research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 2| February 2016| Pages 155-157

Crystal structure of (2Z,5Z)-3-(4-meth­­oxy­phen­yl)-2-[(4-meth­­oxy­phenyl)­imino]-5-[(E)-3-(2-nitro­phen­yl)allyl­­idene]-1,3-thia­zolidin-4-one

CROSSMARK_Color_square_no_text.svg

aLaboratory of Technology and Properties of Solids, Abdelhamid Ibn Badis University, BP 227 Mostaganem 27000, Algeria, bLaboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse Cedex, France, and cLaboratoire de Synthèse Organique Appliquée (LSOA), Département de Chimie, Faculté de Sciences, University of Oran Es-Sénia, 31000 Oran, Algeria
*Correspondence e-mail: achouaih@gmail.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 19 November 2015; accepted 5 January 2016; online 13 January 2016)

In the title compound, C26H21N3O5S, the thia­zole ring is nearly planar with a maximum deviation of 0.017 (2) Å, and is twisted with respect to the three benzene rings, making dihedral angles of 25.52 (12), 85.77 (12) and 81.85 (13)°. In the crystal, weak C—H⋯O hydrogen bonds and C—H⋯π inter­actions link the mol­ecules into a three-dimensional supra­molecular architecture. Aromatic ππ stacking is also observed between the parallel nitro­benzene rings of neighbouring mol­ecules, the centroid-to-centroid distance being 3.5872 (15) Å.

1. Chemical context

Heterocycles containing a thia­zole ring are found to exhibit a wide spectrum of biological activities (Gautam et al., 2015[Gautam, D. & Chaudhary, R. P. (2015). Spectrochim. Acta Part A, 135, 219-226.]; Asif, 2015[Asif, M. (2015). Chem. Int. 1, 1-11.]; Abhinit et al., 2009[Abhinit, M., Ghodke, M. & Pratima, N. A. (2009). Int. J. Pharm. Pharm. Sci. 1, 47-64.]). The thia­zolidinones that are used widely in medication are derived from thia­zolidines containing sulfur and nitro­gen in a five-membered ring (Meera et al., 2014[Meera, R., Devi, P., Muthumani, P. & Sundari, K. J. (2014). Int. J. Biol. & Pharm. Res. 5, 843-847.]; Nowaczyk et al., 2014[Nowaczyk, A., Kowiel, M., Gzella, A., Fijałkowski, Ł., Horishny, V. & Lesyk, R. (2014). J. Mol. Model. 20, 2366-2374.]; Toubal et al., 2012[Toubal, K., Djafri, A., Chouaih, A. & Talbi, A. (2012). Molecules, 17, 3501-3509.]). Knowledge of the crystal structures of these compounds is crucial for understanding the related biological phenomena (Singh et al., 1981[Singh, S. P., Parmar, S. S., Raman, K. & Stenberg, V. I. (1981). Chem. Rev. 81, 175-203.]; Ameta et al., 2014[Ameta, K. L. & Dandia, A. (2014). Green Chemistry: Synthesis of Bioactive Heterocycles. India: Springer.]; Gouda et al., 2011[Gouda, M. A. & Abu-Hashem, A. A. (2011). Arch. Pharm. Pharm. Med. Chem. 344, 170-177.]). As part of our studies in this area, we herein report the synthesis and crystal structure of the title compound.

[Scheme 1]

2. Structural commentary

The mol­ecular structure with atomic numbering scheme for the title compound is given in Fig. 1[link]. The N2—C11 and N2—C12 bond lengths [1.385 (3) and 1.389 (3) Å] are inter­mediate between the classical C—N single-bond length (1.47 Å) and C=N double-bond length (1.27 Å) (Bhagavan, 2002[Bhagavan, N. B. (2002). Medical Biochemistry, 4th ed. London: Academic Press.]), indicating that the thia­zole moiety is an effective electron-conjugated substructure. The C—S bond lengths in the thia­zol rings [S1—C10 = 1.753 (3) and S1—C12 = 1.777 (2) Å] are consistant with the normal Csp2—S single bond length of 1.76 Å (Sarkar et al., 1984[Sarkar, P. B. & Sengupta, S. P. (1984). Z. Kristallogr. 168, 19-23.]). The C16—O4 bond length [1.365 (3) Å] and C22—O5 bond length [1.375 (3) Å] are notably shorter than the normal O—C single bond (1.427 Å) (Rong Wan et al., 2008[Wan, R., Yin, L.-H., Han, F., Wang, B. & Wang, J.-T. (2008). Acta Cryst. E64, o795.]), indicating that the p orbital occupied lone pair electrons of the oxygen atom in CH3O and the π orbital in the benzene ring has pπ conjugation. The shorter bond length of C26—O5 [1.385 (5) Å] might be also caused by the delocalized electron density of the conjugated benzene ring. The C25—O4 [1.431 (3) Å] bond length is normal for a C—O single bond.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

The thia­zole ring is nearly planar with a maximum deviation of 0.017 (2) Å, and is twisted with respect to the three benzene rings, making dihedral angles of 25.52 (12), 85.77 (12) and 81.85 (13)°with the C1–C6, C13–C18 and C19–C24 rings, respectively.

