research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 3| March 2016| Pages 412-416

New platinum(II) complexes with benzo­thia­zole ligands

CROSSMARK_Color_square_no_text.svg

aUniversity of Puerto Rico, Department of Chemistry, PO Box 9019, Mayaguez, PR 00681, Puerto Rico, and bUniversity of California-San Diego, Department of Chemistry, Urey Hall 5128, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
*Correspondence e-mail: enrique.melendez@upr.edu

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina (Received 4 February 2016; accepted 16 February 2016; online 24 February 2016)

Four new platinum(II) complexes, namely tetra­ethyl­ammonium tri­bromido­(2-methyl-1,3-benzo­thia­zole-κN)platinate(II), [NEt4][PtBr3(C8H7NS)] (1), tetra­ethyl­ammonium tri­bromido­(6-meth­oxy-2-methyl-1,3-benzo­thia­zole-κN)platinate(II), [NEt4][PtBr3(C9H9NOS)] (2), tetra­ethyl­ammonium tri­bromido­(2,5,6-trimethyl-1,3-benzo­thia­zole-κN)platinate(II), [NEt4][PtBr3(C10H11NS)] (3), and tetra­ethyl­ammonium tri­bromido­(2-methyl-5-nitro-1,3-benzo­thia­zole-κN)platinate(II), [NEt4][PtBr3(C8H6N2O2S)] (4), have been synthesized and structurally characterized by single-crystal X-ray diffraction techniques. These species are precursors of compounds with potential application in cancer chemotherapy. All four platinum(II) complexes adopt the expected square-planar coordination geometry, and the benzo­thia­zole ligand is engaged in bonding to the metal atom through the imine N atom (Pt—N). The Pt—N bond lengths are normal: 2.035 (5), 2.025 (4), 2.027 (5) and 2.041 (4) Å for complexes 1, 2, 3 and 4, respectively. The benzo­thia­zole ligands are positioned out of the square plane, with dihedral angles ranging from 76.4 (4) to 88.1 (4)°. The NEt4 cation in 3 is disordered with 0.57/0.43 occupancies.

1. Chemical context

The synthesis of new platinum complexes as potential drugs for cancer is still of inter­est for medicinal chemists. The structural details of these complexes provide the opportunity to predict, to a certain extent, the potential biological activity of these species. In this regard, four new platinum(II) complexes with benzo­thia­zole ligands of general formula [PtBr3L] have been synthesized according to the equation below and their structures characterized.[NEt4]2[Pt2Br6] + 2L → 2 [NEt4][PtBr3L]L = 2-methyl-1,3-benzo­thia­zole (1), 6-meth­oxy-2-methyl-1,3-benzo­thia­zole (2), 2,5,6-trimethyl-1,3-benzo­thia­zole (3), and 2-methyl-5-nitro-1,3-benzo­thia­zole (4). All complexes showed the benzo­thia­zoles to coordinate the PtII atom through the imino nitro­gen atom. Also, the benzo­thia­zole is positioned out of the square plane with dihedral angles between 76.4 (4) and 88.1 (4)°, as previously reported in other platinum–benzo­thia­zole complexes. Given that benzo­thia­zoles have anti­cancer properties, these platinum complexes may have enhanced properties as a result of potential synergism between the ligand and PtII. This deserves further studies as suggested by Noolvi et al. (2012[Noolvi, M. N., Patel, H. M. & Kaur, M. (2012). Eur. J. Med. Chem. 54, 447-462.])

[Scheme 1]
.

2. Structural commentary

To elucidate with certainty and accurately the platinum coordination patterns, the structural determination of the complexes was performed by single crystal X-ray diffraction technique. Table 1[link] contains selected bond lengths, dihedral angles and torsion angles. All of the title complexes adopt a square-planar coordination geometry about the PtII atom with a deviation of no more than 4° from ideal 180° and 90° angles. As reported previously, although not predicted using Pearson's hard–soft acid base theory, the benzo­thia­zole is engaged in bonding to the metal through the imine nitro­gen (Pt—N) instead of Pt—S coordination (Muir et al., 1987[Muir, J. A., Gomez, G. M., Muir, M. M., Cox, O. & Cadiz, M. E. (1987). Acta Cryst. C43, 1258-1261.], 1988a[Muir, M. M., Cadiz, M. E. & Baez, A. (1988a). Inorg. Chim. Acta, 151, 209-213.],b[Muir, M. M., Gomez, G., Muir, J. A., Cadiz, M. E., Cox, O. & Barnes, C. L. (1988b). Acta Cryst. C44, 803-806.], 1990[Muir, M. M., Gomez, G. M., Cadiz, M. E. & Muir, J. E. (1990). Inorg. Chim. Acta, 168, 47-57.]; Gomez et al., 1988[Gomez, G. M., Muir, M. M., Muir, J. A. & Cox, O. (1988). Acta Cryst. C44, 1554-1557.]; Lozano et al., 1994[Lozano, C. M., Muir, M. M., Tang, X. & Li, Y. (1994). J. Chem. Cryst. 24, 639-642.]). Also the benzo­thia­zole ligand is positioned out of the square plane as discussed below.

Table 1
Selected bond distances and angles (Å, °)

The dihedral angle is between the Pt–Br3N unit and the benzo­thia­zole ring. The torsion angle is between the benzo­thia­zole ring and the R group.

  1 2 3 4
Pt—Braverage 2.433 (6) 2.430 (6) 2.425 (6) 2.431 (8)
Pt—N 2.035 (5) 2.025 (4) 2.027 (5) 2.041 (4)
N1—C2 1.408 (7) 1.396 (6) 1.401 (8) 1.383 (6)
N1—C1 1.309 (7) 1.309 (6) 1.303 (8) 1.315 (6)
Pt—Br1 2.4375 (8) 2.4352 (5) 2.4309 (7) 2.4335 (6)
Pt—Br2 2.4349 (8) 2.4241 (7) 2.4198 (7) 2.4216 (5)
Pt—Br3 2.4268 (7) 2.4309 (5) 2.4240 (7) 2.4367 (5)
S—C7 1.744 (6) 1.743 (5) 1.739 (7) 1.738 (5)
S—C1 1.735 (6) 1.730 (5) 1.727 (6) 1.724 (5)
         
C1—N1—C2 113.0 (5) 112.6 (4) 112.3 (5) 111.9 (4)
C1—S—C7 90.3 (3) 89.9 (2) 89.8 (3) 90.0 (2)
N1—Pt—Br1 90.6 (1) 87.0 (1) 89.2 (1) 88.6 (1)
N1—Pt—Br3 86.4 (1) 89.3 (1) 88.5 (1) 89.3 (1)
N1—Pt—Br2 177.7 (1) 177.4 (1) 178.8 (1) 178.4 (1)
Br1—Pt—Br3 176.85 (2) 176.30 (2) 177.45 (3) 176.23 (2)
Br2—Pt—Br3 91.69 (2) 92.51 (2) 91.23 (2) 91.18 (2)
Br1—Pt—Br2 91.31 (2) 91.17 (2) 91.10 (2) 90.99 (2)
         
Dihedral angle 88.1 (4) 86.7 (3) 78.6 (4) 76.4 (4)
         
Torsion angle 0.72 (1) (CH3) 11.9 (7) (OCH3) 1.5 (5) (C8H3) 1.1 (5) (CH3)
      0.2 (6) (C9H3) 7.5 (7) (NO2)
      0.3 (6) (C10H3)  

Figs. 1[link]–4[link][link][link] show the mol­ecular structures of the four new complexes. [NEt4][PtBr3(2-Me-benzo­thia­zole)] (1) crystallizes in an ortho­rhom­bic unit cell with eight formula units. It is a square-planar complex with Pt—N and average Pt—Br bond lengths of 2.035 (5) and 2.433 (6) Å, respectively, which are within the expected range for PtII complexes. There is no trans-influence observed in the Pt—Br bond trans to the Pt—N bond. The benzo­thia­zole ligand is planar and the methyl group resides in the ligand plane. The dihedral angle between the PtBr3N unit and the benzo­thia­zole ring is 88.1 (4)°, similar to those observed in other PtII–benzo­thia­zole complexes, as a result of reducing the steric strain between PtBr3 and the benzo­thia­zole ligand (Muir et al., 1987[Muir, J. A., Gomez, G. M., Muir, M. M., Cox, O. & Cadiz, M. E. (1987). Acta Cryst. C43, 1258-1261.], 1988a[Muir, M. M., Cadiz, M. E. & Baez, A. (1988a). Inorg. Chim. Acta, 151, 209-213.],b[Muir, M. M., Gomez, G., Muir, J. A., Cadiz, M. E., Cox, O. & Barnes, C. L. (1988b). Acta Cryst. C44, 803-806.], 1990[Muir, M. M., Gomez, G. M., Cadiz, M. E. & Muir, J. E. (1990). Inorg. Chim. Acta, 168, 47-57.]; Gomez et al., 1988[Gomez, G. M., Muir, M. M., Muir, J. A. & Cox, O. (1988). Acta Cryst. C44, 1554-1557.]; Lozano et al., 1994[Lozano, C. M., Muir, M. M., Tang, X. & Li, Y. (1994). J. Chem. Cryst. 24, 639-642.]). Two types of N—C bonds are present, one long [N—C2 1.408 (7) Å] and one short [N—C1 1.309 (7) Å], indicating the presence of single- and double-bond character in the thia­zole ring. The angle at the S atom in the thia­zole ring is 90.3 (3)° suggesting it is using unhybridized p orbitals for bonding.

[Figure 1]
Figure 1
The mol­ecular structure of [NEt4][PtBr3(2-Me-benzo­thia­zole)] (1), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of [NEt4][PtBr3(6-OMe-2-Me-benzo­thia­zole)] (2), with displacement ellipsoids drawn at the 50% probability level.
[Figure 3]
Figure 3
The mol­ecular structure of [NEt4][PtBr3(2,5,6-Me-benzo­thia­zole)] (3), with displacement ellipsoids drawn at the 50% probability level. The NEt4 cation in 3 presented disorder with 0.57/0.43 occupancies. Only the major fraction is shown for clarity.
[Figure 4]
Figure 4
The mol­ecular structure of [NEt4][PtBr3(5-NO2-2-Me-benzo­thia­zole)] (4), with displacement ellipsoids drawn at the 50% probability level.

[NEt4][PtBr3(6-OMe-2-Me-benzo­thia­zole)] (2), [NEt4][PtBr3(2,5,6-Me-benzo­thia­zole)] (3) and [NEt4][PtBr3(5-NO2-2-Me-benzo­thia­zole)] (4) crystallize in the same type of unit cell and space group, monoclinic P21/n, containing four formula units. The Pt—N and average Pt—Br bond lengths for 2, 3, and 4 are 2.025 (4)/2.430 (6) Å, 2.027 (5)/2.425 (6) Å and 2.041 (4)/2.431 (8) Å, respectively, which are within the expected range. The dihedral angle between PtBr3N and the benzo­thia­zole in 2 is 86.7 (3)° and the torsion angle between the aromatic ring and the OCH3 group is 11.9 (7)°. The C—O (OCH3) bond length is 1.427 (7) Å, and the C—O—CH3 angle is 116.3 (5)°. In contrast to 1 and 2, [NEt4][PtBr3(2,5,6-Me-benzo­thia­zole)] and [NEt4][PtBr3(5-NO2-2-Me-benzo­thia­zole)] have lower dihedral angles between the PtBr3N unit and the benzo­thia­zole ring, 78.6 (4) and 76.(4)°, respectively. The methyl groups on 3 and 4 are almost co-planar with the benzo­thia­zole plane with deviations ≤ 1.60° but in 4, the NO2 group is out of the benzo­thia­zole plane with a torsion angle of 7.5 (7)°. The C—NO2 bond length is 1.476 (7) Å, and the O—N—O angle is 117.4 (5)°. The C—NO2 bond length and O—N—O angle in 4 are smaller than those observed in nitro­benzene [C—NO2 = 1.486 (2) Å and O—N—O = 123.9 (5)°], which suggests higher electron delocal­ization between the nitro group and the aromatic ring in 4 (Johnson, 2015[Johnson, R. D. III (2015). NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101 Release 17b, September 2015, edited by Russell D. Johnson III. https://cccbdb.NIST.gov/exp2.asp?casno=98953 (accessed on November 24, 2015).]). The angles at the S atom in 2, 3 and 4 are also near 90°, suggesting the use of pure p orbitals for bonding.

