32.2 (4) | C20—C19—C24—C23 | −0.4 (4) |
C12—N3—C19—C20 | 81.3 (3) | N3—C19—C24—C23 | −179.8 (2) |
C12—N3—C19—C24 | −99.3 (3) | C26—O5—C22—C23 | 172.6 (3) |
C13—C18—C17—C16 | 0.2 (4) | C26—O5—C22—C21 | −4.3 (4) |
C2—C1—C6—C5 | −2.3 (4) | C20—C21—C22—C23 | 3.7 (4) |
N1—C1—C6—C5 | −179.9 (2) | C20—C21—C22—O5 | −179.4 (3) |
C2—C1—C6—C7 | 179.1 (2) | C13—C14—C15—C16 | −1.0 (5) |
N1—C1—C6—C7 | 1.5 (4) | O4—C16—C15—C14 | −178.1 (3) |
C11—C10—C9—C8 | 175.7 (2) | C17—C16—C15—C14 | 1.9 (5) |
S1—C10—C9—C8 | −2.1 (4) | C22—C21—C20—C19 | −1.4 (4) |
C7—C8—C9—C10 | −179.6 (3) | C24—C19—C20—C21 | −0.3 (4) |
C9—C8—C7—C6 | 176.6 (2) | N3—C19—C20—C21 | 179.2 (2) |
C5—C6—C7—C8 | 26.7 (4) | O5—C22—C23—C24 | 178.5 (3) |
C1—C6—C7—C8 | −154.7 (3) | C21—C22—C23—C24 | −4.4 (4) |
C19—N3—C12—N2 | 179.4 (2) | C19—C24—C23—C22 | 2.7 (4) |
C19—N3—C12—S1 | −0.6 (4) |
Cg3 is the centroid of the C13–C18 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O3i | 1.00 (2) | 2.55 (2) | 3.197 (3) | 122 (1) |
C9—H9···O2ii | 0.97 (2) | 2.58 (2) | 3.400 (3) | 142 (1) |
C15—H15···O1iii | 0.93 | 2.59 | 3.286 (3) | 132 |
C3—H3···Cg3iv | 0.93 | 2.80 | 3.560 (3) | 140 |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x, y−1/2, −z+1/2; (iii) −x, y−3/2, −z+1/2; (iv) x, −y+1/2, z−3/2. |
Cg3 is the centroid of the C13–C18 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O3i | 1.004 (19) | 2.552 (19) | 3.197 (3) | 121.8 (12) |
C9—H9···O2ii | 0.965 (19) | 2.58 (2) | 3.400 (3) | 142.4 (12) |
C15—H15···O1iii | 0.93 | 2.59 | 3.286 (3) | 132 |
C3—H3···Cg3iv | 0.93 | 2.80 | 3.560 (3) | 140 |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x, y−1/2, −z+1/2; (iii) −x, y−3/2, −z+1/2; (iv) x, −y+1/2, z−3/2. |
Experimental details
Crystal data | |
Chemical formula | C26H21N3O5S |
Mr | 487.52 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 13.2727 (10), 8.6401 (4), 21.3018 (12) |
β (°) | 105.316 (7) |
V (Å3) | 2356.1 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.18 |
Crystal size (mm) | 0.25 × 0.21 × 0.12 |
Data collection | |
Diffractometer | Nonius Kappa CCD |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.856, 0.919 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 26882, 5954, 3690 |
Rint | 0.062 |
(sin θ/λ)max (Å−1) | 0.692 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.064, 0.166, 1.02 |
No. of reflections | 5954 |
No. of parameters | 322 |
H-atom treatment | H-atom parameters not refined |
Δρmax, Δρmin (e Å−3) | 0.49, −0.34 |
Computer programs: Kappa CCD (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2006), SHELXL2014 (Sheldrick, 2015).
Acknowledgements
We gratefully acknowledge financial support from the Ministère de l'Enseignement Supérieur et de la Recherche Scientifique (MESRS) via the CNEPRU project.
References
Abhinit, M., Ghodke, M. & Pratima, N. A. (2009). Int. J. Pharm. Pharm. Sci. 1, 47–64. CAS Google Scholar
Ameta, K. L. & Dandia, A. (2014). Green Chemistry: Synthesis of Bioactive Heterocycles. India: Springer. Google Scholar
Asif, M. (2015). Chem. Int. 1, 1–11. Google Scholar
Bhagavan, N. B. (2002). Medical Biochemistry, 4th ed. London: Academic Press. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gautam, D. & Chaudhary, R. P. (2015). Spectrochim. Acta Part A, 135, 219–226. Web of Science CSD CrossRef CAS Google Scholar
Gouda, M. A. & Abu-Hashem, A. A. (2011). Arch. Pharm. Pharm. Med. Chem. 344, 170–177. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Meera, R., Devi, P., Muthumani, P. & Sundari, K. J. (2014). Int. J. Biol. & Pharm. Res. 5, 843–847. Google Scholar
Nonius (1998). KappaCCD Reference Manual. Nonius BV, Delft, The Netherlands. Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Nowaczyk, A., Kowiel, M., Gzella, A., Fijałkowski, Ł., Horishny, V. & Lesyk, R. (2014). J. Mol. Model. 20, 2366–2374. Web of Science CSD CrossRef PubMed Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sarkar, P. B. & Sengupta, S. P. (1984). Z. Kristallogr. 168, 19–23. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, S. P., Parmar, S. S., Raman, K. & Stenberg, V. I. (1981). Chem. Rev. 81, 175–203. CrossRef CAS Web of Science Google Scholar
Toubal, K., Djafri, A., Chouaih, A. & Talbi, A. (2012). Molecules, 17, 3501–3509. Web of Science CSD CrossRef CAS PubMed Google Scholar
Wan, R., Yin, L.-H., Han, F., Wang, B. & Wang, J.-T. (2008). Acta Cryst. E64, o795. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.