3. Supra­molecular features

In the crystal, weak C—H⋯O hydrogen bonds and C—H⋯π inter­actions (Table 1[link], Fig. 2[link]) link the mol­ecules into a three-dimensional supra­molecular architecture. ππ stacking is also observed between the nearly parallel benzene rings of neighbouring mol­ecules, the centroid-to-centroid distance being 3.5872 (15) Å.

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C13–C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O3i 1.00 (2) 2.55 (2) 3.197 (3) 122 (1)
C9—H9⋯O2ii 0.97 (2) 2.58 (2) 3.400 (3) 142 (1)
C15—H15⋯O1iii 0.93 2.59 3.286 (3) 132
C3—H3⋯Cg3iv 0.93 2.80 3.560 (3) 140
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, y-{\script{3\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}].
[Figure 2]
Figure 2
The crystal packing diagram showing ππ stacking between the nitro­benzene rings of the neighbouring mol­ecules.

4. Synthesis and crystallization

The synthesis of the title compound was performed according to the scheme in Fig. 3[link]. To a solution of 3 (0.01 mol) in 10 mL of acetic acid and three equivalents of anhydrous sodium acetate was added 2-nitro­phenyl­cinamaldehyde (0.01 mol). The mixture was heated at reflux with stirring, using CH2Cl2 (20 mL) for 4 h. The reaction was monitored by TLC using CH2Cl2/CH3CO2C2H5 (9/1) as solvent system. The separated solid was filtered, washed with cold water and dried to give a yellow solid with a moderate yield 75% and melting point 484 K. Single crystals of the title compound suitable for X-ray diffraction were obtained from an ethanol solution.

[Figure 3]
Figure 3
Chemical pathway showing the formation of the title compound.

IR (KBr, cm−1): 3423.03, 2951 (C—H), 1712 (C=O), 1640.16 (C=N), 1509.93 (C=C), 1030 (C—N), 741(C—S). 1H NMR, (CDCl3, 300 MHz) δ (p.p.m.) J (Hz): 3.81 (s, 3H, OCH3), 3.85 (s, 3H, OCH3), 6.71 (dd, 1H, J = 15.0 Hz, J = 11.55 Hz, CH), 6.90 (s, 4H, Ar-H), 7.04 (d, 2H, J = 8.8 Hz, Ar-H), 7.35 (d, 2H, J = 8.8 Hz, Ar-H), 7.43–7.67 (m, 5H, Ar-H), 8.0 (d, 1H, J = 8.72 Hz, Chet=CH). 13C NMR, (CDCl3, 300 MHz) δ (p.p.m.): 55.57 (O—CH3), 55.65 (O—CH3), 114.57, 114.85, 122.34, 125.22, 126.37, 127.35, 127.99, 128.50, 129.20, 129.57, 129.60, 131.61, 133.36, 135.79, 141.83, 148.13, 150.72, 157.20 (Chet=C), 159.90 (C=N), 165.87 (C=O).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms in the title compound were placed in calculated positions (C—H = 0.96–1.08 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C26H21N3O5S
Mr 487.52
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 13.2727 (10), 8.6401 (4), 21.3018 (12)
β (°) 105.316 (7)
V3) 2356.1 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.18
Crystal size (mm) 0.25 × 0.21 × 0.12
 
Data collection
Diffractometer Nonius Kappa CCD
Absorption correction ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])
Tmin, Tmax 0.856, 0.919
No. of measured, independent and observed [I > 2σ(I)] reflections 26882, 5954, 3690
Rint 0.062
(sin θ/λ)max−1) 0.692
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.166, 1.02
No. of reflections 5954
No. of parameters 322
H-atom treatment H-atom parameters not refined
Δρmax, Δρmin (e Å−3) 0.49, −0.34
Computer programs: KappaCCD (Nonius, 1998[Nonius (1998). KappaCCD Reference Manual. Nonius BV, Delft, The Netherlands.]), DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Chemical context top

Heterocycles containing a thia­zole ring are found to exhibit a wide spectrum of biological activities (Gautam et al., 2015; Asif, 2015; Abhinit et al., 2009). The thia­zolidinones used largely in medication are derived from the thia­zolidine containing sulfur and nitro­gen in a five-membered ring (Meera et al., 2014; Nowaczyk et al., 2014; Toubal et al., 2012). The structures of these compounds are crucial for understanding the related biological phenomena (Singh et al., 1981; Ameta et al., 2014; Gouda et al., 2011). We herein report the synthesis and structure investigation of the title compound, which is a considered to be a potential inter­mediate for incorporating thia­zole unit used in the synthesis of some thia­zolidinone compounds.