3. Supra­molecular features

Analysis of the packing diagrams of all of the complexes showed their packings consist of [NEt4]+ cations and [PtBr3(L)] anions. The [NEt4][PtBr3(2-Me-benzo­thia­zole)] and [NEt4][PtBr3(6-OMe-2-Me-benzo­thia­zole)] complexes showed partial π-stacking between the phenyl and the thia­zole rings (Fig. 5[link]).

[Figure 5]
Figure 5
Details of the packing inter­actions in (a) [NEt4][PtBr3(2-Me-benzo­thia­zole)] and (b) [NEt4][PtBr3(6-Ome-2-Me-benzo­thia­zole)].

4. Synthesis and crystallization

The parent complex [NEt4]2[Pt2Br6] was prepared as reported in the literature (Livingstone & Whitley, 1962[Livingstone, S. E. & Whitley, A. (1962). Aust. J. Chem. 15, 175-180.]). Ligands were purchased from Sigma–Aldrich and were used without further purification.

Acetone solutions of [NEt4]2[Pt2Br6] were prepared (0.075 g, 0.068 mmol) and the corresponding amount of ligand was added with stirring. For 2-methyl-1,3-benzo­thia­zole (99%) 18 μL (0.021 g, 0.14 mmol) were added; for 2-methyl-5-nitro-1,3-benzo­thia­zole (98%) (0.027 g, 0.14 mmol) were added, and for 2-methyl-6-meth­oxy-1,3-benzo­thia­zole (97%) (0.024 g, 0.14 mmol) were added. The reaction mixtures were stirred without heating until the volume reduced considerably; then the samples were placed in desiccators containing CaCl2 at room temperature to evaporate slowly, leading to the formation of X-ray quality single crystals. For the synthesis with 2,5,6-trimethyl-1,3-benzo­thia­zole (99%), the ligand (0.0227 g, 0.128 mmol) was added to 20 mL of an acetone solution (0.07515 g, 0.0677 mmol) of [NEt4]2[Pt2Br6] with stirring, and a portion of the reaction mixture was slowly evaporated at 277 K in a small beaker in a secondary container which also contained CaCl2 to form X-ray quality single crystals.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned in idealized locations: d(C—H) = 0.95 Å, Uiso(H) = 1.2Ueq(C); d(C—H2) = 0.99 Å, Uiso(H) = 1.2Ueq(C); d(C—H3) = 0.98 Å, Uiso(H) = 1.5Ueq(C). The NEt4 cation in 3 presented disorder with 0.57/0.43 occupancies.

Table 2
Experimental details

  (1) (2) (3) (4)
Crystal data
Chemical formula (C8H20N)[PtBr3(C8H7NS)] (C8H20N)[PtBr3(C9H9NOS)] (C8H20N)[PtBr3(C10H11NS)] (C8H20N)[PtBr3(C8H6N2O2S)]
Mr 714.27 744.30 742.33 759.28
Crystal system, space group Orthorhombic, Pbca Monoclinic, P21/n Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 100 100 100 100
a, b, c (Å) 12.114 (3), 10.656 (3), 34.043 (9) 7.7591 (2), 30.4214 (8), 9.6551 (3) 7.9742 (4), 30.2807 (14), 9.6427 (5) 8.1170 (3), 29.2717 (12), 9.5102 (4)
α, β, γ (°) 90, 90, 90 90, 94.539 (1), 90 90, 100.151 (3), 90 90, 100.720 (1), 90
V3) 4394 (2) 2271.87 (11) 2291.9 (2) 2220.17 (15)
Z 8 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 11.94 11.55 11.45 11.83
Crystal size (mm) 0.18 × 0.16 × 0.12 0.32 × 0.30 × 0.24 0.50 × 0.36 × 0.25 0.32 × 0.30 × 0.25
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.052, 0.093 0.056, 0.093 0.003, 0.028 0.020, 0.045
No. of measured, independent and observed [I > 2σ(I)] reflections 16951, 4418, 3675 12741, 4650, 4377 10729, 4692, 4120 15975, 4550, 4254
Rint 0.047 0.017 0.048 0.028
(sin θ/λ)max−1) 0.623 0.626 0.627 0.627
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.081, 1.03 0.027, 0.066, 1.08 0.039, 0.106, 1.05 0.029, 0.060, 1.18
No. of reflections 4418 4650 4692 4550
No. of parameters 213 232 266 240
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.38, −0.93 1.25, −1.36 1.88, −1.02 1.25, −1.37
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]a), SIR2004 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]b) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Chemical context top

The synthesis of new platinum complexes as potential drugs for cancer still is of inter­est for medicinal chemists. The structural details of these complexes provide the opportunity to predict, to a certain extent, the potential biological activity of these species. In this regard, four new platinum(II) complexes with benzo­thia­zole ligands of general formula [PtBr3L] have been synthesized according to the equation below and their structures characterized.

[NEt4]2[Pt2Br6] + 2L 2 [NEt4][PtBr3L]

L = 2-methyl-1,3-benzo­thia­zole (1), 6-meth­oxy-2-methyl-1,3-benzo­thia­zole (2), 2,5,6-tri­methyl-1,3-benzo­thia­zole (3), and 2-methyl-5-nitro-1,3-benzo­thia­zole (4). All complexes showed the benzo­thia­zoles coordinate the PtII atom through the imino nitro­gen. Also, the benzo­thia­zole is positioned out of the square plane with dihedral angles between 76.4 (4) and 88.1 (4)°, as previously reported in other platinum–benzo­thia­zole complexes. Given that benzo­thia­zoles have anti­cancer properties, these platinum complexes may have enhanced properties as a result of potential synergism between the ligand and PtII. This deserves further studies as suggested by Noolvi et al. (2012).

Structural commentary top

To elucidate with certainty and accurately the platinum coordination patterns, the structural determination of the complexes was performed by single-crystal X-ray diffraction technique. Table 1 contains selected bond distances, dihedral angles and torsion angles. All of the title complexes adopt a square-planar coordination geometry with a deviation of no more than 4° from ideal 180° and 90° angles. As reported previously, although not predicted using Pearson's hard–soft acid base theory, the benzo­thia­zole is engaged in bonding to the metal through the imine nitro­gen (Pt—N) instead of Pt—S coordination (Muir et al., 1987, 1988a,b, 1990; Gomez et al., 1988; Lozano et al., 1994). Also the benzo­thia­zole ligand is positioned out of the square plane as discussed below.

Figs. 1–4 show the molecular diagrams of the four new complexes. [NEt4][PtBr3(2-Me-benzo­thia­zole)] (1) crystallizes in an orthorhombic unit cell with eight formula units. It is a square-planar complex with Pt—N and average Pt—Br bond lengths of 2.035 (5) and 2.433 (6) Å, respectively, which are within the expected range for PtII complexes. There is no trans-influence observed in the Pt—Br bond trans to the Pt—N bond. The benzo­thia­zole ligand is planar and the methyl group resides in the ligand plane. The dihedral angle between PtBr3N unit and the benzo­thia­zole ring is 88.1 (4)°, similar to those observed in other PtII–benzo­thia­zole complexes, as a result of reducing the steric strain between PtBr3 and the benzo­thia­zole ligand (Muir et al., 1987, 1988a,b, 1990; Gomez et al., 1988; Lozano et al., 1994). Two types of N—C bonds are present, one long [N—C2 1.408 (7) Å] and one short [N—C1 1.309 (7) Å], indicating the presence of single- and double-bond character in the thia­zole ring. The angle at the S atom in the thia­zole ring is 90.3 (3)° suggesting it is using unhybridized p orbitals for bonding.

[NEt4][PtBr3(6-OMe-2-Me-benzo­thia­zole)] (2), [NEt4][PtBr3(2,5,6-Me-benzo­thia­zole)] (3) and [NEt4][PtBr3(5-NO2-2-Me-benzo­thia­zole)] (4) crystallize in the same type of unit cell and space group, monoclinic P21/n, containing four formula units. The Pt—N and average Pt—Br bond lengths for 2, 3, and 4 are 2.025 (4)/2.430 (6) Å, 2.027 (5)/2.425 (6) Å and 2.041 (4)/2.431 (8) Å, respectively, which are within the expected range (Muir et al., 1987, 1988a,b, 1990; Gomez et al., 1988; Lozano et al., 1994). The dihedral angle between PtBr3N and the benzo­thia­zole in 2 is 86.7 (3)° and the torsion angle between the aromatic ring and the OCH3 group is 11.9 (7)°. The C—O (OCH3) bond length is 1.427 (7) Å, and the C—O—CH3 angle is 116.3 (5)°. In contrast to 1 and 2, [NEt4][PtBr3(2,5,6-Me-benzo­thia­zole)] and [NEt4][PtBr3(5-NO2-2-Me-benzo­thia­zole)] have lower dihedral angles between PtBr3N unit and the benzo­thia­zole ring, 78.6 (4) and 76.(4)°, respectively. The methyl groups on 3 and 4 are almost co-planar with the benzo­thia­zole plane with deviations 1.60° but in 4, the NO2 group is out of the benzo­thia­zole plane with a torsion angle of 7.5 (7)°. The C—NO2 bond length is 1.476 (7) Å, and the O—N—O angle is 117.4 (5)°. The C—NO2 bond length and O—N—O angle in 4 are smaller than those observed in nitro­benzene [C—NO2 = 1.486 (2) Å and O—N—O = 123.9 (5)°], which suggests higher electron delocalization between the nitro group and the aromatic ring in 4 (Johnson, 2015). The angles at the S atom in 2, 3 and 4 are also near 90°, suggesting the use of pure p orbitals for bonding.

Supra­molecular features top

Analysis of the packing diagrams of all of the complexes showed their packings consist of [NEt4]+ cations and [PtBr3(L)] anions. The [NEt4][PtBr3(2-Me-benzo­thia­zole)] and [NEt4][PtBr3(6-OMe-2-Me-benzo­thia­zole)] complexes showed partial π-stacking between the phenyl and the thia­zole rings (Fig. 5).

Synthesis and crystallization top

The parent complex [NEt4]2[Pt2Br6] was prepared as reported in the literature (Livingstone and Whitley, 1962). Ligands were purchased from Sigma–Aldrich and were used without further purification.

Acetone solutions of [NEt4]2[Pt2Br6] were prepared (0.075 g, 0.068 mmol) and the corresponding amount of ligand was added with stirring. For 2-methyl-1,3-benzo­thia­zole (99%) 18 ml (0.021 g, 0.14 mmol) were added; for 2-methyl-5-nitro-1,3-benzo­thia­zole (98%) (0.027 g, 0.014 mmol) were added, and for 2-methyl-6-meth­oxy-1,3-benzo­thia­zole (97%) 20 ml (0.024 g, 0.14 mmol) were added. The reaction mixtures were stirred without heating until the volume reduced considerably; then the samples were placed in desiccators containing CaCl2 at room temperature to evaporate slowly, leading to the formation of X-ray quality single crystals. For the synthesis with 2,5,6-tri­methyl-1,3-benzo­thia­zole (99%), the ligand (0.0227 g, 0.0128 mmol) was added to 20 ml of an acetone solution (0.07515 g, 0.0677 mmol) of [NEt4]2[Pt2Br6] with stirring, and a portion of the reaction mixture was slowly evaporated at 277 K in a small beaker in a secondary container which also contained CaCl2 to form X-ray quality single crystals.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned in idealized locations: d(C—H) = 0.95 Å, Uiso(H) = 1.2Ueq(C); d(C—H2) = 0.99 Å, Uiso(H) = 1.2Ueq(C); d(C—H3) = 0.98 Å, Uiso(H) = 1.5Ueq(C). The NEt4 cation in 3 presented disorder with 0.57/0.43 occupancies.

Structure description top

The synthesis of new platinum complexes as potential drugs for cancer still is of inter­est for medicinal chemists. The structural details of these complexes provide the opportunity to predict, to a certain extent, the potential biological activity of these species. In this regard, four new platinum(II) complexes with benzo­thia­zole ligands of general formula [PtBr3L] have been synthesized according to the equation below and their structures characterized.

[NEt4]2[Pt2Br6] + 2L 2 [NEt4][PtBr3L]

L = 2-methyl-1,3-benzo­thia­zole (1), 6-meth­oxy-2-methyl-1,3-benzo­thia­zole (2), 2,5,6-tri­methyl-1,3-benzo­thia­zole (3), and 2-methyl-5-nitro-1,3-benzo­thia­zole (4). All complexes showed the benzo­thia­zoles coordinate the PtII atom through the imino nitro­gen. Also, the benzo­thia­zole is positioned out of the square plane with dihedral angles between 76.4 (4) and 88.1 (4)°, as previously reported in other platinum–benzo­thia­zole complexes. Given that benzo­thia­zoles have anti­cancer properties, these platinum complexes may have enhanced properties as a result of potential synergism between the ligand and PtII. This deserves further studies as suggested by Noolvi et al. (2012).

To elucidate with certainty and accurately the platinum coordination patterns, the structural determination of the complexes was performed by single-crystal X-ray diffraction technique. Table 1 contains selected bond distances, dihedral angles and torsion angles. All of the title complexes adopt a square-planar coordination geometry with a deviation of no more than 4° from ideal 180° and 90° angles. As reported previously, although not predicted using Pearson's hard–soft acid base theory, the benzo­thia­zole is engaged in bonding to the metal through the imine nitro­gen (Pt—N) instead of Pt—S coordination (Muir et al., 1987, 1988a,b, 1990; Gomez et al., 1988; Lozano et al., 1994). Also the benzo­thia­zole ligand is positioned out of the square plane as discussed below.

Figs. 1–4 show the molecular diagrams of the four new complexes. [NEt4][PtBr3(2-Me-benzo­thia­zole)] (1) crystallizes in an orthorhombic unit cell with eight formula units. It is a square-planar complex with Pt—N and average Pt—Br bond lengths of 2.035 (5) and 2.433 (6) Å, respectively, which are within the expected range for PtII complexes. There is no trans-influence observed in the Pt—Br bond trans to the Pt—N bond. The benzo­thia­zole ligand is planar and the methyl group resides in the ligand plane. The dihedral angle between PtBr3N unit and the benzo­thia­zole ring is 88.1 (4)°, similar to those observed in other PtII–benzo­thia­zole complexes, as a result of reducing the steric strain between PtBr3 and the benzo­thia­zole ligand (Muir et al., 1987, 1988a,b, 1990; Gomez et al., 1988; Lozano et al., 1994). Two types of N—C bonds are present, one long [N—C2 1.408 (7) Å] and one short [N—C1 1.309 (7) Å], indicating the presence of single- and double-bond character in the thia­zole ring. The angle at the S atom in the thia­zole ring is 90.3 (3)° suggesting it is using unhybridized p orbitals for bonding.

[NEt4][PtBr3(6-OMe-2-Me-benzo­thia­zole)] (2), [NEt4][PtBr3(2,5,6-Me-benzo­thia­zole)] (3) and [NEt4][PtBr3(5-NO2-2-Me-benzo­thia­zole)] (4) crystallize in the same type of unit cell and space group, monoclinic P21/n, containing four formula units. The Pt—N and average Pt—Br bond lengths for 2, 3, and 4 are 2.025 (4)/2.430 (6) Å, 2.027 (5)/2.425 (6) Å and 2.041 (4)/2.431 (8) Å, respectively, which are within the expected range (Muir et al., 1987, 1988a,b, 1990; Gomez et al., 1988; Lozano et al., 1994). The dihedral angle between PtBr3N and the benzo­thia­zole in 2 is 86.7 (3)° and the torsion angle between the aromatic ring and the OCH3 group is 11.9 (7)°. The C—O (OCH3) bond length is 1.427 (7) Å, and the C—O—CH3 angle is 116.3 (5)°. In contrast to 1 and 2, [NEt4][PtBr3(2,5,6-Me-benzo­thia­zole)] and [NEt4][PtBr3(5-NO2-2-Me-benzo­thia­zole)] have lower dihedral angles between PtBr3N unit and the benzo­thia­zole ring, 78.6 (4) and 76.(4)°, respectively. The methyl groups on 3 and 4 are almost co-planar with the benzo­thia­zole plane with deviations 1.60° but in 4, the NO2 group is out of the benzo­thia­zole plane with a torsion angle of 7.5 (7)°. The C—NO2 bond length is 1.476 (7) Å, and the O—N—O angle is 117.4 (5)°. The C—NO2 bond length and O—N—O angle in 4 are smaller than those observed in nitro­benzene [C—NO2 = 1.486 (2) Å and O—N—O = 123.9 (5)°], which suggests higher electron delocalization between the nitro group and the aromatic ring in 4 (Johnson, 2015). The angles at the S atom in 2, 3 and 4 are also near 90°, suggesting the use of pure p orbitals for bonding.

Analysis of the packing diagrams of all of the complexes showed their packings consist of [NEt4]+ cations and [PtBr3(L)] anions. The [NEt4][PtBr3(2-Me-benzo­thia­zole)] and [NEt4][PtBr3(6-OMe-2-Me-benzo­thia­zole)] complexes showed partial π-stacking between the phenyl and the thia­zole rings (Fig. 5).

Synthesis and crystallization top

The parent complex [NEt4]2[Pt2Br6] was prepared as reported in the literature (Livingstone and Whitley, 1962). Ligands were purchased from Sigma–Aldrich and were used without further purification.

Acetone solutions of [NEt4]2[Pt2Br6] were prepared (0.075 g, 0.068 mmol) and the corresponding amount of ligand was added with stirring. For 2-methyl-1,3-benzo­thia­zole (99%) 18 ml (0.021 g, 0.14 mmol) were added; for 2-methyl-5-nitro-1,3-benzo­thia­zole (98%) (0.027 g, 0.014 mmol) were added, and for 2-methyl-6-meth­oxy-1,3-benzo­thia­zole (97%) 20 ml (0.024 g, 0.14 mmol) were added. The reaction mixtures were stirred without heating until the volume reduced considerably; then the samples were placed in desiccators containing CaCl2 at room temperature to evaporate slowly, leading to the formation of X-ray quality single crystals. For the synthesis with 2,5,6-tri­methyl-1,3-benzo­thia­zole (99%), the ligand (0.0227 g, 0.0128 mmol) was added to 20 ml of an acetone solution (0.07515 g, 0.0677 mmol) of [NEt4]2[Pt2Br6] with stirring, and a portion of the reaction mixture was slowly evaporated at 277 K in a small beaker in a secondary container which also contained CaCl2 to form X-ray quality single crystals.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned in idealized locations: d(C—H) = 0.95 Å, Uiso(H) = 1.2Ueq(C); d(C—H2) = 0.99 Å, Uiso(H) = 1.2Ueq(C); d(C—H3) = 0.98 Å, Uiso(H) = 1.5Ueq(C). The NEt4 cation in 3 presented disorder with 0.57/0.43 occupancies.

Computing details top

For all compounds, data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013). Program(s) used to solve structure: SHELXT (Sheldrick, 2015a) for (1), (2), (3); SIR2004 (Burla et al., 2007) for (4). For all compounds, program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of [NEt4][PtBr3(2-Me-benzothiazole)] (1), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular structure of [NEt4][PtBr3(6-OMe-2-Me-benzothiazole)] (2), with displacement ellipsoids drawn at the 50% probability level.
[Figure 3] Fig. 3. The molecular structure of [NEt4][PtBr3(2,5,6-Me-benzothiazole)] (3), with displacement ellipsoids drawn at the 50% probability level. The NEt4 cation in 3 presented disorder with 0.57/0.43 occupancies. Only the major fraction is shown for clarity.
[Figure 4] Fig. 4. The molecular structure of [NEt4][PtBr3(5-NO2-2-Me-benzothiazole)] (4), with displacement ellipsoids drawn at the 50% probability level.
[Figure 5] Fig. 5. Details of the packing interactions in (a) [NEt4][PtBr3(2-Me-benzothiazole)] and (b) [NEt4][PtBr3(6-Ome-2-Me-benzothiazole)].
(1) Tetraethylammonium tribromido(2-methyl-1,3-benzothiazole-κN)platinate(II) top
Crystal data top
(C8H20N)[PtBr3(C8H7NS)]Dx = 2.159 Mg m3
Mr = 714.27Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 5330 reflections
a = 12.114 (3) Åθ = 2.4–26.3°
b = 10.656 (3) ŵ = 11.94 mm1
c = 34.043 (9) ÅT = 100 K
V = 4394 (2) Å3Block, bronze
Z = 80.18 × 0.16 × 0.12 mm
F(000) = 2688
Data collection top
Bruker APEXII CCD
diffractometer
4418 independent reflections
Radiation source: Micro Focus Rotating Anode, Bruker TXS3675 reflections with I > 2σ(I)
Double Bounce Multilayer Mirrors monochromatorRint = 0.047
Detector resolution: 7.9 pixels mm-1θmax = 26.3°, θmin = 2.1°
φ and ω scansh = 1415
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1310
Tmin = 0.052, Tmax = 0.093l = 3242
16951 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0352P)2 + 9.4131P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.003
4418 reflectionsΔρmax = 2.38 e Å3
213 parametersΔρmin = 0.93 e Å3
Crystal data top
(C8H20N)[PtBr3(C8H7NS)]V = 4394 (2) Å3
Mr = 714.27Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.114 (3) ŵ = 11.94 mm1
b = 10.656 (3) ÅT = 100 K
c = 34.043 (9) Å0.18 × 0.16 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
4418 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
3675 reflections with I > 2σ(I)
Tmin = 0.052, Tmax = 0.093Rint = 0.047
16951 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.03Δρmax = 2.38 e Å3
4418 reflectionsΔρmin = 0.93 e Å3
213 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N21.0097 (4)0.4493 (4)0.31862 (12)0.0213 (9)
C91.1117 (4)0.3738 (5)0.30557 (16)0.0242 (12)
H9A1.10490.28720.31580.029*
H9B1.17810.41170.31770.029*
C101.1289 (4)0.3677 (5)0.26030 (15)0.0251 (12)
H10A1.06240.33360.24790.038*
H10B1.19200.31340.25440.038*
H10C1.14310.45230.25020.038*
C111.0130 (5)0.5845 (5)0.30315 (17)0.0259 (12)
H11A1.01200.58200.27410.031*
H11B0.94520.62820.31190.031*
C121.1120 (5)0.6608 (5)0.31618 (18)0.0339 (14)
H12A1.11040.74300.30330.051*
H12B1.17990.61660.30890.051*
H12C1.10970.67200.34470.051*
C131.0124 (5)0.4436 (6)0.36271 (15)0.0259 (12)
H13A1.08270.48090.37190.031*
H13B1.01210.35430.37080.031*
C140.9162 (5)0.5110 (5)0.38363 (18)0.0305 (13)
H14A0.91720.60030.37680.046*
H14B0.92430.50170.41210.046*
H14C0.84600.47390.37530.046*
C150.9038 (4)0.3934 (5)0.30181 (16)0.0248 (12)
H15A0.84050.44170.31220.030*
H15B0.90480.40480.27300.030*
C160.8844 (4)0.2555 (5)0.31049 (17)0.0303 (13)
H16A0.94470.20560.29930.045*
H16B0.81420.22910.29880.045*
H16C0.88190.24260.33900.045*
Pt10.47417 (2)0.49411 (2)0.37148 (2)0.01931 (8)
Br10.31934 (5)0.60895 (7)0.39974 (2)0.04565 (19)
Br20.39703 (4)0.51437 (5)0.30574 (2)0.02401 (13)
Br30.63067 (4)0.37553 (6)0.34693 (2)0.03153 (15)
S10.67084 (13)0.48262 (14)0.48520 (4)0.0321 (3)
N10.5409 (4)0.4702 (4)0.42583 (13)0.0221 (10)
C10.6192 (4)0.5394 (5)0.44109 (15)0.0247 (12)
C20.5158 (4)0.3638 (5)0.44867 (15)0.0246 (12)
C30.4356 (5)0.2744 (5)0.44047 (16)0.0290 (12)
H30.39250.27960.41720.035*
C40.4200 (6)0.1769 (6)0.46718 (16)0.0351 (14)
H40.36420.11620.46240.042*
C50.4853 (5)0.1671 (7)0.50112 (16)0.0398 (16)
H50.47400.09870.51860.048*
C60.5666 (6)0.2558 (6)0.50970 (17)0.0379 (15)
H60.61060.24950.53270.045*
C70.5807 (5)0.3552 (5)0.48283 (16)0.0315 (13)
C80.6643 (5)0.6567 (5)0.42301 (16)0.0290 (13)
H8A0.72040.69290.44040.044*
H8B0.60430.71730.41930.044*
H8C0.69760.63680.39750.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.022 (2)0.022 (2)0.020 (2)0.0039 (19)0.0002 (18)0.0024 (19)
C90.016 (3)0.024 (3)0.032 (3)0.001 (2)0.000 (2)0.000 (2)
C100.019 (3)0.025 (3)0.032 (3)0.003 (2)0.004 (2)0.003 (2)
C110.026 (3)0.021 (3)0.031 (3)0.002 (2)0.004 (2)0.006 (2)
C120.031 (3)0.027 (3)0.044 (4)0.000 (3)0.004 (3)0.002 (3)
C130.030 (3)0.028 (3)0.020 (3)0.000 (3)0.001 (2)0.001 (2)
C140.030 (3)0.037 (3)0.025 (3)0.001 (3)0.000 (2)0.003 (2)
C150.018 (3)0.032 (3)0.025 (3)0.003 (2)0.005 (2)0.002 (2)
C160.021 (3)0.031 (3)0.039 (3)0.003 (2)0.001 (2)0.002 (3)
Pt10.01841 (13)0.02210 (12)0.01742 (13)0.00011 (8)0.00120 (7)0.00100 (8)
Br10.0399 (4)0.0675 (5)0.0296 (3)0.0248 (3)0.0059 (3)0.0135 (3)
Br20.0241 (3)0.0255 (3)0.0224 (3)0.0012 (2)0.0022 (2)0.0005 (2)
Br30.0235 (3)0.0411 (3)0.0300 (3)0.0027 (3)0.0004 (2)0.0050 (3)
S10.0337 (8)0.0381 (8)0.0245 (7)0.0055 (7)0.0105 (6)0.0028 (6)
N10.022 (2)0.025 (2)0.019 (2)0.0030 (19)0.0017 (18)0.0000 (19)
C10.022 (3)0.031 (3)0.021 (3)0.006 (2)0.004 (2)0.009 (2)
C20.030 (3)0.026 (3)0.018 (3)0.005 (2)0.001 (2)0.005 (2)
C30.033 (3)0.032 (3)0.021 (3)0.003 (3)0.004 (2)0.005 (2)
C40.051 (4)0.032 (3)0.022 (3)0.004 (3)0.006 (3)0.002 (2)
C50.062 (4)0.032 (4)0.026 (3)0.003 (3)0.005 (3)0.003 (2)
C60.054 (4)0.035 (3)0.025 (3)0.011 (3)0.004 (3)0.001 (3)
C70.036 (3)0.033 (3)0.025 (3)0.006 (3)0.002 (3)0.010 (2)
C80.034 (3)0.032 (3)0.021 (3)0.001 (3)0.010 (2)0.004 (2)
Geometric parameters (Å, º) top
N2—C91.540 (6)C16—H16A0.9800
N2—C111.534 (7)C16—H16B0.9800
N2—C131.503 (7)C16—H16C0.9800
N2—C151.526 (7)Pt1—Br12.4375 (8)
C9—H9A0.9900Pt1—Br22.4349 (8)
C9—H9B0.9900Pt1—Br32.4268 (7)
C9—C101.557 (7)Pt1—N12.035 (5)
C10—H10A0.9800S1—C11.735 (6)
C10—H10B0.9800S1—C71.744 (6)
C10—H10C0.9800N1—C11.309 (7)
C11—H11A0.9900N1—C21.408 (7)
C11—H11B0.9900C1—C81.497 (8)
C11—C121.515 (8)C2—C31.389 (8)
C12—H12A0.9800C2—C71.407 (8)
C12—H12B0.9800C3—H30.9500
C12—H12C0.9800C3—C41.393 (8)
C13—H13A0.9900C4—H40.9500
C13—H13B0.9900C4—C51.405 (8)
C13—C141.543 (8)C5—H50.9500
C14—H14A0.9800C5—C61.396 (9)
C14—H14B0.9800C6—H60.9500
C14—H14C0.9800C6—C71.410 (8)
C15—H15A0.9900C8—H8A0.9800
C15—H15B0.9900C8—H8B0.9800
C15—C161.517 (8)C8—H8C0.9800
C11—N2—C9111.8 (4)C16—C15—H15A108.3
C13—N2—C9104.5 (4)C16—C15—H15B108.3
C13—N2—C11112.4 (4)C15—C16—H16A109.5
C13—N2—C15112.1 (4)C15—C16—H16B109.5
C15—N2—C9111.2 (4)C15—C16—H16C109.5
C15—N2—C11105.1 (4)H16A—C16—H16B109.5
N2—C9—H9A108.6H16A—C16—H16C109.5
N2—C9—H9B108.6H16B—C16—H16C109.5
N2—C9—C10114.5 (4)Br2—Pt1—Br191.31 (2)
H9A—C9—H9B107.6Br3—Pt1—Br1176.85 (2)
C10—C9—H9A108.6Br3—Pt1—Br291.69 (2)
C10—C9—H9B108.6N1—Pt1—Br190.56 (12)
C9—C10—H10A109.5N1—Pt1—Br2177.68 (13)
C9—C10—H10B109.5N1—Pt1—Br386.41 (12)
C9—C10—H10C109.5C1—S1—C790.3 (3)
H10A—C10—H10B109.5C1—N1—Pt1125.3 (4)
H10A—C10—H10C109.5C1—N1—C2113.0 (5)
H10B—C10—H10C109.5C2—N1—Pt1121.2 (4)
N2—C11—H11A108.5N1—C1—S1114.1 (4)
N2—C11—H11B108.5N1—C1—C8124.9 (5)
H11A—C11—H11B107.5C8—C1—S1121.0 (4)
C12—C11—N2115.1 (5)C3—C2—N1126.3 (5)
C12—C11—H11A108.5C3—C2—C7120.8 (5)
C12—C11—H11B108.5C7—C2—N1112.8 (5)
C11—C12—H12A109.5C2—C3—H3120.8
C11—C12—H12B109.5C2—C3—C4118.4 (5)
C11—C12—H12C109.5C4—C3—H3120.8
H12A—C12—H12B109.5C3—C4—H4119.5
H12A—C12—H12C109.5C3—C4—C5121.0 (6)
H12B—C12—H12C109.5C5—C4—H4119.5
N2—C13—H13A108.5C4—C5—H5119.4
N2—C13—H13B108.5C6—C5—C4121.3 (6)
N2—C13—C14115.2 (5)C6—C5—H5119.4
H13A—C13—H13B107.5C5—C6—H6121.4
C14—C13—H13A108.5C5—C6—C7117.3 (6)
C14—C13—H13B108.5C7—C6—H6121.4
C13—C14—H14A109.5C2—C7—S1109.7 (4)
C13—C14—H14B109.5C2—C7—C6121.2 (6)
C13—C14—H14C109.5C6—C7—S1129.1 (5)
H14A—C14—H14B109.5C1—C8—H8A109.5
H14A—C14—H14C109.5C1—C8—H8B109.5
H14B—C14—H14C109.5C1—C8—H8C109.5
N2—C15—H15A108.3H8A—C8—H8B109.5
N2—C15—H15B108.3H8A—C8—H8C109.5
H15A—C15—H15B107.4H8B—C8—H8C109.5
C16—C15—N2115.8 (4)
(2) Tetraethylammonium tribromido(6-methoxy-2-methyl-1,3-benzothiazole-κN)platinate(II) top
Crystal data top
(C8H20N)[PtBr3(C9H9NOS)]F(000) = 1408
Mr = 744.30Dx = 2.176 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.7591 (2) ÅCell parameters from 7838 reflections
b = 30.4214 (8) Åθ = 2.2–26.4°
c = 9.6551 (3) ŵ = 11.55 mm1
β = 94.539 (1)°T = 100 K
V = 2271.87 (11) Å3Block, bronze
Z = 40.32 × 0.3 × 0.24 mm
Data collection top
Bruker APEXII CCD
diffractometer
4650 independent reflections
Radiation source: Micro Focus Rotating Anode, Bruker TXS4377 reflections with I > 2σ(I)
Double Bounce Multilayer Mirrors monochromatorRint = 0.017
Detector resolution: 7.9 pixels mm-1θmax = 26.4°, θmin = 2.2°
φ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 3238
Tmin = 0.056, Tmax = 0.093l = 127
12741 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0227P)2 + 15.6321P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
4650 reflectionsΔρmax = 1.25 e Å3
232 parametersΔρmin = 1.36 e Å3
Crystal data top
(C8H20N)[PtBr3(C9H9NOS)]V = 2271.87 (11) Å3
Mr = 744.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.7591 (2) ŵ = 11.55 mm1
b = 30.4214 (8) ÅT = 100 K
c = 9.6551 (3) Å0.32 × 0.3 × 0.24 mm
β = 94.539 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4650 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
4377 reflections with I > 2σ(I)
Tmin = 0.056, Tmax = 0.093Rint = 0.017
12741 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0227P)2 + 15.6321P]
where P = (Fo2 + 2Fc2)/3
4650 reflectionsΔρmax = 1.25 e Å3
232 parametersΔρmin = 1.36 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.4744 (6)0.68841 (14)1.0072 (4)0.0224 (9)
C100.4365 (10)0.6636 (2)0.8727 (7)0.0442 (16)
H10A0.32480.67440.82890.053*
H10B0.52660.67150.80990.053*
C110.4277 (12)0.6153 (2)0.8795 (10)0.065 (3)
H11A0.53260.60390.93050.097*
H11B0.41830.60320.78510.097*
H11C0.32630.60650.92740.097*
C120.6550 (9)0.6759 (3)1.0680 (8)0.0529 (19)
H12A0.65140.64511.10040.064*
H12B0.73360.67690.99210.064*
C130.7308 (9)0.7028 (3)1.1828 (7)0.061 (2)
H13A0.64250.70941.24700.092*
H13B0.77430.73041.14620.092*
H13C0.82640.68681.23220.092*
C140.3484 (8)0.6760 (2)1.1136 (7)0.0403 (15)
H14A0.35820.64401.13190.048*
H14B0.38250.69151.20180.048*
C150.1616 (7)0.6868 (2)1.0702 (6)0.0338 (13)
H15A0.08830.67671.14210.051*
H15B0.12670.67190.98240.051*
H15C0.14880.71861.05810.051*
C160.4651 (9)0.7366 (2)0.9800 (8)0.0426 (15)
H16A0.47640.75221.07030.051*
H16B0.34930.74350.93490.051*
C170.6004 (9)0.7545 (2)0.8898 (7)0.0425 (15)
H17A0.71600.74850.93400.064*
H17B0.58490.78640.87870.064*
H17C0.58760.74040.79840.064*
Pt10.73847 (2)0.62959 (2)0.53521 (2)0.01668 (6)
Br10.90363 (7)0.66953 (2)0.71969 (5)0.02744 (12)
Br20.52471 (7)0.68778 (2)0.51179 (5)0.02766 (12)
Br30.58868 (7)0.58627 (2)0.35144 (6)0.02867 (12)
S11.20643 (16)0.54060 (4)0.58464 (13)0.0233 (3)
O10.8812 (6)0.43871 (13)0.9169 (4)0.0337 (9)
N10.9166 (5)0.58111 (13)0.5642 (4)0.0184 (8)
C11.0717 (6)0.58239 (17)0.5202 (5)0.0213 (10)
C20.8935 (6)0.54544 (15)0.6519 (5)0.0191 (10)
C30.7394 (7)0.53338 (17)0.7090 (5)0.0222 (10)
H30.63610.54970.68890.027*
C40.7421 (7)0.49725 (17)0.7951 (5)0.0255 (11)
H40.63900.48850.83440.031*
C50.8937 (8)0.47324 (17)0.8256 (5)0.0262 (11)
C61.0457 (7)0.48345 (17)0.7664 (5)0.0250 (11)
H61.14760.46640.78410.030*
C71.0411 (6)0.52035 (16)0.6788 (5)0.0204 (10)
C81.1316 (7)0.61649 (18)0.4252 (6)0.0277 (11)
H8A1.18380.64090.47990.042*
H8B1.03290.62730.36520.042*
H8C1.21750.60380.36780.042*
C91.0403 (9)0.4191 (2)0.9692 (7)0.0393 (15)
H9A1.09080.40300.89430.059*
H9B1.01870.39871.04450.059*
H9C1.12060.44201.00460.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.024 (2)0.024 (2)0.019 (2)0.0044 (18)0.0044 (17)0.0013 (17)
C100.056 (4)0.044 (4)0.035 (3)0.010 (3)0.015 (3)0.011 (3)
C110.076 (6)0.040 (4)0.086 (6)0.017 (4)0.048 (5)0.026 (4)
C120.033 (4)0.079 (6)0.047 (4)0.012 (4)0.008 (3)0.020 (4)
C130.026 (3)0.130 (8)0.027 (3)0.007 (4)0.004 (3)0.005 (4)
C140.037 (3)0.051 (4)0.033 (3)0.003 (3)0.009 (3)0.003 (3)
C150.026 (3)0.042 (4)0.034 (3)0.000 (2)0.003 (2)0.008 (3)
C160.047 (4)0.029 (3)0.052 (4)0.001 (3)0.003 (3)0.004 (3)
C170.045 (4)0.034 (3)0.049 (4)0.007 (3)0.007 (3)0.005 (3)
Pt10.01677 (10)0.01604 (10)0.01721 (10)0.00084 (7)0.00130 (7)0.00005 (7)
Br10.0303 (3)0.0270 (3)0.0244 (2)0.0012 (2)0.0021 (2)0.0027 (2)
Br20.0295 (3)0.0267 (3)0.0266 (3)0.0050 (2)0.0015 (2)0.0004 (2)
Br30.0262 (3)0.0286 (3)0.0303 (3)0.0029 (2)0.0035 (2)0.0062 (2)
S10.0177 (6)0.0245 (6)0.0275 (6)0.0036 (5)0.0004 (5)0.0025 (5)
O10.047 (2)0.022 (2)0.032 (2)0.0026 (18)0.0023 (18)0.0078 (16)
N10.019 (2)0.018 (2)0.0171 (19)0.0008 (16)0.0012 (16)0.0010 (16)
C10.018 (2)0.022 (3)0.023 (2)0.0007 (19)0.0009 (19)0.003 (2)
C20.024 (2)0.013 (2)0.020 (2)0.0017 (19)0.0000 (19)0.0010 (18)
C30.021 (2)0.020 (3)0.026 (2)0.001 (2)0.004 (2)0.002 (2)
C40.028 (3)0.024 (3)0.025 (3)0.001 (2)0.007 (2)0.001 (2)
C50.041 (3)0.016 (2)0.021 (2)0.000 (2)0.000 (2)0.0010 (19)
C60.033 (3)0.017 (2)0.025 (2)0.005 (2)0.004 (2)0.002 (2)
C70.021 (2)0.018 (2)0.022 (2)0.0006 (19)0.0022 (19)0.0056 (19)
C80.024 (3)0.027 (3)0.033 (3)0.001 (2)0.008 (2)0.000 (2)
C90.053 (4)0.025 (3)0.037 (3)0.001 (3)0.011 (3)0.007 (2)
Geometric parameters (Å, º) top
N2—C101.511 (7)C17—H17C0.9800
N2—C121.523 (8)Pt1—Br12.4352 (5)
N2—C141.521 (7)Pt1—Br22.4241 (6)
N2—C161.491 (8)Pt1—Br32.4309 (5)
C10—H10A0.9900Pt1—N12.025 (4)
C10—H10B0.9900S1—C11.730 (5)
C10—C111.474 (10)S1—C71.743 (5)
C11—H11A0.9800O1—C51.379 (6)
C11—H11B0.9800O1—C91.427 (7)
C11—H11C0.9800N1—C11.309 (6)
C12—H12A0.9900N1—C21.396 (6)
C12—H12B0.9900C1—C81.483 (7)
C12—C131.464 (11)C2—C31.405 (7)
C13—H13A0.9800C2—C71.383 (7)
C13—H13B0.9800C3—H30.9500
C13—H13C0.9800C3—C41.377 (7)
C14—H14A0.9900C4—H40.9500
C14—H14B0.9900C4—C51.396 (8)
C14—C151.513 (8)C5—C61.386 (8)
C15—H15A0.9800C6—H60.9500
C15—H15B0.9800C6—C71.404 (7)
C15—H15C0.9800C8—H8A0.9800
C16—H16A0.9900C8—H8B0.9800
C16—H16B0.9900C8—H8C0.9800
C16—C171.517 (9)C9—H9A0.9800
C17—H17A0.9800C9—H9B0.9800
C17—H17B0.9800C9—H9C0.9800
C10—N2—C12108.5 (5)C16—C17—H17B109.5
C10—N2—C14111.4 (5)C16—C17—H17C109.5
C14—N2—C12107.4 (4)H17A—C17—H17B109.5
C16—N2—C10109.6 (5)H17A—C17—H17C109.5
C16—N2—C12110.1 (5)H17B—C17—H17C109.5
C16—N2—C14109.8 (5)Br2—Pt1—Br191.171 (19)
N2—C10—H10A107.9Br2—Pt1—Br392.507 (19)
N2—C10—H10B107.9Br3—Pt1—Br1176.30 (2)
H10A—C10—H10B107.2N1—Pt1—Br187.04 (11)
C11—C10—N2117.8 (6)N1—Pt1—Br2177.41 (11)
C11—C10—H10A107.9N1—Pt1—Br389.29 (11)
C11—C10—H10B107.9C1—S1—C789.9 (2)
C10—C11—H11A109.5C5—O1—C9116.3 (5)
C10—C11—H11B109.5C1—N1—Pt1124.7 (3)
C10—C11—H11C109.5C1—N1—C2112.6 (4)
H11A—C11—H11B109.5C2—N1—Pt1122.1 (3)
H11A—C11—H11C109.5N1—C1—S1114.0 (4)
H11B—C11—H11C109.5N1—C1—C8124.2 (5)
N2—C12—H12A108.0C8—C1—S1121.8 (4)
N2—C12—H12B108.0N1—C2—C3126.5 (4)
H12A—C12—H12B107.3C7—C2—N1113.5 (4)
C13—C12—N2117.1 (6)C7—C2—C3120.0 (5)
C13—C12—H12A108.0C2—C3—H3120.9
C13—C12—H12B108.0C4—C3—C2118.2 (5)
C12—C13—H13A109.5C4—C3—H3120.9
C12—C13—H13B109.5C3—C4—H4119.4
C12—C13—H13C109.5C3—C4—C5121.2 (5)
H13A—C13—H13B109.5C5—C4—H4119.4
H13A—C13—H13C109.5O1—C5—C4115.7 (5)
H13B—C13—H13C109.5O1—C5—C6122.6 (5)
N2—C14—H14A108.7C6—C5—C4121.7 (5)
N2—C14—H14B108.7C5—C6—H6121.8
H14A—C14—H14B107.6C5—C6—C7116.5 (5)
C15—C14—N2114.3 (5)C7—C6—H6121.8
C15—C14—H14A108.7C2—C7—S1109.9 (4)
C15—C14—H14B108.7C2—C7—C6122.4 (5)
C14—C15—H15A109.5C6—C7—S1127.7 (4)
C14—C15—H15B109.5C1—C8—H8A109.5
C14—C15—H15C109.5C1—C8—H8B109.5
H15A—C15—H15B109.5C1—C8—H8C109.5
H15A—C15—H15C109.5H8A—C8—H8B109.5
H15B—C15—H15C109.5H8A—C8—H8C109.5
N2—C16—H16A108.4H8B—C8—H8C109.5
N2—C16—H16B108.4O1—C9—H9A109.5
N2—C16—C17115.4 (5)O1—C9—H9B109.5
H16A—C16—H16B107.5O1—C9—H9C109.5
C17—C16—H16A108.4H9A—C9—H9B109.5
C17—C16—H16B108.4H9A—C9—H9C109.5
C16—C17—H17A109.5H9B—C9—H9C109.5
(3) Tetraethylammonium tribromido(2,5,6-trimethyl-1,3-benzothiazole-κN)platinate(II) top
Crystal data top
(C8H20N)[PtBr3(C10H11NS)]F(000) = 1408
Mr = 742.33Dx = 2.151 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.9742 (4) ÅCell parameters from 5770 reflections
b = 30.2807 (14) Åθ = 2.3–26.4°
c = 9.6427 (5) ŵ = 11.45 mm1
β = 100.151 (3)°T = 100 K
V = 2291.9 (2) Å3Block, red
Z = 40.5 × 0.36 × 0.25 mm
Data collection top
Bruker APEXII CCD
diffractometer
4692 independent reflections
Radiation source: Micro Focus Rotating Anode, Bruker TXS4120 reflections with I > 2σ(I)
Double Bounce Multilayer Mirrors monochromatorRint = 0.048
Detector resolution: 7.9 pixels mm-1θmax = 26.5°, θmin = 2.3°
φ and ω scansh = 95
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 3731
Tmin = 0.003, Tmax = 0.028l = 1012
10729 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.056P)2 + 1.6623P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
4692 reflectionsΔρmax = 1.88 e Å3
266 parametersΔρmin = 1.02 e Å3
Crystal data top
(C8H20N)[PtBr3(C10H11NS)]V = 2291.9 (2) Å3
Mr = 742.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.9742 (4) ŵ = 11.45 mm1
b = 30.2807 (14) ÅT = 100 K
c = 9.6427 (5) Å0.5 × 0.36 × 0.25 mm
β = 100.151 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
4692 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
4120 reflections with I > 2σ(I)
Tmin = 0.003, Tmax = 0.028Rint = 0.048
10729 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.05Δρmax = 1.88 e Å3
4692 reflectionsΔρmin = 1.02 e Å3
266 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N20.5342 (7)0.18676 (17)0.5028 (5)0.0281 (11)
C120.8178 (11)0.1847 (4)0.6760 (9)0.060 (2)
H12A0.86730.19110.77430.089*0.566 (9)
H12B0.83460.15350.65600.089*0.566 (9)
H12C0.87360.20300.61370.089*0.566 (9)
H12D0.93010.17060.69010.089*0.434 (9)
H12E0.83130.21680.67060.089*0.434 (9)
H12F0.76060.17750.75510.089*0.434 (9)
C140.4260 (12)0.1207 (3)0.3440 (10)0.057 (2)
H14A0.42850.08840.34480.086*0.566 (9)
H14B0.30760.13090.33100.086*0.566 (9)
H14C0.47920.13160.26650.086*0.566 (9)
H14D0.37860.11450.24510.086*0.434 (9)
H14E0.53210.10410.37180.086*0.434 (9)
H14F0.34390.11190.40330.086*0.434 (9)
C160.2437 (10)0.1856 (2)0.5783 (8)0.0404 (17)
H16A0.13340.20080.56720.061*0.566 (9)
H16B0.22620.15490.54680.061*0.566 (9)
H16C0.29810.18620.67770.061*0.566 (9)
H16D0.18360.17590.65320.061*0.434 (9)
H16E0.23450.21780.56840.061*0.434 (9)
H16F0.19250.17160.48930.061*0.434 (9)
C180.6616 (12)0.2550 (3)0.4092 (10)0.054 (2)
H18A0.71990.26490.33340.081*0.566 (9)
H18B0.55470.27130.40450.081*0.566 (9)
H18C0.73480.26030.50040.081*0.566 (9)
H18D0.65290.28720.40730.081*0.434 (9)
H18E0.77690.24630.45400.081*0.434 (9)
H18F0.63780.24350.31260.081*0.434 (9)
C110.6256 (17)0.1951 (4)0.6507 (12)0.033 (3)0.566 (9)
H11A0.57150.17710.71620.040*0.566 (9)
H11B0.61040.22660.67390.040*0.566 (9)
C130.5186 (18)0.1373 (4)0.4765 (14)0.037 (3)0.566 (9)
H13A0.63560.12520.48830.044*0.566 (9)
H13B0.46500.12450.55240.044*0.566 (9)
C150.3598 (15)0.2095 (4)0.4884 (12)0.032 (3)0.566 (9)
H15A0.30390.20930.38820.038*0.566 (9)
H15B0.37580.24060.51930.038*0.566 (9)
C17A0.6257 (15)0.2086 (5)0.3936 (13)0.040 (3)0.566 (9)
H17A0.73490.19300.39500.048*0.566 (9)
H17B0.55550.20390.29930.048*0.566 (9)
C11A0.716 (2)0.1689 (6)0.546 (2)0.044 (5)0.434 (9)
H11C0.70890.13630.55270.053*0.434 (9)
H11D0.77920.17550.46870.053*0.434 (9)
C13A0.460 (2)0.1664 (5)0.3608 (15)0.033 (4)0.434 (9)
H13C0.35090.18190.32660.040*0.434 (9)
H13D0.53770.17420.29530.040*0.434 (9)
C15A0.435 (2)0.1723 (6)0.6165 (14)0.031 (4)0.434 (9)
H15C0.48630.18600.70730.038*0.434 (9)
H15D0.44420.13980.62810.038*0.434 (9)
C170.535 (2)0.2363 (5)0.4914 (17)0.033 (4)0.434 (9)
H17C0.41950.24610.44660.040*0.434 (9)
H17D0.55820.24890.58760.040*0.434 (9)
Pt10.28820 (3)0.36639 (2)0.54603 (2)0.02321 (10)
Br10.11056 (8)0.41268 (2)0.37347 (7)0.03333 (17)
Br20.08097 (9)0.30729 (2)0.50744 (7)0.03324 (17)
Br30.47121 (9)0.32318 (2)0.72302 (8)0.04046 (19)
S10.7243 (2)0.46490 (5)0.58781 (16)0.0279 (3)
N10.4604 (6)0.41615 (16)0.5825 (5)0.0239 (10)
C10.6036 (8)0.4185 (2)0.5354 (6)0.0271 (13)
C20.4361 (8)0.4523 (2)0.6672 (6)0.0258 (13)
C30.2953 (8)0.4599 (2)0.7319 (6)0.0263 (13)
H30.20310.43960.72020.032*
C40.2917 (8)0.4974 (2)0.8136 (6)0.0285 (13)
C50.4298 (9)0.5269 (2)0.8313 (7)0.0319 (14)
C60.5667 (9)0.5201 (2)0.7669 (6)0.0294 (14)
H60.65780.54080.77820.035*
C70.5713 (8)0.4824 (2)0.6840 (6)0.0263 (13)
C80.6633 (9)0.3844 (2)0.4455 (7)0.0342 (15)
H8A0.57370.37840.36420.051*
H8B0.69000.35720.50010.051*
H8C0.76570.39490.41260.051*
C90.1406 (9)0.5053 (2)0.8848 (7)0.0346 (15)
H9A0.08460.53300.85030.052*
H9B0.17920.50730.98690.052*
H9C0.05990.48080.86360.052*
C100.4240 (10)0.5680 (2)0.9223 (8)0.0391 (16)
H10A0.32890.58690.87980.059*
H10B0.53110.58440.92860.059*
H10C0.40840.55911.01700.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.028 (3)0.026 (3)0.031 (3)0.001 (2)0.007 (2)0.001 (2)
C120.036 (4)0.093 (7)0.047 (5)0.003 (4)0.002 (4)0.015 (5)
C140.053 (5)0.052 (5)0.072 (6)0.005 (4)0.026 (5)0.035 (5)
C160.038 (4)0.037 (4)0.051 (4)0.000 (3)0.023 (3)0.005 (3)
C180.061 (5)0.045 (5)0.060 (5)0.009 (4)0.021 (4)0.014 (4)
C110.045 (7)0.027 (6)0.027 (5)0.004 (5)0.004 (5)0.001 (5)
C130.038 (7)0.028 (6)0.043 (7)0.009 (5)0.004 (6)0.008 (5)
C150.037 (6)0.023 (6)0.034 (6)0.003 (5)0.007 (5)0.002 (5)
C17A0.024 (6)0.063 (9)0.034 (6)0.000 (6)0.010 (5)0.003 (6)
C11A0.035 (9)0.044 (10)0.058 (11)0.017 (8)0.020 (8)0.022 (8)
C13A0.049 (9)0.032 (8)0.023 (7)0.013 (7)0.014 (7)0.013 (6)
C15A0.032 (8)0.044 (9)0.020 (7)0.000 (7)0.009 (6)0.006 (6)
C170.037 (8)0.031 (8)0.037 (8)0.009 (7)0.018 (7)0.001 (6)
Pt10.02518 (15)0.01967 (15)0.02593 (15)0.00120 (8)0.00770 (10)0.00056 (8)
Br10.0312 (3)0.0284 (3)0.0401 (4)0.0015 (3)0.0056 (3)0.0073 (3)
Br20.0415 (4)0.0266 (3)0.0321 (3)0.0074 (3)0.0077 (3)0.0004 (2)
Br30.0389 (4)0.0386 (4)0.0420 (4)0.0009 (3)0.0019 (3)0.0113 (3)
S10.0268 (7)0.0263 (8)0.0320 (8)0.0029 (6)0.0091 (6)0.0027 (6)
N10.026 (3)0.025 (3)0.021 (2)0.001 (2)0.006 (2)0.002 (2)
C10.030 (3)0.025 (3)0.026 (3)0.004 (2)0.006 (3)0.000 (2)
C20.023 (3)0.027 (3)0.028 (3)0.001 (2)0.007 (2)0.006 (2)
C30.028 (3)0.022 (3)0.030 (3)0.003 (2)0.007 (3)0.002 (2)
C40.033 (3)0.023 (3)0.031 (3)0.004 (3)0.009 (3)0.001 (3)
C50.046 (4)0.025 (3)0.025 (3)0.004 (3)0.005 (3)0.000 (2)
C60.037 (4)0.021 (3)0.030 (3)0.005 (3)0.005 (3)0.005 (2)
C70.032 (3)0.022 (3)0.026 (3)0.002 (2)0.007 (3)0.007 (2)
C80.030 (3)0.037 (4)0.039 (4)0.001 (3)0.013 (3)0.005 (3)
C90.045 (4)0.027 (3)0.034 (3)0.001 (3)0.012 (3)0.001 (3)
C100.050 (4)0.020 (3)0.048 (4)0.004 (3)0.013 (3)0.004 (3)
Geometric parameters (Å, º) top
N2—C111.504 (12)C13—H13A0.9900
N2—C131.520 (12)C13—H13B0.9900
N2—C151.535 (13)C15—H15A0.9900
N2—C17A1.533 (13)C15—H15B0.9900
N2—C11A1.537 (16)C17A—H17A0.9900
N2—C13A1.523 (14)C17A—H17B0.9900
N2—C15A1.523 (15)C11A—H11C0.9900
N2—C171.505 (16)C11A—H11D0.9900
C12—H12A0.9800C13A—H13C0.9900
C12—H12B0.9800C13A—H13D0.9900
C12—H12C0.9800C15A—H15C0.9900
C12—H12D0.9800C15A—H15D0.9900
C12—H12E0.9800C17—H17C0.9900
C12—H12F0.9800C17—H17D0.9900
C12—C111.542 (15)Pt1—Br12.4309 (7)
C12—C11A1.45 (2)Pt1—Br22.4198 (7)
C14—H14A0.9800Pt1—Br32.4240 (7)
C14—H14B0.9800Pt1—N12.027 (5)
C14—H14C0.9800S1—C11.727 (6)
C14—H14D0.9800S1—C71.739 (7)
C14—H14E0.9800N1—C11.303 (8)
C14—H14F0.9800N1—C21.401 (8)
C14—C131.449 (15)C1—C81.482 (9)
C14—C13A1.415 (16)C2—C31.397 (9)
C16—H16A0.9800C2—C71.398 (9)
C16—H16B0.9800C3—H30.9500
C16—H16C0.9800C3—C41.385 (9)
C16—H16D0.9800C4—C51.404 (9)
C16—H16E0.9800C4—C91.507 (9)
C16—H16F0.9800C5—C61.363 (10)
C16—C151.553 (14)C5—C101.528 (9)
C16—C15A1.561 (17)C6—H60.9500
C18—H18A0.9800C6—C71.400 (9)
C18—H18B0.9800C8—H8A0.9800
C18—H18C0.9800C8—H8B0.9800
C18—H18D0.9800C8—H8C0.9800
C18—H18E0.9800C9—H9A0.9800
C18—H18F0.9800C9—H9B0.9800
C18—C17A1.435 (17)C9—H9C0.9800
C18—C171.500 (16)C10—H10A0.9800
C11—H11A0.9900C10—H10B0.9800
C11—H11B0.9900C10—H10C0.9800
C11—N2—C13109.7 (7)N2—C17A—H17B107.9
C11—N2—C15106.9 (8)C18—C17A—N2117.4 (10)
C11—N2—C17A111.6 (8)C18—C17A—H17A107.9
C13—N2—C15112.3 (8)C18—C17A—H17B107.9
C13—N2—C17A110.2 (8)H17A—C17A—H17B107.2
C17A—N2—C15106.1 (7)N2—C11A—H11C107.7
C13A—N2—C11A107.5 (11)N2—C11A—H11D107.7
C13A—N2—C15A111.2 (9)C12—C11A—N2118.3 (13)
C15A—N2—C11A106.7 (9)C12—C11A—H11C107.7
C17—N2—C11A110.9 (10)C12—C11A—H11D107.7
C17—N2—C13A110.0 (9)H11C—C11A—H11D107.1
C17—N2—C15A110.4 (9)N2—C13A—H13C106.7
H12A—C12—H12B109.5N2—C13A—H13D106.7
H12A—C12—H12C109.5C14—C13A—N2122.3 (12)
H12B—C12—H12C109.5C14—C13A—H13C106.7
H12D—C12—H12E109.5C14—C13A—H13D106.7
H12D—C12—H12F109.5H13C—C13A—H13D106.6
H12E—C12—H12F109.5N2—C15A—C16111.4 (9)
C11—C12—H12A109.5N2—C15A—H15C109.4
C11—C12—H12B109.5N2—C15A—H15D109.4
C11—C12—H12C109.5C16—C15A—H15C109.4
C11A—C12—H12D109.5C16—C15A—H15D109.4
C11A—C12—H12E109.5H15C—C15A—H15D108.0
C11A—C12—H12F109.5N2—C17—H17C108.5
H14A—C14—H14B109.5N2—C17—H17D108.5
H14A—C14—H14C109.5C18—C17—N2115.2 (11)
H14B—C14—H14C109.5C18—C17—H17C108.5
H14D—C14—H14E109.5C18—C17—H17D108.5
H14D—C14—H14F109.5H17C—C17—H17D107.5
H14E—C14—H14F109.5Br2—Pt1—Br191.23 (2)
C13—C14—H14A109.5Br2—Pt1—Br391.10 (2)
C13—C14—H14B109.5Br3—Pt1—Br1177.45 (3)
C13—C14—H14C109.5N1—Pt1—Br189.16 (14)
C13A—C14—H14D109.5N1—Pt1—Br2178.76 (14)
C13A—C14—H14E109.5N1—Pt1—Br388.50 (14)
C13A—C14—H14F109.5C1—S1—C789.8 (3)
H16A—C16—H16B109.5C1—N1—Pt1126.1 (4)
H16A—C16—H16C109.5C1—N1—C2112.3 (5)
H16B—C16—H16C109.5C2—N1—Pt1121.6 (4)
H16D—C16—H16E109.5N1—C1—S1114.9 (5)
H16D—C16—H16F109.5N1—C1—C8123.9 (6)
H16E—C16—H16F109.5C8—C1—S1121.2 (5)
C15—C16—H16A109.5C3—C2—N1126.5 (6)
C15—C16—H16B109.5C3—C2—C7120.4 (6)
C15—C16—H16C109.5C7—C2—N1113.1 (5)
C15A—C16—H16D109.5C2—C3—H3120.4
C15A—C16—H16E109.5C4—C3—C2119.2 (6)
C15A—C16—H16F109.5C4—C3—H3120.4
H18A—C18—H18B109.5C3—C4—C5119.8 (6)
H18A—C18—H18C109.5C3—C4—C9119.1 (6)
H18B—C18—H18C109.5C5—C4—C9121.1 (6)
H18D—C18—H18E109.5C4—C5—C10119.0 (6)
H18D—C18—H18F109.5C6—C5—C4121.5 (6)
H18E—C18—H18F109.5C6—C5—C10119.5 (6)
C17A—C18—H18A109.5C5—C6—H6120.4
C17A—C18—H18B109.5C5—C6—C7119.1 (6)
C17A—C18—H18C109.5C7—C6—H6120.4
C17—C18—H18D109.5C2—C7—S1109.9 (5)
C17—C18—H18E109.5C2—C7—C6120.0 (6)
C17—C18—H18F109.5C6—C7—S1130.1 (5)
N2—C11—C12114.7 (9)C1—C8—H8A109.5
N2—C11—H11A108.6C1—C8—H8B109.5
N2—C11—H11B108.6C1—C8—H8C109.5
C12—C11—H11A108.6H8A—C8—H8B109.5
C12—C11—H11B108.6H8A—C8—H8C109.5
H11A—C11—H11B107.6H8B—C8—H8C109.5
N2—C13—H13A107.3C4—C9—H9A109.5
N2—C13—H13B107.3C4—C9—H9B109.5
C14—C13—N2120.2 (10)C4—C9—H9C109.5
C14—C13—H13A107.3H9A—C9—H9B109.5
C14—C13—H13B107.3H9A—C9—H9C109.5
H13A—C13—H13B106.9H9B—C9—H9C109.5
N2—C15—C16111.2 (8)C5—C10—H10A109.5
N2—C15—H15A109.4C5—C10—H10B109.5
N2—C15—H15B109.4C5—C10—H10C109.5
C16—C15—H15A109.4H10A—C10—H10B109.5
C16—C15—H15B109.4H10A—C10—H10C109.5
H15A—C15—H15B108.0H10B—C10—H10C109.5
N2—C17A—H17A107.9
(4) Tetraethylammonium tribromido(2-methyl-5-nitro-1,3-benzothiazole-κN)platinate(II) top
Crystal data top
(C8H20N)[PtBr3(C8H6N2O2S)]F(000) = 1432
Mr = 759.28Dx = 2.272 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.1170 (3) ÅCell parameters from 9483 reflections
b = 29.2717 (12) Åθ = 2.6–26.4°
c = 9.5102 (4) ŵ = 11.83 mm1
β = 100.720 (1)°T = 100 K
V = 2220.17 (15) Å3Block, bronze
Z = 40.32 × 0.3 × 0.25 mm
Data collection top
Bruker APEXII CCD
diffractometer
4550 independent reflections
Radiation source: Micro Focus Rotating Anode, Bruker TXS4254 reflections with I > 2σ(I)
Double Bounce Multilayer Mirrors monochromatorRint = 0.028
Detector resolution: 7.9 pixels mm-1θmax = 26.5°, θmin = 2.3°
φ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 3136
Tmin = 0.020, Tmax = 0.045l = 117
15975 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.0044P)2 + 13.0832P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max = 0.002
4550 reflectionsΔρmax = 1.25 e Å3
240 parametersΔρmin = 1.37 e Å3
Crystal data top
(C8H20N)[PtBr3(C8H6N2O2S)]V = 2220.17 (15) Å3
Mr = 759.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.1170 (3) ŵ = 11.83 mm1
b = 29.2717 (12) ÅT = 100 K
c = 9.5102 (4) Å0.32 × 0.3 × 0.25 mm
β = 100.720 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4550 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
4254 reflections with I > 2σ(I)
Tmin = 0.020, Tmax = 0.045Rint = 0.028
15975 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0044P)2 + 13.0832P]
where P = (Fo2 + 2Fc2)/3
4550 reflectionsΔρmax = 1.25 e Å3
240 parametersΔρmin = 1.37 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N30.5548 (5)0.31569 (15)0.5135 (4)0.0187 (9)
C90.3795 (6)0.30025 (19)0.5223 (6)0.0247 (12)
H9A0.38500.26850.55850.030*
H9B0.31120.30000.42450.030*
C100.2911 (7)0.3294 (2)0.6170 (7)0.0320 (13)
H10A0.27860.36060.57900.048*
H10B0.35750.33000.71430.048*
H10C0.18020.31650.61910.048*
C110.5608 (7)0.36508 (18)0.4693 (6)0.0257 (12)
H11A0.67760.37270.46120.031*
H11B0.53040.38440.54590.031*
C120.4466 (7)0.3771 (2)0.3292 (6)0.0281 (12)
H12A0.48150.36010.25100.042*
H12B0.45340.40990.31150.042*
H12C0.33080.36890.33470.042*
C130.6205 (7)0.28611 (19)0.4041 (6)0.0262 (12)
H13A0.53800.28690.31330.031*
H13B0.72580.29980.38530.031*
C140.6543 (8)0.2369 (2)0.4470 (7)0.0323 (13)
H14A0.68710.22010.36750.048*
H14B0.55270.22320.47070.048*
H14C0.74520.23540.53070.048*
C150.6624 (7)0.3097 (2)0.6607 (6)0.0266 (12)
H15A0.65030.27800.69290.032*
H15B0.61970.33030.72840.032*
C160.8519 (7)0.3199 (3)0.6674 (7)0.0373 (15)
H16A0.89740.29840.60540.056*
H16B0.91220.31640.76610.056*
H16C0.86550.35120.63480.056*
Pt10.19959 (2)0.63310 (2)0.93287 (2)0.01542 (6)
Br10.01278 (6)0.67668 (2)0.75173 (6)0.02534 (12)
Br20.39391 (7)0.69652 (2)0.97693 (6)0.02338 (12)
Br30.38687 (6)0.58556 (2)1.10249 (6)0.02324 (12)
S10.23297 (16)0.53228 (4)0.89580 (14)0.0211 (3)
O10.4596 (5)0.50291 (14)0.6504 (4)0.0304 (9)
O20.3206 (5)0.44662 (14)0.5385 (5)0.0343 (10)
N10.0320 (5)0.58046 (14)0.8995 (4)0.0168 (8)
N20.3324 (6)0.48001 (15)0.6180 (5)0.0247 (10)
C10.1103 (6)0.57965 (17)0.9469 (6)0.0187 (10)
C20.0503 (6)0.54253 (17)0.8172 (5)0.0187 (10)
C30.1902 (6)0.53230 (17)0.7554 (5)0.0192 (10)
H30.28460.55200.76610.023*
C40.1839 (7)0.49242 (17)0.6787 (6)0.0213 (11)
C50.0465 (7)0.46309 (19)0.6567 (6)0.0263 (12)
H50.04730.43650.59940.032*
C60.0899 (7)0.47253 (18)0.7177 (6)0.0245 (12)
H60.18440.45280.70470.029*
C70.0852 (6)0.51233 (18)0.7997 (6)0.0212 (11)
C80.1675 (7)0.61580 (18)1.0364 (6)0.0239 (11)
H8A0.19780.64330.97840.036*
H8B0.07700.62311.11680.036*
H8C0.26550.60491.07320.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N30.018 (2)0.024 (2)0.014 (2)0.0008 (17)0.0023 (17)0.0010 (17)
C90.020 (3)0.027 (3)0.027 (3)0.003 (2)0.006 (2)0.004 (2)
C100.032 (3)0.036 (3)0.031 (3)0.002 (3)0.013 (3)0.005 (3)
C110.025 (3)0.024 (3)0.029 (3)0.004 (2)0.007 (2)0.002 (2)
C120.035 (3)0.028 (3)0.022 (3)0.005 (2)0.009 (2)0.007 (2)
C130.030 (3)0.032 (3)0.020 (3)0.002 (2)0.011 (2)0.004 (2)
C140.034 (3)0.031 (3)0.033 (3)0.011 (2)0.008 (3)0.004 (3)
C150.025 (3)0.033 (3)0.022 (3)0.000 (2)0.002 (2)0.003 (2)
C160.018 (3)0.064 (4)0.026 (3)0.004 (3)0.006 (2)0.011 (3)
Pt10.01462 (10)0.01661 (9)0.01517 (10)0.00278 (7)0.00313 (7)0.00054 (7)
Br10.0203 (3)0.0302 (3)0.0244 (3)0.0025 (2)0.0012 (2)0.0072 (2)
Br20.0250 (3)0.0238 (3)0.0213 (3)0.0058 (2)0.0043 (2)0.0007 (2)
Br30.0194 (2)0.0225 (3)0.0263 (3)0.0023 (2)0.0001 (2)0.0038 (2)
S10.0183 (6)0.0210 (6)0.0235 (7)0.0059 (5)0.0029 (5)0.0014 (5)
O10.026 (2)0.034 (2)0.032 (2)0.0023 (17)0.0070 (18)0.0038 (18)
O20.046 (3)0.024 (2)0.037 (2)0.0025 (18)0.018 (2)0.0089 (18)
N10.014 (2)0.019 (2)0.016 (2)0.0005 (16)0.0018 (17)0.0022 (17)
N20.035 (3)0.019 (2)0.021 (2)0.002 (2)0.008 (2)0.0032 (19)
C10.017 (2)0.018 (2)0.022 (3)0.0015 (19)0.004 (2)0.005 (2)
C20.023 (3)0.017 (2)0.014 (2)0.003 (2)0.001 (2)0.0027 (19)
C30.017 (2)0.021 (2)0.018 (3)0.003 (2)0.000 (2)0.004 (2)
C40.026 (3)0.019 (2)0.018 (3)0.000 (2)0.002 (2)0.004 (2)
C50.036 (3)0.020 (3)0.023 (3)0.006 (2)0.005 (2)0.001 (2)
C60.026 (3)0.023 (3)0.022 (3)0.010 (2)0.001 (2)0.000 (2)
C70.022 (3)0.021 (3)0.020 (3)0.000 (2)0.002 (2)0.006 (2)
C80.020 (3)0.022 (3)0.030 (3)0.002 (2)0.006 (2)0.000 (2)
Geometric parameters (Å, º) top
N3—C91.510 (6)C16—H16B0.9800
N3—C111.509 (7)C16—H16C0.9800
N3—C131.524 (6)Pt1—Br12.4335 (6)
N3—C151.516 (7)Pt1—Br22.4216 (5)
C9—H9A0.9900Pt1—Br32.4367 (5)
C9—H9B0.9900Pt1—N12.041 (4)
C9—C101.515 (8)S1—C11.724 (5)
C10—H10A0.9800S1—C71.738 (5)
C10—H10B0.9800O1—N21.221 (6)
C10—H10C0.9800O2—N21.228 (6)
C11—H11A0.9900N1—C11.315 (6)
C11—H11B0.9900N1—C21.383 (6)
C11—C121.516 (8)N2—C41.476 (7)
C12—H12A0.9800C1—C81.486 (7)
C12—H12B0.9800C2—C31.405 (7)
C12—H12C0.9800C2—C71.397 (7)
C13—H13A0.9900C3—H30.9500
C13—H13B0.9900C3—C41.372 (7)
C13—C141.509 (8)C4—C51.392 (7)
C14—H14A0.9800C5—H50.9500
C14—H14B0.9800C5—C61.370 (8)
C14—H14C0.9800C6—H60.9500
C15—H15A0.9900C6—C71.399 (7)
C15—H15B0.9900C8—H8A0.9800
C15—C161.557 (8)C8—H8B0.9800
C16—H16A0.9800C8—H8C0.9800
C9—N3—C13108.7 (4)C16—C15—H15B108.7
C9—N3—C15107.5 (4)C15—C16—H16A109.5
C11—N3—C9112.4 (4)C15—C16—H16B109.5
C11—N3—C13108.7 (4)C15—C16—H16C109.5
C11—N3—C15108.9 (4)H16A—C16—H16B109.5
C15—N3—C13110.5 (4)H16A—C16—H16C109.5
N3—C9—H9A108.6H16B—C16—H16C109.5
N3—C9—H9B108.6Br1—Pt1—Br3176.23 (2)
N3—C9—C10114.8 (5)Br2—Pt1—Br191.183 (19)
H9A—C9—H9B107.5Br2—Pt1—Br390.989 (19)
C10—C9—H9A108.6N1—Pt1—Br188.64 (11)
C10—C9—H9B108.6N1—Pt1—Br2178.40 (12)
C9—C10—H10A109.5N1—Pt1—Br389.28 (11)
C9—C10—H10B109.5C1—S1—C790.0 (2)
C9—C10—H10C109.5C1—N1—Pt1124.2 (3)
H10A—C10—H10B109.5C1—N1—C2111.9 (4)
H10A—C10—H10C109.5C2—N1—Pt1123.8 (3)
H10B—C10—H10C109.5O1—N2—O2123.9 (5)
N3—C11—H11A108.6O1—N2—C4118.7 (4)
N3—C11—H11B108.6O2—N2—C4117.4 (5)
N3—C11—C12114.9 (5)N1—C1—S1114.6 (4)
H11A—C11—H11B107.5N1—C1—C8124.8 (5)
C12—C11—H11A108.6C8—C1—S1120.6 (4)
C12—C11—H11B108.6N1—C2—C3126.0 (5)
C11—C12—H12A109.5N1—C2—C7114.2 (4)
C11—C12—H12B109.5C7—C2—C3119.7 (5)
C11—C12—H12C109.5C2—C3—H3121.6
H12A—C12—H12B109.5C4—C3—C2116.8 (5)
H12A—C12—H12C109.5C4—C3—H3121.6
H12B—C12—H12C109.5C3—C4—N2117.7 (5)
N3—C13—H13A108.5C3—C4—C5123.6 (5)
N3—C13—H13B108.5C5—C4—N2118.6 (5)
H13A—C13—H13B107.5C4—C5—H5120.0
C14—C13—N3115.3 (4)C6—C5—C4120.0 (5)
C14—C13—H13A108.5C6—C5—H5120.0
C14—C13—H13B108.5C5—C6—H6121.2
C13—C14—H14A109.5C5—C6—C7117.6 (5)
C13—C14—H14B109.5C7—C6—H6121.2
C13—C14—H14C109.5C2—C7—S1109.3 (4)
H14A—C14—H14B109.5C2—C7—C6122.2 (5)
H14A—C14—H14C109.5C6—C7—S1128.5 (4)
H14B—C14—H14C109.5C1—C8—H8A109.5
N3—C15—H15A108.7C1—C8—H8B109.5
N3—C15—H15B108.7C1—C8—H8C109.5
N3—C15—C16114.3 (5)H8A—C8—H8B109.5
H15A—C15—H15B107.6H8A—C8—H8C109.5
C16—C15—H15A108.7H8B—C8—H8C109.5
C9—N3—C11—C1255.8 (6)N1—C2—C7—S12.1 (6)
C9—N3—C13—C1468.6 (6)N1—C2—C7—C6178.8 (5)
C9—N3—C15—C16174.6 (5)N2—C4—C5—C6176.8 (5)
C11—N3—C9—C1054.2 (6)C1—S1—C7—C21.9 (4)
C11—N3—C13—C14168.7 (5)C1—S1—C7—C6179.1 (5)
C11—N3—C15—C1663.3 (6)C1—N1—C2—C3177.5 (5)
C13—N3—C9—C10174.6 (5)C1—N1—C2—C71.1 (6)
C13—N3—C11—C1264.6 (6)C2—N1—C1—S10.4 (6)
C13—N3—C15—C1656.0 (6)C2—N1—C1—C8179.1 (5)
C15—N3—C9—C1065.7 (6)C2—C3—C4—N2177.5 (4)
C15—N3—C11—C12174.9 (4)C2—C3—C4—C51.9 (8)
C15—N3—C13—C1449.2 (6)C3—C2—C7—S1176.6 (4)
Pt1—N1—C1—S1176.9 (2)C3—C2—C7—C62.4 (8)
Pt1—N1—C1—C82.6 (7)C3—C4—C5—C62.6 (8)
Pt1—N1—C2—C36.0 (7)C4—C5—C6—C70.7 (8)
Pt1—N1—C2—C7175.4 (3)C5—C6—C7—S1177.1 (4)
O1—N2—C4—C37.5 (7)C5—C6—C7—C21.7 (8)
O1—N2—C4—C5171.9 (5)C7—S1—C1—N11.4 (4)
O2—N2—C4—C3173.4 (5)C7—S1—C1—C8178.2 (5)
O2—N2—C4—C57.2 (7)C7—C2—C3—C40.6 (7)
N1—C2—C3—C4179.2 (5)
Selected bond distances and angles (Å, °) top
The dihedral angle is between the Pt–Br3N unit and the benzothiazole ring. The torsion angle is between the benzothiazole ring and the R group.
1234
Pt—Braverage2.433 (6)2.430 (6)2.425 (6)2.431 (8)
Pt—N2.035 (5)2.025 (4)2.027 (5)2.041 (4)
N1—C21.408 (7)1.396 (6)1.401 (8)1.383 (6)
N1—C11.309 (7)1.309 (6)1.303 (8)1.315 (6)
Pt—Br12.4375 (8)2.4352 (5)2.4309 (7)2.4335 (6)
Pt—Br22.4349 (8)2.4241 (7)2.4198 (7)2.4216 (5)
Pt—Br32.4268 (7)2.4309 (5)2.4240 (7)2.4367 (5)
S—C71.744 (6)1.743 (5)1.739 (7)1.738 (5)
S—C11.735 (6)1.730 (5)1.727 (6)1.724 (5)
C1—N1—C2113.0 (5)112.6 (4)112.3 (5)111.9 (4)
C1—S—C790.3 (3)89.9 (2)89.8 (3)90.0 (2)
N1—Pt—Br190.6 (1)87.0 (1)89.2 (1)88.6 (1)
N1—Pt—Br386.4 (1)89.3 (1)88.5 (1)89.3 (1)
N1—Pt—Br2177.7 (1)177.4 (1)178.8 (1)178.4 (1)
Br1—Pt—Br3176.85 (2)176.30 (2)177.45 (3)176.23 (2)
Br2—Pt—Br391.69 (2)92.51 (2)91.23 (2)91.18 (2)
Br1—Pt—Br291.31 (2)91.17 (2)91.10 (2)90.99 (2)
Dihedral angle88.1 (4)86.7 (3)78.6 (4)76.4 (4)
Torsion angle0.72 (1) (CH3)11.9 (7) (OCH3)1.5 (5) (C8H3)1.1 (5) (CH3)
0.2 (6) (C9H3)7.5 (7) (NO2)
0.3 (6) (C10H3)

Experimental details

(1)(2)(3)(4)
Crystal data
Chemical formula(C8H20N)[PtBr3(C8H7NS)](C8H20N)[PtBr3(C9H9NOS)](C8H20N)[PtBr3(C10H11NS)](C8H20N)[PtBr3(C8H6N2O2S)]
Mr714.27744.30742.33759.28
Crystal system, space groupOrthorhombic, PbcaMonoclinic, P21/nMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)100100100100
a, b, c (Å)12.114 (3), 10.656 (3), 34.043 (9)7.7591 (2), 30.4214 (8), 9.6551 (3)7.9742 (4), 30.2807 (14), 9.6427 (5)8.1170 (3), 29.2717 (12), 9.5102 (4)
α, β, γ (°)90, 90, 9090, 94.539 (1), 9090, 100.151 (3), 9090, 100.720 (1), 90
V3)4394 (2)2271.87 (11)2291.9 (2)2220.17 (15)
Z8444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)11.9411.5511.4511.83
Crystal size (mm)0.18 × 0.16 × 0.120.32 × 0.3 × 0.240.5 × 0.36 × 0.250.32 × 0.3 × 0.25
Data collection
DiffractometerBruker APEXII CCDBruker APEXII CCDBruker APEXII CCDBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2014)
Multi-scan
(SADABS; Bruker, 2014)
Multi-scan
(SADABS; Bruker, 2014)
Multi-scan
(SADABS; Bruker, 2014)
Tmin, Tmax0.052, 0.0930.056, 0.0930.003, 0.0280.020, 0.045
No. of measured, independent and
observed [I > 2σ(I)] reflections
16951, 4418, 3675 12741, 4650, 4377 10729, 4692, 4120 15975, 4550, 4254
Rint0.0470.0170.0480.028
(sin θ/λ)max1)0.6230.6260.6270.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.081, 1.03 0.027, 0.066, 1.08 0.039, 0.106, 1.05 0.029, 0.060, 1.18
No. of reflections4418465046924550
No. of parameters213232266240
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0352P)2 + 9.4131P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0227P)2 + 15.6321P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.056P)2 + 1.6623P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0044P)2 + 13.0832P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.38, 0.931.25, 1.361.88, 1.021.25, 1.37

Computer programs: APEX2 (Bruker, 2013), SAINT (Bruker, 2013), SHELXT (Sheldrick, 2015a), SIR2004 (Burla et al., 2007), SHELXL2014 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

We thank Ms Lorraine Hernández and Ms Nivia Ruiz-Alago for their help with the synthesis of the platinum compounds. We are grateful to Dr Jorge Rios-Steiner and Mr Daniel J. Vallés-Cádiz for their assistance in the crystallization process. EM thanks the NIH for financial support and JACN acknowledges the financial support of Sloan Program.

References

First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGomez, G. M., Muir, M. M., Muir, J. A. & Cox, O. (1988). Acta Cryst. C44, 1554–1557.  CrossRef CAS IUCr Journals Google Scholar
First citationJohnson, R. D. III (2015). NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101 Release 17b, September 2015, edited by Russell D. Johnson III. https://cccbdb.NIST.gov/exp2.asp?casno=98953 (accessed on November 24, 2015).  Google Scholar
First citationLivingstone, S. E. & Whitley, A. (1962). Aust. J. Chem. 15, 175–180.  CrossRef CAS Google Scholar
First citationLozano, C. M., Muir, M. M., Tang, X. & Li, Y. (1994). J. Chem. Cryst. 24, 639–642.  CrossRef CAS Google Scholar
First citationMuir, M. M., Cadiz, M. E. & Baez, A. (1988a). Inorg. Chim. Acta, 151, 209–213.  CrossRef CAS Google Scholar
First citationMuir, M. M., Gomez, G. M., Cadiz, M. E. & Muir, J. E. (1990). Inorg. Chim. Acta, 168, 47–57.  CrossRef CAS Google Scholar
First citationMuir, M. M., Gomez, G., Muir, J. A., Cadiz, M. E., Cox, O. & Barnes, C. L. (1988b). Acta Cryst. C44, 803–806.  CrossRef CAS IUCr Journals Google Scholar
First citationMuir, J. A., Gomez, G. M., Muir, M. M., Cox, O. & Cadiz, M. E. (1987). Acta Cryst. C43, 1258–1261.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNoolvi, M. N., Patel, H. M. & Kaur, M. (2012). Eur. J. Med. Chem. 54, 447–462.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 3| March 2016| Pages 412-416
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds