research communications
New platinum(II) complexes with benzothiazole ligands
aUniversity of Puerto Rico, Department of Chemistry, PO Box 9019, Mayaguez, PR 00681, Puerto Rico, and bUniversity of California-San Diego, Department of Chemistry, Urey Hall 5128, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
*Correspondence e-mail: enrique.melendez@upr.edu
Four new platinum(II) complexes, namely tetraethylammonium tribromido(2-methyl-1,3-benzothiazole-κN)platinate(II), [NEt4][PtBr3(C8H7NS)] (1), tetraethylammonium tribromido(6-methoxy-2-methyl-1,3-benzothiazole-κN)platinate(II), [NEt4][PtBr3(C9H9NOS)] (2), tetraethylammonium tribromido(2,5,6-trimethyl-1,3-benzothiazole-κN)platinate(II), [NEt4][PtBr3(C10H11NS)] (3), and tetraethylammonium tribromido(2-methyl-5-nitro-1,3-benzothiazole-κN)platinate(II), [NEt4][PtBr3(C8H6N2O2S)] (4), have been synthesized and structurally characterized by single-crystal X-ray diffraction techniques. These species are precursors of compounds with potential application in cancer chemotherapy. All four platinum(II) complexes adopt the expected square-planar coordination geometry, and the benzothiazole ligand is engaged in bonding to the metal atom through the imine N atom (Pt—N). The Pt—N bond lengths are normal: 2.035 (5), 2.025 (4), 2.027 (5) and 2.041 (4) Å for complexes 1, 2, 3 and 4, respectively. The benzothiazole ligands are positioned out of the square plane, with dihedral angles ranging from 76.4 (4) to 88.1 (4)°. The NEt4 cation in 3 is disordered with 0.57/0.43 occupancies.
Keywords: crystal structure; cisplatin; platinum(II); benzothiazole; anticancer.
1. Chemical context
The synthesis of new platinum complexes as potential drugs for cancer is still of interest for medicinal chemists. The structural details of these complexes provide the opportunity to predict, to a certain extent, the potential biological activity of these species. In this regard, four new platinum(II) complexes with benzothiazole ligands of general formula [PtBr3L]− have been synthesized according to the equation below and their structures characterized.[NEt4]2[Pt2Br6] + 2L → 2 [NEt4][PtBr3L]L = 2-methyl-1,3-benzothiazole (1), 6-methoxy-2-methyl-1,3-benzothiazole (2), 2,5,6-trimethyl-1,3-benzothiazole (3), and 2-methyl-5-nitro-1,3-benzothiazole (4). All complexes showed the benzothiazoles to coordinate the PtII atom through the imino nitrogen atom. Also, the benzothiazole is positioned out of the square plane with dihedral angles between 76.4 (4) and 88.1 (4)°, as previously reported in other platinum–benzothiazole complexes. Given that benzothiazoles have anticancer properties, these platinum complexes may have enhanced properties as a result of potential synergism between the ligand and PtII. This deserves further studies as suggested by Noolvi et al. (2012)
.2. Structural commentary
To elucidate with certainty and accurately the platinum coordination patterns, the structural determination of the complexes was performed by single crystal X-ray diffraction technique. Table 1 contains selected bond lengths, dihedral angles and torsion angles. All of the title complexes adopt a square-planar coordination geometry about the PtII atom with a deviation of no more than 4° from ideal 180° and 90° angles. As reported previously, although not predicted using Pearson's hard–soft acid base theory, the benzothiazole is engaged in bonding to the metal through the imine nitrogen (Pt—N) instead of Pt—S coordination (Muir et al., 1987, 1988a,b, 1990; Gomez et al., 1988; Lozano et al., 1994). Also the benzothiazole ligand is positioned out of the square plane as discussed below.
|
Figs. 1–4 show the molecular structures of the four new complexes. [NEt4][PtBr3(2-Me-benzothiazole)] (1) crystallizes in an orthorhombic with eight formula units. It is a square-planar complex with Pt—N and average Pt—Br bond lengths of 2.035 (5) and 2.433 (6) Å, respectively, which are within the expected range for PtII complexes. There is no trans-influence observed in the Pt—Br bond trans to the Pt—N bond. The benzothiazole ligand is planar and the methyl group resides in the ligand plane. The dihedral angle between the PtBr3N unit and the benzothiazole ring is 88.1 (4)°, similar to those observed in other PtII–benzothiazole complexes, as a result of reducing the between PtBr3 and the benzothiazole ligand (Muir et al., 1987, 1988a,b, 1990; Gomez et al., 1988; Lozano et al., 1994). Two types of N—C bonds are present, one long [N—C2 1.408 (7) Å] and one short [N—C1 1.309 (7) Å], indicating the presence of single- and double-bond character in the thiazole ring. The angle at the S atom in the thiazole ring is 90.3 (3)° suggesting it is using unhybridized p orbitals for bonding.
[NEt4][PtBr3(6-OMe-2-Me-benzothiazole)] (2), [NEt4][PtBr3(2,5,6-Me-benzothiazole)] (3) and [NEt4][PtBr3(5-NO2-2-Me-benzothiazole)] (4) crystallize in the same type of and monoclinic P21/n, containing four formula units. The Pt—N and average Pt—Br bond lengths for 2, 3, and 4 are 2.025 (4)/2.430 (6) Å, 2.027 (5)/2.425 (6) Å and 2.041 (4)/2.431 (8) Å, respectively, which are within the expected range. The dihedral angle between PtBr3N and the benzothiazole in 2 is 86.7 (3)° and the torsion angle between the aromatic ring and the OCH3 group is 11.9 (7)°. The C—O (OCH3) bond length is 1.427 (7) Å, and the C—O—CH3 angle is 116.3 (5)°. In contrast to 1 and 2, [NEt4][PtBr3(2,5,6-Me-benzothiazole)] and [NEt4][PtBr3(5-NO2-2-Me-benzothiazole)] have lower dihedral angles between the PtBr3N unit and the benzothiazole ring, 78.6 (4) and 76.(4)°, respectively. The methyl groups on 3 and 4 are almost co-planar with the benzothiazole plane with deviations ≤ 1.60° but in 4, the NO2 group is out of the benzothiazole plane with a torsion angle of 7.5 (7)°. The C—NO2 bond length is 1.476 (7) Å, and the O—N—O angle is 117.4 (5)°. The C—NO2 bond length and O—N—O angle in 4 are smaller than those observed in nitrobenzene [C—NO2 = 1.486 (2) Å and O—N—O = 123.9 (5)°], which suggests higher electron delocalization between the nitro group and the aromatic ring in 4 (Johnson, 2015). The angles at the S atom in 2, 3 and 4 are also near 90°, suggesting the use of pure p orbitals for bonding.
3. Supramolecular features
Analysis of the packing diagrams of all of the complexes showed their packings consist of [NEt4]+ cations and [PtBr3(L)]− anions. The [NEt4][PtBr3(2-Me-benzothiazole)] and [NEt4][PtBr3(6-OMe-2-Me-benzothiazole)] complexes showed partial π-stacking between the phenyl and the thiazole rings (Fig. 5).
4. Synthesis and crystallization
The parent complex [NEt4]2[Pt2Br6] was prepared as reported in the literature (Livingstone & Whitley, 1962). Ligands were purchased from Sigma–Aldrich and were used without further purification.
Acetone solutions of [NEt4]2[Pt2Br6] were prepared (0.075 g, 0.068 mmol) and the corresponding amount of ligand was added with stirring. For 2-methyl-1,3-benzothiazole (99%) 18 μL (0.021 g, 0.14 mmol) were added; for 2-methyl-5-nitro-1,3-benzothiazole (98%) (0.027 g, 0.14 mmol) were added, and for 2-methyl-6-methoxy-1,3-benzothiazole (97%) (0.024 g, 0.14 mmol) were added. The reaction mixtures were stirred without heating until the volume reduced considerably; then the samples were placed in desiccators containing CaCl2 at room temperature to evaporate slowly, leading to the formation of X-ray quality single crystals. For the synthesis with 2,5,6-trimethyl-1,3-benzothiazole (99%), the ligand (0.0227 g, 0.128 mmol) was added to 20 mL of an acetone solution (0.07515 g, 0.0677 mmol) of [NEt4]2[Pt2Br6] with stirring, and a portion of the reaction mixture was slowly evaporated at 277 K in a small beaker in a secondary container which also contained CaCl2 to form X-ray quality single crystals.
5. Refinement
Crystal data, data collection and structure . H atoms were positioned in idealized locations: d(C—H) = 0.95 Å, Uiso(H) = 1.2Ueq(C); d(C—H2) = 0.99 Å, Uiso(H) = 1.2Ueq(C); d(C—H3) = 0.98 Å, Uiso(H) = 1.5Ueq(C). The NEt4 cation in 3 presented disorder with 0.57/0.43 occupancies.
details are summarized in Table 2Supporting information
10.1107/S2056989016002826/bg2580sup1.cif
contains datablocks 1, 2, 3, 4. DOI:Structure factors: contains datablock 1. DOI: 10.1107/S2056989016002826/bg25801sup2.hkl
Structure factors: contains datablock 2. DOI: 10.1107/S2056989016002826/bg25802sup3.hkl
Structure factors: contains datablock 3. DOI: 10.1107/S2056989016002826/bg25803sup4.hkl
Structure factors: contains datablock 4. DOI: 10.1107/S2056989016002826/bg25804sup5.hkl
The synthesis of new platinum complexes as potential drugs for cancer still is of interest for medicinal chemists. The structural details of these complexes provide the opportunity to predict, to a certain extent, the potential biological activity of these species. In this regard, four new platinum(II) complexes with benzothiazole ligands of general formula [PtBr3L]− have been synthesized according to the equation below and their structures characterized.
[NEt4]2[Pt2Br6] + 2L → 2 [NEt4][PtBr3L]
L = 2-methyl-1,3-benzothiazole (1), 6-methoxy-2-methyl-1,3-benzothiazole (2), 2,5,6-trimethyl-1,3-benzothiazole (3), and 2-methyl-5-nitro-1,3-benzothiazole (4). All complexes showed the benzothiazoles coordinate the PtII atom through the imino nitrogen. Also, the benzothiazole is positioned out of the square plane with dihedral angles between 76.4 (4) and 88.1 (4)°, as previously reported in other platinum–benzothiazole complexes. Given that benzothiazoles have anticancer properties, these platinum complexes may have enhanced properties as a result of potential synergism between the ligand and PtII. This deserves further studies as suggested by Noolvi et al. (2012).
To elucidate with certainty and accurately the platinum coordination patterns, the structural determination of the complexes was performed by single-crystal X-ray diffraction technique. Table 1 contains selected bond distances, dihedral angles and torsion angles. All of the title complexes adopt a square-planar coordination geometry with a deviation of no more than 4° from ideal 180° and 90° angles. As reported previously, although not predicted using Pearson's hard–soft acid base theory, the benzothiazole is engaged in bonding to the metal through the imine nitrogen (Pt—N) instead of Pt—S coordination (Muir et al., 1987, 1988a,b, 1990; Gomez et al., 1988; Lozano et al., 1994). Also the benzothiazole ligand is positioned out of the square plane as discussed below.
Figs. 1–4 show the molecular diagrams of the four new complexes. [NEt4][PtBr3(2-Me-benzothiazole)] (1) crystallizes in an orthorhombic
with eight formula units. It is a square-planar complex with Pt—N and average Pt—Br bond lengths of 2.035 (5) and 2.433 (6) Å, respectively, which are within the expected range for PtII complexes. There is no trans-influence observed in the Pt—Br bond trans to the Pt—N bond. The benzothiazole ligand is planar and the methyl group resides in the ligand plane. The dihedral angle between PtBr3N unit and the benzothiazole ring is 88.1 (4)°, similar to those observed in other PtII–benzothiazole complexes, as a result of reducing the between PtBr3 and the benzothiazole ligand (Muir et al., 1987, 1988a,b, 1990; Gomez et al., 1988; Lozano et al., 1994). Two types of N—C bonds are present, one long [N—C2 1.408 (7) Å] and one short [N—C1 1.309 (7) Å], indicating the presence of single- and double-bond character in the thiazole ring. The angle at the S atom in the thiazole ring is 90.3 (3)° suggesting it is using unhybridized p orbitals for bonding.[NEt4][PtBr3(6-OMe-2-Me-benzothiazole)] (2), [NEt4][PtBr3(2,5,6-Me-benzothiazole)] (3) and [NEt4][PtBr3(5-NO2-2-Me-benzothiazole)] (4) crystallize in the same type of ≤ 1.60° but in 4, the NO2 group is out of the benzothiazole plane with a torsion angle of 7.5 (7)°. The C—NO2 bond length is 1.476 (7) Å, and the O—N—O angle is 117.4 (5)°. The C—NO2 bond length and O—N—O angle in 4 are smaller than those observed in nitrobenzene [C—NO2 = 1.486 (2) Å and O—N—O = 123.9 (5)°], which suggests higher electron delocalization between the nitro group and the aromatic ring in 4 (Johnson, 2015). The angles at the S atom in 2, 3 and 4 are also near 90°, suggesting the use of pure p orbitals for bonding.
and monoclinic P21/n, containing four formula units. The Pt—N and average Pt—Br bond lengths for 2, 3, and 4 are 2.025 (4)/2.430 (6) Å, 2.027 (5)/2.425 (6) Å and 2.041 (4)/2.431 (8) Å, respectively, which are within the expected range (Muir et al., 1987, 1988a,b, 1990; Gomez et al., 1988; Lozano et al., 1994). The dihedral angle between PtBr3N and the benzothiazole in 2 is 86.7 (3)° and the torsion angle between the aromatic ring and the OCH3 group is 11.9 (7)°. The C—O (OCH3) bond length is 1.427 (7) Å, and the C—O—CH3 angle is 116.3 (5)°. In contrast to 1 and 2, [NEt4][PtBr3(2,5,6-Me-benzothiazole)] and [NEt4][PtBr3(5-NO2-2-Me-benzothiazole)] have lower dihedral angles between PtBr3N unit and the benzothiazole ring, 78.6 (4) and 76.(4)°, respectively. The methyl groups on 3 and 4 are almost co-planar with the benzothiazole plane with deviationsAnalysis of the packing diagrams of all of the complexes showed their packings consist of [NEt4]+ cations and [PtBr3(L)]− anions. The [NEt4][PtBr3(2-Me-benzothiazole)] and [NEt4][PtBr3(6-OMe-2-Me-benzothiazole)] complexes showed partial π-stacking between the phenyl and the thiazole rings (Fig. 5).
The parent complex [NEt4]2[Pt2Br6] was prepared as reported in the literature (Livingstone and Whitley, 1962). Ligands were purchased from Sigma–Aldrich and were used without further purification.
Acetone solutions of [NEt4]2[Pt2Br6] were prepared (0.075 g, 0.068 mmol) and the corresponding amount of ligand was added with stirring. For 2-methyl-1,3-benzothiazole (99%) 18 ml (0.021 g, 0.14 mmol) were added; for 2-methyl-5-nitro-1,3-benzothiazole (98%) (0.027 g, 0.014 mmol) were added, and for 2-methyl-6-methoxy-1,3-benzothiazole (97%) 20 ml (0.024 g, 0.14 mmol) were added. The reaction mixtures were stirred without heating until the volume reduced considerably; then the samples were placed in desiccators containing CaCl2 at room temperature to evaporate slowly, leading to the formation of X-ray quality single crystals. For the synthesis with 2,5,6-trimethyl-1,3-benzothiazole (99%), the ligand (0.0227 g, 0.0128 mmol) was added to 20 ml of an acetone solution (0.07515 g, 0.0677 mmol) of [NEt4]2[Pt2Br6] with stirring, and a portion of the reaction mixture was slowly evaporated at 277 K in a small beaker in a secondary container which also contained CaCl2 to form X-ray quality single crystals.
Crystal data, data collection and structure
details are summarized in Table 2. H atoms were positioned in idealized locations: d(C—H) = 0.95 Å, Uiso(H) = 1.2Ueq(C); d(C—H2) = 0.99 Å, Uiso(H) = 1.2Ueq(C); d(C—H3) = 0.98 Å, Uiso(H) = 1.5Ueq(C). The NEt4 cation in 3 presented disorder with 0.57/0.43 occupancies.The synthesis of new platinum complexes as potential drugs for cancer still is of interest for medicinal chemists. The structural details of these complexes provide the opportunity to predict, to a certain extent, the potential biological activity of these species. In this regard, four new platinum(II) complexes with benzothiazole ligands of general formula [PtBr3L]− have been synthesized according to the equation below and their structures characterized.
[NEt4]2[Pt2Br6] + 2L → 2 [NEt4][PtBr3L]
L = 2-methyl-1,3-benzothiazole (1), 6-methoxy-2-methyl-1,3-benzothiazole (2), 2,5,6-trimethyl-1,3-benzothiazole (3), and 2-methyl-5-nitro-1,3-benzothiazole (4). All complexes showed the benzothiazoles coordinate the PtII atom through the imino nitrogen. Also, the benzothiazole is positioned out of the square plane with dihedral angles between 76.4 (4) and 88.1 (4)°, as previously reported in other platinum–benzothiazole complexes. Given that benzothiazoles have anticancer properties, these platinum complexes may have enhanced properties as a result of potential synergism between the ligand and PtII. This deserves further studies as suggested by Noolvi et al. (2012).
To elucidate with certainty and accurately the platinum coordination patterns, the structural determination of the complexes was performed by single-crystal X-ray diffraction technique. Table 1 contains selected bond distances, dihedral angles and torsion angles. All of the title complexes adopt a square-planar coordination geometry with a deviation of no more than 4° from ideal 180° and 90° angles. As reported previously, although not predicted using Pearson's hard–soft acid base theory, the benzothiazole is engaged in bonding to the metal through the imine nitrogen (Pt—N) instead of Pt—S coordination (Muir et al., 1987, 1988a,b, 1990; Gomez et al., 1988; Lozano et al., 1994). Also the benzothiazole ligand is positioned out of the square plane as discussed below.
Figs. 1–4 show the molecular diagrams of the four new complexes. [NEt4][PtBr3(2-Me-benzothiazole)] (1) crystallizes in an orthorhombic
with eight formula units. It is a square-planar complex with Pt—N and average Pt—Br bond lengths of 2.035 (5) and 2.433 (6) Å, respectively, which are within the expected range for PtII complexes. There is no trans-influence observed in the Pt—Br bond trans to the Pt—N bond. The benzothiazole ligand is planar and the methyl group resides in the ligand plane. The dihedral angle between PtBr3N unit and the benzothiazole ring is 88.1 (4)°, similar to those observed in other PtII–benzothiazole complexes, as a result of reducing the between PtBr3 and the benzothiazole ligand (Muir et al., 1987, 1988a,b, 1990; Gomez et al., 1988; Lozano et al., 1994). Two types of N—C bonds are present, one long [N—C2 1.408 (7) Å] and one short [N—C1 1.309 (7) Å], indicating the presence of single- and double-bond character in the thiazole ring. The angle at the S atom in the thiazole ring is 90.3 (3)° suggesting it is using unhybridized p orbitals for bonding.[NEt4][PtBr3(6-OMe-2-Me-benzothiazole)] (2), [NEt4][PtBr3(2,5,6-Me-benzothiazole)] (3) and [NEt4][PtBr3(5-NO2-2-Me-benzothiazole)] (4) crystallize in the same type of ≤ 1.60° but in 4, the NO2 group is out of the benzothiazole plane with a torsion angle of 7.5 (7)°. The C—NO2 bond length is 1.476 (7) Å, and the O—N—O angle is 117.4 (5)°. The C—NO2 bond length and O—N—O angle in 4 are smaller than those observed in nitrobenzene [C—NO2 = 1.486 (2) Å and O—N—O = 123.9 (5)°], which suggests higher electron delocalization between the nitro group and the aromatic ring in 4 (Johnson, 2015). The angles at the S atom in 2, 3 and 4 are also near 90°, suggesting the use of pure p orbitals for bonding.
and monoclinic P21/n, containing four formula units. The Pt—N and average Pt—Br bond lengths for 2, 3, and 4 are 2.025 (4)/2.430 (6) Å, 2.027 (5)/2.425 (6) Å and 2.041 (4)/2.431 (8) Å, respectively, which are within the expected range (Muir et al., 1987, 1988a,b, 1990; Gomez et al., 1988; Lozano et al., 1994). The dihedral angle between PtBr3N and the benzothiazole in 2 is 86.7 (3)° and the torsion angle between the aromatic ring and the OCH3 group is 11.9 (7)°. The C—O (OCH3) bond length is 1.427 (7) Å, and the C—O—CH3 angle is 116.3 (5)°. In contrast to 1 and 2, [NEt4][PtBr3(2,5,6-Me-benzothiazole)] and [NEt4][PtBr3(5-NO2-2-Me-benzothiazole)] have lower dihedral angles between PtBr3N unit and the benzothiazole ring, 78.6 (4) and 76.(4)°, respectively. The methyl groups on 3 and 4 are almost co-planar with the benzothiazole plane with deviationsAnalysis of the packing diagrams of all of the complexes showed their packings consist of [NEt4]+ cations and [PtBr3(L)]− anions. The [NEt4][PtBr3(2-Me-benzothiazole)] and [NEt4][PtBr3(6-OMe-2-Me-benzothiazole)] complexes showed partial π-stacking between the phenyl and the thiazole rings (Fig. 5).
The parent complex [NEt4]2[Pt2Br6] was prepared as reported in the literature (Livingstone and Whitley, 1962). Ligands were purchased from Sigma–Aldrich and were used without further purification.
Acetone solutions of [NEt4]2[Pt2Br6] were prepared (0.075 g, 0.068 mmol) and the corresponding amount of ligand was added with stirring. For 2-methyl-1,3-benzothiazole (99%) 18 ml (0.021 g, 0.14 mmol) were added; for 2-methyl-5-nitro-1,3-benzothiazole (98%) (0.027 g, 0.014 mmol) were added, and for 2-methyl-6-methoxy-1,3-benzothiazole (97%) 20 ml (0.024 g, 0.14 mmol) were added. The reaction mixtures were stirred without heating until the volume reduced considerably; then the samples were placed in desiccators containing CaCl2 at room temperature to evaporate slowly, leading to the formation of X-ray quality single crystals. For the synthesis with 2,5,6-trimethyl-1,3-benzothiazole (99%), the ligand (0.0227 g, 0.0128 mmol) was added to 20 ml of an acetone solution (0.07515 g, 0.0677 mmol) of [NEt4]2[Pt2Br6] with stirring, and a portion of the reaction mixture was slowly evaporated at 277 K in a small beaker in a secondary container which also contained CaCl2 to form X-ray quality single crystals.
detailsCrystal data, data collection and structure
details are summarized in Table 2. H atoms were positioned in idealized locations: d(C—H) = 0.95 Å, Uiso(H) = 1.2Ueq(C); d(C—H2) = 0.99 Å, Uiso(H) = 1.2Ueq(C); d(C—H3) = 0.98 Å, Uiso(H) = 1.5Ueq(C). The NEt4 cation in 3 presented disorder with 0.57/0.43 occupancies.For all compounds, data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013). Program(s) used to solve structure: SHELXT (Sheldrick, 2015a) for (1), (2), (3); SIR2004 (Burla et al., 2007) for (4). For all compounds, program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).Fig. 1. The molecular structure of [NEt4][PtBr3(2-Me-benzothiazole)] (1), with displacement ellipsoids drawn at the 50% probability level. | |
Fig. 2. The molecular structure of [NEt4][PtBr3(6-OMe-2-Me-benzothiazole)] (2), with displacement ellipsoids drawn at the 50% probability level. | |
Fig. 3. The molecular structure of [NEt4][PtBr3(2,5,6-Me-benzothiazole)] (3), with displacement ellipsoids drawn at the 50% probability level. The NEt4 cation in 3 presented disorder with 0.57/0.43 occupancies. Only the major fraction is shown for clarity. | |
Fig. 4. The molecular structure of [NEt4][PtBr3(5-NO2-2-Me-benzothiazole)] (4), with displacement ellipsoids drawn at the 50% probability level. | |
Fig. 5. Details of the packing interactions in (a) [NEt4][PtBr3(2-Me-benzothiazole)] and (b) [NEt4][PtBr3(6-Ome-2-Me-benzothiazole)]. |
(C8H20N)[PtBr3(C8H7NS)] | Dx = 2.159 Mg m−3 |
Mr = 714.27 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 5330 reflections |
a = 12.114 (3) Å | θ = 2.4–26.3° |
b = 10.656 (3) Å | µ = 11.94 mm−1 |
c = 34.043 (9) Å | T = 100 K |
V = 4394 (2) Å3 | Block, bronze |
Z = 8 | 0.18 × 0.16 × 0.12 mm |
F(000) = 2688 |
Bruker APEXII CCD diffractometer | 4418 independent reflections |
Radiation source: Micro Focus Rotating Anode, Bruker TXS | 3675 reflections with I > 2σ(I) |
Double Bounce Multilayer Mirrors monochromator | Rint = 0.047 |
Detector resolution: 7.9 pixels mm-1 | θmax = 26.3°, θmin = 2.1° |
φ and ω scans | h = −14→15 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | k = −13→10 |
Tmin = 0.052, Tmax = 0.093 | l = −32→42 |
16951 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.031 | H-atom parameters constrained |
wR(F2) = 0.081 | w = 1/[σ2(Fo2) + (0.0352P)2 + 9.4131P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.003 |
4418 reflections | Δρmax = 2.38 e Å−3 |
213 parameters | Δρmin = −0.93 e Å−3 |
(C8H20N)[PtBr3(C8H7NS)] | V = 4394 (2) Å3 |
Mr = 714.27 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 12.114 (3) Å | µ = 11.94 mm−1 |
b = 10.656 (3) Å | T = 100 K |
c = 34.043 (9) Å | 0.18 × 0.16 × 0.12 mm |
Bruker APEXII CCD diffractometer | 4418 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | 3675 reflections with I > 2σ(I) |
Tmin = 0.052, Tmax = 0.093 | Rint = 0.047 |
16951 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.081 | H-atom parameters constrained |
S = 1.03 | Δρmax = 2.38 e Å−3 |
4418 reflections | Δρmin = −0.93 e Å−3 |
213 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N2 | 1.0097 (4) | 0.4493 (4) | 0.31862 (12) | 0.0213 (9) | |
C9 | 1.1117 (4) | 0.3738 (5) | 0.30557 (16) | 0.0242 (12) | |
H9A | 1.1049 | 0.2872 | 0.3158 | 0.029* | |
H9B | 1.1781 | 0.4117 | 0.3177 | 0.029* | |
C10 | 1.1289 (4) | 0.3677 (5) | 0.26030 (15) | 0.0251 (12) | |
H10A | 1.0624 | 0.3336 | 0.2479 | 0.038* | |
H10B | 1.1920 | 0.3134 | 0.2544 | 0.038* | |
H10C | 1.1431 | 0.4523 | 0.2502 | 0.038* | |
C11 | 1.0130 (5) | 0.5845 (5) | 0.30315 (17) | 0.0259 (12) | |
H11A | 1.0120 | 0.5820 | 0.2741 | 0.031* | |
H11B | 0.9452 | 0.6282 | 0.3119 | 0.031* | |
C12 | 1.1120 (5) | 0.6608 (5) | 0.31618 (18) | 0.0339 (14) | |
H12A | 1.1104 | 0.7430 | 0.3033 | 0.051* | |
H12B | 1.1799 | 0.6166 | 0.3089 | 0.051* | |
H12C | 1.1097 | 0.6720 | 0.3447 | 0.051* | |
C13 | 1.0124 (5) | 0.4436 (6) | 0.36271 (15) | 0.0259 (12) | |
H13A | 1.0827 | 0.4809 | 0.3719 | 0.031* | |
H13B | 1.0121 | 0.3543 | 0.3708 | 0.031* | |
C14 | 0.9162 (5) | 0.5110 (5) | 0.38363 (18) | 0.0305 (13) | |
H14A | 0.9172 | 0.6003 | 0.3768 | 0.046* | |
H14B | 0.9243 | 0.5017 | 0.4121 | 0.046* | |
H14C | 0.8460 | 0.4739 | 0.3753 | 0.046* | |
C15 | 0.9038 (4) | 0.3934 (5) | 0.30181 (16) | 0.0248 (12) | |
H15A | 0.8405 | 0.4417 | 0.3122 | 0.030* | |
H15B | 0.9048 | 0.4048 | 0.2730 | 0.030* | |
C16 | 0.8844 (4) | 0.2555 (5) | 0.31049 (17) | 0.0303 (13) | |
H16A | 0.9447 | 0.2056 | 0.2993 | 0.045* | |
H16B | 0.8142 | 0.2291 | 0.2988 | 0.045* | |
H16C | 0.8819 | 0.2426 | 0.3390 | 0.045* | |
Pt1 | 0.47417 (2) | 0.49411 (2) | 0.37148 (2) | 0.01931 (8) | |
Br1 | 0.31934 (5) | 0.60895 (7) | 0.39974 (2) | 0.04565 (19) | |
Br2 | 0.39703 (4) | 0.51437 (5) | 0.30574 (2) | 0.02401 (13) | |
Br3 | 0.63067 (4) | 0.37553 (6) | 0.34693 (2) | 0.03153 (15) | |
S1 | 0.67084 (13) | 0.48262 (14) | 0.48520 (4) | 0.0321 (3) | |
N1 | 0.5409 (4) | 0.4702 (4) | 0.42583 (13) | 0.0221 (10) | |
C1 | 0.6192 (4) | 0.5394 (5) | 0.44109 (15) | 0.0247 (12) | |
C2 | 0.5158 (4) | 0.3638 (5) | 0.44867 (15) | 0.0246 (12) | |
C3 | 0.4356 (5) | 0.2744 (5) | 0.44047 (16) | 0.0290 (12) | |
H3 | 0.3925 | 0.2796 | 0.4172 | 0.035* | |
C4 | 0.4200 (6) | 0.1769 (6) | 0.46718 (16) | 0.0351 (14) | |
H4 | 0.3642 | 0.1162 | 0.4624 | 0.042* | |
C5 | 0.4853 (5) | 0.1671 (7) | 0.50112 (16) | 0.0398 (16) | |
H5 | 0.4740 | 0.0987 | 0.5186 | 0.048* | |
C6 | 0.5666 (6) | 0.2558 (6) | 0.50970 (17) | 0.0379 (15) | |
H6 | 0.6106 | 0.2495 | 0.5327 | 0.045* | |
C7 | 0.5807 (5) | 0.3552 (5) | 0.48283 (16) | 0.0315 (13) | |
C8 | 0.6643 (5) | 0.6567 (5) | 0.42301 (16) | 0.0290 (13) | |
H8A | 0.7204 | 0.6929 | 0.4404 | 0.044* | |
H8B | 0.6043 | 0.7173 | 0.4193 | 0.044* | |
H8C | 0.6976 | 0.6368 | 0.3975 | 0.044* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N2 | 0.022 (2) | 0.022 (2) | 0.020 (2) | 0.0039 (19) | 0.0002 (18) | 0.0024 (19) |
C9 | 0.016 (3) | 0.024 (3) | 0.032 (3) | 0.001 (2) | 0.000 (2) | 0.000 (2) |
C10 | 0.019 (3) | 0.025 (3) | 0.032 (3) | 0.003 (2) | 0.004 (2) | −0.003 (2) |
C11 | 0.026 (3) | 0.021 (3) | 0.031 (3) | 0.002 (2) | 0.004 (2) | 0.006 (2) |
C12 | 0.031 (3) | 0.027 (3) | 0.044 (4) | 0.000 (3) | −0.004 (3) | 0.002 (3) |
C13 | 0.030 (3) | 0.028 (3) | 0.020 (3) | 0.000 (3) | −0.001 (2) | −0.001 (2) |
C14 | 0.030 (3) | 0.037 (3) | 0.025 (3) | −0.001 (3) | 0.000 (2) | −0.003 (2) |
C15 | 0.018 (3) | 0.032 (3) | 0.025 (3) | 0.003 (2) | −0.005 (2) | −0.002 (2) |
C16 | 0.021 (3) | 0.031 (3) | 0.039 (3) | −0.003 (2) | −0.001 (2) | 0.002 (3) |
Pt1 | 0.01841 (13) | 0.02210 (12) | 0.01742 (13) | 0.00011 (8) | −0.00120 (7) | −0.00100 (8) |
Br1 | 0.0399 (4) | 0.0675 (5) | 0.0296 (3) | 0.0248 (3) | −0.0059 (3) | −0.0135 (3) |
Br2 | 0.0241 (3) | 0.0255 (3) | 0.0224 (3) | −0.0012 (2) | −0.0022 (2) | −0.0005 (2) |
Br3 | 0.0235 (3) | 0.0411 (3) | 0.0300 (3) | 0.0027 (3) | 0.0004 (2) | −0.0050 (3) |
S1 | 0.0337 (8) | 0.0381 (8) | 0.0245 (7) | 0.0055 (7) | −0.0105 (6) | −0.0028 (6) |
N1 | 0.022 (2) | 0.025 (2) | 0.019 (2) | 0.0030 (19) | 0.0017 (18) | 0.0000 (19) |
C1 | 0.022 (3) | 0.031 (3) | 0.021 (3) | 0.006 (2) | −0.004 (2) | −0.009 (2) |
C2 | 0.030 (3) | 0.026 (3) | 0.018 (3) | 0.005 (2) | 0.001 (2) | −0.005 (2) |
C3 | 0.033 (3) | 0.032 (3) | 0.021 (3) | −0.003 (3) | 0.004 (2) | −0.005 (2) |
C4 | 0.051 (4) | 0.032 (3) | 0.022 (3) | −0.004 (3) | 0.006 (3) | −0.002 (2) |
C5 | 0.062 (4) | 0.032 (4) | 0.026 (3) | 0.003 (3) | 0.005 (3) | 0.003 (2) |
C6 | 0.054 (4) | 0.035 (3) | 0.025 (3) | 0.011 (3) | −0.004 (3) | 0.001 (3) |
C7 | 0.036 (3) | 0.033 (3) | 0.025 (3) | 0.006 (3) | 0.002 (3) | −0.010 (2) |
C8 | 0.034 (3) | 0.032 (3) | 0.021 (3) | −0.001 (3) | −0.010 (2) | −0.004 (2) |
N2—C9 | 1.540 (6) | C16—H16A | 0.9800 |
N2—C11 | 1.534 (7) | C16—H16B | 0.9800 |
N2—C13 | 1.503 (7) | C16—H16C | 0.9800 |
N2—C15 | 1.526 (7) | Pt1—Br1 | 2.4375 (8) |
C9—H9A | 0.9900 | Pt1—Br2 | 2.4349 (8) |
C9—H9B | 0.9900 | Pt1—Br3 | 2.4268 (7) |
C9—C10 | 1.557 (7) | Pt1—N1 | 2.035 (5) |
C10—H10A | 0.9800 | S1—C1 | 1.735 (6) |
C10—H10B | 0.9800 | S1—C7 | 1.744 (6) |
C10—H10C | 0.9800 | N1—C1 | 1.309 (7) |
C11—H11A | 0.9900 | N1—C2 | 1.408 (7) |
C11—H11B | 0.9900 | C1—C8 | 1.497 (8) |
C11—C12 | 1.515 (8) | C2—C3 | 1.389 (8) |
C12—H12A | 0.9800 | C2—C7 | 1.407 (8) |
C12—H12B | 0.9800 | C3—H3 | 0.9500 |
C12—H12C | 0.9800 | C3—C4 | 1.393 (8) |
C13—H13A | 0.9900 | C4—H4 | 0.9500 |
C13—H13B | 0.9900 | C4—C5 | 1.405 (8) |
C13—C14 | 1.543 (8) | C5—H5 | 0.9500 |
C14—H14A | 0.9800 | C5—C6 | 1.396 (9) |
C14—H14B | 0.9800 | C6—H6 | 0.9500 |
C14—H14C | 0.9800 | C6—C7 | 1.410 (8) |
C15—H15A | 0.9900 | C8—H8A | 0.9800 |
C15—H15B | 0.9900 | C8—H8B | 0.9800 |
C15—C16 | 1.517 (8) | C8—H8C | 0.9800 |
C11—N2—C9 | 111.8 (4) | C16—C15—H15A | 108.3 |
C13—N2—C9 | 104.5 (4) | C16—C15—H15B | 108.3 |
C13—N2—C11 | 112.4 (4) | C15—C16—H16A | 109.5 |
C13—N2—C15 | 112.1 (4) | C15—C16—H16B | 109.5 |
C15—N2—C9 | 111.2 (4) | C15—C16—H16C | 109.5 |
C15—N2—C11 | 105.1 (4) | H16A—C16—H16B | 109.5 |
N2—C9—H9A | 108.6 | H16A—C16—H16C | 109.5 |
N2—C9—H9B | 108.6 | H16B—C16—H16C | 109.5 |
N2—C9—C10 | 114.5 (4) | Br2—Pt1—Br1 | 91.31 (2) |
H9A—C9—H9B | 107.6 | Br3—Pt1—Br1 | 176.85 (2) |
C10—C9—H9A | 108.6 | Br3—Pt1—Br2 | 91.69 (2) |
C10—C9—H9B | 108.6 | N1—Pt1—Br1 | 90.56 (12) |
C9—C10—H10A | 109.5 | N1—Pt1—Br2 | 177.68 (13) |
C9—C10—H10B | 109.5 | N1—Pt1—Br3 | 86.41 (12) |
C9—C10—H10C | 109.5 | C1—S1—C7 | 90.3 (3) |
H10A—C10—H10B | 109.5 | C1—N1—Pt1 | 125.3 (4) |
H10A—C10—H10C | 109.5 | C1—N1—C2 | 113.0 (5) |
H10B—C10—H10C | 109.5 | C2—N1—Pt1 | 121.2 (4) |
N2—C11—H11A | 108.5 | N1—C1—S1 | 114.1 (4) |
N2—C11—H11B | 108.5 | N1—C1—C8 | 124.9 (5) |
H11A—C11—H11B | 107.5 | C8—C1—S1 | 121.0 (4) |
C12—C11—N2 | 115.1 (5) | C3—C2—N1 | 126.3 (5) |
C12—C11—H11A | 108.5 | C3—C2—C7 | 120.8 (5) |
C12—C11—H11B | 108.5 | C7—C2—N1 | 112.8 (5) |
C11—C12—H12A | 109.5 | C2—C3—H3 | 120.8 |
C11—C12—H12B | 109.5 | C2—C3—C4 | 118.4 (5) |
C11—C12—H12C | 109.5 | C4—C3—H3 | 120.8 |
H12A—C12—H12B | 109.5 | C3—C4—H4 | 119.5 |
H12A—C12—H12C | 109.5 | C3—C4—C5 | 121.0 (6) |
H12B—C12—H12C | 109.5 | C5—C4—H4 | 119.5 |
N2—C13—H13A | 108.5 | C4—C5—H5 | 119.4 |
N2—C13—H13B | 108.5 | C6—C5—C4 | 121.3 (6) |
N2—C13—C14 | 115.2 (5) | C6—C5—H5 | 119.4 |
H13A—C13—H13B | 107.5 | C5—C6—H6 | 121.4 |
C14—C13—H13A | 108.5 | C5—C6—C7 | 117.3 (6) |
C14—C13—H13B | 108.5 | C7—C6—H6 | 121.4 |
C13—C14—H14A | 109.5 | C2—C7—S1 | 109.7 (4) |
C13—C14—H14B | 109.5 | C2—C7—C6 | 121.2 (6) |
C13—C14—H14C | 109.5 | C6—C7—S1 | 129.1 (5) |
H14A—C14—H14B | 109.5 | C1—C8—H8A | 109.5 |
H14A—C14—H14C | 109.5 | C1—C8—H8B | 109.5 |
H14B—C14—H14C | 109.5 | C1—C8—H8C | 109.5 |
N2—C15—H15A | 108.3 | H8A—C8—H8B | 109.5 |
N2—C15—H15B | 108.3 | H8A—C8—H8C | 109.5 |
H15A—C15—H15B | 107.4 | H8B—C8—H8C | 109.5 |
C16—C15—N2 | 115.8 (4) |
(C8H20N)[PtBr3(C9H9NOS)] | F(000) = 1408 |
Mr = 744.30 | Dx = 2.176 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.7591 (2) Å | Cell parameters from 7838 reflections |
b = 30.4214 (8) Å | θ = 2.2–26.4° |
c = 9.6551 (3) Å | µ = 11.55 mm−1 |
β = 94.539 (1)° | T = 100 K |
V = 2271.87 (11) Å3 | Block, bronze |
Z = 4 | 0.32 × 0.3 × 0.24 mm |
Bruker APEXII CCD diffractometer | 4650 independent reflections |
Radiation source: Micro Focus Rotating Anode, Bruker TXS | 4377 reflections with I > 2σ(I) |
Double Bounce Multilayer Mirrors monochromator | Rint = 0.017 |
Detector resolution: 7.9 pixels mm-1 | θmax = 26.4°, θmin = 2.2° |
φ and ω scans | h = −9→9 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | k = −32→38 |
Tmin = 0.056, Tmax = 0.093 | l = −12→7 |
12741 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.066 | w = 1/[σ2(Fo2) + (0.0227P)2 + 15.6321P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
4650 reflections | Δρmax = 1.25 e Å−3 |
232 parameters | Δρmin = −1.36 e Å−3 |
(C8H20N)[PtBr3(C9H9NOS)] | V = 2271.87 (11) Å3 |
Mr = 744.30 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.7591 (2) Å | µ = 11.55 mm−1 |
b = 30.4214 (8) Å | T = 100 K |
c = 9.6551 (3) Å | 0.32 × 0.3 × 0.24 mm |
β = 94.539 (1)° |
Bruker APEXII CCD diffractometer | 4650 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | 4377 reflections with I > 2σ(I) |
Tmin = 0.056, Tmax = 0.093 | Rint = 0.017 |
12741 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.066 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0227P)2 + 15.6321P] where P = (Fo2 + 2Fc2)/3 |
4650 reflections | Δρmax = 1.25 e Å−3 |
232 parameters | Δρmin = −1.36 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N2 | 0.4744 (6) | 0.68841 (14) | 1.0072 (4) | 0.0224 (9) | |
C10 | 0.4365 (10) | 0.6636 (2) | 0.8727 (7) | 0.0442 (16) | |
H10A | 0.3248 | 0.6744 | 0.8289 | 0.053* | |
H10B | 0.5266 | 0.6715 | 0.8099 | 0.053* | |
C11 | 0.4277 (12) | 0.6153 (2) | 0.8795 (10) | 0.065 (3) | |
H11A | 0.5326 | 0.6039 | 0.9305 | 0.097* | |
H11B | 0.4183 | 0.6032 | 0.7851 | 0.097* | |
H11C | 0.3263 | 0.6065 | 0.9274 | 0.097* | |
C12 | 0.6550 (9) | 0.6759 (3) | 1.0680 (8) | 0.0529 (19) | |
H12A | 0.6514 | 0.6451 | 1.1004 | 0.064* | |
H12B | 0.7336 | 0.6769 | 0.9921 | 0.064* | |
C13 | 0.7308 (9) | 0.7028 (3) | 1.1828 (7) | 0.061 (2) | |
H13A | 0.6425 | 0.7094 | 1.2470 | 0.092* | |
H13B | 0.7743 | 0.7304 | 1.1462 | 0.092* | |
H13C | 0.8264 | 0.6868 | 1.2322 | 0.092* | |
C14 | 0.3484 (8) | 0.6760 (2) | 1.1136 (7) | 0.0403 (15) | |
H14A | 0.3582 | 0.6440 | 1.1319 | 0.048* | |
H14B | 0.3825 | 0.6915 | 1.2018 | 0.048* | |
C15 | 0.1616 (7) | 0.6868 (2) | 1.0702 (6) | 0.0338 (13) | |
H15A | 0.0883 | 0.6767 | 1.1421 | 0.051* | |
H15B | 0.1267 | 0.6719 | 0.9824 | 0.051* | |
H15C | 0.1488 | 0.7186 | 1.0581 | 0.051* | |
C16 | 0.4651 (9) | 0.7366 (2) | 0.9800 (8) | 0.0426 (15) | |
H16A | 0.4764 | 0.7522 | 1.0703 | 0.051* | |
H16B | 0.3493 | 0.7435 | 0.9349 | 0.051* | |
C17 | 0.6004 (9) | 0.7545 (2) | 0.8898 (7) | 0.0425 (15) | |
H17A | 0.7160 | 0.7485 | 0.9340 | 0.064* | |
H17B | 0.5849 | 0.7864 | 0.8787 | 0.064* | |
H17C | 0.5876 | 0.7404 | 0.7984 | 0.064* | |
Pt1 | 0.73847 (2) | 0.62959 (2) | 0.53521 (2) | 0.01668 (6) | |
Br1 | 0.90363 (7) | 0.66953 (2) | 0.71969 (5) | 0.02744 (12) | |
Br2 | 0.52471 (7) | 0.68778 (2) | 0.51179 (5) | 0.02766 (12) | |
Br3 | 0.58868 (7) | 0.58627 (2) | 0.35144 (6) | 0.02867 (12) | |
S1 | 1.20643 (16) | 0.54060 (4) | 0.58464 (13) | 0.0233 (3) | |
O1 | 0.8812 (6) | 0.43871 (13) | 0.9169 (4) | 0.0337 (9) | |
N1 | 0.9166 (5) | 0.58111 (13) | 0.5642 (4) | 0.0184 (8) | |
C1 | 1.0717 (6) | 0.58239 (17) | 0.5202 (5) | 0.0213 (10) | |
C2 | 0.8935 (6) | 0.54544 (15) | 0.6519 (5) | 0.0191 (10) | |
C3 | 0.7394 (7) | 0.53338 (17) | 0.7090 (5) | 0.0222 (10) | |
H3 | 0.6361 | 0.5497 | 0.6889 | 0.027* | |
C4 | 0.7421 (7) | 0.49725 (17) | 0.7951 (5) | 0.0255 (11) | |
H4 | 0.6390 | 0.4885 | 0.8344 | 0.031* | |
C5 | 0.8937 (8) | 0.47324 (17) | 0.8256 (5) | 0.0262 (11) | |
C6 | 1.0457 (7) | 0.48345 (17) | 0.7664 (5) | 0.0250 (11) | |
H6 | 1.1476 | 0.4664 | 0.7841 | 0.030* | |
C7 | 1.0411 (6) | 0.52035 (16) | 0.6788 (5) | 0.0204 (10) | |
C8 | 1.1316 (7) | 0.61649 (18) | 0.4252 (6) | 0.0277 (11) | |
H8A | 1.1838 | 0.6409 | 0.4799 | 0.042* | |
H8B | 1.0329 | 0.6273 | 0.3652 | 0.042* | |
H8C | 1.2175 | 0.6038 | 0.3678 | 0.042* | |
C9 | 1.0403 (9) | 0.4191 (2) | 0.9692 (7) | 0.0393 (15) | |
H9A | 1.0908 | 0.4030 | 0.8943 | 0.059* | |
H9B | 1.0187 | 0.3987 | 1.0445 | 0.059* | |
H9C | 1.1206 | 0.4420 | 1.0046 | 0.059* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N2 | 0.024 (2) | 0.024 (2) | 0.019 (2) | 0.0044 (18) | 0.0044 (17) | 0.0013 (17) |
C10 | 0.056 (4) | 0.044 (4) | 0.035 (3) | −0.010 (3) | 0.015 (3) | −0.011 (3) |
C11 | 0.076 (6) | 0.040 (4) | 0.086 (6) | −0.017 (4) | 0.048 (5) | −0.026 (4) |
C12 | 0.033 (4) | 0.079 (6) | 0.047 (4) | 0.012 (4) | 0.008 (3) | 0.020 (4) |
C13 | 0.026 (3) | 0.130 (8) | 0.027 (3) | −0.007 (4) | −0.004 (3) | 0.005 (4) |
C14 | 0.037 (3) | 0.051 (4) | 0.033 (3) | 0.003 (3) | 0.009 (3) | 0.003 (3) |
C15 | 0.026 (3) | 0.042 (4) | 0.034 (3) | 0.000 (2) | 0.003 (2) | −0.008 (3) |
C16 | 0.047 (4) | 0.029 (3) | 0.052 (4) | −0.001 (3) | 0.003 (3) | −0.004 (3) |
C17 | 0.045 (4) | 0.034 (3) | 0.049 (4) | −0.007 (3) | 0.007 (3) | 0.005 (3) |
Pt1 | 0.01677 (10) | 0.01604 (10) | 0.01721 (10) | 0.00084 (7) | 0.00130 (7) | 0.00005 (7) |
Br1 | 0.0303 (3) | 0.0270 (3) | 0.0244 (2) | −0.0012 (2) | −0.0021 (2) | −0.0027 (2) |
Br2 | 0.0295 (3) | 0.0267 (3) | 0.0266 (3) | 0.0050 (2) | 0.0015 (2) | −0.0004 (2) |
Br3 | 0.0262 (3) | 0.0286 (3) | 0.0303 (3) | 0.0029 (2) | −0.0035 (2) | −0.0062 (2) |
S1 | 0.0177 (6) | 0.0245 (6) | 0.0275 (6) | 0.0036 (5) | 0.0004 (5) | −0.0025 (5) |
O1 | 0.047 (2) | 0.022 (2) | 0.032 (2) | 0.0026 (18) | 0.0023 (18) | 0.0078 (16) |
N1 | 0.019 (2) | 0.018 (2) | 0.0171 (19) | −0.0008 (16) | −0.0012 (16) | −0.0010 (16) |
C1 | 0.018 (2) | 0.022 (3) | 0.023 (2) | 0.0007 (19) | −0.0009 (19) | −0.003 (2) |
C2 | 0.024 (2) | 0.013 (2) | 0.020 (2) | 0.0017 (19) | 0.0000 (19) | −0.0010 (18) |
C3 | 0.021 (2) | 0.020 (3) | 0.026 (2) | 0.001 (2) | 0.004 (2) | −0.002 (2) |
C4 | 0.028 (3) | 0.024 (3) | 0.025 (3) | −0.001 (2) | 0.007 (2) | 0.001 (2) |
C5 | 0.041 (3) | 0.016 (2) | 0.021 (2) | 0.000 (2) | 0.000 (2) | −0.0010 (19) |
C6 | 0.033 (3) | 0.017 (2) | 0.025 (2) | 0.005 (2) | −0.004 (2) | −0.002 (2) |
C7 | 0.021 (2) | 0.018 (2) | 0.022 (2) | 0.0006 (19) | −0.0022 (19) | −0.0056 (19) |
C8 | 0.024 (3) | 0.027 (3) | 0.033 (3) | −0.001 (2) | 0.008 (2) | 0.000 (2) |
C9 | 0.053 (4) | 0.025 (3) | 0.037 (3) | −0.001 (3) | −0.011 (3) | 0.007 (2) |
N2—C10 | 1.511 (7) | C17—H17C | 0.9800 |
N2—C12 | 1.523 (8) | Pt1—Br1 | 2.4352 (5) |
N2—C14 | 1.521 (7) | Pt1—Br2 | 2.4241 (6) |
N2—C16 | 1.491 (8) | Pt1—Br3 | 2.4309 (5) |
C10—H10A | 0.9900 | Pt1—N1 | 2.025 (4) |
C10—H10B | 0.9900 | S1—C1 | 1.730 (5) |
C10—C11 | 1.474 (10) | S1—C7 | 1.743 (5) |
C11—H11A | 0.9800 | O1—C5 | 1.379 (6) |
C11—H11B | 0.9800 | O1—C9 | 1.427 (7) |
C11—H11C | 0.9800 | N1—C1 | 1.309 (6) |
C12—H12A | 0.9900 | N1—C2 | 1.396 (6) |
C12—H12B | 0.9900 | C1—C8 | 1.483 (7) |
C12—C13 | 1.464 (11) | C2—C3 | 1.405 (7) |
C13—H13A | 0.9800 | C2—C7 | 1.383 (7) |
C13—H13B | 0.9800 | C3—H3 | 0.9500 |
C13—H13C | 0.9800 | C3—C4 | 1.377 (7) |
C14—H14A | 0.9900 | C4—H4 | 0.9500 |
C14—H14B | 0.9900 | C4—C5 | 1.396 (8) |
C14—C15 | 1.513 (8) | C5—C6 | 1.386 (8) |
C15—H15A | 0.9800 | C6—H6 | 0.9500 |
C15—H15B | 0.9800 | C6—C7 | 1.404 (7) |
C15—H15C | 0.9800 | C8—H8A | 0.9800 |
C16—H16A | 0.9900 | C8—H8B | 0.9800 |
C16—H16B | 0.9900 | C8—H8C | 0.9800 |
C16—C17 | 1.517 (9) | C9—H9A | 0.9800 |
C17—H17A | 0.9800 | C9—H9B | 0.9800 |
C17—H17B | 0.9800 | C9—H9C | 0.9800 |
C10—N2—C12 | 108.5 (5) | C16—C17—H17B | 109.5 |
C10—N2—C14 | 111.4 (5) | C16—C17—H17C | 109.5 |
C14—N2—C12 | 107.4 (4) | H17A—C17—H17B | 109.5 |
C16—N2—C10 | 109.6 (5) | H17A—C17—H17C | 109.5 |
C16—N2—C12 | 110.1 (5) | H17B—C17—H17C | 109.5 |
C16—N2—C14 | 109.8 (5) | Br2—Pt1—Br1 | 91.171 (19) |
N2—C10—H10A | 107.9 | Br2—Pt1—Br3 | 92.507 (19) |
N2—C10—H10B | 107.9 | Br3—Pt1—Br1 | 176.30 (2) |
H10A—C10—H10B | 107.2 | N1—Pt1—Br1 | 87.04 (11) |
C11—C10—N2 | 117.8 (6) | N1—Pt1—Br2 | 177.41 (11) |
C11—C10—H10A | 107.9 | N1—Pt1—Br3 | 89.29 (11) |
C11—C10—H10B | 107.9 | C1—S1—C7 | 89.9 (2) |
C10—C11—H11A | 109.5 | C5—O1—C9 | 116.3 (5) |
C10—C11—H11B | 109.5 | C1—N1—Pt1 | 124.7 (3) |
C10—C11—H11C | 109.5 | C1—N1—C2 | 112.6 (4) |
H11A—C11—H11B | 109.5 | C2—N1—Pt1 | 122.1 (3) |
H11A—C11—H11C | 109.5 | N1—C1—S1 | 114.0 (4) |
H11B—C11—H11C | 109.5 | N1—C1—C8 | 124.2 (5) |
N2—C12—H12A | 108.0 | C8—C1—S1 | 121.8 (4) |
N2—C12—H12B | 108.0 | N1—C2—C3 | 126.5 (4) |
H12A—C12—H12B | 107.3 | C7—C2—N1 | 113.5 (4) |
C13—C12—N2 | 117.1 (6) | C7—C2—C3 | 120.0 (5) |
C13—C12—H12A | 108.0 | C2—C3—H3 | 120.9 |
C13—C12—H12B | 108.0 | C4—C3—C2 | 118.2 (5) |
C12—C13—H13A | 109.5 | C4—C3—H3 | 120.9 |
C12—C13—H13B | 109.5 | C3—C4—H4 | 119.4 |
C12—C13—H13C | 109.5 | C3—C4—C5 | 121.2 (5) |
H13A—C13—H13B | 109.5 | C5—C4—H4 | 119.4 |
H13A—C13—H13C | 109.5 | O1—C5—C4 | 115.7 (5) |
H13B—C13—H13C | 109.5 | O1—C5—C6 | 122.6 (5) |
N2—C14—H14A | 108.7 | C6—C5—C4 | 121.7 (5) |
N2—C14—H14B | 108.7 | C5—C6—H6 | 121.8 |
H14A—C14—H14B | 107.6 | C5—C6—C7 | 116.5 (5) |
C15—C14—N2 | 114.3 (5) | C7—C6—H6 | 121.8 |
C15—C14—H14A | 108.7 | C2—C7—S1 | 109.9 (4) |
C15—C14—H14B | 108.7 | C2—C7—C6 | 122.4 (5) |
C14—C15—H15A | 109.5 | C6—C7—S1 | 127.7 (4) |
C14—C15—H15B | 109.5 | C1—C8—H8A | 109.5 |
C14—C15—H15C | 109.5 | C1—C8—H8B | 109.5 |
H15A—C15—H15B | 109.5 | C1—C8—H8C | 109.5 |
H15A—C15—H15C | 109.5 | H8A—C8—H8B | 109.5 |
H15B—C15—H15C | 109.5 | H8A—C8—H8C | 109.5 |
N2—C16—H16A | 108.4 | H8B—C8—H8C | 109.5 |
N2—C16—H16B | 108.4 | O1—C9—H9A | 109.5 |
N2—C16—C17 | 115.4 (5) | O1—C9—H9B | 109.5 |
H16A—C16—H16B | 107.5 | O1—C9—H9C | 109.5 |
C17—C16—H16A | 108.4 | H9A—C9—H9B | 109.5 |
C17—C16—H16B | 108.4 | H9A—C9—H9C | 109.5 |
C16—C17—H17A | 109.5 | H9B—C9—H9C | 109.5 |
(C8H20N)[PtBr3(C10H11NS)] | F(000) = 1408 |
Mr = 742.33 | Dx = 2.151 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.9742 (4) Å | Cell parameters from 5770 reflections |
b = 30.2807 (14) Å | θ = 2.3–26.4° |
c = 9.6427 (5) Å | µ = 11.45 mm−1 |
β = 100.151 (3)° | T = 100 K |
V = 2291.9 (2) Å3 | Block, red |
Z = 4 | 0.5 × 0.36 × 0.25 mm |
Bruker APEXII CCD diffractometer | 4692 independent reflections |
Radiation source: Micro Focus Rotating Anode, Bruker TXS | 4120 reflections with I > 2σ(I) |
Double Bounce Multilayer Mirrors monochromator | Rint = 0.048 |
Detector resolution: 7.9 pixels mm-1 | θmax = 26.5°, θmin = 2.3° |
φ and ω scans | h = −9→5 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | k = −37→31 |
Tmin = 0.003, Tmax = 0.028 | l = −10→12 |
10729 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.106 | w = 1/[σ2(Fo2) + (0.056P)2 + 1.6623P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.002 |
4692 reflections | Δρmax = 1.88 e Å−3 |
266 parameters | Δρmin = −1.02 e Å−3 |
(C8H20N)[PtBr3(C10H11NS)] | V = 2291.9 (2) Å3 |
Mr = 742.33 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.9742 (4) Å | µ = 11.45 mm−1 |
b = 30.2807 (14) Å | T = 100 K |
c = 9.6427 (5) Å | 0.5 × 0.36 × 0.25 mm |
β = 100.151 (3)° |
Bruker APEXII CCD diffractometer | 4692 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | 4120 reflections with I > 2σ(I) |
Tmin = 0.003, Tmax = 0.028 | Rint = 0.048 |
10729 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.05 | Δρmax = 1.88 e Å−3 |
4692 reflections | Δρmin = −1.02 e Å−3 |
266 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N2 | 0.5342 (7) | 0.18676 (17) | 0.5028 (5) | 0.0281 (11) | |
C12 | 0.8178 (11) | 0.1847 (4) | 0.6760 (9) | 0.060 (2) | |
H12A | 0.8673 | 0.1911 | 0.7743 | 0.089* | 0.566 (9) |
H12B | 0.8346 | 0.1535 | 0.6560 | 0.089* | 0.566 (9) |
H12C | 0.8736 | 0.2030 | 0.6137 | 0.089* | 0.566 (9) |
H12D | 0.9301 | 0.1706 | 0.6901 | 0.089* | 0.434 (9) |
H12E | 0.8313 | 0.2168 | 0.6706 | 0.089* | 0.434 (9) |
H12F | 0.7606 | 0.1775 | 0.7551 | 0.089* | 0.434 (9) |
C14 | 0.4260 (12) | 0.1207 (3) | 0.3440 (10) | 0.057 (2) | |
H14A | 0.4285 | 0.0884 | 0.3448 | 0.086* | 0.566 (9) |
H14B | 0.3076 | 0.1309 | 0.3310 | 0.086* | 0.566 (9) |
H14C | 0.4792 | 0.1316 | 0.2665 | 0.086* | 0.566 (9) |
H14D | 0.3786 | 0.1145 | 0.2451 | 0.086* | 0.434 (9) |
H14E | 0.5321 | 0.1041 | 0.3718 | 0.086* | 0.434 (9) |
H14F | 0.3439 | 0.1119 | 0.4033 | 0.086* | 0.434 (9) |
C16 | 0.2437 (10) | 0.1856 (2) | 0.5783 (8) | 0.0404 (17) | |
H16A | 0.1334 | 0.2008 | 0.5672 | 0.061* | 0.566 (9) |
H16B | 0.2262 | 0.1549 | 0.5468 | 0.061* | 0.566 (9) |
H16C | 0.2981 | 0.1862 | 0.6777 | 0.061* | 0.566 (9) |
H16D | 0.1836 | 0.1759 | 0.6532 | 0.061* | 0.434 (9) |
H16E | 0.2345 | 0.2178 | 0.5684 | 0.061* | 0.434 (9) |
H16F | 0.1925 | 0.1716 | 0.4893 | 0.061* | 0.434 (9) |
C18 | 0.6616 (12) | 0.2550 (3) | 0.4092 (10) | 0.054 (2) | |
H18A | 0.7199 | 0.2649 | 0.3334 | 0.081* | 0.566 (9) |
H18B | 0.5547 | 0.2713 | 0.4045 | 0.081* | 0.566 (9) |
H18C | 0.7348 | 0.2603 | 0.5004 | 0.081* | 0.566 (9) |
H18D | 0.6529 | 0.2872 | 0.4073 | 0.081* | 0.434 (9) |
H18E | 0.7769 | 0.2463 | 0.4540 | 0.081* | 0.434 (9) |
H18F | 0.6378 | 0.2435 | 0.3126 | 0.081* | 0.434 (9) |
C11 | 0.6256 (17) | 0.1951 (4) | 0.6507 (12) | 0.033 (3) | 0.566 (9) |
H11A | 0.5715 | 0.1771 | 0.7162 | 0.040* | 0.566 (9) |
H11B | 0.6104 | 0.2266 | 0.6739 | 0.040* | 0.566 (9) |
C13 | 0.5186 (18) | 0.1373 (4) | 0.4765 (14) | 0.037 (3) | 0.566 (9) |
H13A | 0.6356 | 0.1252 | 0.4883 | 0.044* | 0.566 (9) |
H13B | 0.4650 | 0.1245 | 0.5524 | 0.044* | 0.566 (9) |
C15 | 0.3598 (15) | 0.2095 (4) | 0.4884 (12) | 0.032 (3) | 0.566 (9) |
H15A | 0.3039 | 0.2093 | 0.3882 | 0.038* | 0.566 (9) |
H15B | 0.3758 | 0.2406 | 0.5193 | 0.038* | 0.566 (9) |
C17A | 0.6257 (15) | 0.2086 (5) | 0.3936 (13) | 0.040 (3) | 0.566 (9) |
H17A | 0.7349 | 0.1930 | 0.3950 | 0.048* | 0.566 (9) |
H17B | 0.5555 | 0.2039 | 0.2993 | 0.048* | 0.566 (9) |
C11A | 0.716 (2) | 0.1689 (6) | 0.546 (2) | 0.044 (5) | 0.434 (9) |
H11C | 0.7089 | 0.1363 | 0.5527 | 0.053* | 0.434 (9) |
H11D | 0.7792 | 0.1755 | 0.4687 | 0.053* | 0.434 (9) |
C13A | 0.460 (2) | 0.1664 (5) | 0.3608 (15) | 0.033 (4) | 0.434 (9) |
H13C | 0.3509 | 0.1819 | 0.3266 | 0.040* | 0.434 (9) |
H13D | 0.5377 | 0.1742 | 0.2953 | 0.040* | 0.434 (9) |
C15A | 0.435 (2) | 0.1723 (6) | 0.6165 (14) | 0.031 (4) | 0.434 (9) |
H15C | 0.4863 | 0.1860 | 0.7073 | 0.038* | 0.434 (9) |
H15D | 0.4442 | 0.1398 | 0.6281 | 0.038* | 0.434 (9) |
C17 | 0.535 (2) | 0.2363 (5) | 0.4914 (17) | 0.033 (4) | 0.434 (9) |
H17C | 0.4195 | 0.2461 | 0.4466 | 0.040* | 0.434 (9) |
H17D | 0.5582 | 0.2489 | 0.5876 | 0.040* | 0.434 (9) |
Pt1 | 0.28820 (3) | 0.36639 (2) | 0.54603 (2) | 0.02321 (10) | |
Br1 | 0.11056 (8) | 0.41268 (2) | 0.37347 (7) | 0.03333 (17) | |
Br2 | 0.08097 (9) | 0.30729 (2) | 0.50744 (7) | 0.03324 (17) | |
Br3 | 0.47121 (9) | 0.32318 (2) | 0.72302 (8) | 0.04046 (19) | |
S1 | 0.7243 (2) | 0.46490 (5) | 0.58781 (16) | 0.0279 (3) | |
N1 | 0.4604 (6) | 0.41615 (16) | 0.5825 (5) | 0.0239 (10) | |
C1 | 0.6036 (8) | 0.4185 (2) | 0.5354 (6) | 0.0271 (13) | |
C2 | 0.4361 (8) | 0.4523 (2) | 0.6672 (6) | 0.0258 (13) | |
C3 | 0.2953 (8) | 0.4599 (2) | 0.7319 (6) | 0.0263 (13) | |
H3 | 0.2031 | 0.4396 | 0.7202 | 0.032* | |
C4 | 0.2917 (8) | 0.4974 (2) | 0.8136 (6) | 0.0285 (13) | |
C5 | 0.4298 (9) | 0.5269 (2) | 0.8313 (7) | 0.0319 (14) | |
C6 | 0.5667 (9) | 0.5201 (2) | 0.7669 (6) | 0.0294 (14) | |
H6 | 0.6578 | 0.5408 | 0.7782 | 0.035* | |
C7 | 0.5713 (8) | 0.4824 (2) | 0.6840 (6) | 0.0263 (13) | |
C8 | 0.6633 (9) | 0.3844 (2) | 0.4455 (7) | 0.0342 (15) | |
H8A | 0.5737 | 0.3784 | 0.3642 | 0.051* | |
H8B | 0.6900 | 0.3572 | 0.5001 | 0.051* | |
H8C | 0.7657 | 0.3949 | 0.4126 | 0.051* | |
C9 | 0.1406 (9) | 0.5053 (2) | 0.8848 (7) | 0.0346 (15) | |
H9A | 0.0846 | 0.5330 | 0.8503 | 0.052* | |
H9B | 0.1792 | 0.5073 | 0.9869 | 0.052* | |
H9C | 0.0599 | 0.4808 | 0.8636 | 0.052* | |
C10 | 0.4240 (10) | 0.5680 (2) | 0.9223 (8) | 0.0391 (16) | |
H10A | 0.3289 | 0.5869 | 0.8798 | 0.059* | |
H10B | 0.5311 | 0.5844 | 0.9286 | 0.059* | |
H10C | 0.4084 | 0.5591 | 1.0170 | 0.059* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N2 | 0.028 (3) | 0.026 (3) | 0.031 (3) | 0.001 (2) | 0.007 (2) | −0.001 (2) |
C12 | 0.036 (4) | 0.093 (7) | 0.047 (5) | 0.003 (4) | −0.002 (4) | 0.015 (5) |
C14 | 0.053 (5) | 0.052 (5) | 0.072 (6) | −0.005 (4) | 0.026 (5) | −0.035 (5) |
C16 | 0.038 (4) | 0.037 (4) | 0.051 (4) | 0.000 (3) | 0.023 (3) | −0.005 (3) |
C18 | 0.061 (5) | 0.045 (5) | 0.060 (5) | −0.009 (4) | 0.021 (4) | 0.014 (4) |
C11 | 0.045 (7) | 0.027 (6) | 0.027 (5) | −0.004 (5) | 0.004 (5) | −0.001 (5) |
C13 | 0.038 (7) | 0.028 (6) | 0.043 (7) | 0.009 (5) | 0.004 (6) | −0.008 (5) |
C15 | 0.037 (6) | 0.023 (6) | 0.034 (6) | 0.003 (5) | 0.007 (5) | −0.002 (5) |
C17A | 0.024 (6) | 0.063 (9) | 0.034 (6) | 0.000 (6) | 0.010 (5) | 0.003 (6) |
C11A | 0.035 (9) | 0.044 (10) | 0.058 (11) | 0.017 (8) | 0.020 (8) | 0.022 (8) |
C13A | 0.049 (9) | 0.032 (8) | 0.023 (7) | −0.013 (7) | 0.014 (7) | −0.013 (6) |
C15A | 0.032 (8) | 0.044 (9) | 0.020 (7) | 0.000 (7) | 0.009 (6) | 0.006 (6) |
C17 | 0.037 (8) | 0.031 (8) | 0.037 (8) | −0.009 (7) | 0.018 (7) | 0.001 (6) |
Pt1 | 0.02518 (15) | 0.01967 (15) | 0.02593 (15) | −0.00120 (8) | 0.00770 (10) | 0.00056 (8) |
Br1 | 0.0312 (3) | 0.0284 (3) | 0.0401 (4) | −0.0015 (3) | 0.0056 (3) | 0.0073 (3) |
Br2 | 0.0415 (4) | 0.0266 (3) | 0.0321 (3) | −0.0074 (3) | 0.0077 (3) | 0.0004 (2) |
Br3 | 0.0389 (4) | 0.0386 (4) | 0.0420 (4) | 0.0009 (3) | 0.0019 (3) | 0.0113 (3) |
S1 | 0.0268 (7) | 0.0263 (8) | 0.0320 (8) | −0.0029 (6) | 0.0091 (6) | 0.0027 (6) |
N1 | 0.026 (3) | 0.025 (3) | 0.021 (2) | 0.001 (2) | 0.006 (2) | 0.002 (2) |
C1 | 0.030 (3) | 0.025 (3) | 0.026 (3) | −0.004 (2) | 0.006 (3) | 0.000 (2) |
C2 | 0.023 (3) | 0.027 (3) | 0.028 (3) | −0.001 (2) | 0.007 (2) | 0.006 (2) |
C3 | 0.028 (3) | 0.022 (3) | 0.030 (3) | −0.003 (2) | 0.007 (3) | 0.002 (2) |
C4 | 0.033 (3) | 0.023 (3) | 0.031 (3) | 0.004 (3) | 0.009 (3) | −0.001 (3) |
C5 | 0.046 (4) | 0.025 (3) | 0.025 (3) | 0.004 (3) | 0.005 (3) | 0.000 (2) |
C6 | 0.037 (4) | 0.021 (3) | 0.030 (3) | −0.005 (3) | 0.005 (3) | 0.005 (2) |
C7 | 0.032 (3) | 0.022 (3) | 0.026 (3) | 0.002 (2) | 0.007 (3) | 0.007 (2) |
C8 | 0.030 (3) | 0.037 (4) | 0.039 (4) | 0.001 (3) | 0.013 (3) | −0.005 (3) |
C9 | 0.045 (4) | 0.027 (3) | 0.034 (3) | 0.001 (3) | 0.012 (3) | 0.001 (3) |
C10 | 0.050 (4) | 0.020 (3) | 0.048 (4) | −0.004 (3) | 0.013 (3) | −0.004 (3) |
N2—C11 | 1.504 (12) | C13—H13A | 0.9900 |
N2—C13 | 1.520 (12) | C13—H13B | 0.9900 |
N2—C15 | 1.535 (13) | C15—H15A | 0.9900 |
N2—C17A | 1.533 (13) | C15—H15B | 0.9900 |
N2—C11A | 1.537 (16) | C17A—H17A | 0.9900 |
N2—C13A | 1.523 (14) | C17A—H17B | 0.9900 |
N2—C15A | 1.523 (15) | C11A—H11C | 0.9900 |
N2—C17 | 1.505 (16) | C11A—H11D | 0.9900 |
C12—H12A | 0.9800 | C13A—H13C | 0.9900 |
C12—H12B | 0.9800 | C13A—H13D | 0.9900 |
C12—H12C | 0.9800 | C15A—H15C | 0.9900 |
C12—H12D | 0.9800 | C15A—H15D | 0.9900 |
C12—H12E | 0.9800 | C17—H17C | 0.9900 |
C12—H12F | 0.9800 | C17—H17D | 0.9900 |
C12—C11 | 1.542 (15) | Pt1—Br1 | 2.4309 (7) |
C12—C11A | 1.45 (2) | Pt1—Br2 | 2.4198 (7) |
C14—H14A | 0.9800 | Pt1—Br3 | 2.4240 (7) |
C14—H14B | 0.9800 | Pt1—N1 | 2.027 (5) |
C14—H14C | 0.9800 | S1—C1 | 1.727 (6) |
C14—H14D | 0.9800 | S1—C7 | 1.739 (7) |
C14—H14E | 0.9800 | N1—C1 | 1.303 (8) |
C14—H14F | 0.9800 | N1—C2 | 1.401 (8) |
C14—C13 | 1.449 (15) | C1—C8 | 1.482 (9) |
C14—C13A | 1.415 (16) | C2—C3 | 1.397 (9) |
C16—H16A | 0.9800 | C2—C7 | 1.398 (9) |
C16—H16B | 0.9800 | C3—H3 | 0.9500 |
C16—H16C | 0.9800 | C3—C4 | 1.385 (9) |
C16—H16D | 0.9800 | C4—C5 | 1.404 (9) |
C16—H16E | 0.9800 | C4—C9 | 1.507 (9) |
C16—H16F | 0.9800 | C5—C6 | 1.363 (10) |
C16—C15 | 1.553 (14) | C5—C10 | 1.528 (9) |
C16—C15A | 1.561 (17) | C6—H6 | 0.9500 |
C18—H18A | 0.9800 | C6—C7 | 1.400 (9) |
C18—H18B | 0.9800 | C8—H8A | 0.9800 |
C18—H18C | 0.9800 | C8—H8B | 0.9800 |
C18—H18D | 0.9800 | C8—H8C | 0.9800 |
C18—H18E | 0.9800 | C9—H9A | 0.9800 |
C18—H18F | 0.9800 | C9—H9B | 0.9800 |
C18—C17A | 1.435 (17) | C9—H9C | 0.9800 |
C18—C17 | 1.500 (16) | C10—H10A | 0.9800 |
C11—H11A | 0.9900 | C10—H10B | 0.9800 |
C11—H11B | 0.9900 | C10—H10C | 0.9800 |
C11—N2—C13 | 109.7 (7) | N2—C17A—H17B | 107.9 |
C11—N2—C15 | 106.9 (8) | C18—C17A—N2 | 117.4 (10) |
C11—N2—C17A | 111.6 (8) | C18—C17A—H17A | 107.9 |
C13—N2—C15 | 112.3 (8) | C18—C17A—H17B | 107.9 |
C13—N2—C17A | 110.2 (8) | H17A—C17A—H17B | 107.2 |
C17A—N2—C15 | 106.1 (7) | N2—C11A—H11C | 107.7 |
C13A—N2—C11A | 107.5 (11) | N2—C11A—H11D | 107.7 |
C13A—N2—C15A | 111.2 (9) | C12—C11A—N2 | 118.3 (13) |
C15A—N2—C11A | 106.7 (9) | C12—C11A—H11C | 107.7 |
C17—N2—C11A | 110.9 (10) | C12—C11A—H11D | 107.7 |
C17—N2—C13A | 110.0 (9) | H11C—C11A—H11D | 107.1 |
C17—N2—C15A | 110.4 (9) | N2—C13A—H13C | 106.7 |
H12A—C12—H12B | 109.5 | N2—C13A—H13D | 106.7 |
H12A—C12—H12C | 109.5 | C14—C13A—N2 | 122.3 (12) |
H12B—C12—H12C | 109.5 | C14—C13A—H13C | 106.7 |
H12D—C12—H12E | 109.5 | C14—C13A—H13D | 106.7 |
H12D—C12—H12F | 109.5 | H13C—C13A—H13D | 106.6 |
H12E—C12—H12F | 109.5 | N2—C15A—C16 | 111.4 (9) |
C11—C12—H12A | 109.5 | N2—C15A—H15C | 109.4 |
C11—C12—H12B | 109.5 | N2—C15A—H15D | 109.4 |
C11—C12—H12C | 109.5 | C16—C15A—H15C | 109.4 |
C11A—C12—H12D | 109.5 | C16—C15A—H15D | 109.4 |
C11A—C12—H12E | 109.5 | H15C—C15A—H15D | 108.0 |
C11A—C12—H12F | 109.5 | N2—C17—H17C | 108.5 |
H14A—C14—H14B | 109.5 | N2—C17—H17D | 108.5 |
H14A—C14—H14C | 109.5 | C18—C17—N2 | 115.2 (11) |
H14B—C14—H14C | 109.5 | C18—C17—H17C | 108.5 |
H14D—C14—H14E | 109.5 | C18—C17—H17D | 108.5 |
H14D—C14—H14F | 109.5 | H17C—C17—H17D | 107.5 |
H14E—C14—H14F | 109.5 | Br2—Pt1—Br1 | 91.23 (2) |
C13—C14—H14A | 109.5 | Br2—Pt1—Br3 | 91.10 (2) |
C13—C14—H14B | 109.5 | Br3—Pt1—Br1 | 177.45 (3) |
C13—C14—H14C | 109.5 | N1—Pt1—Br1 | 89.16 (14) |
C13A—C14—H14D | 109.5 | N1—Pt1—Br2 | 178.76 (14) |
C13A—C14—H14E | 109.5 | N1—Pt1—Br3 | 88.50 (14) |
C13A—C14—H14F | 109.5 | C1—S1—C7 | 89.8 (3) |
H16A—C16—H16B | 109.5 | C1—N1—Pt1 | 126.1 (4) |
H16A—C16—H16C | 109.5 | C1—N1—C2 | 112.3 (5) |
H16B—C16—H16C | 109.5 | C2—N1—Pt1 | 121.6 (4) |
H16D—C16—H16E | 109.5 | N1—C1—S1 | 114.9 (5) |
H16D—C16—H16F | 109.5 | N1—C1—C8 | 123.9 (6) |
H16E—C16—H16F | 109.5 | C8—C1—S1 | 121.2 (5) |
C15—C16—H16A | 109.5 | C3—C2—N1 | 126.5 (6) |
C15—C16—H16B | 109.5 | C3—C2—C7 | 120.4 (6) |
C15—C16—H16C | 109.5 | C7—C2—N1 | 113.1 (5) |
C15A—C16—H16D | 109.5 | C2—C3—H3 | 120.4 |
C15A—C16—H16E | 109.5 | C4—C3—C2 | 119.2 (6) |
C15A—C16—H16F | 109.5 | C4—C3—H3 | 120.4 |
H18A—C18—H18B | 109.5 | C3—C4—C5 | 119.8 (6) |
H18A—C18—H18C | 109.5 | C3—C4—C9 | 119.1 (6) |
H18B—C18—H18C | 109.5 | C5—C4—C9 | 121.1 (6) |
H18D—C18—H18E | 109.5 | C4—C5—C10 | 119.0 (6) |
H18D—C18—H18F | 109.5 | C6—C5—C4 | 121.5 (6) |
H18E—C18—H18F | 109.5 | C6—C5—C10 | 119.5 (6) |
C17A—C18—H18A | 109.5 | C5—C6—H6 | 120.4 |
C17A—C18—H18B | 109.5 | C5—C6—C7 | 119.1 (6) |
C17A—C18—H18C | 109.5 | C7—C6—H6 | 120.4 |
C17—C18—H18D | 109.5 | C2—C7—S1 | 109.9 (5) |
C17—C18—H18E | 109.5 | C2—C7—C6 | 120.0 (6) |
C17—C18—H18F | 109.5 | C6—C7—S1 | 130.1 (5) |
N2—C11—C12 | 114.7 (9) | C1—C8—H8A | 109.5 |
N2—C11—H11A | 108.6 | C1—C8—H8B | 109.5 |
N2—C11—H11B | 108.6 | C1—C8—H8C | 109.5 |
C12—C11—H11A | 108.6 | H8A—C8—H8B | 109.5 |
C12—C11—H11B | 108.6 | H8A—C8—H8C | 109.5 |
H11A—C11—H11B | 107.6 | H8B—C8—H8C | 109.5 |
N2—C13—H13A | 107.3 | C4—C9—H9A | 109.5 |
N2—C13—H13B | 107.3 | C4—C9—H9B | 109.5 |
C14—C13—N2 | 120.2 (10) | C4—C9—H9C | 109.5 |
C14—C13—H13A | 107.3 | H9A—C9—H9B | 109.5 |
C14—C13—H13B | 107.3 | H9A—C9—H9C | 109.5 |
H13A—C13—H13B | 106.9 | H9B—C9—H9C | 109.5 |
N2—C15—C16 | 111.2 (8) | C5—C10—H10A | 109.5 |
N2—C15—H15A | 109.4 | C5—C10—H10B | 109.5 |
N2—C15—H15B | 109.4 | C5—C10—H10C | 109.5 |
C16—C15—H15A | 109.4 | H10A—C10—H10B | 109.5 |
C16—C15—H15B | 109.4 | H10A—C10—H10C | 109.5 |
H15A—C15—H15B | 108.0 | H10B—C10—H10C | 109.5 |
N2—C17A—H17A | 107.9 |
(C8H20N)[PtBr3(C8H6N2O2S)] | F(000) = 1432 |
Mr = 759.28 | Dx = 2.272 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.1170 (3) Å | Cell parameters from 9483 reflections |
b = 29.2717 (12) Å | θ = 2.6–26.4° |
c = 9.5102 (4) Å | µ = 11.83 mm−1 |
β = 100.720 (1)° | T = 100 K |
V = 2220.17 (15) Å3 | Block, bronze |
Z = 4 | 0.32 × 0.3 × 0.25 mm |
Bruker APEXII CCD diffractometer | 4550 independent reflections |
Radiation source: Micro Focus Rotating Anode, Bruker TXS | 4254 reflections with I > 2σ(I) |
Double Bounce Multilayer Mirrors monochromator | Rint = 0.028 |
Detector resolution: 7.9 pixels mm-1 | θmax = 26.5°, θmin = 2.3° |
φ and ω scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | k = −31→36 |
Tmin = 0.020, Tmax = 0.045 | l = −11→7 |
15975 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.060 | w = 1/[σ2(Fo2) + (0.0044P)2 + 13.0832P] where P = (Fo2 + 2Fc2)/3 |
S = 1.18 | (Δ/σ)max = 0.002 |
4550 reflections | Δρmax = 1.25 e Å−3 |
240 parameters | Δρmin = −1.37 e Å−3 |
(C8H20N)[PtBr3(C8H6N2O2S)] | V = 2220.17 (15) Å3 |
Mr = 759.28 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.1170 (3) Å | µ = 11.83 mm−1 |
b = 29.2717 (12) Å | T = 100 K |
c = 9.5102 (4) Å | 0.32 × 0.3 × 0.25 mm |
β = 100.720 (1)° |
Bruker APEXII CCD diffractometer | 4550 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | 4254 reflections with I > 2σ(I) |
Tmin = 0.020, Tmax = 0.045 | Rint = 0.028 |
15975 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.060 | H-atom parameters constrained |
S = 1.18 | w = 1/[σ2(Fo2) + (0.0044P)2 + 13.0832P] where P = (Fo2 + 2Fc2)/3 |
4550 reflections | Δρmax = 1.25 e Å−3 |
240 parameters | Δρmin = −1.37 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N3 | 0.5548 (5) | 0.31569 (15) | 0.5135 (4) | 0.0187 (9) | |
C9 | 0.3795 (6) | 0.30025 (19) | 0.5223 (6) | 0.0247 (12) | |
H9A | 0.3850 | 0.2685 | 0.5585 | 0.030* | |
H9B | 0.3112 | 0.3000 | 0.4245 | 0.030* | |
C10 | 0.2911 (7) | 0.3294 (2) | 0.6170 (7) | 0.0320 (13) | |
H10A | 0.2786 | 0.3606 | 0.5790 | 0.048* | |
H10B | 0.3575 | 0.3300 | 0.7143 | 0.048* | |
H10C | 0.1802 | 0.3165 | 0.6191 | 0.048* | |
C11 | 0.5608 (7) | 0.36508 (18) | 0.4693 (6) | 0.0257 (12) | |
H11A | 0.6776 | 0.3727 | 0.4612 | 0.031* | |
H11B | 0.5304 | 0.3844 | 0.5459 | 0.031* | |
C12 | 0.4466 (7) | 0.3771 (2) | 0.3292 (6) | 0.0281 (12) | |
H12A | 0.4815 | 0.3601 | 0.2510 | 0.042* | |
H12B | 0.4534 | 0.4099 | 0.3115 | 0.042* | |
H12C | 0.3308 | 0.3689 | 0.3347 | 0.042* | |
C13 | 0.6205 (7) | 0.28611 (19) | 0.4041 (6) | 0.0262 (12) | |
H13A | 0.5380 | 0.2869 | 0.3133 | 0.031* | |
H13B | 0.7258 | 0.2998 | 0.3853 | 0.031* | |
C14 | 0.6543 (8) | 0.2369 (2) | 0.4470 (7) | 0.0323 (13) | |
H14A | 0.6871 | 0.2201 | 0.3675 | 0.048* | |
H14B | 0.5527 | 0.2232 | 0.4707 | 0.048* | |
H14C | 0.7452 | 0.2354 | 0.5307 | 0.048* | |
C15 | 0.6624 (7) | 0.3097 (2) | 0.6607 (6) | 0.0266 (12) | |
H15A | 0.6503 | 0.2780 | 0.6929 | 0.032* | |
H15B | 0.6197 | 0.3303 | 0.7284 | 0.032* | |
C16 | 0.8519 (7) | 0.3199 (3) | 0.6674 (7) | 0.0373 (15) | |
H16A | 0.8974 | 0.2984 | 0.6054 | 0.056* | |
H16B | 0.9122 | 0.3164 | 0.7661 | 0.056* | |
H16C | 0.8655 | 0.3512 | 0.6348 | 0.056* | |
Pt1 | 0.19959 (2) | 0.63310 (2) | 0.93287 (2) | 0.01542 (6) | |
Br1 | 0.01278 (6) | 0.67668 (2) | 0.75173 (6) | 0.02534 (12) | |
Br2 | 0.39391 (7) | 0.69652 (2) | 0.97693 (6) | 0.02338 (12) | |
Br3 | 0.38687 (6) | 0.58556 (2) | 1.10249 (6) | 0.02324 (12) | |
S1 | −0.23297 (16) | 0.53228 (4) | 0.89580 (14) | 0.0211 (3) | |
O1 | 0.4596 (5) | 0.50291 (14) | 0.6504 (4) | 0.0304 (9) | |
O2 | 0.3206 (5) | 0.44662 (14) | 0.5385 (5) | 0.0343 (10) | |
N1 | 0.0320 (5) | 0.58046 (14) | 0.8995 (4) | 0.0168 (8) | |
N2 | 0.3324 (6) | 0.48001 (15) | 0.6180 (5) | 0.0247 (10) | |
C1 | −0.1103 (6) | 0.57965 (17) | 0.9469 (6) | 0.0187 (10) | |
C2 | 0.0503 (6) | 0.54253 (17) | 0.8172 (5) | 0.0187 (10) | |
C3 | 0.1902 (6) | 0.53230 (17) | 0.7554 (5) | 0.0192 (10) | |
H3 | 0.2846 | 0.5520 | 0.7661 | 0.023* | |
C4 | 0.1839 (7) | 0.49242 (17) | 0.6787 (6) | 0.0213 (11) | |
C5 | 0.0465 (7) | 0.46309 (19) | 0.6567 (6) | 0.0263 (12) | |
H5 | 0.0473 | 0.4365 | 0.5994 | 0.032* | |
C6 | −0.0899 (7) | 0.47253 (18) | 0.7177 (6) | 0.0245 (12) | |
H6 | −0.1844 | 0.4528 | 0.7047 | 0.029* | |
C7 | −0.0852 (6) | 0.51233 (18) | 0.7997 (6) | 0.0212 (11) | |
C8 | −0.1675 (7) | 0.61580 (18) | 1.0364 (6) | 0.0239 (11) | |
H8A | −0.1978 | 0.6433 | 0.9784 | 0.036* | |
H8B | −0.0770 | 0.6231 | 1.1168 | 0.036* | |
H8C | −0.2655 | 0.6049 | 1.0732 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N3 | 0.018 (2) | 0.024 (2) | 0.014 (2) | 0.0008 (17) | 0.0023 (17) | 0.0010 (17) |
C9 | 0.020 (3) | 0.027 (3) | 0.027 (3) | −0.003 (2) | 0.006 (2) | 0.004 (2) |
C10 | 0.032 (3) | 0.036 (3) | 0.031 (3) | 0.002 (3) | 0.013 (3) | 0.005 (3) |
C11 | 0.025 (3) | 0.024 (3) | 0.029 (3) | −0.004 (2) | 0.007 (2) | 0.002 (2) |
C12 | 0.035 (3) | 0.028 (3) | 0.022 (3) | 0.005 (2) | 0.009 (2) | 0.007 (2) |
C13 | 0.030 (3) | 0.032 (3) | 0.020 (3) | −0.002 (2) | 0.011 (2) | −0.004 (2) |
C14 | 0.034 (3) | 0.031 (3) | 0.033 (3) | 0.011 (2) | 0.008 (3) | −0.004 (3) |
C15 | 0.025 (3) | 0.033 (3) | 0.022 (3) | 0.000 (2) | 0.002 (2) | −0.003 (2) |
C16 | 0.018 (3) | 0.064 (4) | 0.026 (3) | 0.004 (3) | −0.006 (2) | −0.011 (3) |
Pt1 | 0.01462 (10) | 0.01661 (9) | 0.01517 (10) | −0.00278 (7) | 0.00313 (7) | −0.00054 (7) |
Br1 | 0.0203 (3) | 0.0302 (3) | 0.0244 (3) | −0.0025 (2) | 0.0012 (2) | 0.0072 (2) |
Br2 | 0.0250 (3) | 0.0238 (3) | 0.0213 (3) | −0.0058 (2) | 0.0043 (2) | −0.0007 (2) |
Br3 | 0.0194 (2) | 0.0225 (3) | 0.0263 (3) | −0.0023 (2) | −0.0001 (2) | 0.0038 (2) |
S1 | 0.0183 (6) | 0.0210 (6) | 0.0235 (7) | −0.0059 (5) | 0.0029 (5) | 0.0014 (5) |
O1 | 0.026 (2) | 0.034 (2) | 0.032 (2) | −0.0023 (17) | 0.0070 (18) | −0.0038 (18) |
O2 | 0.046 (3) | 0.024 (2) | 0.037 (2) | −0.0025 (18) | 0.018 (2) | −0.0089 (18) |
N1 | 0.014 (2) | 0.019 (2) | 0.016 (2) | −0.0005 (16) | 0.0018 (17) | 0.0022 (17) |
N2 | 0.035 (3) | 0.019 (2) | 0.021 (2) | 0.002 (2) | 0.008 (2) | 0.0032 (19) |
C1 | 0.017 (2) | 0.018 (2) | 0.022 (3) | −0.0015 (19) | 0.004 (2) | 0.005 (2) |
C2 | 0.023 (3) | 0.017 (2) | 0.014 (2) | −0.003 (2) | −0.001 (2) | 0.0027 (19) |
C3 | 0.017 (2) | 0.021 (2) | 0.018 (3) | −0.003 (2) | 0.000 (2) | 0.004 (2) |
C4 | 0.026 (3) | 0.019 (2) | 0.018 (3) | 0.000 (2) | 0.002 (2) | 0.004 (2) |
C5 | 0.036 (3) | 0.020 (3) | 0.023 (3) | −0.006 (2) | 0.005 (2) | −0.001 (2) |
C6 | 0.026 (3) | 0.023 (3) | 0.022 (3) | −0.010 (2) | −0.001 (2) | 0.000 (2) |
C7 | 0.022 (3) | 0.021 (3) | 0.020 (3) | 0.000 (2) | 0.002 (2) | 0.006 (2) |
C8 | 0.020 (3) | 0.022 (3) | 0.030 (3) | −0.002 (2) | 0.006 (2) | 0.000 (2) |
N3—C9 | 1.510 (6) | C16—H16B | 0.9800 |
N3—C11 | 1.509 (7) | C16—H16C | 0.9800 |
N3—C13 | 1.524 (6) | Pt1—Br1 | 2.4335 (6) |
N3—C15 | 1.516 (7) | Pt1—Br2 | 2.4216 (5) |
C9—H9A | 0.9900 | Pt1—Br3 | 2.4367 (5) |
C9—H9B | 0.9900 | Pt1—N1 | 2.041 (4) |
C9—C10 | 1.515 (8) | S1—C1 | 1.724 (5) |
C10—H10A | 0.9800 | S1—C7 | 1.738 (5) |
C10—H10B | 0.9800 | O1—N2 | 1.221 (6) |
C10—H10C | 0.9800 | O2—N2 | 1.228 (6) |
C11—H11A | 0.9900 | N1—C1 | 1.315 (6) |
C11—H11B | 0.9900 | N1—C2 | 1.383 (6) |
C11—C12 | 1.516 (8) | N2—C4 | 1.476 (7) |
C12—H12A | 0.9800 | C1—C8 | 1.486 (7) |
C12—H12B | 0.9800 | C2—C3 | 1.405 (7) |
C12—H12C | 0.9800 | C2—C7 | 1.397 (7) |
C13—H13A | 0.9900 | C3—H3 | 0.9500 |
C13—H13B | 0.9900 | C3—C4 | 1.372 (7) |
C13—C14 | 1.509 (8) | C4—C5 | 1.392 (7) |
C14—H14A | 0.9800 | C5—H5 | 0.9500 |
C14—H14B | 0.9800 | C5—C6 | 1.370 (8) |
C14—H14C | 0.9800 | C6—H6 | 0.9500 |
C15—H15A | 0.9900 | C6—C7 | 1.399 (7) |
C15—H15B | 0.9900 | C8—H8A | 0.9800 |
C15—C16 | 1.557 (8) | C8—H8B | 0.9800 |
C16—H16A | 0.9800 | C8—H8C | 0.9800 |
C9—N3—C13 | 108.7 (4) | C16—C15—H15B | 108.7 |
C9—N3—C15 | 107.5 (4) | C15—C16—H16A | 109.5 |
C11—N3—C9 | 112.4 (4) | C15—C16—H16B | 109.5 |
C11—N3—C13 | 108.7 (4) | C15—C16—H16C | 109.5 |
C11—N3—C15 | 108.9 (4) | H16A—C16—H16B | 109.5 |
C15—N3—C13 | 110.5 (4) | H16A—C16—H16C | 109.5 |
N3—C9—H9A | 108.6 | H16B—C16—H16C | 109.5 |
N3—C9—H9B | 108.6 | Br1—Pt1—Br3 | 176.23 (2) |
N3—C9—C10 | 114.8 (5) | Br2—Pt1—Br1 | 91.183 (19) |
H9A—C9—H9B | 107.5 | Br2—Pt1—Br3 | 90.989 (19) |
C10—C9—H9A | 108.6 | N1—Pt1—Br1 | 88.64 (11) |
C10—C9—H9B | 108.6 | N1—Pt1—Br2 | 178.40 (12) |
C9—C10—H10A | 109.5 | N1—Pt1—Br3 | 89.28 (11) |
C9—C10—H10B | 109.5 | C1—S1—C7 | 90.0 (2) |
C9—C10—H10C | 109.5 | C1—N1—Pt1 | 124.2 (3) |
H10A—C10—H10B | 109.5 | C1—N1—C2 | 111.9 (4) |
H10A—C10—H10C | 109.5 | C2—N1—Pt1 | 123.8 (3) |
H10B—C10—H10C | 109.5 | O1—N2—O2 | 123.9 (5) |
N3—C11—H11A | 108.6 | O1—N2—C4 | 118.7 (4) |
N3—C11—H11B | 108.6 | O2—N2—C4 | 117.4 (5) |
N3—C11—C12 | 114.9 (5) | N1—C1—S1 | 114.6 (4) |
H11A—C11—H11B | 107.5 | N1—C1—C8 | 124.8 (5) |
C12—C11—H11A | 108.6 | C8—C1—S1 | 120.6 (4) |
C12—C11—H11B | 108.6 | N1—C2—C3 | 126.0 (5) |
C11—C12—H12A | 109.5 | N1—C2—C7 | 114.2 (4) |
C11—C12—H12B | 109.5 | C7—C2—C3 | 119.7 (5) |
C11—C12—H12C | 109.5 | C2—C3—H3 | 121.6 |
H12A—C12—H12B | 109.5 | C4—C3—C2 | 116.8 (5) |
H12A—C12—H12C | 109.5 | C4—C3—H3 | 121.6 |
H12B—C12—H12C | 109.5 | C3—C4—N2 | 117.7 (5) |
N3—C13—H13A | 108.5 | C3—C4—C5 | 123.6 (5) |
N3—C13—H13B | 108.5 | C5—C4—N2 | 118.6 (5) |
H13A—C13—H13B | 107.5 | C4—C5—H5 | 120.0 |
C14—C13—N3 | 115.3 (4) | C6—C5—C4 | 120.0 (5) |
C14—C13—H13A | 108.5 | C6—C5—H5 | 120.0 |
C14—C13—H13B | 108.5 | C5—C6—H6 | 121.2 |
C13—C14—H14A | 109.5 | C5—C6—C7 | 117.6 (5) |
C13—C14—H14B | 109.5 | C7—C6—H6 | 121.2 |
C13—C14—H14C | 109.5 | C2—C7—S1 | 109.3 (4) |
H14A—C14—H14B | 109.5 | C2—C7—C6 | 122.2 (5) |
H14A—C14—H14C | 109.5 | C6—C7—S1 | 128.5 (4) |
H14B—C14—H14C | 109.5 | C1—C8—H8A | 109.5 |
N3—C15—H15A | 108.7 | C1—C8—H8B | 109.5 |
N3—C15—H15B | 108.7 | C1—C8—H8C | 109.5 |
N3—C15—C16 | 114.3 (5) | H8A—C8—H8B | 109.5 |
H15A—C15—H15B | 107.6 | H8A—C8—H8C | 109.5 |
C16—C15—H15A | 108.7 | H8B—C8—H8C | 109.5 |
C9—N3—C11—C12 | −55.8 (6) | N1—C2—C7—S1 | −2.1 (6) |
C9—N3—C13—C14 | −68.6 (6) | N1—C2—C7—C6 | 178.8 (5) |
C9—N3—C15—C16 | 174.6 (5) | N2—C4—C5—C6 | 176.8 (5) |
C11—N3—C9—C10 | −54.2 (6) | C1—S1—C7—C2 | 1.9 (4) |
C11—N3—C13—C14 | 168.7 (5) | C1—S1—C7—C6 | −179.1 (5) |
C11—N3—C15—C16 | −63.3 (6) | C1—N1—C2—C3 | −177.5 (5) |
C13—N3—C9—C10 | −174.6 (5) | C1—N1—C2—C7 | 1.1 (6) |
C13—N3—C11—C12 | 64.6 (6) | C2—N1—C1—S1 | 0.4 (6) |
C13—N3—C15—C16 | 56.0 (6) | C2—N1—C1—C8 | −179.1 (5) |
C15—N3—C9—C10 | 65.7 (6) | C2—C3—C4—N2 | −177.5 (4) |
C15—N3—C11—C12 | −174.9 (4) | C2—C3—C4—C5 | 1.9 (8) |
C15—N3—C13—C14 | 49.2 (6) | C3—C2—C7—S1 | 176.6 (4) |
Pt1—N1—C1—S1 | 176.9 (2) | C3—C2—C7—C6 | −2.4 (8) |
Pt1—N1—C1—C8 | −2.6 (7) | C3—C4—C5—C6 | −2.6 (8) |
Pt1—N1—C2—C3 | 6.0 (7) | C4—C5—C6—C7 | 0.7 (8) |
Pt1—N1—C2—C7 | −175.4 (3) | C5—C6—C7—S1 | −177.1 (4) |
O1—N2—C4—C3 | 7.5 (7) | C5—C6—C7—C2 | 1.7 (8) |
O1—N2—C4—C5 | −171.9 (5) | C7—S1—C1—N1 | −1.4 (4) |
O2—N2—C4—C3 | −173.4 (5) | C7—S1—C1—C8 | 178.2 (5) |
O2—N2—C4—C5 | 7.2 (7) | C7—C2—C3—C4 | 0.6 (7) |
N1—C2—C3—C4 | 179.2 (5) |
The dihedral angle is between the Pt–Br3N unit and the benzothiazole ring. The torsion angle is between the benzothiazole ring and the R group. |
1 | 2 | 3 | 4 | |
Pt—Braverage | 2.433 (6) | 2.430 (6) | 2.425 (6) | 2.431 (8) |
Pt—N | 2.035 (5) | 2.025 (4) | 2.027 (5) | 2.041 (4) |
N1—C2 | 1.408 (7) | 1.396 (6) | 1.401 (8) | 1.383 (6) |
N1—C1 | 1.309 (7) | 1.309 (6) | 1.303 (8) | 1.315 (6) |
Pt—Br1 | 2.4375 (8) | 2.4352 (5) | 2.4309 (7) | 2.4335 (6) |
Pt—Br2 | 2.4349 (8) | 2.4241 (7) | 2.4198 (7) | 2.4216 (5) |
Pt—Br3 | 2.4268 (7) | 2.4309 (5) | 2.4240 (7) | 2.4367 (5) |
S—C7 | 1.744 (6) | 1.743 (5) | 1.739 (7) | 1.738 (5) |
S—C1 | 1.735 (6) | 1.730 (5) | 1.727 (6) | 1.724 (5) |
C1—N1—C2 | 113.0 (5) | 112.6 (4) | 112.3 (5) | 111.9 (4) |
C1—S—C7 | 90.3 (3) | 89.9 (2) | 89.8 (3) | 90.0 (2) |
N1—Pt—Br1 | 90.6 (1) | 87.0 (1) | 89.2 (1) | 88.6 (1) |
N1—Pt—Br3 | 86.4 (1) | 89.3 (1) | 88.5 (1) | 89.3 (1) |
N1—Pt—Br2 | 177.7 (1) | 177.4 (1) | 178.8 (1) | 178.4 (1) |
Br1—Pt—Br3 | 176.85 (2) | 176.30 (2) | 177.45 (3) | 176.23 (2) |
Br2—Pt—Br3 | 91.69 (2) | 92.51 (2) | 91.23 (2) | 91.18 (2) |
Br1—Pt—Br2 | 91.31 (2) | 91.17 (2) | 91.10 (2) | 90.99 (2) |
Dihedral angle | 88.1 (4) | 86.7 (3) | 78.6 (4) | 76.4 (4) |
Torsion angle | 0.72 (1) (CH3) | 11.9 (7) (OCH3) | 1.5 (5) (C8H3) | 1.1 (5) (CH3) |
0.2 (6) (C9H3) | 7.5 (7) (NO2) | |||
0.3 (6) (C10H3) |
Experimental details
(1) | (2) | (3) | (4) | |
Crystal data | ||||
Chemical formula | (C8H20N)[PtBr3(C8H7NS)] | (C8H20N)[PtBr3(C9H9NOS)] | (C8H20N)[PtBr3(C10H11NS)] | (C8H20N)[PtBr3(C8H6N2O2S)] |
Mr | 714.27 | 744.30 | 742.33 | 759.28 |
Crystal system, space group | Orthorhombic, Pbca | Monoclinic, P21/n | Monoclinic, P21/n | Monoclinic, P21/n |
Temperature (K) | 100 | 100 | 100 | 100 |
a, b, c (Å) | 12.114 (3), 10.656 (3), 34.043 (9) | 7.7591 (2), 30.4214 (8), 9.6551 (3) | 7.9742 (4), 30.2807 (14), 9.6427 (5) | 8.1170 (3), 29.2717 (12), 9.5102 (4) |
α, β, γ (°) | 90, 90, 90 | 90, 94.539 (1), 90 | 90, 100.151 (3), 90 | 90, 100.720 (1), 90 |
V (Å3) | 4394 (2) | 2271.87 (11) | 2291.9 (2) | 2220.17 (15) |
Z | 8 | 4 | 4 | 4 |
Radiation type | Mo Kα | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 11.94 | 11.55 | 11.45 | 11.83 |
Crystal size (mm) | 0.18 × 0.16 × 0.12 | 0.32 × 0.3 × 0.24 | 0.5 × 0.36 × 0.25 | 0.32 × 0.3 × 0.25 |
Data collection | ||||
Diffractometer | Bruker APEXII CCD | Bruker APEXII CCD | Bruker APEXII CCD | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2014) | Multi-scan (SADABS; Bruker, 2014) | Multi-scan (SADABS; Bruker, 2014) | Multi-scan (SADABS; Bruker, 2014) |
Tmin, Tmax | 0.052, 0.093 | 0.056, 0.093 | 0.003, 0.028 | 0.020, 0.045 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16951, 4418, 3675 | 12741, 4650, 4377 | 10729, 4692, 4120 | 15975, 4550, 4254 |
Rint | 0.047 | 0.017 | 0.048 | 0.028 |
(sin θ/λ)max (Å−1) | 0.623 | 0.626 | 0.627 | 0.627 |
Refinement | ||||
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.081, 1.03 | 0.027, 0.066, 1.08 | 0.039, 0.106, 1.05 | 0.029, 0.060, 1.18 |
No. of reflections | 4418 | 4650 | 4692 | 4550 |
No. of parameters | 213 | 232 | 266 | 240 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained | H-atom parameters constrained | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0352P)2 + 9.4131P] where P = (Fo2 + 2Fc2)/3 | w = 1/[σ2(Fo2) + (0.0227P)2 + 15.6321P] where P = (Fo2 + 2Fc2)/3 | w = 1/[σ2(Fo2) + (0.056P)2 + 1.6623P] where P = (Fo2 + 2Fc2)/3 | w = 1/[σ2(Fo2) + (0.0044P)2 + 13.0832P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 2.38, −0.93 | 1.25, −1.36 | 1.88, −1.02 | 1.25, −1.37 |
Computer programs: APEX2 (Bruker, 2013), SAINT (Bruker, 2013), SHELXT (Sheldrick, 2015a), SIR2004 (Burla et al., 2007), SHELXL2014 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009).
Acknowledgements
We thank Ms Lorraine Hernández and Ms Nivia Ruiz-Alago for their help with the synthesis of the platinum compounds. We are grateful to Dr Jorge Rios-Steiner and Mr Daniel J. Vallés-Cádiz for their assistance in the crystallization process. EM thanks the NIH for financial support and JACN acknowledges the financial support of Sloan Program.
References
Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gomez, G. M., Muir, M. M., Muir, J. A. & Cox, O. (1988). Acta Cryst. C44, 1554–1557. CrossRef CAS IUCr Journals Google Scholar
Johnson, R. D. III (2015). NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101 Release 17b, September 2015, edited by Russell D. Johnson III. https://cccbdb.NIST.gov/exp2.asp?casno=98953 (accessed on November 24, 2015). Google Scholar
Livingstone, S. E. & Whitley, A. (1962). Aust. J. Chem. 15, 175–180. CrossRef CAS Google Scholar
Lozano, C. M., Muir, M. M., Tang, X. & Li, Y. (1994). J. Chem. Cryst. 24, 639–642. CrossRef CAS Google Scholar
Muir, M. M., Cadiz, M. E. & Baez, A. (1988a). Inorg. Chim. Acta, 151, 209–213. CrossRef CAS Google Scholar
Muir, M. M., Gomez, G. M., Cadiz, M. E. & Muir, J. E. (1990). Inorg. Chim. Acta, 168, 47–57. CrossRef CAS Google Scholar
Muir, M. M., Gomez, G., Muir, J. A., Cadiz, M. E., Cox, O. & Barnes, C. L. (1988b). Acta Cryst. C44, 803–806. CrossRef CAS IUCr Journals Google Scholar
Muir, J. A., Gomez, G. M., Muir, M. M., Cox, O. & Cadiz, M. E. (1987). Acta Cryst. C43, 1258–1261. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Noolvi, M. N., Patel, H. M. & Kaur, M. (2012). Eur. J. Med. Chem. 54, 447–462. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.