Structural commentary top

The molecular structure with atomic numbering scheme for the title compound is given in Fig. 1. The N2—C11 and N2—C12 bond lengths [1.385 (3) and 1.389 (3) Å] are inter­mediate between the classical C—N single-bond length (1.47 Å) and CN double-bond length (1.27 Å) (Bhagavan, 2002), indicating that the thia­zole moiety is an effective electron-conjugated substructure. The C—S bond lengths in the thia­zol rings [S1—C10 = 1.753 (3) and S1—C12 = 1.777 (2) Å] are consistant with the normal Csp2—S single bond length of 1.76 Å (Sarkar et al., 1984). The O4—C16 bond length [1.365 (3) Å] and O5—C22 bond length [1.375 (3) Å] are notably shorter than the normal O—C single bond (1.427 Å) (Rong Wan et al., 2008), indicating that the p orbital occupied lone pair electrons of the oxygen atom in CH3O and the π orbital in the benzene ring has pπ conjugation. The shorter bond length of O5—C26 [1.385 (5) Å] might be also caused by the delocalized electron density of the conjugated benzene ring. The O4—C25 [1.431 (3) Å] bond length is normal for a C—O single bond.

Supra­molecular features top

In the crystal, weak C—H···O hydrogen bonds and C—H···π inter­actions (Table 1, Fig. 2) link the molecules into a three-dimensional supra­molecular architecture. ππ stacking is also observed between the nearly parallel benzene rings of neighbouring molecules, the centroid-to-centroid distance being 3.5872 (15) Å.

Synthesis and crystallization top

The synthesis of the title compound was performed as given in the Fig. 3. To a solution of 3 (0.01 mol) in 10 ml of acetic acid and three equivalents of anhydrous sodium acetate was added 2-nitro­phenyl­cinamaldehyde (0.01 mol). The mixture was heated at reflux with stirring, using CH2Cl2 (20 ml) for 4 h. The reaction was monitored by TLC using CH2Cl2/CH3CO2C2H5 (9/1) as solvent system. The separated solid was filtered, washed with cold water and dried to give yellow solid with moderate yield 75% and melting point 484 K. Single crystals of the title compound suitable for X-ray diffraction were obtained from an ethanol solution.

IR (KBr, cm−1): 3423.03, 2951 (C—H), 1712 (CO), 1640.16 (CN), 1509.93 (CC), 1030 (C—N), 741(C—S). 1H NMR, (CDCl3, 300 MHz) δ (p.p.m.) J (Hz): 3.81 (s, 3H, OCH3), 3.85 (s, 3H, OCH3), 6.71 (dd, 1H, J = 15.0 Hz, J = 11.55 Hz, CH), 6.90 (s, 4H, Ar—H), 7.04 (d, 2H, J = 8.8 Hz, Ar—H), 7.35 (d, 2H, J = 8.8 Hz, Ar—H), 7.43–7.67 (m, 5H, Ar—H), 8.0 (d, 1H, J = 8.72 Hz, ChetCH). 13C NMR, (CDCl3, 300 MHz) δ (p.p.m.): 55.57 (O—CH3), 55.65 (O—CH3), 114.57, 114.85, 122.34, 125.22, 126.37, 127.35, 127.99, 128.50, 129.20, 129.57, 129.60, 131.61, 133.36, 135.79, 141.83, 148.13, 150.72, 157.20 (ChetC), 159.90 (CN), 165.87 (CO).

Refinement top

H atoms in the title compound were placed in calculated positions (C—H = 0.96–1.08 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Structure description top

Heterocycles containing a thia­zole ring are found to exhibit a wide spectrum of biological activities (Gautam et al., 2015; Asif, 2015; Abhinit et al., 2009). The thia­zolidinones used largely in medication are derived from the thia­zolidine containing sulfur and nitro­gen in a five-membered ring (Meera et al., 2014; Nowaczyk et al., 2014; Toubal et al., 2012). The structures of these compounds are crucial for understanding the related biological phenomena (Singh et al., 1981; Ameta et al., 2014; Gouda et al., 2011). We herein report the synthesis and structure investigation of the title compound, which is a considered to be a potential inter­mediate for incorporating thia­zole unit used in the synthesis of some thia­zolidinone compounds.

The molecular structure with atomic numbering scheme for the title compound is given in Fig. 1. The N2—C11 and N2—C12 bond lengths [1.385 (3) and 1.389 (3) Å] are inter­mediate between the classical C—N single-bond length (1.47 Å) and CN double-bond length (1.27 Å) (Bhagavan, 2002), indicating that the thia­zole moiety is an effective electron-conjugated substructure. The C—S bond lengths in the thia­zol rings [S1—C10 = 1.753 (3) and S1—C12 = 1.777 (2) Å] are consistant with the normal Csp2—S single bond length of 1.76 Å (Sarkar et al., 1984). The O4—C16 bond length [1.365 (3) Å] and O5—C22 bond length [1.375 (3) Å] are notably shorter than the normal O—C single bond (1.427 Å) (Rong Wan et al., 2008), indicating that the p orbital occupied lone pair electrons of the oxygen atom in CH3O and the π orbital in the benzene ring has pπ conjugation. The shorter bond length of O5—C26 [1.385 (5) Å] might be also caused by the delocalized electron density of the conjugated benzene ring. The O4—C25 [1.431 (3) Å] bond length is normal for a C—O single bond.

In the crystal, weak C—H···O hydrogen bonds and C—H···π inter­actions (Table 1, Fig. 2) link the molecules into a three-dimensional supra­molecular architecture. ππ stacking is also observed between the nearly parallel benzene rings of neighbouring molecules, the centroid-to-centroid distance being 3.5872 (15) Å.

Synthesis and crystallization top

The synthesis of the title compound was performed as given in the Fig. 3. To a solution of 3 (0.01 mol) in 10 ml of acetic acid and three equivalents of anhydrous sodium acetate was added 2-nitro­phenyl­cinamaldehyde (0.01 mol). The mixture was heated at reflux with stirring, using CH2Cl2 (20 ml) for 4 h. The reaction was monitored by TLC using CH2Cl2/CH3CO2C2H5 (9/1) as solvent system. The separated solid was filtered, washed with cold water and dried to give yellow solid with moderate yield 75% and melting point 484 K. Single crystals of the title compound suitable for X-ray diffraction were obtained from an ethanol solution.

IR (KBr, cm−1): 3423.03, 2951 (C—H), 1712 (CO), 1640.16 (CN), 1509.93 (CC), 1030 (C—N), 741(C—S). 1H NMR, (CDCl3, 300 MHz) δ (p.p.m.) J (Hz): 3.81 (s, 3H, OCH3), 3.85 (s, 3H, OCH3), 6.71 (dd, 1H, J = 15.0 Hz, J = 11.55 Hz, CH), 6.90 (s, 4H, Ar—H), 7.04 (d, 2H, J = 8.8 Hz, Ar—H), 7.35 (d, 2H, J = 8.8 Hz, Ar—H), 7.43–7.67 (m, 5H, Ar—H), 8.0 (d, 1H, J = 8.72 Hz, ChetCH). 13C NMR, (CDCl3, 300 MHz) δ (p.p.m.): 55.57 (O—CH3), 55.65 (O—CH3), 114.57, 114.85, 122.34, 125.22, 126.37, 127.35, 127.99, 128.50, 129.20, 129.57, 129.60, 131.61, 133.36, 135.79, 141.83, 148.13, 150.72, 157.20 (ChetC), 159.90 (CN), 165.87 (CO).

Refinement details top

H atoms in the title compound were placed in calculated positions (C—H = 0.96–1.08 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: Kappa CCD (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing diagram showing ππ stacking between the nitrobenzene rings of the neighbouring molecules.
[Figure 3] Fig. 3. Chemical pathway showing the formation of the title compound.
(2Z,5Z)-3-(4-Methoxyphenyl)-2-[(4-methoxyphenyl)imino]-5-[(E)-3-(2-nitrophenyl)allylidene]-1,3-thiazolidin-4-one top
Crystal data top
C26H21N3O5SF(000) = 1016
Mr = 487.52Dx = 1.374 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.2727 (10) ÅCell parameters from 100 reflections
b = 8.6401 (4) Åθ = 2–29°
c = 21.3018 (12) ŵ = 0.18 mm1
β = 105.316 (7)°T = 173 K
V = 2356.1 (3) Å3Prism, yellow
Z = 40.25 × 0.21 × 0.12 mm
Data collection top
Nonius Kappa CCD
diffractometer
3690 reflections with I > 2σ(I)
θ/2θ scansRint = 0.062
Absorption correction: ψ scan
(North et al., 1968)
θmax = 29.5°, θmin = 2.9°
Tmin = 0.856, Tmax = 0.919h = 1717
26882 measured reflectionsk = 1111
5954 independent reflectionsl = 2927
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters not refined
wR(F2) = 0.166 w = 1/[σ2(Fo2) + (0.0731P)2 + 0.7139P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
5954 reflectionsΔρmax = 0.49 e Å3
322 parametersΔρmin = 0.34 e Å3
Crystal data top
C26H21N3O5SV = 2356.1 (3) Å3
Mr = 487.52Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.2727 (10) ŵ = 0.18 mm1
b = 8.6401 (4) ÅT = 173 K
c = 21.3018 (12) Å0.25 × 0.21 × 0.12 mm
β = 105.316 (7)°
Data collection top
Nonius Kappa CCD
diffractometer
5954 independent reflections
Absorption correction: ψ scan
(North et al., 1968)
3690 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 0.919Rint = 0.062
26882 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.166H-atom parameters not refined
S = 1.02Δρmax = 0.49 e Å3
5954 reflectionsΔρmin = 0.34 e Å3
322 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.28022 (6)0.41002 (7)0.22265 (3)0.0317 (2)
O30.14135 (16)0.4595 (2)0.35874 (8)0.0356 (5)
O40.29886 (17)0.0889 (2)0.54702 (9)0.0448 (5)
O20.08864 (16)1.1504 (2)0.22010 (8)0.0389 (5)
N20.25988 (18)0.2956 (2)0.33219 (9)0.0294 (5)
O10.00470 (18)1.3059 (2)0.14901 (10)0.0498 (6)
N30.37138 (19)0.1521 (2)0.28522 (10)0.0345 (5)
N10.05420 (18)1.1947 (2)0.16354 (11)0.0335 (5)
C110.1930 (2)0.4215 (3)0.32243 (12)0.0287 (6)
C180.3513 (2)0.2234 (3)0.44293 (12)0.0320 (6)
H180.39780.30400.44330.038*
C130.2708 (2)0.1963 (3)0.38783 (11)0.0283 (6)
C100.1968 (2)0.5044 (3)0.26177 (12)0.0295 (6)
C10.0854 (2)1.1147 (3)0.11192 (11)0.0277 (6)
C80.1515 (2)0.7251 (3)0.18670 (12)0.0326 (6)
H80.1950 (14)0.6898 (12)0.1613 (8)0.039*
C190.4160 (2)0.1407 (3)0.23137 (12)0.0335 (6)
C170.3631 (2)0.1318 (3)0.49738 (12)0.0295 (6)
H170.41720.15050.53440.035*
C60.1071 (2)0.9552 (3)0.11536 (11)0.0290 (6)
C90.1448 (2)0.6358 (3)0.24244 (12)0.0324 (6)
H90.0994 (15)0.6736 (12)0.2677 (8)0.039*
O50.5431 (2)0.0888 (3)0.07390 (10)0.0618 (7)
C70.0979 (2)0.8569 (3)0.16964 (12)0.0304 (6)
H70.0486 (15)0.8903 (10)0.1956 (8)0.037*
C120.3111 (2)0.2662 (3)0.28442 (11)0.0300 (6)
C160.2929 (2)0.0105 (3)0.49635 (12)0.0325 (6)
C20.0961 (2)1.2058 (3)0.06006 (12)0.0370 (7)
H20.08231.31140.05970.044*
C140.2003 (2)0.0780 (3)0.38674 (13)0.0396 (7)
H140.14610.06060.34960.047*
C50.1365 (2)0.8925 (3)0.06228 (12)0.0363 (6)
H50.14940.78670.06180.044*
C30.1275 (2)1.1394 (3)0.00918 (12)0.0368 (7)
H30.13541.19950.02540.044*
C40.1471 (2)0.9813 (4)0.01070 (13)0.0412 (7)
H40.16750.93500.02340.049*
C250.3914 (2)0.0808 (3)0.59982 (12)0.0404 (7)
H25A0.45160.09530.58350.061*
H25B0.38940.16030.63100.061*
H25C0.39520.01870.62040.061*
C240.3733 (2)0.0413 (3)0.18017 (14)0.0422 (7)
H240.31520.01810.18070.051*
C210.5481 (2)0.2158 (4)0.17753 (14)0.0438 (7)
H210.60560.27630.17640.053*
C220.5053 (3)0.1118 (3)0.12736 (13)0.0414 (7)
C150.2106 (2)0.0143 (3)0.44110 (13)0.0424 (7)
H150.16270.09300.44080.051*
C200.5029 (2)0.2266 (3)0.22887 (14)0.0410 (7)
H200.53190.29390.26290.049*
C230.4174 (3)0.0305 (3)0.12806 (13)0.0457 (8)
H230.38650.03310.09310.055*
C260.6246 (3)0.1806 (5)0.06639 (18)0.0720 (12)
H26A0.60560.28760.06700.108*
H26B0.63910.15710.02560.108*
H26C0.68570.16060.10130.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0421 (4)0.0288 (3)0.0284 (3)0.0034 (3)0.0165 (3)0.0052 (3)
O30.0422 (12)0.0378 (10)0.0313 (10)0.0025 (8)0.0177 (9)0.0018 (8)
O40.0505 (14)0.0465 (11)0.0335 (10)0.0113 (10)0.0043 (10)0.0158 (9)
O20.0459 (13)0.0443 (10)0.0261 (10)0.0015 (9)0.0085 (9)0.0007 (8)
N20.0369 (13)0.0303 (10)0.0229 (10)0.0013 (9)0.0111 (9)0.0047 (8)
O10.0568 (15)0.0421 (11)0.0519 (12)0.0192 (10)0.0171 (11)0.0056 (9)
N30.0391 (14)0.0349 (11)0.0330 (12)0.0076 (10)0.0156 (10)0.0088 (9)
N10.0333 (14)0.0305 (11)0.0363 (13)0.0008 (10)0.0083 (10)0.0018 (9)
C110.0331 (15)0.0287 (12)0.0250 (12)0.0039 (11)0.0094 (11)0.0006 (10)
C180.0321 (16)0.0310 (13)0.0339 (14)0.0072 (11)0.0108 (12)0.0003 (10)
C130.0353 (15)0.0286 (12)0.0228 (12)0.0006 (11)0.0108 (11)0.0028 (9)
C100.0336 (15)0.0283 (12)0.0282 (13)0.0023 (11)0.0113 (11)0.0012 (10)
C10.0249 (14)0.0339 (13)0.0228 (12)0.0027 (10)0.0033 (10)0.0022 (10)
C80.0355 (16)0.0331 (13)0.0323 (14)0.0046 (11)0.0145 (12)0.0038 (11)
C190.0382 (17)0.0325 (13)0.0287 (14)0.0069 (12)0.0070 (12)0.0057 (11)
C170.0277 (14)0.0369 (13)0.0220 (12)0.0031 (11)0.0029 (10)0.0009 (10)
C60.0246 (14)0.0360 (13)0.0262 (13)0.0024 (11)0.0066 (11)0.0043 (10)
C90.0350 (16)0.0328 (13)0.0320 (14)0.0012 (11)0.0136 (12)0.0034 (11)
O50.089 (2)0.0627 (14)0.0466 (13)0.0304 (14)0.0413 (13)0.0104 (11)
C70.0301 (15)0.0332 (13)0.0292 (13)0.0020 (11)0.0099 (11)0.0042 (10)
C120.0347 (16)0.0289 (12)0.0251 (13)0.0029 (11)0.0057 (11)0.0043 (10)
C160.0380 (16)0.0322 (13)0.0267 (13)0.0032 (11)0.0076 (12)0.0060 (10)
C20.0367 (17)0.0378 (14)0.0358 (15)0.0016 (12)0.0083 (13)0.0088 (12)
C140.0439 (18)0.0400 (14)0.0280 (14)0.0110 (13)0.0023 (12)0.0029 (11)
C50.0344 (16)0.0417 (15)0.0334 (14)0.0056 (12)0.0102 (12)0.0001 (11)
C30.0363 (17)0.0498 (16)0.0250 (13)0.0067 (13)0.0095 (12)0.0083 (12)
C40.0393 (18)0.0611 (18)0.0259 (14)0.0010 (14)0.0134 (12)0.0010 (13)
C250.0487 (19)0.0479 (16)0.0231 (13)0.0058 (14)0.0069 (13)0.0086 (11)
C240.0420 (18)0.0426 (15)0.0404 (16)0.0018 (13)0.0081 (14)0.0027 (13)
C210.0327 (17)0.0575 (18)0.0430 (17)0.0041 (14)0.0133 (14)0.0133 (14)
C220.055 (2)0.0394 (15)0.0338 (15)0.0207 (14)0.0188 (14)0.0103 (12)
C150.0464 (19)0.0370 (14)0.0399 (16)0.0170 (13)0.0044 (14)0.0069 (12)
C200.0431 (18)0.0414 (15)0.0373 (16)0.0006 (13)0.0086 (14)0.0011 (12)
C230.059 (2)0.0449 (16)0.0297 (15)0.0013 (15)0.0048 (14)0.0069 (12)
C260.065 (3)0.100 (3)0.065 (2)0.041 (2)0.042 (2)0.040 (2)
Geometric parameters (Å, º) top
S1—C101.753 (3)C9—H90.96 (3)
S1—C121.777 (2)O5—C221.375 (3)
O3—C111.206 (3)O5—C261.385 (5)
O4—C161.365 (3)C7—H71.00 (3)
O4—C251.431 (3)C16—C151.395 (4)
O2—N11.232 (3)C2—C31.384 (4)
N2—C111.385 (3)C2—H20.9300
N2—C121.389 (3)C14—C151.383 (4)
N2—C131.439 (3)C14—H140.9300
O1—N11.226 (3)C5—C41.377 (4)
N3—C121.267 (3)C5—H50.9300
N3—C191.426 (3)C3—C41.389 (4)
N1—C11.449 (3)C3—H30.9300
C11—C101.490 (3)C4—H40.9300
C18—C171.378 (3)C25—H25A0.9600
C18—C131.383 (4)C25—H25B0.9600
C18—H180.9300C25—H25C0.9600
C13—C141.382 (4)C24—C231.388 (4)
C10—C91.336 (4)C24—H240.9300
C1—C21.394 (3)C21—C201.383 (4)
C1—C61.406 (3)C21—C221.397 (4)
C8—C71.341 (3)C21—H210.9300
C8—C91.438 (3)C22—C231.365 (4)
C8—H80.94 (3)C15—H150.9300
C19—C201.385 (4)C20—H200.9300
C19—C241.386 (4)C23—H230.9300
C17—C161.399 (4)C26—H26A0.9600
C17—H170.9300C26—H26B0.9600
C6—C51.399 (4)C26—H26C0.9600
C6—C71.465 (3)
C10—S1—C1291.41 (12)O4—C16—C17124.0 (2)
C16—O4—C25116.7 (2)C15—C16—C17119.9 (2)
C11—N2—C12116.9 (2)C3—C2—C1120.1 (3)
C11—N2—C13120.9 (2)C3—C2—H2120.0
C12—N2—C13122.1 (2)C1—C2—H2120.0
C12—N3—C19116.0 (2)C13—C14—C15119.7 (2)
O1—N1—O2122.5 (2)C13—C14—H14120.1
O1—N1—C1118.3 (2)C15—C14—H14120.1
O2—N1—C1119.2 (2)C4—C5—C6122.5 (3)
O3—C11—N2124.6 (2)C4—C5—H5118.7
O3—C11—C10125.5 (2)C6—C5—H5118.7
N2—C11—C10109.9 (2)C2—C3—C4118.9 (2)
C17—C18—C13120.5 (2)C2—C3—H3120.6
C17—C18—H18119.7C4—C3—H3120.6
C13—C18—H18119.8C5—C4—C3120.6 (3)
C14—C13—C18120.5 (2)C5—C4—H4119.7
C14—C13—N2120.5 (2)C3—C4—H4119.7
C18—C13—N2119.0 (2)O4—C25—H25A109.5
C9—C10—C11122.8 (2)O4—C25—H25B109.5
C9—C10—S1126.1 (2)H25A—C25—H25B109.5
C11—C10—S1111.07 (18)O4—C25—H25C109.5
C2—C1—C6122.2 (2)H25A—C25—H25C109.5
C2—C1—N1116.2 (2)H25B—C25—H25C109.5
C6—C1—N1121.6 (2)C19—C24—C23120.0 (3)
C7—C8—C9122.4 (3)C19—C24—H24120.0
C7—C8—H8118.8C23—C24—H24120.0
C9—C8—H8118.8C20—C21—C22118.3 (3)
C20—C19—C24118.2 (3)C20—C21—H21120.8
C20—C19—N3121.4 (2)C22—C21—H21120.8
C24—C19—N3120.4 (3)C23—C22—O5115.8 (3)
C18—C17—C16119.3 (2)C23—C22—C21119.9 (3)
C18—C17—H17120.3O5—C22—C21124.3 (3)
C16—C17—H17120.3C14—C15—C16120.0 (2)
C5—C6—C1115.8 (2)C14—C15—H15120.0
C5—C6—C7120.8 (2)C16—C15—H15120.0
C1—C6—C7123.4 (2)C21—C20—C19122.3 (3)
C10—C9—C8124.8 (3)C21—C20—H20118.8
C10—C9—H9117.6C19—C20—H20118.8
C8—C9—H9117.6C22—C23—C24121.1 (3)
C22—O5—C26118.7 (3)C22—C23—H23119.5
C8—C7—C6123.9 (3)C24—C23—H23119.5
C8—C7—H7118.1O5—C26—H26A109.5
C6—C7—H7118.0O5—C26—H26B109.5
N3—C12—N2124.2 (2)H26A—C26—H26B109.5
N3—C12—S1125.1 (2)O5—C26—H26C109.5
N2—C12—S1110.65 (18)H26A—C26—H26C109.5
O4—C16—C15116.1 (2)H26B—C26—H26C109.5
C12—N2—C11—O3178.2 (2)C11—N2—C12—N3177.1 (2)
C13—N2—C11—O31.4 (4)C13—N2—C12—N30.3 (4)
C12—N2—C11—C103.3 (3)C11—N2—C12—S12.9 (3)
C13—N2—C11—C10179.8 (2)C13—N2—C12—S1179.67 (18)
C17—C18—C13—C140.7 (4)C10—S1—C12—N3178.9 (2)
C17—C18—C13—N2179.1 (2)C10—S1—C12—N21.16 (19)
C11—N2—C13—C1483.3 (3)C25—O4—C16—C15170.5 (3)
C12—N2—C13—C1493.4 (3)C25—O4—C16—C179.6 (4)
C11—N2—C13—C1895.1 (3)C18—C17—C16—O4178.6 (3)
C12—N2—C13—C1888.2 (3)C18—C17—C16—C151.5 (4)
O3—C11—C10—C92.6 (4)C6—C1—C2—C31.1 (4)
N2—C11—C10—C9175.9 (2)N1—C1—C2—C3178.8 (2)
O3—C11—C10—S1179.3 (2)C18—C13—C14—C150.3 (4)
N2—C11—C10—S12.3 (3)N2—C13—C14—C15178.7 (3)
C12—S1—C10—C9177.4 (3)C1—C6—C5—C42.1 (4)
C12—S1—C10—C110.63 (19)C7—C6—C5—C4179.2 (3)
O1—N1—C1—C233.4 (4)C1—C2—C3—C40.4 (4)
O2—N1—C1—C2145.6 (2)C6—C5—C4—C30.7 (5)
O1—N1—C1—C6148.8 (2)C2—C3—C4—C50.7 (4)
O2—N1—C1—C632.2 (4)C20—C19—C24—C230.4 (4)
C12—N3—C19—C2081.3 (3)N3—C19—C24—C23179.8 (2)
C12—N3—C19—C2499.3 (3)C26—O5—C22—C23172.6 (3)
C13—C18—C17—C160.2 (4)C26—O5—C22—C214.3 (4)
C2—C1—C6—C52.3 (4)C20—C21—C22—C233.7 (4)
N1—C1—C6—C5179.9 (2)C20—C21—C22—O5179.4 (3)
C2—C1—C6—C7179.1 (2)C13—C14—C15—C161.0 (5)
N1—C1—C6—C71.5 (4)O4—C16—C15—C14178.1 (3)
C11—C10—C9—C8175.7 (2)C17—C16—C15—C141.9 (5)
S1—C10—C9—C82.1 (4)C22—C21—C20—C191.4 (4)
C7—C8—C9—C10179.6 (3)C24—C19—C20—C210.3 (4)
C9—C8—C7—C6176.6 (2)N3—C19—C20—C21179.2 (2)
C5—C6—C7—C826.7 (4)O5—C22—C23—C24178.5 (3)
C1—C6—C7—C8154.7 (3)C21—C22—C23—C244.4 (4)
C19—N3—C12—N2179.4 (2)C19—C24—C23—C222.7 (4)
C19—N3—C12—S10.6 (4)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···O3i1.00 (2)2.55 (2)3.197 (3)122 (1)
C9—H9···O2ii0.97 (2)2.58 (2)3.400 (3)142 (1)
C15—H15···O1iii0.932.593.286 (3)132
C3—H3···Cg3iv0.932.803.560 (3)140
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x, y3/2, z+1/2; (iv) x, y+1/2, z3/2.
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···O3i1.004 (19)2.552 (19)3.197 (3)121.8 (12)
C9—H9···O2ii0.965 (19)2.58 (2)3.400 (3)142.4 (12)
C15—H15···O1iii0.932.593.286 (3)132
C3—H3···Cg3iv0.932.803.560 (3)140
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x, y3/2, z+1/2; (iv) x, y+1/2, z3/2.

Experimental details

Crystal data
Chemical formulaC26H21N3O5S
Mr487.52
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)13.2727 (10), 8.6401 (4), 21.3018 (12)
β (°) 105.316 (7)
V3)2356.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.25 × 0.21 × 0.12
Data collection
DiffractometerNonius Kappa CCD
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.856, 0.919
No. of measured, independent and
observed [I > 2σ(I)] reflections
26882, 5954, 3690
Rint0.062
(sin θ/λ)max1)0.692
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.166, 1.02
No. of reflections5954
No. of parameters322
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.49, 0.34

Computer programs: Kappa CCD (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2006), SHELXL2014 (Sheldrick, 2015).

 

Acknowledgements

We gratefully acknowledge financial support from the Ministère de l'Enseignement Supérieur et de la Recherche Scientifique (MESRS) via the CNEPRU project.

References

First citationAbhinit, M., Ghodke, M. & Pratima, N. A. (2009). Int. J. Pharm. Pharm. Sci. 1, 47–64.  CAS Google Scholar
First citationAmeta, K. L. & Dandia, A. (2014). Green Chemistry: Synthesis of Bioactive Heterocycles. India: Springer.  Google Scholar
First citationAsif, M. (2015). Chem. Int. 1, 1–11.  Google Scholar
First citationBhagavan, N. B. (2002). Medical Biochemistry, 4th ed. London: Academic Press.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGautam, D. & Chaudhary, R. P. (2015). Spectrochim. Acta Part A, 135, 219–226.  Web of Science CSD CrossRef CAS Google Scholar
First citationGouda, M. A. & Abu-Hashem, A. A. (2011). Arch. Pharm. Pharm. Med. Chem. 344, 170–177.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMeera, R., Devi, P., Muthumani, P. & Sundari, K. J. (2014). Int. J. Biol. & Pharm. Res. 5, 843–847.  Google Scholar
First citationNonius (1998). KappaCCD Reference Manual. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationNowaczyk, A., Kowiel, M., Gzella, A., Fijałkowski, Ł., Horishny, V. & Lesyk, R. (2014). J. Mol. Model. 20, 2366–2374.  Web of Science CSD CrossRef PubMed Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSarkar, P. B. & Sengupta, S. P. (1984). Z. Kristallogr. 168, 19–23.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, S. P., Parmar, S. S., Raman, K. & Stenberg, V. I. (1981). Chem. Rev. 81, 175–203.  CrossRef CAS Web of Science Google Scholar
First citationToubal, K., Djafri, A., Chouaih, A. & Talbi, A. (2012). Molecules, 17, 3501–3509.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWan, R., Yin, L.-H., Han, F., Wang, B. & Wang, J.-T. (2008). Acta Cryst. E64, o795.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 2| February 2016| Pages 155-157
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds