research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 2| February 2016| Pages 188-190

Crystal structure and conformational analysis of 2-hy­dr­oxy-3-(2-methyl­prop-1-en-1-yl)naphthalene-1,4-dione

CROSSMARK_Color_square_no_text.svg

aInstitute of Chemistry and Biotechnology – IQB, Federal University of Alagoas - UFAL, Maceio–Alagoas, Brazil
*Correspondence e-mail: tlb@qui.ufal.br

Edited by G. Smith, Queensland University of Technology, Australia (Received 28 November 2015; accepted 24 December 2015; online 16 January 2016)

In the structure of the title compound, C14H12O3, the substituent side chain, in which the H atoms of both methyl groups are disordered over six equivalent sites, lies outside of the plane of the naphthalene­dione ring. The ring-to-chain C—C—C—C torsion angles are 50.7 (3), −176.6 (2) and 4.9 (4)°. An intra­molecular meth­yl–hy­droxy C—H⋯O hydrogen bond is present. In the crystal, mol­ecules are primarily connected by inter­molecular O—H⋯O hydrogen bonds, forming a centrosymmetric cyclic dimer motif [graph set R22(10)]. Also present is a weak inter­molecular C—H⋯O hydrogen bond linking the dimers and a weak ππ ring inter­action [ring centroid separation = 3.7862 (13) Å], giving layers parallel to (10-3).

1. Chemical context

Naphtho­quinone compounds exhibit several biological activities, being utilized for the treatment of parasitic diseases (Salas et al., 2008[Salas, C., Tapia, R. A., Ciudad, K., Armstrong, V., Orellana, M., Kemmerling, U., Ferreira, J., Maya, J. D. & Morello, A. (2008). Bioorg. Med. Chem. 16, 668-674.]) some types of cancer (Tonholo et al., 1998[Tonholo, J. L. R., Freitas, L. R., de Abreu, F. C., Azevedo, D. C., Zani, C. L., de Oliveira, A. B. & Goulart, M. O. F. (1998). J. Braz. Chem. Soc. 9, 163-169.]) and cardiovascular disease (Silva & Torres, 2013[Silva, A. K. Soares e, de Oliveira Cipriano Torres, D., Santos Rocha, S. W., dos Santos Gomes, F. O., dos Santos Silva, B., Donato, M. A. M., Raposo, C., Santos, A. C. O., de Lima, M. do C. A., Galdino, S. L., da Rocha Pitta, I., de Souza, J. R. B. & Peixoto, C. A. (2013). Cardiovascular Pathol. 22, 81-90.]). The compound in this study, 2-hy­droxy-3-(2-metilprop-1-enol)naphthalene-1,4-dione, C14H12O3, is a naphthoquinone deriv­ative and the structure is reported herein.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. In this structure the side chain is rotated out of the plane of the naphthalene­dione ring, with torsion angles C2—C3—C9—C10, C3—C9—C10—C12 and C3—C9—C10—C22 of 50.7 (3), −176.6 (2) and 4.9 (4)°, respectively. Present also in the mol­ecule is an intra­molecular methyl C22⋯O3 [2.959 (3) Å; see Table 1[link]] and a short O3⋯O1 contact [2.665 (2) Å]. When compared with other analogous structures in the literature, e.g. 2-chloro-3-(4-chloro­benzamido)-1,4-naphtho­quinone (Brandy et al., 2009[Brandy, Y., Butcher, R. J., Adesiyun, T. A., Berhe, S. & Bakare, O. (2009). Acta Cryst. E65, o64.]), it is observed that the title compound has similar conformational features with respect to the side chain, which lies out of the naphtho­quinone plane.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯O1i 0.97 (3) 1.93 (3) 2.770 (2) 143 (3)
C7—H7⋯O2ii 0.93 2.43 3.339 (3) 164
C22—H22C⋯O3 0.96 2.21 2.959 (3) 134
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x-1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
Mol­ecular conformation and atom-numbering scheme, with non-H atoms drawn at the 50% probability level. The H atoms of the rotationally disordered methyl groups are shown as six equivalent half-occupancy sites.

3. Supra­molecular features

In the crystal, the mol­ecules are connected by classic inter­molecular O3—H⋯O1i hydrogen bonds (Table 1[link]), forming a centrosymmetric cyclic dimer [graph set R22(10)] (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) (Fig. 2[link]a). Also present in the structure is a weak inter­molecular C7—H⋯O2ii hydrogen bond [3.339 (3) Å], linking the dimers and a weak ππ ring inter­action between the benzene and quinone ring moieties of the parent ring system [ring centroid separation Cg⋯Cgiii = 3.7862 (13) Å; symmetry code: (iii) x + 1, y, z], giving layers parallel to (10[\overline3]) (Figs. 2[link]b and 3[link]).

[Figure 2]
Figure 2
The centrosymmetric dimers formed from the O3—H⋯O1i hydrogen bonds, viewed (a) along a and (b) along b. For symmetry code (i), see Table 1[link].
[Figure 3]
Figure 3
The crystal packing in the unit cell, showing intra- and inter­molecular inter­actions as dashed lines.

4. Database survey

A search of the Cambridge Structural Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) revealed the presence of 40 structures containing the 2-hy­droxy­naphthalene-1,4-dione core moiety. There were 787 structures which possess the naphthalene-1,4-dione moiety. There are structures similar to the title compound, whichvary depending on the oxidant used in the synthesis.

5. Synthesis and crystallization

The compound was obtained through to the lapachol oxidation product as can be seen in the scheme below (Hooker, 1936[Hooker, S. C. (1936). J. Am. Chem. Soc. 58, 1168-1173.]). The sample was subjected to an ethyl acetate solution at 301 K for crystallization.

[Scheme 2]

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The O3-bound H atom was located in a difference Fourier map and was freely refined. The remaining H atoms were positioned geometrically with aromatic C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). Rotational disorder was identified in the hydrogen atoms of the methyl carbon atoms C12 and C22 and these were included in the refinement over six equivalent 60° sites with 50% occupation, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C14H12O3
Mr 228.24
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 4.3564 (2), 16.4069 (8), 15.8598 (7)
β (°) 94.793 (2)
V3) 1129.62 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.14 × 0.11 × 0.10
 
Data collection
Diffractometer Nonius KappaCCD
No. of measured, independent and observed [I > 2σ(I)] reflections 4661, 2585, 1802
Rint 0.041
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.191, 1.03
No. of reflections 2585
No. of parameters 158
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.31, −0.30
Computer programs: COLLECT (Enraf–Nonius, 2001[Enraf-Nonius (2001). Kappa CCD Operation Manual. Enraf-Nonius, Delft, The Netherlands.]), DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, Editors C. W. Carter & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

Naphtho­quinone compounds exhibit several biological activities, being utilized for the treatment of parasitic diseases (Salas et al., 2008) some types of cancer (Tonholo et al., 1998) and cardiovascular disease (Silva & Torres, 2013). The compound in this study, 2-hy­droxy-3-(2-metilprop-1-enol)naphthalene-1,4-dione, C14H12O3, is a naphtho­quinone derivative and the structure is reported herein.

Structural commentary top

The molecular structure of the title compound is shown in Fig. 1. In this structure the side chain is rotated out of the plane of the naphthalene­dione ring, with torsion angles C2—C3—C9—C10, C3—C9—C10—C12 and C3—C9—C10—C22 of 50.7 (3), −176.6 (2) and 4.9 (4)°, respectively. Present also in the molecule is an intra­molecular methyl C22···O3 [2.959 (3) Å] and a short O3···O1 contact [2.665 (2) Å]. When compared with other analogous structures in the literature, e.g. 2-chloro-3-(4-chloro­benzamido)-1,4-naphtho­quinone (Brandy et al., 2009), it is observed that in the title compound has similar conformational features with respect to the side chain, which lies outside of the naphtho­quinone plane.

Supra­molecular features top

In the crystal, the molecules are connected by classic inter­molecular O3—H···O1i hydrogen bonds (Table 1), forming a centrosymmetric cyclic dimer [graph set R22(10)] (Bernstein et al., 1995) (Fig. 2a). Also present in the structure is a weak inter­molecular C7—H···O2ii hydrogen bond [3.339 (3) °], linking the dimers and a weak ππ ring inter­action between the benzene and quinone ring moieties of the parent ring system [ring centroid separation Cg···Cgiii = 3.7862 (13) Å] [symmetry code (iii): x + 1, y, z], giving layers down the a-axis direction (Figs. 2b and 3).

Database survey top

A search of the Cambridge Structural Database (Groom & Allen, 2014) revealed the presence of 40 structures containing the 2-hy­droxy­naphthalene-1,4-dione core moiety. There were 787 structures which possess the the naphtalene-1,4-dione moiety. There are similar structures to the title compound, its variants being dependant on the oxidant used in the syntheses.

Synthesis and crystallization top

The compound was obtained through to the lapachol oxidation product as can be seen in Scheme 2 below (Hooker, 1936). The sample was subjected to an ethyl acetate solution at 301 K for crystallization.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The O3-bound H atom was located in a difference Fourier map and was freely refined. The remaining H atoms were positioned geometrically with aromatic C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). Rotational disorder was identified in the hydrogen atoms of the methyl carbon atoms C12 and C22 and these were included in the refinement over six equivalent 60° sites with 50% occupation, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C).

Structure description top

Naphtho­quinone compounds exhibit several biological activities, being utilized for the treatment of parasitic diseases (Salas et al., 2008) some types of cancer (Tonholo et al., 1998) and cardiovascular disease (Silva & Torres, 2013). The compound in this study, 2-hy­droxy-3-(2-metilprop-1-enol)naphthalene-1,4-dione, C14H12O3, is a naphtho­quinone derivative and the structure is reported herein.

The molecular structure of the title compound is shown in Fig. 1. In this structure the side chain is rotated out of the plane of the naphthalene­dione ring, with torsion angles C2—C3—C9—C10, C3—C9—C10—C12 and C3—C9—C10—C22 of 50.7 (3), −176.6 (2) and 4.9 (4)°, respectively. Present also in the molecule is an intra­molecular methyl C22···O3 [2.959 (3) Å] and a short O3···O1 contact [2.665 (2) Å]. When compared with other analogous structures in the literature, e.g. 2-chloro-3-(4-chloro­benzamido)-1,4-naphtho­quinone (Brandy et al., 2009), it is observed that in the title compound has similar conformational features with respect to the side chain, which lies outside of the naphtho­quinone plane.

In the crystal, the molecules are connected by classic inter­molecular O3—H···O1i hydrogen bonds (Table 1), forming a centrosymmetric cyclic dimer [graph set R22(10)] (Bernstein et al., 1995) (Fig. 2a). Also present in the structure is a weak inter­molecular C7—H···O2ii hydrogen bond [3.339 (3) °], linking the dimers and a weak ππ ring inter­action between the benzene and quinone ring moieties of the parent ring system [ring centroid separation Cg···Cgiii = 3.7862 (13) Å] [symmetry code (iii): x + 1, y, z], giving layers down the a-axis direction (Figs. 2b and 3).

A search of the Cambridge Structural Database (Groom & Allen, 2014) revealed the presence of 40 structures containing the 2-hy­droxy­naphthalene-1,4-dione core moiety. There were 787 structures which possess the the naphtalene-1,4-dione moiety. There are similar structures to the title compound, its variants being dependant on the oxidant used in the syntheses.

Synthesis and crystallization top

The compound was obtained through to the lapachol oxidation product as can be seen in Scheme 2 below (Hooker, 1936). The sample was subjected to an ethyl acetate solution at 301 K for crystallization.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. The O3-bound H atom was located in a difference Fourier map and was freely refined. The remaining H atoms were positioned geometrically with aromatic C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). Rotational disorder was identified in the hydrogen atoms of the methyl carbon atoms C12 and C22 and these were included in the refinement over six equivalent 60° sites with 50% occupation, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: COLLECT (Enraf–Nonius, 2001); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom-numbering scheme, with non-H atoms drawn at the 50% probability level. The H atoms of the rotationally disordered methyl groups are shown as six equivalent half-occupancy sites.
[Figure 2] Fig. 2. The centrosymmetric dimers formed from the O3—H···O1i hydrogen bonds, viewed (a) along a and (b) along b. For symmetry code (i), see Table 1.
[Figure 3] Fig. 3. The crystal packing in the unit cell, showing intra- and intermolecular interactions as dashed lines.
2-Hydroxy-3-(2-methylprop-1-en-1-yl)naphthalene-1,4-dione top
Crystal data top
C14H12O3F(000) = 480
Mr = 228.24Dx = 1.342 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2659 reflections
a = 4.3564 (2) Åθ = 1.0–27.5°
b = 16.4069 (8) ŵ = 0.09 mm1
c = 15.8598 (7) ÅT = 293 K
β = 94.793 (2)°Block, red
V = 1129.62 (9) Å30.14 × 0.11 × 0.10 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1802 reflections with I > 2σ(I)
Radiation source: Enraf-Nonius FR590Rint = 0.041
Graphite monochromatorθmax = 27.5°, θmin = 2.6°
Detector resolution: 9 pixels mm-1h = 55
CCD rotation images, thick slices scansk = 1921
4661 measured reflectionsl = 2020
2585 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0946P)2 + 0.4119P]
where P = (Fo2 + 2Fc2)/3
2585 reflections(Δ/σ)max < 0.001
158 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C14H12O3V = 1129.62 (9) Å3
Mr = 228.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.3564 (2) ŵ = 0.09 mm1
b = 16.4069 (8) ÅT = 293 K
c = 15.8598 (7) Å0.14 × 0.11 × 0.10 mm
β = 94.793 (2)°
Data collection top
Nonius KappaCCD
diffractometer
1802 reflections with I > 2σ(I)
4661 measured reflectionsRint = 0.041
2585 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.191H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.31 e Å3
2585 reflectionsΔρmin = 0.30 e Å3
158 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O30.3690 (4)0.37038 (10)0.48362 (10)0.0407 (4)
O10.2205 (4)0.52143 (9)0.43377 (9)0.0404 (4)
O20.3406 (4)0.27382 (9)0.26721 (10)0.0481 (5)
C100.0940 (5)0.19603 (13)0.47932 (13)0.0395 (5)
C90.0749 (5)0.23006 (12)0.40272 (13)0.0386 (5)
H90.11260.19610.35780.046*
H1O30.448 (7)0.424 (2)0.5005 (19)0.073 (9)*
C4A0.3114 (5)0.41650 (12)0.28476 (13)0.0349 (5)
C8A0.1689 (5)0.48205 (13)0.32860 (13)0.0348 (5)
C20.1441 (5)0.38047 (12)0.42115 (13)0.0351 (5)
C10.0733 (5)0.46622 (12)0.39675 (13)0.0350 (5)
C50.5333 (5)0.43122 (14)0.21845 (13)0.0400 (5)
H50.62680.38790.18850.048*
C30.0007 (5)0.31557 (12)0.38155 (12)0.0358 (5)
C40.2235 (5)0.33077 (13)0.30859 (13)0.0369 (5)
C60.6151 (5)0.51093 (14)0.19709 (14)0.0426 (5)
H60.76280.52070.15240.051*
C80.2532 (5)0.56203 (13)0.30691 (14)0.0386 (5)
H80.15840.60560.33620.046*
C70.4789 (5)0.57607 (13)0.24159 (14)0.0413 (5)
H70.53890.62910.22770.05*
C120.1899 (6)0.10858 (13)0.49043 (15)0.0475 (6)
H12A0.19190.09390.54910.071*0.5
H12B0.39230.10150.47180.071*0.5
H12C0.04680.07440.45750.071*0.5
H12D0.22880.0860.43650.071*0.5
H12E0.02830.07840.51380.071*0.5
H12F0.37380.10550.52810.071*0.5
C220.0189 (6)0.23815 (14)0.55869 (14)0.0452 (6)
H22A0.05070.20130.60560.068*0.5
H22B0.19230.25540.5530.068*0.5
H22C0.15030.28480.56840.068*0.5
H22D0.04490.29310.54570.068*0.5
H22E0.19810.23890.59830.068*0.5
H22F0.14450.20950.5830.068*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0435 (9)0.0323 (8)0.0450 (9)0.0013 (6)0.0051 (6)0.0002 (7)
O10.0456 (9)0.0318 (8)0.0431 (8)0.0041 (6)0.0005 (6)0.0022 (6)
O20.0651 (11)0.0308 (8)0.0460 (9)0.0033 (7)0.0096 (7)0.0026 (7)
C100.0438 (12)0.0302 (10)0.0439 (12)0.0025 (8)0.0013 (9)0.0004 (9)
C90.0462 (12)0.0282 (10)0.0409 (11)0.0009 (9)0.0011 (9)0.0027 (9)
C4A0.0422 (11)0.0292 (10)0.0340 (10)0.0011 (8)0.0061 (8)0.0012 (8)
C8A0.0398 (11)0.0305 (11)0.0346 (10)0.0016 (8)0.0057 (8)0.0001 (8)
C20.0384 (11)0.0314 (11)0.0355 (10)0.0003 (8)0.0035 (8)0.0009 (8)
C10.0398 (11)0.0288 (10)0.0367 (10)0.0019 (8)0.0055 (8)0.0034 (8)
C50.0486 (13)0.0343 (11)0.0368 (11)0.0025 (9)0.0015 (9)0.0004 (9)
C30.0431 (11)0.0292 (10)0.0355 (10)0.0006 (8)0.0064 (8)0.0006 (8)
C40.0453 (12)0.0299 (10)0.0357 (11)0.0025 (9)0.0040 (9)0.0011 (8)
C60.0500 (13)0.0383 (12)0.0391 (11)0.0013 (9)0.0003 (9)0.0039 (9)
C80.0460 (12)0.0293 (10)0.0410 (11)0.0005 (8)0.0062 (9)0.0002 (8)
C70.0493 (12)0.0312 (11)0.0436 (11)0.0027 (9)0.0060 (9)0.0055 (9)
C120.0651 (15)0.0315 (11)0.0447 (12)0.0020 (10)0.0024 (10)0.0011 (9)
C220.0587 (14)0.0346 (11)0.0420 (12)0.0006 (10)0.0033 (10)0.0011 (9)
Geometric parameters (Å, º) top
O3—C21.344 (3)C3—C41.472 (3)
O3—H1O30.97 (4)C6—C71.387 (3)
O1—C11.230 (2)C6—H60.93
O2—C41.228 (2)C8—C71.387 (3)
C10—C91.333 (3)C8—H80.93
C10—C221.496 (3)C7—H70.93
C10—C121.501 (3)C12—H12A0.96
C9—C31.472 (3)C12—H12B0.96
C9—H90.93C12—H12C0.96
C4A—C51.389 (3)C12—H12D0.96
C4A—C8A1.398 (3)C12—H12E0.96
C4A—C41.498 (3)C12—H12F0.96
C8A—C81.398 (3)C22—H22A0.96
C8A—C11.469 (3)C22—H22B0.96
C2—C31.361 (3)C22—H22C0.96
C2—C11.485 (3)C22—H22D0.96
C5—C61.390 (3)C22—H22E0.96
C5—H50.93C22—H22F0.96
C2—O3—H1O3108.3 (18)C10—C12—H12C109.5
C9—C10—C22124.9 (2)H12A—C12—H12C109.5
C9—C10—C12120.2 (2)H12B—C12—H12C109.5
C22—C10—C12114.91 (19)C10—C12—H12D109.5
C10—C9—C3127.1 (2)H12A—C12—H12D141.1
C10—C9—H9116.5H12B—C12—H12D56.3
C3—C9—H9116.5H12C—C12—H12D56.3
C5—C4A—C8A119.67 (19)C10—C12—H12E109.5
C5—C4A—C4120.09 (19)H12A—C12—H12E56.3
C8A—C4A—C4120.23 (18)H12B—C12—H12E141.1
C4A—C8A—C8120.21 (19)H12C—C12—H12E56.3
C4A—C8A—C1119.46 (19)H12D—C12—H12E109.5
C8—C8A—C1120.32 (19)C10—C12—H12F109.5
O3—C2—C3121.45 (19)H12A—C12—H12F56.3
O3—C2—C1115.56 (18)H12B—C12—H12F56.3
C3—C2—C1122.95 (19)H12C—C12—H12F141.1
O1—C1—C8A122.31 (19)H12D—C12—H12F109.5
O1—C1—C2119.00 (18)H12E—C12—H12F109.5
C8A—C1—C2118.68 (18)C10—C22—H22A109.5
C4A—C5—C6119.8 (2)C10—C22—H22B109.5
C4A—C5—H5120.1H22A—C22—H22B109.5
C6—C5—H5120.1C10—C22—H22C109.5
C2—C3—C4118.61 (19)H22A—C22—H22C109.5
C2—C3—C9123.83 (19)H22B—C22—H22C109.5
C4—C3—C9117.35 (18)C10—C22—H22D109.5
O2—C4—C3120.66 (19)H22A—C22—H22D141.1
O2—C4—C4A119.58 (18)H22B—C22—H22D56.3
C3—C4—C4A119.76 (18)H22C—C22—H22D56.3
C7—C6—C5120.7 (2)C10—C22—H22E109.5
C7—C6—H6119.6H22A—C22—H22E56.3
C5—C6—H6119.6H22B—C22—H22E141.1
C7—C8—C8A119.7 (2)H22C—C22—H22E56.3
C7—C8—H8120.2H22D—C22—H22E109.5
C8A—C8—H8120.2C10—C22—H22F109.5
C6—C7—C8119.9 (2)H22A—C22—H22F56.3
C6—C7—H7120H22B—C22—H22F56.3
C8—C7—H7120H22C—C22—H22F141.1
C10—C12—H12A109.5H22D—C22—H22F109.5
C10—C12—H12B109.5H22E—C22—H22F109.5
H12A—C12—H12B109.5
O1—C1—C2—O30.2 (3)O2—C4—C4A—C52.6 (3)
O1—C1—C2—C3177.5 (2)O2—C4—C4A—C8A176.8 (2)
C8A—C1—C2—O3179.69 (19)C3—C4—C4A—C5177.0 (2)
C8A—C1—C2—C32.0 (3)C3—C4—C4A—C8A3.5 (3)
O1—C1—C8A—C4A175.2 (2)C4—C4A—C5—C6179.6 (2)
O1—C1—C8A—C83.9 (3)C8A—C4A—C5—C61.0 (3)
C2—C1—C8A—C4A4.3 (3)C4—C4A—C8A—C11.6 (3)
C2—C1—C8A—C8176.6 (2)C4—C4A—C8A—C8179.4 (2)
O3—C2—C3—C4174.50 (19)C5—C4A—C8A—C1177.9 (2)
O3—C2—C3—C90.2 (3)C5—C4A—C8A—C81.2 (3)
C1—C2—C3—C43.1 (3)C4A—C5—C6—C70.4 (3)
C1—C2—C3—C9177.8 (2)C5—C6—C7—C81.5 (3)
C2—C3—C4—O2174.5 (2)C6—C7—C8—C8A1.3 (3)
C2—C3—C4—C4A5.9 (3)C7—C8—C8A—C1179.0 (2)
C9—C3—C4—O20.5 (3)C7—C8—C8A—C4A0.1 (3)
C9—C3—C4—C4A179.15 (19)C3—C9—C10—C12176.6 (2)
C2—C3—C9—C1050.7 (3)C3—C9—C10—C224.9 (4)
C4—C3—C9—C10134.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O1i0.97 (3)1.93 (3)2.770 (2)143 (3)
C7—H7···O2ii0.932.433.339 (3)164
C22—H22C···O30.962.212.959 (3)134
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O1i0.97 (3)1.93 (3)2.770 (2)143 (3)
C7—H7···O2ii0.932.433.339 (3)164
C22—H22C···O30.962.212.959 (3)134
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H12O3
Mr228.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)4.3564 (2), 16.4069 (8), 15.8598 (7)
β (°) 94.793 (2)
V3)1129.62 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.14 × 0.11 × 0.10
Data collection
DiffractometerNonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4661, 2585, 1802
Rint0.041
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.191, 1.03
No. of reflections2585
No. of parameters158
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.30

Computer programs: COLLECT (Enraf–Nonius, 2001), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

 

Acknowledgements

UFAL, IQB, LabCriMM, CNPq and FAPEAL are acknowledged for support. We thank Professor Dr Antonio Ventura Pinto (in memorium) for his collaboration in the works of this research group, specifically for the synthesis of the title compound.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandy, Y., Butcher, R. J., Adesiyun, T. A., Berhe, S. & Bakare, O. (2009). Acta Cryst. E65, o64.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEnraf–Nonius (2001). Kappa CCD Operation Manual. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHooker, S. C. (1936). J. Am. Chem. Soc. 58, 1168–1173.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, Editors C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSalas, C., Tapia, R. A., Ciudad, K., Armstrong, V., Orellana, M., Kemmerling, U., Ferreira, J., Maya, J. D. & Morello, A. (2008). Bioorg. Med. Chem. 16, 668–674.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, A. K. Soares e, de Oliveira Cipriano Torres, D., Santos Rocha, S. W., dos Santos Gomes, F. O., dos Santos Silva, B., Donato, M. A. M., Raposo, C., Santos, A. C. O., de Lima, M. do C. A., Galdino, S. L., da Rocha Pitta, I., de Souza, J. R. B. & Peixoto, C. A. (2013). Cardiovascular Pathol. 22, 81–90.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTonholo, J. L. R., Freitas, L. R., de Abreu, F. C., Azevedo, D. C., Zani, C. L., de Oliveira, A. B. & Goulart, M. O. F. (1998). J. Braz. Chem. Soc. 9, 163–169.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 2| February 2016| Pages 188-190
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds