research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 3| March 2016| Pages 307-313

Crystal structures of five 6-mercaptopurine derivatives

CROSSMARK_Color_square_no_text.svg

aFP–ENAS–Faculdade de Ciências de Saúde, Escola Superior de Saúde da UFP, Universidade Fernando Pessoa, Rua Carlos da Maia, 296, P-4200-150 Porto, Portugal, bREQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007, Porto, Portugal, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dCIQ/Departamento de Quιmica e Bioquιmica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
*Correspondence e-mail: jnlow111@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 27 January 2016; accepted 30 January 2016; online 10 February 2016)

The crystal structures of five 6-mercaptopurine derivatives, viz. 2-[(9-acetyl-9H-purin-6-yl)sulfan­yl]-1-(3-meth­oxy­phen­yl)ethan-1-one (1), C16H14N4O3S, 2-[(9-acetyl-9H-purin-6-yl)sulfan­yl]-1-(4-meth­oxy­phen­yl)ethan-1-one (2), C16H14N4O3S, 2-[(9-acetyl-9H-purin-6-yl)sulfan­yl]-1-(4-chloro­phen­yl)ethan-1-one (3), C15H11ClN4O2S, 2-[(9-acetyl-9H-purin-6-yl)sulfan­yl]-1-(4-bromo­phen­yl)ethan-1-one (4), C15H11BrN4O2S, and 1-(3-meth­oxy­phen­yl)-2-[(9H-purin-6-yl)sulfan­yl]ethan-1-one (5), C14H12N4O2S. Compounds (2), (3) and (4) are isomorphous and accordingly their mol­ecular and supra­molecular structures are similar. An analysis of the dihedral angles between the purine and exocyclic phenyl rings show that the mol­ecules of (1) and (5) are essentially planar but that in the case of the three isomorphous compounds (2), (3) and (4), these rings are twisted by a dihedral angle of approximately 38°. With the exception of (1) all mol­ecules are linked by weak C—H⋯O hydrogen bonds in their crystals. There is ππ stacking in all compounds. A Cambridge Structural Database search revealed the existence of 11 deposited compounds containing the 1-phenyl-2-sulfanyl­ethanone scaffold; of these, only eight have a cyclic ring as substituent, the majority of these being heterocycles.

1. Chemical context

Purines, purine nucleosides and their analogs, are nitro­gen-containing heterocycles ubiquitous in nature and present in biological systems like man, plants and marine organisms (Legraverend, 2008[Legraverend, M. (2008). Tetrahedron, 64, 8585-8603.]). These types of heterocycles take part of the core structure of guanine and adenine in nucleic acids (DNA and RNA) being involved in diverse in vivo catabolic and anabolic metabolic pathways.

6-Mercaptopurine is a water insoluble purine analogue, which attracted attention due to its anti­tumor and immunosuppressive properties. The drug is used, among others, in the treatment of rheumathologic disorders, cancer and prevention of rejection of organ transplantation. The main problem associated with the pharmacological treatment with 6-mercaptopurine is the low bioavailability of the oral absorption and the short half-life in plasma. Strategies that have been adopted to circumvent those problems include the administration of 6-mercaptopurine analogues that act as prodrugs or by the chemical protection of the thiol group.

Chemically, the 6-mercaptopurine scaffold can also be modulated by an appropriate selection of the substituents that can be located at C-2, N-1, C-6, N-3, C-8, N-7 and N-9 positions, generating a variety of derivatives with potential biological applications (Legraverend & Grierson, 2006[Legraverend, M. & Grierson, D. S. (2006). Bioorg. Med. Chem. 14, 3987-4006.]; Tunçbilek, et al., 2009[Tunçbilek, M., Ateş-Alagöz, Z., Altanlar, N., Karayel, A. & Özbey, S. (2009). Bioorg. Med. Chem. 17, 1693-1700.]).

Within this framework, the goal of this project has been focused on the functionalization of 6-mercapto purine at positions 6 and 9. Here we describe the syntheses and characterization of five 6-mercaptopurine derivatives: 2-[(9-acetyl-9H-purin-6-yl)sulfan­yl]-1-(3-meth­oxy­phen­yl)ethan-1-one (1), 2-[(9-acetyl-9H-purin-6-yl)sulfan­yl]-1-(4-meth­oxy­phen­yl)ethan-1-one (2), 2-[(9-acetyl-9H-purin-6-yl)sulfan­yl]-1-(4-chloro­phen­yl)ethan-1-one (3), 2-[(9-acetyl-9H-purin-6-yl)sulf­an­yl]-1-(4-bromo­phen­yl)ethan-1-one (4) and 1-(3-meth­oxy­phen­yl)-2-[(9H-purin-6-yl)sulfan­yl]ethan-1-one (5).

[Scheme 1]

2. Structural commentary

Compounds (1)–(5) are shown in the scheme and their ellipsoid plots are shown in Figs. 1[link]–5[link][link][link][link]. Compounds (1) and (5) have similar a and c axes and (2), (3) and (4) are isostructural and isomorphous.

[Figure 1]
Figure 1
A view of the asymmetric unit of (1), with displacement ellipsoids are drawn at the 70% probability level.
[Figure 2]
Figure 2
A view of the asymmetric unit of (2), with displacement ellipsoids are drawn at the 70% probability level.
[Figure 3]
Figure 3
A view of the asymmetric unit of (3), with displacement ellipsoids are drawn at the 70% probability level.
[Figure 4]
Figure 4
A view of the asymmetric unit of (4), with displacement ellipsoids are drawn at the 70% probability level.
[Figure 5]
Figure 5
A view of the asymmetric unit of (5), with displacement ellipsoids are drawn at the 70% probability level.

These compounds can be envisaged as two building blocks, a substituted phenyl­ethanone grouping and a substituted 6-mercaptopurine moiety, bonded together by the mercapto ethanone residue. Since both purine and phenyl rings are essentially planar, the structural conformations of those compounds are conditioned by the –SCH2CO spacer (Fig. 6[link]) which permits rotations around the following bonds: Pu—S6, S6—C61, C61—C62 and C62—Ph bonds. The sp3 character of the central carbon atom may also direct the relative positions of the aceto­phenone residue out of the main plane constituted by the mercaptopurine, which is not the case of the present compounds. Selected geometric parameters for compounds (1)–(5) are given in Tables 1[link]–5[link][link][link][link], respectively.

Table 1
Selected geometric parameters (Å, °) for (1)[link]

S6—C6 1.7438 (19) C61—C62 1.520 (3)
S6—C61 1.8017 (18) C62—C631 1.491 (3)
       
C6—S6—C61 100.76 (9)    
       
C6—S6—C61—C62 −178.05 (13) S6—C61—C62—C631 −172.56 (14)
S6—C61—C62—O6 8.5 (2)    

Table 2
Selected geometric parameters (Å, °) for (2)[link]

S6—C6 1.741 (3) C61—C62 1.510 (4)
S6—C61 1.807 (3) C62—C631 1.474 (3)
       
C6—S6—C61 100.88 (12)    
       
C6—S6—C61—C62 170.8 (2) S6—C61—C62—C631 175.8 (2)
S6—C61—C62—O6 −7.7 (3)    

Table 3
Selected geometric parameters (Å, °) for (3)[link]

S6—C6 1.7446 (18) C61—C62 1.513 (2)
S6—C61 1.8038 (17) C62—C631 1.493 (2)
       
C6—S6—C61 100.50 (8)    
       
C6—S6—C61—C62 177.77 (12) S6—C61—C62—C631 177.32 (12)
S6—C61—C62—O6 −4.5 (2)    

Table 4
Selected geometric parameters (Å, °) for (4)[link]

S6—C6 1.755 (3) C61—C62 1.528 (4)
S6—C61 1.812 (3) C62—C631 1.496 (4)
       
C6—S6—C61 100.33 (15)    
       
C6—S6—C61—C62 −177.8 (2) S6—C61—C62—C631 −178.1 (2)
S6—C61—C62—O6 3.2 (4)    

Table 5
Selected geometric parameters (Å, °) for (5)[link]

S6—C6 1.7477 (12) C61—C62 1.5162 (16)
S6—C61 1.8109 (13) C62—C631 1.4887 (17)
       
C6—S6—C61 100.77 (6)    
       
C6—S6—C61—C62 179.54 (8) S6—C61—C62—C631 −175.65 (9)
S6—C61—C62—O6 5.56 (14)    
[Figure 6]
Figure 6
Diagram of the S–CH2–C(=O)– linkage.

The Pu—S6 bond tends to be coplanar with the purine residue. In fact, the 6-mercaptopurine itself may appear in the thione form, e.g. 3,7-di­hydro­purine-6-thione, as a consequence of the high degree of electron delocalization within the 6-mercaptopurine environment. The tendency for the Pu—S6 bond to assume partial double-bond character is also seen in the present compounds, for which the corresponding Pu—S6 bond lengths lie between 1.741 (3) Å for (2) and 1.755 (3) Å for (4). In contrast, the S6—C61 bond lengths are longer, with values lying between 1.8017 (18) Å in (1) and 1.812 (3) Å in (4). This bond can also be bent with respect to the main mercaptopurine plane. The degree of bending may be evaluated by the distance of the C62 carbon atom from the mean plane consisting of the mercapto­pyrimidine atoms. Those values [0.307 (3), 0.272 (4), 0.333 (2), 0.332 (4) and 0.164 (2) for (1)–(5), respectively] show that the degree of bending is higher in (1)–(4) than in (5). As regards the ethanone group, the C61—C62 bond lengths lie in the range 1.510 (4) Å (2) to 1.528 (4) Å, (4) and are normal for a Csp3—Csp3 bond while the C62—Ph bond lengths are shorter and lie in the range 1.474 (3) Å (2) to 1.496 (4) (4), suggesting that the electron density is delocalized from the phenyl ring.

The dihedral angles between the mean planes of the of the purine and phenyl ring, θ1, those between the mean plane of the purine ring and the plane defined by the S6—C61—C62—O6 atoms, θ2, and those between the mean planes of the phenyl ring and the plane defined by the S6—C61—C62—O6 atoms, θ3 are given in Table 6[link]. These values show that the mol­ecules of (1) and (5) are essentially planar. However, in the case of the three isomorphous compounds (2), (3) and (4), the purine and exocyclic phenyl rings are both twisted in the opposite direction from the plane of the bridging unit, resulting in a dihedral angle of approximately 38°. This is due to the rotations and bending around the bonds connecting the bridging unit to the purine and exocyclic phenyl rings as discussed above. The dihedral angles θ2 are higher than θ3; the former are mainly due to the rotations around the S6—C61 bond while the latter are mainly the result of the bending of the C62—Ph bond.

Table 6
Selected dihedral angles (°)

θ1 is the dihedral angle between the mean planes of the purine and phenyl rings and the phenyl ring. θ2 is the dihedral angles between the mean planes of the purine ring and the plane defined by the S6/C61/C62/O6 atoms. θ3 is the dihedral angle between the mean planes of the phenyl ring and the plane defined by the S6/C61/C62/O6 atoms.

Compound θ1° θ2° θ3°
(1) 2.95 (7) 8.45 (8) 5.87 (9)
(2) 38.89 (9) 17.05 (12) 22.72 (13)
(3) 38.67 (6) 14.23 (8) 27.82 (8)
(4) 37.11 (10) 13.58 (13) 26.82 (14)
(5) 4.74 (5) 5.30 (5) 3.42 (8)
The maximum deviations from the mean plane of the S–C–C–O bridging unit are for compounds (1)–(5) are 0.0457 (13), −0.041 (2), −0.023 (11), −0.017 (2) and 0.0302 (8) Å respectively. In all cases it is atom C42 which shows the maximum deviation.

3. Supra­molecular features

There are no weak C—H⋯O or C—H⋯N contacts in (1). Hydrogen bonds for (2)–(5) are listed in Tables 7[link]–10[link][link][link], respectively. Since (2), (3) and (4) are isomorphous, their supra­molecular structures follow similar patterns. Accordingly, hydrogen-bonding diagrams are given for (2) only. Atom C8 acts as a donor to O9 (−x − 1, −y + 1, −z + 1), via H8 forming an R22(10) centrosymmetric dimer across the inversion centre at (−1/2, 1/2, 1/2), Fig. 7[link]. Atom C61 makes a hydrogen bond with O6 (−x + 1, y + [{1\over 2}], −z + [{1\over 2}]), via H61A, forming a C4 chain, which runs parallel to the b axis, Fig. 8[link], generated by the twofold screw axis at (1/2, y, 1/4). In (2), there is a short contact between C6 and the 4-meth­oxy atom O64 (−x + 2, y + [{1\over 2}], −z + [{1\over 2}]), forming a C12 chain, Fig. 9[link], which runs parallel to the b axis and is generated by the twofold screw axis at (1, y, [1\over4]). In (5), the N9—H9⋯N9 (x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]) hydrogen bond, Fig. 10[link], links the mol­ecules into a C4 chain which runs parallel to [[\overline{1}]01] and which is generated by the n-glide plane at (0, [1\over4], 0).

Table 7
Hydrogen-bond geometry (Å, °) for (2)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O64i 0.95 2.48 3.375 (3) 157
C8—H8⋯O9ii 0.95 2.37 3.319 (3) 178
C61—H61A⋯O6iii 0.99 2.33 3.269 (3) 159
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x-1, -y+1, -z+1; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 8
Hydrogen-bond geometry (Å, °) for (3)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O9i 0.95 2.31 3.262 (2) 176
C61—H61A⋯O6ii 0.99 2.40 3.354 (2) 162
Symmetry codes: (i) -x-1, -y+1, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 9
Hydrogen-bond geometry (Å, °) for (4)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O9i 0.95 2.42 3.367 (4) 177
C61—H61B⋯O6ii 0.99 2.45 3.396 (4) 160
Symmetry codes: (i) -x-1, -y+1, -z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 10
Hydrogen-bond geometry (Å, °) for (5)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯N7i 0.88 1.90 2.7715 (14) 171
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 7]
Figure 7
Compound (2): view of the C8—H8⋯O9 centrosymetric R22(16) ring structure centred on (−½, ½, −½). Symmetry code: (i) −x − 1, −y + 1, −z + 1. H atoms not involved in the hydrogen bonding are omitted.
[Figure 8]
Figure 8
Compound (2): the simple C4 chain formed by the C61—H61A⋯O6 weak hydrogen bond. This chain extends along the b axis and is generated by the twofold screw axis at ([1\over2], y, [1\over4]). Symmetry codes: (i) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]; (ii) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]. H atoms not involved in the hydrogen bonding are omitted.
[Figure 9]
Figure 9
Compound (2): the simple C12 chain formed by the C2—H2⋯O64 weak hydrogen bond. This chain extends along the b axis and is generated by the twofold screw-axis at (1, y, [1\over4]). Symmetry codes: (i) −x + 2, y + [{1\over 2}], −z + [{1\over 2}]; (ii) −x + 2, y − [{1\over 2}], −z + [{1\over 2}]. H atoms not involved in the hydrogen bonding are omitted.
[Figure 10]
Figure 10
Compound (5): the simple C4 chain formed by the N9—H9⋯O64 weak hydrogen bond. This chain extends along the b axis and is generated by the n-glide plane at (0, [{1\over 4}], 0). Symmetry codes: (i) x − [{1\over 2}], −y + [{1\over 2}], −z − [{1\over 2}]; (ii) x − [{1\over 2}], −y + [{1\over 2}], −z + [{1\over 2}]. H atoms not involved in the hydrogen bonding are omitted.

Since those compounds have three rings, the imidazole ring (with centroid Cg1), the pyrimidine ring (with centroid Cg2) and the benzyl ring (with centroid Cg3), it would be expected that ππ contacts were part of the supra­molecular structure. Table 11[link] lists the possible ππ contacts for (1)–(5). As may be seen in the Table, the pyrimidine ring establishes ππ contacts with the benzyl ring for all compounds. In (1), two mol­ecules centrosymmetrically related across the inversion centre at (0, ½, ½) are involved in ππ stacking in which the purine ring stacks above the exocyclic phenyl ring. In (2), (3) and (4), the ππ stacking is between imidazole rings while in (1) and (5), the contact is between an imidazole ring and a benzyl ring. In particular, in (1) and (5) two mol­ecules centrosymmetrically related across the centre of symmetry at (0, ½, ½) are involved in ππ stacking in which the purine rings stack above the exocyclic phenyl ring, Table 11[link].

Table 11
Selected π–π contacts (Å, °)

CgI(J) is plane I(J); CgCg is the distance between ring centroids; α is the dihedral angle between planes I and J; CgIperp is the perpendicular distance of Cg(I) on ring J; CgJperp is the perpendicular distance of Cg(J) on ring I; Slippage is the distance between Cg(I) and the perpendicular projection of Cg(J) on ring I. Plane 1 is through the imadazole ring, plane 2 the pyrimidine ring and plane 3 the exocyclic benzene ring.

Compound CgI CgJ CgCg α CgIperp CgJperp Slippage
(1) Cg1 Cg3(−x, 1 − y, 1 − z) 3.6923 (14) 2.62 (12) 3.4547 (9) −3.3985 (9)  
  Cg2 Cg3(−x, 1 − y, 1 − z) 3.6019 (12) 3.26 (11) −3.3477 (9) −3.4071 (9)  
(2) Cg1 Cg1(−x, 1 − y, −z) 3.8561 (16) 0.00 (15) 3.3156 (11) 3.3156 (11) 1.969
  Cg2 Cg3(1 − x, [{1\over 2}] + y, [{1\over 2}] − z) 3.8270 (16) 0.80 (12) −3.2463 (10) −3.2391 (11)  
(3) Cg1 Cg1(−x, 1 − y, −z) 3.7799 (11) 0 3.2016 (7) 3.2016 (7) 2.009
  Cg2 Cg3(1 − x, [{1\over 2}] + y, [{1\over 2}] − z) 4.0620 (10) 6.70 (8) −3.4438 (7) −3.1708 (7)  
(4) Cg1 Cg1(1 − x, 1 − y, 1 − z) 3.8319 (18) 0.04 (18) 3.1987 (13) 3.1987 (13) 2.110
  Cg2 Cg3(1 − x, [{1\over 2}] + y, [{1\over 2}] − z) 4.1601 (18) 6.27 (15) −3.4328 (12) −3.1701 (13)  
(5) Cg1 Cg3(−x, 1 − y, 1 − z) 3.6359 (8) 5.35 (7) −3.4757 (5) −3.4162 (5)  
  Cg2 Cg3(−x, 1 − y, 1 − z) 3.5204 (8) 4.43 (6) −3.3669 (5) −3.4160 (5)  

4. Database survey

A search made in the Cambridge Structural Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) revealed the existence of 11 deposited compounds containing the 2-thio-1-phenyl­ethanone scaffold (see supplementary Figure). Of those, only eight have a cyclic ring as substituent, the majority of these being heterocycles: MUCCUJ: 2-(1,3-benzoxazol-2-ylsulfan­yl)-1-phenyl­ethanone (Loghmani-Khouzani et al., 2009a[Loghmani-Khouzani, H., Hajiheidari, D., Robinson, W. T., Abdul Rahman, N. & Kia, R. (2009a). Acta Cryst. E65, o2287.]); NENFAO: 3-(benzoyl­methyl­thio)-1,5-diphenyl-1H-1,2,4-triazole (Liu et al., 2006[Liu, T. B., Jiang, W.-Q., Zou, J. P. & Zhang, Y. (2006). Jiegou Huaxue (Chin. J. Struct. Chem.), 25, 1019.]); PUFGED: 2-(1,3-benzo­thia­zol-2-ylsulfan­yl)-1-phenyl­ethan­one (Loghmani-Khouzani et al., 2009b[Loghmani-Khouzani, H., Hajiheidari, D., Robinson, W. T., Abdul Rahman, N. & Kia, R. (2009b). Acta Cryst. E65, o2441.]); IKAXOI: 6-cyclohexyl­methyl-5-ethyl-2-[(2-oxo-2-phenyl­eth­yl)sulfan­yl]pyrimidin-4(3H)-οne (Yan et al., 2011[Yan, W.-L., Guo, Q., Li, C., Ji, X.-Y. & He, Y.-P. (2011). Acta Cryst. E67, o534.]); SILGAW: 2-(benzoylmethyl­sulfan­yl)-6-benzyl-5-iso­propyl­pyrimidin-4(3H)-one (Rao et al., 2007[Rao, Z.-K., Zhang, S.-S., He, Y.-P., Zheng, Y.-T. & Li, C. (2007). Acta Cryst. E63, o3942.]); ETEWOP: 2-(benzoyl­methyl­sulphan­yl)-6-meth­oxy-1H-benzamide (Lynch & McLenaghan, 2004[Lynch, D. E. & McClenaghan, I. (2004). Acta Cryst. E60, o363-o364.]); XEBWEI: 2-(1,3-benzimidazolol-2-ylsulfan­yl)phenyl­ethan­one (Abdel-Aziz et al., 2012[Abdel-Aziz, H. A., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o2262.]); UGITUA: 2-[(4-meth­oxy­benz­yl)sulfan­yl]-1-phenyl­ethanone (Heravi et al., 2009[Heravi, M. R. P., Khouzani, L., Sadeghi, M. M. M., Zendehdel, M., Jackson, R. F. W. & Adams, H. (2009). Anal. Sci. X-ray Struct. Anal. Online, 25, 43.]).

The R—S bond distances for these compounds are similar to those of the studied compounds and they assume a partial double-bond character with the exception of UGITUA where the S atom is bonded to a phenyl ring, suggesting a tendency for delocalization of the electron density through the sulfur atom when the ring has heteroatoms. The S—CH2 bond distances vary between 1.80 and 1.81 Å with exception of SILGAW (1.79 Å) and ETEWOP (1.82 Å). The supplementary figure also gives information about the distances of the –CH2– carbon atom to the best plane made up of the atoms of the heterocycles (CH2– distance). These values were computed in order to evaluate the degree of bending of the S—CH2 bond with respect to the main plane of the substituted rings. There are two main groups of compounds, one in which the distance is shorter than 0.3 Å and the other, which contains the CNH fragment in the heterocyclic ring, in which this distance is greater than 1.2 Å. As noted above, the sp3 character of the β-carbon atom of the ethanone fragment may also direct the relative positions of the aceto­phenone residue out of the main plane constituted by the substituted heteroaromatic ring. This is the case for SILGAW and IKAXOI. Thus, despite the small sample size, there is a wide range of adopted conformations.

5. Synthesis and crystallization

The 6-mercaptopurine derivatives (1)–(5) were obtained in moderate yields by a two-step synthetic strategy. Firstly, 6-mercaptopurine was alkyl­ated using diverse monobromide aceto­phenone derivatives in DMF/potassium carbonate medium at room temperature (Lambertucci, et al. 2009[Lambertucci, C., Antonini, I., Buccioni, M., Dal Ben, D., Kachare, D. D., Volpini, R., Klotz, K.-N. & Cristalli, G. (2009). Bioorg. Med. Chem. 17, 2812-2822.]). After thiol alkyl­ation, the purine nucleus was acyl­ated in position 9 with acetic anhydride in tri­ethyl­amine and anhydrous DMF for (1)–(4) under an argon atmosphere at room temperature (Masai, et al. 2002[Masai, N., Hayashi, T., Kumazawa, Y., Nishikawa, J., Barta, I. & Kawakami, T. (2002). PCT Int. Appl. 2002081472.]). All compounds were recrystallized from di­chloro­methane solution: 2-[(9-acetyl-9H-purin-6-yl)sulfan­yl]-1-(3-meth­oxy­phen­yl)ethan-1-one (1): overall yield: 48%; m.p. 432–435 K; 2-[(9-acetyl-9H-purin-6-yl)sulfan­yl]-1-(4-meth­oxy­phen­yl)ethan-1-one (2): overall yield: 17%; m.p. 460–463 K; 2-[(9-acetyl-9H-purin-6-yl)sulfan­yl]-1-(4-chloro­phen­yl)ethan-1-one (3): overall yield: 26%; m.p. 453–457 K; 2-[(9-acetyl-9H-purin-6-yl)sulfan­yl]-1-(4-bromo­phen­yl)ethan-1-one (4): overall yield: 10%; m.p. 449–451 K; 1-(3-meth­oxy­phen­yl)-2-[(9H-purin-6-yl)sulfan­yl]ethan-1-one (5): overall yield: 55%; m.p. 461–464 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 12[link]. H atoms were treated as riding atoms with C—H(aromatic), 0.95 Å, with Uiso = 1.2Ueq(C), C—H2(methyl­ene), 0.99 Å, with Uiso = 1.2Ueq(C),C—H(meth­yl) 0.98 Å with Uiso = 1.5Ueq(C) and in (5) only, N—H, 0.88 Å, with Uiso = 1.2Ueq(C). The positions of the methyl groups were checked on a final difference map as was that of the N—H hydrogen atom in (5). In (4), the high difference map peaks were associated with the Br atom.

Table 12
Experimental details

  (1) (2) (3)
Crystal data
Chemical formula C16H14N4O3S C16H14N4O3S C15H11ClN4O2S
Mr 342.37 342.37 346.79
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 100 100 100
a, b, c (Å) 7.6343 (5), 26.2356 (18), 8.1332 (5) 5.9920 (3), 9.9795 (5), 24.9907 (13) 5.9900 (4), 9.9169 (7), 24.3238 (17)
β (°) 112.725 (2) 95.977 (5) 96.072 (2)
V3) 1502.54 (17) 1486.25 (13) 1436.78 (17)
Z 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.24 0.24 0.43
Crystal size (mm) 0.17 × 0.07 × 0.01 0.05 × 0.04 × 0.01 0.13 × 0.06 × 0.01
 
Data collection
Diffractometer Rigaku AFC12 (Right) Rigaku AFC12 (Right) Rigaku AFC12 (Right)
Absorption correction Multi-scan (CrystalClear-SM Expert; Rigaku, 20112) Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]) Multi-scan CrystalClear-SM Expert (Rigaku, 20112)
Tmin, Tmax 0, 1.000 0.439, 1.000 0.809, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 20144, 3450, 2817 15437, 2619, 1852 18353, 3291, 2677
Rint 0.089 0.106 0.050
(sin θ/λ)max−1) 0.649 0.595 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.148, 1.05 0.048, 0.116, 1.02 0.035, 0.092, 1.02
No. of reflections 3450 2619 3291
No. of parameters 219 219 209
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.81, −0.51 0.30, −0.36 0.34, −0.22
  (4) (5)
Crystal data
Chemical formula C15H11BrN4O2S C14H12N4O2S
Mr 391.25 300.34
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/n
Temperature (K) 100 100
a, b, c (Å) 6.0705 (4), 10.0668 (7), 24.3492 (17) 7.6683 (5), 21.8004 (15), 8.4131 (5)
β (°) 96.580 (2) 107.507 (2)
V3) 1478.19 (18) 1341.29 (15)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 2.94 0.25
Crystal size (mm) 0.15 × 0.10 × 0.02 0.17 × 0.12 × 0.07
 
Data collection
Diffractometer Rigaku AFC12 (Right) Rigaku AFC12 (Right)
Absorption correction Multi-scan CrystalClear-SM Expert (Rigaku, 20112) Multi-scan (CrystalClear-SM Expert; Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.658, 1.000 0.724, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 18171, 3346, 2944 17441, 3063, 2799
Rint 0.064 0.060
(sin θ/λ)max−1) 0.649 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.153, 1.06 0.033, 0.093, 1.03
No. of reflections 3346 3063
No. of parameters 209 191
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.91, −0.92 0.30, −0.37
Computer programs: CrystalClear-SM Expert (Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]), CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OSCAIL (McArdle et al., 2004[McArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm, 6, 303-309.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

Purines, purine nucleosides and their analogs, are nitro­gen-containing heterocycles ubiquitous in nature and present in biological systems like man, plants and marine organisms (Legraverend, 2008). These types of heterocycles take part of the core structure of guanine and adenine in nucleic acids (DNA and RNA) being involved in diverse in vivo catabolic and anabolic metabolic pathways.

6-Mercaptopurine is a water insoluble purine analogue, which attracted attention due to its anti­tumor and immunosuppressive properties. The drug is used, among others, in the treatment of rheumathologic disorders, cancer and prevention of rejection of organ transplantation. The main problem associated with the pharmacological treatment with 6-mercaptopurine is the low bioavailability of the oral absorption and the short half-life in plasma. Strategies that have been adopted to circumvent those problems include the administration of 6-mercaptopurine analogous that act as prodrugs or by the chemical protection of the thiol group.

Chemically, the 6-mercaptopurine scaffold can also be modulated by an appropriate selection of the substituents that can be located at C-2, N-1, C-6, N-3, C-8, N-7 and N-9 positions, generating a variety of derivatives with potential biological applications (Legraverend & Grierson, 2006; Tunçbilek, et al., 2009).

Within this framework, the goal of this project has been focused on the functionalization of 6-mercapto purine at positions 6 and 9. Here we describe the syntheses and characterization of five 6-mercaptopurine derivatives: 2-[(9-acetyl-9H-purin-6-yl)sulfanyl]-1-(3-meth­oxy­phenyl)­ethan-1-one (1), 2-[(9-acetyl-9H-purin-6-yl)sulfanyl]-1-(4-meth­oxy­phenyl)­ethan-1-one (2), 2-[(9-acetyl-9H-purin-6-yl)sulfanyl]-1-(4-chloro­phenyl)­ethan-1-one (3), 2-[(9-acetyl-9H-purin-6-yl)sulfanyl]-1-(4-bromo­phenyl)­ethan-1-one (4) and 1-(3-meth­oxy­phenyl)-2-[(9H-purin-6-yl)sulfanyl]ethan-1-one (5).

Structural commentary top

Compounds (1)–(5) are shown in the scheme and their ellipsoid plots are shown in Figs. 1–5. Compounds (1) and (5) have similar a and c axes and (2), (3) and (4) are isostructural and isomorphous.

These compounds can be envisaged as two building blocks, a substituted phenyl­ethanone grouping and a substituted 6-mercaptopurine moiety, bonded together by the mercapto ethanone residue. Since both purine and phenyl rings are essentially planar, the structural conformations of those compounds are conditioned by the –SCH2CO spacer (Fig. 6) which permits rotations around the following bonds: Pu—S6, S6—C61, C61—C62 and C62—Ph bonds. The sp3 character of the central carbon atom may also direct the relative positions of the aceto­phenone residue out of the main plane constituted by the mercaptopurine, which is not the case of the present compounds. Selected geometric parameters for compounds (1)–(5) are given in Tables 1–5, respectively.

The Pu—S6 bond tends to be coplanar with the purine residue. In fact, the 6-mercaptopurine itself may appear in the thione form, e.g. 3,7-di­hydro­purine-6-thione, as a consequence of the high degree of electron delocalization within the 6-mercaptopurine environment. The tendency for the Pu—S6 bond to assume partial double-bond character is also seen in the present compounds, for which the corresponding Pu—S6 bond lengths lie between 1.741 (3) Å for (2) and 1.755 (3) Å for (4). In contrast, the S6—C61 bond lengths are longer, with values lying between 1.8017 (18) Å in (1) and 1.812 (3) Å in (4). This bond can also be bent with respect to the main mercaptopurine plane. The degree of bending may be evaluated by the distance of the C62 carbon atom from the mean plane consisting of the mercapto­pyrimidine atoms. Those values [0.307 (3), 0.272 (4), 0.333 (2), 0.332 (4) and 0.164 (2) for (1)–(5), respectively] show that the degree of bending is higher in (1)–(4) than in (5). As regards the ethanone group, the C61—C62 bond lengths lie in the range 1.510 (4) Å (2) to 1.528 (4) Å, (4) and are normal for a Csp3—Csp3 bond while the C62—Ph bond lengths are shorter and lie in the range 1.474 (3) Å (2) to 1.496 (4) (4), suggesting that the electron density is delocalized from the phenyl ring.

The dihedral angles between the mean planes of the of the purine and phenyl ring, θ1, those between the mean plane of the purine ring and the plane defined by the S6—C61—C62—O6 atoms, θ2, and those between the mean planes of the phenyl ring and the plane defined by the S6—C61—C62—O6 atoms, θ3 are given in Table 6. These values show that the molecules of (1) and (5) are essentially planar. However, in the case of the three isomorphous compounds (2), (3) and (4), the purine and exocyclic phenyl rings are both twisted in the opposite direction from the plane of the bridging unit, resulting in a dihedral angle of approximately 38°. This is due to the rotations and bending around the bonds connecting the bridging unit to the purine and exocyclic phenyl rings as discussed above. The dihedral angles θ2 are higher than θ3; the former are mainly due to the rotations around the S6—C61 bond while the latter are mainly the result of the bending of the C62—Ph bond.

Supra­molecular features top

There are no weak C—H···O or C—H···N contacts in (1). Hydrogen bonds for (2)–(5) are listed in Tables 7–10, respectively. Since (2), (3) and (4) are isomorphous, their supra­molecular structures follow similar patterns. Accordingly, hydrogen-bonding diagrams are given for (2) only. Atom C8 acts as a donor to O9 (−x − 1, −y + 1, −z + 1), via H8 forming an R22(10) centrosymmetric dimer across the inversion centre at (−1/2, 1/2, 1/2), Fig. 7. Atom C61 makes a hydrogen bond with O6 (−x + 1, y + 1/2, −z + 1/2), via H61A, forming a C4 chain which runs parallel to the b axis, Fig. 8, generated by the twofold screw axis at (1/2, y, 1/4). In (2), there is a short contact between C6 and the 4-meth­oxy atom O64 (−x + 2, y + 1/2, −z + 1/2), forming a C12 chain which runs parallel to the b axis and is generated by the twofold screw axis at (1, y, 1/4). In (5), the N9—H9···N9 (x − 1/2, −y + 1/2, z − 1/2) hydrogen bond links the molecules into a C4 chain which runs parallel to [101] and which is generated by the n-glide plane at (0, 1/4, 0).

Since those compounds have three rings, the imidazole ring (with centroid Cg1), the pyrimidine ring (with centroid Cg2) and the benzyl ring (with centroid Cg3), it would be expected that ππ contacts were part of the supra­molecular structure. Table 11 lists the possible ππ contacts for (1)–(5). As may be seen in the Table, the pyrimidine ring establishes ππ contacts with the benzyl ring for all compounds. In (1), two molecules centrosymmetrically related across the inversion centre at (0, 1/2, 1/2) are involved in ππ stacking in which the purine ring stacks above the exocyclic phenyl ring. In (2), (3) and (4), the ππ stacking is between imidazole rings while in (1) and (5), the contact is between an imidazole ring and a benzyl ring. In particular, in (1) and (5) two molecules centrosymmetrically related across the centre of symmetry at (0, 1/2, 1/2) are involved in ππ stacking in which the purine rings stack above the exocyclic phenyl ring, Table 11.

Database survey top

\ A search made in the Cambridge Structural Database (Groom & Allen, 2014) revealed the existence of 11 deposited compounds containing the 2-thio-1-phenyl­ethanone scaffold (see supplementary Figure). Of those, only eight have a cyclic ring as substituent, the majority of these being heterocycles: MUCCUJ: 2-(1,3-benzoxazol-2-ylsulfanyl)-1-phenyl­ethanone (Loghmani-Khouzani et al., 2009a); NENFAO: 3-(benzoyl­methyl­thio)-1,5-di­phenyl-1H-1,2,4-triazole (Liu et al., 2006); PUFGED: 2-(1,3-benzo­thia­zol-2-ylsulfanyl)-1-phenyl­ethanone (Loghmani-Khouzani et al., 2009b); IKAXOI: 6-cyclo­hexyl­methyl-5-ethyl-2-[(2-oxo-2-phenyl­ethyl)­sulfanyl]pyrimidin-\ 4(3H)-οne (Yan et al., 2011); SILGAW: 2-(benzoyl­methyl­sulfanyl)-6-benzyl-5-iso­propyl­pyrimidin-4(3H)-one (Rao et al., 2007); ETEWOP: 2-(benzoyl­methyl­sulphanyl)-6-meth­oxy-1H-benzamide (Lynch & McLenaghan, 2004); XEBWEI: 2-(1,3-benzimidazolol-2-ylsulfanyl)phenyl­ethanone (Abdel-Aziz et al., 2012); UGITUA: 2-[(4-meth­oxy­benzyl)­sulfanyl]-1-phenyl­ethanone (Heravi et al., 2009).

The R—S bond distances for these compounds are similar to those of the studied compounds and they assume a partial double-bond character with the exception of UGITUA where the S atom is bonded to a phenyl ring, suggesting a tendency for delocalization of the electron density through the sulfur atom when the ring has heteroatoms. The S—CH2 bond distances vary between 1.80 and 1.81 Å with exception of SILGAW (1.79 Å) and ETEWOP (1.82 Å). The supplementary figure also gives information about the distances of the –CH2– carbon atom to the best plane made up of the atoms of the heterocycles (CH2– distance). These values were computed in order to evaluate the degree of bending of the S—CH2 bond with respect to the main plane of the substituted rings. There are two main groups of compounds, one in which the distance is shorter than 0.3 Å and the other, which contains the CNH fragment in the heterocyclic ring, in which this distance is greater than 1.2 Å. As noted above, the sp3 character of the β-carbon atom of the ethanone fragment may also direct the relative positions of the aceto­phenone residue out of the main plane constituted by the substituted heteroaromatic ring. This is the case for SILGAW and IKAXOI. Thus, despite the small sample size, there is a wide range of adopted conformations.

Synthesis and crystallization top

The 6-mercaptopurine derivatives (1)–(5) were obtained in moderate yields by a two-step synthetic strategy. Firstly, 6-mercaptopurine was alkyl­ated using diverse monobromide aceto­phenone derivatives in DMF/potassium carbonate medium at room temperature (Lambertucci, et al. 2009). After thiol alkyl­ation, the purine nucleus was acyl­ated in position 9 with acetic anhydride in tri­ethyl­amine and anhydrous DMF for (1)–(4) under an argon atmosphere at room temperature (Masai, et al. 2002). All compounds were recrystallized from di­chloro­methane solution: 2-[(9-acetyl-9H-purin-6-yl)sulfanyl]-1-(3-meth­oxy­phenyl)­ethan-1-one (1): overall yield: 48%; m.p. 432–435 K; 2-[(9-acetyl-9H-purin-6-yl)sulfanyl]-1-(4-meth­oxy­phenyl)­ethan-1-one (2): overall yield: 17%; m.p. 460–463 K; 2-[(9-acetyl-9H-purin-6-yl)sulfanyl]-1-(4-chloro­phenyl)­ethan-1-one (3): overall yield: 26%; m.p. 453–457 K; 2-[(9-acetyl-9H-purin-6-yl)sulfanyl]-1-(4-bromo­phenyl)­ethan-1-one (4): overall yield: 10%; m.p. 449–451 K; 1-(3-meth­oxy­phenyl)-2-[(9H-purin-6-yl)sulfanyl]ethan-1-one (5): overall yield: 55%; m.p. 461–464 K.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were treated as riding atoms with C—H(aromatic), 0.95 Å, with Uiso = 1.2Ueq(C), C—H2(methyl­ene), 0.99 Å, with Uiso = 1.2Ueq(C),CH(methyl) 0.98 Å with Uiso = 1.5Ueq(C) and in (5) only, N—H, 0.88 Å, with Uiso = 1.2Ueq(C). The positions of the methyl groups were checked on a final difference map as was that of the N—H hydrogen atom in (5). In (4), the high difference map peaks were associated with the Br atom.

Structure description top

Purines, purine nucleosides and their analogs, are nitro­gen-containing heterocycles ubiquitous in nature and present in biological systems like man, plants and marine organisms (Legraverend, 2008). These types of heterocycles take part of the core structure of guanine and adenine in nucleic acids (DNA and RNA) being involved in diverse in vivo catabolic and anabolic metabolic pathways.

6-Mercaptopurine is a water insoluble purine analogue, which attracted attention due to its anti­tumor and immunosuppressive properties. The drug is used, among others, in the treatment of rheumathologic disorders, cancer and prevention of rejection of organ transplantation. The main problem associated with the pharmacological treatment with 6-mercaptopurine is the low bioavailability of the oral absorption and the short half-life in plasma. Strategies that have been adopted to circumvent those problems include the administration of 6-mercaptopurine analogous that act as prodrugs or by the chemical protection of the thiol group.

Chemically, the 6-mercaptopurine scaffold can also be modulated by an appropriate selection of the substituents that can be located at C-2, N-1, C-6, N-3, C-8, N-7 and N-9 positions, generating a variety of derivatives with potential biological applications (Legraverend & Grierson, 2006; Tunçbilek, et al., 2009).

Within this framework, the goal of this project has been focused on the functionalization of 6-mercapto purine at positions 6 and 9. Here we describe the syntheses and characterization of five 6-mercaptopurine derivatives: 2-[(9-acetyl-9H-purin-6-yl)sulfanyl]-1-(3-meth­oxy­phenyl)­ethan-1-one (1), 2-[(9-acetyl-9H-purin-6-yl)sulfanyl]-1-(4-meth­oxy­phenyl)­ethan-1-one (2), 2-[(9-acetyl-9H-purin-6-yl)sulfanyl]-1-(4-chloro­phenyl)­ethan-1-one (3), 2-[(9-acetyl-9H-purin-6-yl)sulfanyl]-1-(4-bromo­phenyl)­ethan-1-one (4) and 1-(3-meth­oxy­phenyl)-2-[(9H-purin-6-yl)sulfanyl]ethan-1-one (5).

Compounds (1)–(5) are shown in the scheme and their ellipsoid plots are shown in Figs. 1–5. Compounds (1) and (5) have similar a and c axes and (2), (3) and (4) are isostructural and isomorphous.

These compounds can be envisaged as two building blocks, a substituted phenyl­ethanone grouping and a substituted 6-mercaptopurine moiety, bonded together by the mercapto ethanone residue. Since both purine and phenyl rings are essentially planar, the structural conformations of those compounds are conditioned by the –SCH2CO spacer (Fig. 6) which permits rotations around the following bonds: Pu—S6, S6—C61, C61—C62 and C62—Ph bonds. The sp3 character of the central carbon atom may also direct the relative positions of the aceto­phenone residue out of the main plane constituted by the mercaptopurine, which is not the case of the present compounds. Selected geometric parameters for compounds (1)–(5) are given in Tables 1–5, respectively.

The Pu—S6 bond tends to be coplanar with the purine residue. In fact, the 6-mercaptopurine itself may appear in the thione form, e.g. 3,7-di­hydro­purine-6-thione, as a consequence of the high degree of electron delocalization within the 6-mercaptopurine environment. The tendency for the Pu—S6 bond to assume partial double-bond character is also seen in the present compounds, for which the corresponding Pu—S6 bond lengths lie between 1.741 (3) Å for (2) and 1.755 (3) Å for (4). In contrast, the S6—C61 bond lengths are longer, with values lying between 1.8017 (18) Å in (1) and 1.812 (3) Å in (4). This bond can also be bent with respect to the main mercaptopurine plane. The degree of bending may be evaluated by the distance of the C62 carbon atom from the mean plane consisting of the mercapto­pyrimidine atoms. Those values [0.307 (3), 0.272 (4), 0.333 (2), 0.332 (4) and 0.164 (2) for (1)–(5), respectively] show that the degree of bending is higher in (1)–(4) than in (5). As regards the ethanone group, the C61—C62 bond lengths lie in the range 1.510 (4) Å (2) to 1.528 (4) Å, (4) and are normal for a Csp3—Csp3 bond while the C62—Ph bond lengths are shorter and lie in the range 1.474 (3) Å (2) to 1.496 (4) (4), suggesting that the electron density is delocalized from the phenyl ring.

The dihedral angles between the mean planes of the of the purine and phenyl ring, θ1, those between the mean plane of the purine ring and the plane defined by the S6—C61—C62—O6 atoms, θ2, and those between the mean planes of the phenyl ring and the plane defined by the S6—C61—C62—O6 atoms, θ3 are given in Table 6. These values show that the molecules of (1) and (5) are essentially planar. However, in the case of the three isomorphous compounds (2), (3) and (4), the purine and exocyclic phenyl rings are both twisted in the opposite direction from the plane of the bridging unit, resulting in a dihedral angle of approximately 38°. This is due to the rotations and bending around the bonds connecting the bridging unit to the purine and exocyclic phenyl rings as discussed above. The dihedral angles θ2 are higher than θ3; the former are mainly due to the rotations around the S6—C61 bond while the latter are mainly the result of the bending of the C62—Ph bond.

There are no weak C—H···O or C—H···N contacts in (1). Hydrogen bonds for (2)–(5) are listed in Tables 7–10, respectively. Since (2), (3) and (4) are isomorphous, their supra­molecular structures follow similar patterns. Accordingly, hydrogen-bonding diagrams are given for (2) only. Atom C8 acts as a donor to O9 (−x − 1, −y + 1, −z + 1), via H8 forming an R22(10) centrosymmetric dimer across the inversion centre at (−1/2, 1/2, 1/2), Fig. 7. Atom C61 makes a hydrogen bond with O6 (−x + 1, y + 1/2, −z + 1/2), via H61A, forming a C4 chain which runs parallel to the b axis, Fig. 8, generated by the twofold screw axis at (1/2, y, 1/4). In (2), there is a short contact between C6 and the 4-meth­oxy atom O64 (−x + 2, y + 1/2, −z + 1/2), forming a C12 chain which runs parallel to the b axis and is generated by the twofold screw axis at (1, y, 1/4). In (5), the N9—H9···N9 (x − 1/2, −y + 1/2, z − 1/2) hydrogen bond links the molecules into a C4 chain which runs parallel to [101] and which is generated by the n-glide plane at (0, 1/4, 0).

Since those compounds have three rings, the imidazole ring (with centroid Cg1), the pyrimidine ring (with centroid Cg2) and the benzyl ring (with centroid Cg3), it would be expected that ππ contacts were part of the supra­molecular structure. Table 11 lists the possible ππ contacts for (1)–(5). As may be seen in the Table, the pyrimidine ring establishes ππ contacts with the benzyl ring for all compounds. In (1), two molecules centrosymmetrically related across the inversion centre at (0, 1/2, 1/2) are involved in ππ stacking in which the purine ring stacks above the exocyclic phenyl ring. In (2), (3) and (4), the ππ stacking is between imidazole rings while in (1) and (5), the contact is between an imidazole ring and a benzyl ring. In particular, in (1) and (5) two molecules centrosymmetrically related across the centre of symmetry at (0, 1/2, 1/2) are involved in ππ stacking in which the purine rings stack above the exocyclic phenyl ring, Table 11.

\ A search made in the Cambridge Structural Database (Groom & Allen, 2014) revealed the existence of 11 deposited compounds containing the 2-thio-1-phenyl­ethanone scaffold (see supplementary Figure). Of those, only eight have a cyclic ring as substituent, the majority of these being heterocycles: MUCCUJ: 2-(1,3-benzoxazol-2-ylsulfanyl)-1-phenyl­ethanone (Loghmani-Khouzani et al., 2009a); NENFAO: 3-(benzoyl­methyl­thio)-1,5-di­phenyl-1H-1,2,4-triazole (Liu et al., 2006); PUFGED: 2-(1,3-benzo­thia­zol-2-ylsulfanyl)-1-phenyl­ethanone (Loghmani-Khouzani et al., 2009b); IKAXOI: 6-cyclo­hexyl­methyl-5-ethyl-2-[(2-oxo-2-phenyl­ethyl)­sulfanyl]pyrimidin-\ 4(3H)-οne (Yan et al., 2011); SILGAW: 2-(benzoyl­methyl­sulfanyl)-6-benzyl-5-iso­propyl­pyrimidin-4(3H)-one (Rao et al., 2007); ETEWOP: 2-(benzoyl­methyl­sulphanyl)-6-meth­oxy-1H-benzamide (Lynch & McLenaghan, 2004); XEBWEI: 2-(1,3-benzimidazolol-2-ylsulfanyl)phenyl­ethanone (Abdel-Aziz et al., 2012); UGITUA: 2-[(4-meth­oxy­benzyl)­sulfanyl]-1-phenyl­ethanone (Heravi et al., 2009).

The R—S bond distances for these compounds are similar to those of the studied compounds and they assume a partial double-bond character with the exception of UGITUA where the S atom is bonded to a phenyl ring, suggesting a tendency for delocalization of the electron density through the sulfur atom when the ring has heteroatoms. The S—CH2 bond distances vary between 1.80 and 1.81 Å with exception of SILGAW (1.79 Å) and ETEWOP (1.82 Å). The supplementary figure also gives information about the distances of the –CH2– carbon atom to the best plane made up of the atoms of the heterocycles (CH2– distance). These values were computed in order to evaluate the degree of bending of the S—CH2 bond with respect to the main plane of the substituted rings. There are two main groups of compounds, one in which the distance is shorter than 0.3 Å and the other, which contains the CNH fragment in the heterocyclic ring, in which this distance is greater than 1.2 Å. As noted above, the sp3 character of the β-carbon atom of the ethanone fragment may also direct the relative positions of the aceto­phenone residue out of the main plane constituted by the substituted heteroaromatic ring. This is the case for SILGAW and IKAXOI. Thus, despite the small sample size, there is a wide range of adopted conformations.

Synthesis and crystallization top

The 6-mercaptopurine derivatives (1)–(5) were obtained in moderate yields by a two-step synthetic strategy. Firstly, 6-mercaptopurine was alkyl­ated using diverse monobromide aceto­phenone derivatives in DMF/potassium carbonate medium at room temperature (Lambertucci, et al. 2009). After thiol alkyl­ation, the purine nucleus was acyl­ated in position 9 with acetic anhydride in tri­ethyl­amine and anhydrous DMF for (1)–(4) under an argon atmosphere at room temperature (Masai, et al. 2002). All compounds were recrystallized from di­chloro­methane solution: 2-[(9-acetyl-9H-purin-6-yl)sulfanyl]-1-(3-meth­oxy­phenyl)­ethan-1-one (1): overall yield: 48%; m.p. 432–435 K; 2-[(9-acetyl-9H-purin-6-yl)sulfanyl]-1-(4-meth­oxy­phenyl)­ethan-1-one (2): overall yield: 17%; m.p. 460–463 K; 2-[(9-acetyl-9H-purin-6-yl)sulfanyl]-1-(4-chloro­phenyl)­ethan-1-one (3): overall yield: 26%; m.p. 453–457 K; 2-[(9-acetyl-9H-purin-6-yl)sulfanyl]-1-(4-bromo­phenyl)­ethan-1-one (4): overall yield: 10%; m.p. 449–451 K; 1-(3-meth­oxy­phenyl)-2-[(9H-purin-6-yl)sulfanyl]ethan-1-one (5): overall yield: 55%; m.p. 461–464 K.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were treated as riding atoms with C—H(aromatic), 0.95 Å, with Uiso = 1.2Ueq(C), C—H2(methyl­ene), 0.99 Å, with Uiso = 1.2Ueq(C),CH(methyl) 0.98 Å with Uiso = 1.5Ueq(C) and in (5) only, N—H, 0.88 Å, with Uiso = 1.2Ueq(C). The positions of the methyl groups were checked on a final difference map as was that of the N—H hydrogen atom in (5). In (4), the high difference map peaks were associated with the Br atom.

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2012) for (1), (3), (4), (5); CrysAlis PRO (Agilent, 2014) for (2). Cell refinement: CrystalClear-SM Expert (Rigaku, 2012) for (1), (3), (4), (5); CrysAlis PRO (Agilent, 2014) for (2). Data reduction: CrystalClear-SM Expert (Rigaku, 2012) for (1), (3), (4), (5); CrysAlis PRO (Agilent, 2014) for (2). For all compounds, program(s) used to solve structure: OSCAIL (McArdle et al., 2004) and SHELXT (Sheldrick, 2015a); program(s) used to refine structure: OSCAIL (McArdle et al., 2004), ShelXle (Hübschle et al., 2011) and SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: OSCAIL (McArdle et al., 2004), SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of (1), with displacement ellipsoids are drawn at the 70% probability level.
[Figure 2] Fig. 2. A view of the asymmetric unit of (2), with displacement ellipsoids are drawn at the 70% probability level.
[Figure 3] Fig. 3. A view of the asymmetric unit of (3), with displacement ellipsoids are drawn at the 70% probability level.
[Figure 4] Fig. 4. A view of the asymmetric unit of (4), with displacement ellipsoids are drawn at the 70% probability level.
[Figure 5] Fig. 5. A view of the asymmetric unit of (5), with displacement ellipsoids are drawn at the 70% probability level.
[Figure 6] Fig. 6. Diagram of the S–CH2–C(O)– linkage.
[Figure 7] Fig. 7. Compound (2): view of the C8—H8···O9 centrosymetric R22(16) ring structure centred on (−1/2, 1/2, 1/2). Symmetry code: (i) −x − 1, −y + 1, −z + 1. H atoms not involved in the hydrogen bonding are omitted.
[Figure 8] Fig. 8. Compound (2): the simple C4 chain formed by the C61—H61A···O6 weak hydrogen bond. This chain extends along the b axis and is generated by the twofold screw axis at (1/2, y, 1/4). Symmetry codes: (i) −x + 1, y + 1/2, −z + 1/2; (ii) −x +???, y − 1/2, −z + 1/2. H atoms not involved in the hydrogen bonding are omitted.
[Figure 9] Fig. 9. Compound (2): the simple C12 chain formed by the C2—H2···O64 weak hydrogen bond. This chain extends along the b axis and is generated by the twofold screw-axis at (1, y, 1/4). Symmetry codes: (i) −x + 2, y + 1/2, −z + 1/2; (ii) −x + 2, y − 1/2, −z + 1/2. H atoms not involved in the hydrogen bonding are omitted.
[Figure 10] Fig. 10. Compound (5): the simple C4 chain formed by the N9—H9···O64 weak hydrogen bond. This chain extends along the b axis and is generated by the n-glide plane at (0, 1/4, 0). Symmetry codes: (i) x − 1/2, −y + 1/2, −z − 1/2; (ii) x − 1/2, −y + 1/2, −z + 1/2. H atoms not involved in the hydrogen bonding are omitted.
(1) 2-[(9-Acetyl-9H-purin-6-yl)sulfanyl]-1-(3-methoxyphenyl)ethan-1-one top
Crystal data top
C16H14N4O3SF(000) = 712
Mr = 342.37Dx = 1.513 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
a = 7.6343 (5) ÅCell parameters from 18327 reflections
b = 26.2356 (18) Åθ = 2.7–27.5°
c = 8.1332 (5) ŵ = 0.24 mm1
β = 112.725 (2)°T = 100 K
V = 1502.54 (17) Å3Plate, orange
Z = 40.17 × 0.07 × 0.01 mm
Data collection top
Rigaku AFC12 (Right)
diffractometer
3450 independent reflections
Radiation source: Rotating Anode2817 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.089
profile data from ω–scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 20112)
h = 99
Tmin = 0, Tmax = 1.000k = 3334
20144 measured reflectionsl = 1010
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0878P)2 + 0.318P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
3450 reflectionsΔρmax = 0.81 e Å3
219 parametersΔρmin = 0.51 e Å3
Crystal data top
C16H14N4O3SV = 1502.54 (17) Å3
Mr = 342.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.6343 (5) ŵ = 0.24 mm1
b = 26.2356 (18) ÅT = 100 K
c = 8.1332 (5) Å0.17 × 0.07 × 0.01 mm
β = 112.725 (2)°
Data collection top
Rigaku AFC12 (Right)
diffractometer
3450 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 20112)
2817 reflections with I > 2σ(I)
Tmin = 0, Tmax = 1.000Rint = 0.089
20144 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.05Δρmax = 0.81 e Å3
3450 reflectionsΔρmin = 0.51 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S60.32576 (7)0.51901 (2)0.60919 (6)0.03400 (17)
O60.24518 (19)0.61509 (5)0.4576 (2)0.0421 (4)
O90.8227 (2)0.31676 (6)1.1619 (2)0.0427 (4)
O630.20860 (19)0.72411 (5)0.05304 (18)0.0376 (3)
N10.2055 (2)0.42325 (6)0.4964 (2)0.0331 (4)
N30.3481 (2)0.34590 (6)0.6538 (2)0.0323 (4)
N70.6212 (2)0.44997 (6)0.9142 (2)0.0340 (4)
N90.6216 (2)0.36406 (6)0.9348 (2)0.0325 (4)
C20.2207 (3)0.37227 (7)0.5197 (3)0.0342 (4)
H20.12910.35250.42920.041*
C40.4710 (3)0.37649 (7)0.7754 (3)0.0309 (4)
C50.4740 (3)0.42955 (7)0.7676 (2)0.0312 (4)
C60.3330 (3)0.45263 (7)0.6203 (2)0.0308 (4)
C80.7025 (3)0.41060 (7)1.0084 (3)0.0343 (4)
H80.80860.41321.11850.041*
C90.6911 (3)0.31650 (7)1.0206 (3)0.0344 (4)
C610.1558 (3)0.52851 (7)0.3849 (2)0.0321 (4)
H61A0.19960.51150.29890.039*
H61B0.03130.51390.37110.039*
C620.1376 (3)0.58558 (7)0.3504 (3)0.0322 (4)
C910.5932 (3)0.26954 (7)0.9240 (3)0.0396 (5)
H91A0.65270.23940.99450.059*
H91B0.60400.26780.80800.059*
H91C0.45880.27070.90640.059*
C6310.0135 (2)0.60328 (7)0.1806 (2)0.0312 (4)
C6320.0336 (3)0.65606 (7)0.1486 (2)0.0317 (4)
H6320.04740.67940.23320.038*
C6330.1734 (3)0.67364 (7)0.0084 (3)0.0328 (4)
C6340.2922 (3)0.63923 (8)0.1321 (3)0.0361 (4)
H6340.38830.65140.23900.043*
C6350.2701 (3)0.58745 (8)0.0994 (3)0.0373 (4)
H6350.35020.56420.18490.045*
C6360.1321 (3)0.56914 (7)0.0572 (3)0.0352 (4)
H6360.11880.53350.07980.042*
C6370.0942 (3)0.76081 (7)0.0721 (3)0.0396 (5)
H63A0.03900.75630.08850.059*
H63B0.10700.75610.18640.059*
H63C0.13620.79520.02710.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S60.0278 (3)0.0304 (3)0.0354 (3)0.00002 (17)0.0030 (2)0.00035 (17)
O60.0327 (7)0.0341 (7)0.0442 (8)0.0027 (6)0.0019 (6)0.0004 (6)
O90.0351 (8)0.0417 (8)0.0422 (8)0.0012 (6)0.0048 (7)0.0043 (6)
O630.0322 (7)0.0346 (7)0.0376 (7)0.0025 (5)0.0042 (6)0.0021 (5)
N10.0283 (8)0.0332 (8)0.0347 (8)0.0007 (6)0.0088 (6)0.0002 (6)
N30.0280 (8)0.0333 (8)0.0337 (8)0.0013 (6)0.0097 (7)0.0008 (6)
N70.0244 (8)0.0361 (8)0.0368 (9)0.0011 (6)0.0066 (7)0.0020 (6)
N90.0241 (8)0.0344 (8)0.0358 (8)0.0015 (6)0.0080 (7)0.0013 (6)
C20.0303 (9)0.0347 (9)0.0341 (10)0.0021 (7)0.0087 (8)0.0023 (7)
C40.0236 (8)0.0342 (9)0.0336 (9)0.0014 (7)0.0096 (7)0.0008 (7)
C50.0240 (8)0.0324 (9)0.0341 (9)0.0000 (7)0.0080 (7)0.0005 (7)
C60.0261 (9)0.0309 (9)0.0342 (9)0.0002 (7)0.0102 (8)0.0010 (7)
C80.0246 (8)0.0378 (10)0.0366 (10)0.0017 (7)0.0076 (8)0.0022 (8)
C90.0280 (9)0.0367 (10)0.0389 (10)0.0029 (7)0.0133 (8)0.0033 (8)
C610.0246 (9)0.0324 (9)0.0331 (10)0.0005 (7)0.0041 (7)0.0007 (7)
C620.0245 (8)0.0342 (9)0.0344 (9)0.0009 (7)0.0077 (7)0.0003 (7)
C910.0345 (10)0.0368 (10)0.0442 (11)0.0011 (8)0.0115 (9)0.0006 (8)
C6310.0231 (8)0.0362 (9)0.0329 (9)0.0000 (7)0.0092 (7)0.0010 (7)
C6320.0249 (9)0.0343 (9)0.0326 (9)0.0007 (7)0.0076 (7)0.0003 (7)
C6330.0260 (9)0.0360 (9)0.0351 (10)0.0032 (7)0.0103 (8)0.0028 (7)
C6340.0266 (9)0.0455 (11)0.0318 (10)0.0024 (8)0.0065 (8)0.0014 (8)
C6350.0290 (9)0.0423 (10)0.0357 (10)0.0043 (8)0.0072 (8)0.0058 (8)
C6360.0301 (9)0.0349 (9)0.0374 (10)0.0014 (7)0.0096 (8)0.0007 (7)
C6370.0346 (10)0.0351 (10)0.0425 (11)0.0010 (8)0.0075 (9)0.0011 (8)
Geometric parameters (Å, º) top
S6—C61.7438 (19)C61—C621.520 (3)
S6—C611.8017 (18)C61—H61A0.9900
O6—C621.217 (2)C61—H61B0.9900
O9—C91.199 (2)C62—C6311.491 (3)
O63—C6331.372 (2)C91—H91A0.9800
O63—C6371.428 (2)C91—H91B0.9800
N1—C61.341 (2)C91—H91C0.9800
N1—C21.350 (2)C631—C6361.388 (3)
N3—C41.336 (2)C631—C6321.407 (3)
N3—C21.340 (2)C632—C6331.389 (3)
N7—C81.293 (2)C632—H6320.9500
N7—C51.392 (2)C633—C6341.395 (3)
N9—C81.395 (2)C634—C6351.382 (3)
N9—C41.399 (2)C634—H6340.9500
N9—C91.428 (2)C635—C6361.388 (3)
C2—H20.9500C635—H6350.9500
C4—C51.394 (3)C636—H6360.9500
C5—C61.401 (2)C637—H63A0.9800
C8—H80.9500C637—H63B0.9800
C9—C911.496 (3)C637—H63C0.9800
C6—S6—C61100.76 (9)O6—C62—C61120.45 (17)
C633—O63—C637117.31 (15)C631—C62—C61117.42 (15)
C6—N1—C2117.76 (16)C9—C91—H91A109.5
C4—N3—C2111.95 (16)C9—C91—H91B109.5
C8—N7—C5104.13 (16)H91A—C91—H91B109.5
C8—N9—C4105.22 (15)C9—C91—H91C109.5
C8—N9—C9122.41 (16)H91A—C91—H91C109.5
C4—N9—C9132.36 (16)H91B—C91—H91C109.5
N3—C2—N1128.47 (17)C636—C631—C632120.49 (17)
N3—C2—H2115.8C636—C631—C62121.58 (17)
N1—C2—H2115.8C632—C631—C62117.92 (16)
N3—C4—C5125.80 (17)C633—C632—C631119.17 (17)
N3—C4—N9129.53 (17)C633—C632—H632120.4
C5—C4—N9104.66 (16)C631—C632—H632120.4
N7—C5—C4111.55 (16)O63—C633—C632124.49 (17)
N7—C5—C6131.72 (17)O63—C633—C634115.30 (16)
C4—C5—C6116.73 (16)C632—C633—C634120.20 (17)
N1—C6—C5119.27 (16)C635—C634—C633120.01 (18)
N1—C6—S6122.38 (14)C635—C634—H634120.0
C5—C6—S6118.31 (14)C633—C634—H634120.0
N7—C8—N9114.43 (17)C634—C635—C636120.66 (18)
N7—C8—H8122.8C634—C635—H635119.7
N9—C8—H8122.8C636—C635—H635119.7
O9—C9—N9118.60 (18)C631—C636—C635119.46 (18)
O9—C9—C91124.84 (18)C631—C636—H636120.3
N9—C9—C91116.55 (17)C635—C636—H636120.3
C62—C61—S6107.55 (12)O63—C637—H63A109.5
C62—C61—H61A110.2O63—C637—H63B109.5
S6—C61—H61A110.2H63A—C637—H63B109.5
C62—C61—H61B110.2O63—C637—H63C109.5
S6—C61—H61B110.2H63A—C637—H63C109.5
H61A—C61—H61B108.5H63B—C637—H63C109.5
O6—C62—C631122.13 (17)
C4—N3—C2—N10.3 (3)C9—N9—C8—N7179.35 (18)
C6—N1—C2—N30.6 (3)C8—N9—C9—O90.7 (3)
C2—N3—C4—C51.2 (3)C4—N9—C9—O9178.2 (2)
C2—N3—C4—N9178.84 (19)C8—N9—C9—C91178.60 (18)
C8—N9—C4—N3179.7 (2)C4—N9—C9—C912.5 (3)
C9—N9—C4—N31.3 (4)C6—S6—C61—C62178.05 (13)
C8—N9—C4—C50.3 (2)S6—C61—C62—O68.5 (2)
C9—N9—C4—C5178.73 (19)S6—C61—C62—C631172.56 (14)
C8—N7—C5—C40.8 (2)O6—C62—C631—C636178.23 (19)
C8—N7—C5—C6178.5 (2)C61—C62—C631—C6360.7 (3)
N3—C4—C5—N7179.29 (18)O6—C62—C631—C6322.1 (3)
N9—C4—C5—N70.7 (2)C61—C62—C631—C632179.03 (17)
N3—C4—C5—C61.3 (3)C636—C631—C632—C6330.2 (3)
N9—C4—C5—C6178.75 (16)C62—C631—C632—C633179.87 (17)
C2—N1—C6—C50.5 (3)C637—O63—C633—C6320.7 (3)
C2—N1—C6—S6178.35 (15)C637—O63—C633—C634178.19 (18)
N7—C5—C6—N1179.6 (2)C631—C632—C633—O63178.91 (17)
C4—C5—C6—N10.3 (3)C631—C632—C633—C6340.1 (3)
N7—C5—C6—S61.6 (3)O63—C633—C634—C635179.39 (18)
C4—C5—C6—S6177.61 (14)C632—C633—C634—C6350.5 (3)
C61—S6—C6—N112.10 (18)C633—C634—C635—C6360.9 (3)
C61—S6—C6—C5170.02 (16)C632—C631—C636—C6350.6 (3)
C5—N7—C8—N90.6 (2)C62—C631—C636—C635179.72 (18)
C4—N9—C8—N70.2 (2)C634—C635—C636—C6311.0 (3)
(2) 2-[(9-Acetyl-9H-purin-6-yl)sulfanyl]-1-(4-methoxyphenyl)ethan-1-one top
Crystal data top
C16H14N4O3SF(000) = 712
Mr = 342.37Dx = 1.530 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.9920 (3) ÅCell parameters from 5825 reflections
b = 9.9795 (5) Åθ = 2.2–25.0°
c = 24.9907 (13) ŵ = 0.24 mm1
β = 95.977 (5)°T = 100 K
V = 1486.25 (13) Å3Plate, colourless
Z = 40.05 × 0.04 × 0.01 mm
Data collection top
Rigaku AFC12 (Right)
diffractometer
2619 independent reflections
Radiation source: Rotating Anode, Rotating Anode1852 reflections with I > 2σ(I)
Confocal mirrors, HF Varimax monochromatorRint = 0.106
Detector resolution: 28.5714 pixels mm-1θmax = 25.0°, θmin = 2.2°
profile data from ω–scansh = 76
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1111
Tmin = 0.439, Tmax = 1.000l = 2929
15437 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.3956P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2619 reflectionsΔρmax = 0.30 e Å3
219 parametersΔρmin = 0.36 e Å3
Crystal data top
C16H14N4O3SV = 1486.25 (13) Å3
Mr = 342.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.9920 (3) ŵ = 0.24 mm1
b = 9.9795 (5) ÅT = 100 K
c = 24.9907 (13) Å0.05 × 0.04 × 0.01 mm
β = 95.977 (5)°
Data collection top
Rigaku AFC12 (Right)
diffractometer
2619 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
1852 reflections with I > 2σ(I)
Tmin = 0.439, Tmax = 1.000Rint = 0.106
15437 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.02Δρmax = 0.30 e Å3
2619 reflectionsΔρmin = 0.36 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S60.34226 (12)0.45424 (7)0.33305 (3)0.0300 (2)
O60.6113 (3)0.30045 (19)0.27249 (7)0.0315 (5)
O90.4124 (3)0.6642 (2)0.51385 (8)0.0386 (6)
O641.2947 (3)0.54050 (18)0.12232 (7)0.0331 (5)
N10.3919 (4)0.7064 (2)0.37258 (9)0.0274 (6)
N30.1587 (4)0.8075 (2)0.43517 (9)0.0282 (6)
N70.0486 (4)0.4737 (2)0.41015 (9)0.0295 (6)
N90.1340 (4)0.6524 (2)0.45982 (8)0.0268 (6)
C20.3246 (5)0.8061 (3)0.40336 (10)0.0286 (7)
H20.40690.88730.40230.034*
C40.0500 (4)0.6901 (3)0.43323 (10)0.0260 (7)
C50.0983 (4)0.5794 (3)0.40346 (10)0.0251 (6)
C60.2774 (5)0.5909 (3)0.37190 (11)0.0264 (7)
C80.1807 (5)0.5208 (3)0.44369 (11)0.0293 (7)
H80.29890.46990.45610.035*
C90.2672 (5)0.7242 (3)0.49399 (11)0.0316 (7)
C610.5465 (5)0.5280 (3)0.29356 (11)0.0296 (7)
H61A0.47250.59380.26790.036*
H61B0.66320.57520.31740.036*
C620.6521 (5)0.4179 (3)0.26328 (10)0.0265 (7)
C910.2175 (5)0.8699 (3)0.50110 (11)0.0366 (8)
H91A0.22660.91340.46580.055*
H91B0.06620.88140.51950.055*
H91C0.32710.91060.52260.055*
C6310.8133 (4)0.4560 (3)0.22523 (10)0.0257 (6)
C6320.9745 (5)0.3617 (3)0.21303 (10)0.0279 (7)
H6320.97360.27480.22850.033*
C6331.1329 (5)0.3927 (3)0.17933 (10)0.0278 (7)
H6331.24250.32840.17190.033*
C6341.1318 (5)0.5197 (3)0.15592 (11)0.0279 (7)
C6350.9733 (4)0.6143 (3)0.16630 (10)0.0276 (7)
H6350.97130.69980.14960.033*
C6360.8169 (4)0.5822 (3)0.20161 (10)0.0264 (7)
H6360.71050.64770.20980.032*
C6371.3246 (5)0.6732 (3)0.10294 (12)0.0362 (8)
H63A1.46170.67700.08480.054*
H63B1.33700.73600.13320.054*
H63C1.19550.69770.07750.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S60.0341 (4)0.0194 (4)0.0394 (4)0.0023 (3)0.0176 (3)0.0022 (3)
O60.0380 (12)0.0199 (12)0.0388 (11)0.0023 (9)0.0149 (10)0.0002 (9)
O90.0413 (12)0.0305 (13)0.0479 (13)0.0035 (10)0.0236 (11)0.0003 (10)
O640.0377 (12)0.0206 (12)0.0448 (12)0.0004 (9)0.0228 (10)0.0014 (9)
N10.0290 (13)0.0206 (14)0.0340 (13)0.0009 (11)0.0105 (11)0.0005 (11)
N30.0297 (13)0.0230 (14)0.0333 (13)0.0040 (11)0.0107 (11)0.0009 (10)
N70.0326 (14)0.0206 (14)0.0372 (13)0.0017 (11)0.0128 (12)0.0014 (11)
N90.0278 (13)0.0205 (14)0.0340 (13)0.0006 (10)0.0119 (11)0.0012 (11)
C20.0292 (16)0.0226 (17)0.0352 (16)0.0051 (13)0.0087 (14)0.0006 (13)
C40.0273 (16)0.0251 (17)0.0267 (15)0.0001 (13)0.0081 (13)0.0030 (12)
C50.0237 (14)0.0217 (17)0.0311 (15)0.0002 (12)0.0091 (13)0.0011 (12)
C60.0293 (15)0.0223 (17)0.0286 (15)0.0013 (13)0.0068 (13)0.0007 (12)
C80.0279 (15)0.0247 (18)0.0366 (16)0.0026 (13)0.0101 (14)0.0031 (13)
C90.0320 (16)0.0287 (18)0.0358 (16)0.0032 (14)0.0116 (14)0.0017 (13)
C610.0370 (17)0.0208 (17)0.0336 (16)0.0006 (13)0.0160 (14)0.0024 (12)
C620.0305 (16)0.0195 (17)0.0296 (15)0.0010 (13)0.0030 (13)0.0020 (12)
C910.0425 (18)0.0283 (18)0.0421 (17)0.0003 (14)0.0190 (16)0.0020 (14)
C6310.0272 (15)0.0210 (16)0.0298 (15)0.0028 (12)0.0066 (13)0.0049 (12)
C6320.0360 (17)0.0178 (16)0.0303 (15)0.0002 (13)0.0054 (14)0.0028 (12)
C6330.0303 (15)0.0197 (16)0.0344 (15)0.0056 (12)0.0083 (14)0.0031 (13)
C6340.0310 (16)0.0236 (17)0.0302 (15)0.0045 (13)0.0090 (13)0.0033 (12)
C6350.0316 (16)0.0188 (16)0.0338 (16)0.0006 (13)0.0105 (14)0.0011 (12)
C6360.0271 (15)0.0170 (16)0.0362 (16)0.0009 (12)0.0091 (13)0.0033 (12)
C6370.0448 (19)0.0243 (17)0.0430 (18)0.0049 (14)0.0218 (16)0.0008 (14)
Geometric parameters (Å, º) top
S6—C61.741 (3)C61—C621.510 (4)
S6—C611.807 (3)C61—H61A0.9900
O6—C621.224 (3)C61—H61B0.9900
O9—C91.206 (3)C62—C6311.474 (3)
O64—C6341.368 (3)C91—H91A0.9800
O64—C6371.428 (3)C91—H91B0.9800
N1—C61.340 (3)C91—H91C0.9800
N1—C21.345 (3)C631—C6361.393 (4)
N3—C21.336 (3)C631—C6321.404 (4)
N3—C41.339 (3)C632—C6331.368 (4)
N7—C81.299 (3)C632—H6320.9500
N7—C51.395 (3)C633—C6341.395 (4)
N9—C81.394 (3)C633—H6330.9500
N9—C41.396 (3)C634—C6351.383 (4)
N9—C91.422 (3)C635—C6361.389 (3)
C2—H20.9500C635—H6350.9500
C4—C51.379 (4)C636—H6360.9500
C5—C61.401 (4)C637—H63A0.9800
C8—H80.9500C637—H63B0.9800
C9—C911.491 (4)C637—H63C0.9800
C6—S6—C61100.88 (12)O6—C62—C61120.0 (2)
C634—O64—C637118.2 (2)C631—C62—C61118.2 (2)
C6—N1—C2117.4 (2)C9—C91—H91A109.5
C2—N3—C4111.0 (2)C9—C91—H91B109.5
C8—N7—C5103.8 (2)H91A—C91—H91B109.5
C8—N9—C4105.1 (2)C9—C91—H91C109.5
C8—N9—C9122.7 (2)H91A—C91—H91C109.5
C4—N9—C9132.1 (2)H91B—C91—H91C109.5
N3—C2—N1129.3 (3)C636—C631—C632118.2 (2)
N3—C2—H2115.3C636—C631—C62123.1 (2)
N1—C2—H2115.3C632—C631—C62118.6 (2)
N3—C4—C5126.3 (2)C633—C632—C631121.3 (3)
N3—C4—N9128.6 (2)C633—C632—H632119.4
C5—C4—N9105.2 (2)C631—C632—H632119.4
C4—C5—N7111.7 (2)C632—C633—C634119.3 (2)
C4—C5—C6117.0 (2)C632—C633—H633120.3
N7—C5—C6131.2 (2)C634—C633—H633120.3
N1—C6—C5119.0 (2)O64—C634—C635124.0 (2)
N1—C6—S6122.46 (19)O64—C634—C633115.0 (2)
C5—C6—S6118.6 (2)C635—C634—C633121.0 (2)
N7—C8—N9114.2 (2)C634—C635—C636118.9 (3)
N7—C8—H8122.9C634—C635—H635120.5
N9—C8—H8122.9C636—C635—H635120.5
O9—C9—N9118.1 (3)C635—C636—C631121.2 (2)
O9—C9—C91125.4 (2)C635—C636—H636119.4
N9—C9—C91116.5 (2)C631—C636—H636119.4
C62—C61—S6108.70 (19)O64—C637—H63A109.5
C62—C61—H61A109.9O64—C637—H63B109.5
S6—C61—H61A109.9H63A—C637—H63B109.5
C62—C61—H61B109.9O64—C637—H63C109.5
S6—C61—H61B109.9H63A—C637—H63C109.5
H61A—C61—H61B108.3H63B—C637—H63C109.5
O6—C62—C631121.7 (2)
C4—N3—C2—N11.2 (4)C9—N9—C8—N7176.4 (2)
C6—N1—C2—N31.4 (4)C8—N9—C9—O97.5 (4)
C2—N3—C4—C50.7 (4)C4—N9—C9—O9176.6 (3)
C2—N3—C4—N9179.0 (3)C8—N9—C9—C91171.1 (3)
C8—N9—C4—N3179.8 (3)C4—N9—C9—C914.8 (4)
C9—N9—C4—N33.4 (5)C6—S6—C61—C62170.8 (2)
C8—N9—C4—C50.1 (3)S6—C61—C62—O67.7 (3)
C9—N9—C4—C5176.3 (3)S6—C61—C62—C631175.8 (2)
N3—C4—C5—N7179.5 (3)O6—C62—C631—C636160.4 (3)
N9—C4—C5—N70.2 (3)C61—C62—C631—C63623.1 (4)
N3—C4—C5—C60.4 (4)O6—C62—C631—C63221.1 (4)
N9—C4—C5—C6179.3 (2)C61—C62—C631—C632155.4 (3)
C8—N7—C5—C40.5 (3)C636—C631—C632—C6330.7 (4)
C8—N7—C5—C6179.4 (3)C62—C631—C632—C633177.9 (3)
C2—N1—C6—C50.9 (4)C631—C632—C633—C6341.1 (4)
C2—N1—C6—S6178.9 (2)C637—O64—C634—C6359.6 (4)
C4—C5—C6—N10.5 (4)C637—O64—C634—C633171.3 (2)
N7—C5—C6—N1179.4 (3)C632—C633—C634—O64179.2 (2)
C4—C5—C6—S6179.3 (2)C632—C633—C634—C6350.0 (4)
N7—C5—C6—S60.4 (4)O64—C634—C635—C636179.4 (2)
C61—S6—C6—N18.5 (3)C633—C634—C635—C6361.5 (4)
C61—S6—C6—C5171.3 (2)C634—C635—C636—C6311.9 (4)
C5—N7—C8—N90.6 (3)C632—C631—C636—C6350.9 (4)
C4—N9—C8—N70.5 (3)C62—C631—C636—C635179.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O64i0.952.483.375 (3)157
C8—H8···O9ii0.952.373.319 (3)178
C61—H61A···O6iii0.992.333.269 (3)159
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x1, y+1, z+1; (iii) x+1, y+1/2, z+1/2.
(3) 2-[(9-Acetyl-9H-purin-6-yl)sulfanyl]-1-(4-chlorophenyl)ethan-1-one top
Crystal data top
C15H11ClN4O2SF(000) = 712
Mr = 346.79Dx = 1.603 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 5.9900 (4) ÅCell parameters from 16488 reflections
b = 9.9169 (7) Åθ = 2.5–27.5°
c = 24.3238 (17) ŵ = 0.43 mm1
β = 96.072 (2)°T = 100 K
V = 1436.78 (17) Å3Plate, yellow
Z = 40.13 × 0.06 × 0.01 mm
Data collection top
Rigaku AFC12 (Right)
diffractometer
3291 independent reflections
Radiation source: Rotating Anode2677 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.050
profile data from ω–scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
CrystalClear-SM Expert (Rigaku, 20112)
h = 77
Tmin = 0.809, Tmax = 1.000k = 1212
18353 measured reflectionsl = 3131
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0466P)2 + 0.5802P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3291 reflectionsΔρmax = 0.34 e Å3
209 parametersΔρmin = 0.22 e Å3
Crystal data top
C15H11ClN4O2SV = 1436.78 (17) Å3
Mr = 346.79Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.9900 (4) ŵ = 0.43 mm1
b = 9.9169 (7) ÅT = 100 K
c = 24.3238 (17) Å0.13 × 0.06 × 0.01 mm
β = 96.072 (2)°
Data collection top
Rigaku AFC12 (Right)
diffractometer
3291 independent reflections
Absorption correction: multi-scan
CrystalClear-SM Expert (Rigaku, 20112)
2677 reflections with I > 2σ(I)
Tmin = 0.809, Tmax = 1.000Rint = 0.050
18353 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.02Δρmax = 0.34 e Å3
3291 reflectionsΔρmin = 0.22 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl641.32087 (7)0.64277 (5)0.10411 (2)0.02661 (13)
S60.38690 (7)0.47381 (4)0.33773 (2)0.02313 (12)
O60.6478 (2)0.33342 (12)0.26796 (5)0.0267 (3)
O90.4321 (2)0.65965 (14)0.51215 (6)0.0325 (3)
N10.3921 (2)0.73219 (15)0.37483 (6)0.0219 (3)
N30.1372 (2)0.82388 (15)0.43621 (6)0.0227 (3)
N70.0233 (2)0.47859 (16)0.41129 (6)0.0242 (3)
N90.1394 (2)0.65498 (15)0.46015 (6)0.0223 (3)
C20.3079 (3)0.82958 (18)0.40503 (7)0.0235 (4)
H20.38000.91480.40410.028*
C40.0447 (3)0.70149 (19)0.43464 (7)0.0210 (3)
C50.1118 (3)0.59112 (18)0.40522 (7)0.0209 (4)
C60.2939 (3)0.61023 (18)0.37446 (7)0.0209 (4)
C80.1682 (3)0.52134 (18)0.44384 (7)0.0233 (4)
H80.28360.46570.45540.028*
C90.2805 (3)0.72219 (19)0.49567 (7)0.0247 (4)
C610.5765 (3)0.55799 (18)0.29613 (7)0.0231 (4)
H61A0.49320.62450.27140.028*
H61B0.69360.60650.32020.028*
C620.6837 (3)0.45309 (18)0.26215 (7)0.0215 (4)
C910.2263 (3)0.8664 (2)0.50911 (8)0.0309 (4)
H91A0.22620.91810.47480.046*
H91B0.07780.87210.53020.046*
H91C0.33930.90360.53120.046*
C6310.8399 (3)0.50213 (18)0.22261 (7)0.0209 (4)
C6321.0125 (3)0.41672 (18)0.20934 (7)0.0235 (4)
H6321.02580.32900.22500.028*
C6331.1644 (3)0.45870 (19)0.17350 (7)0.0238 (4)
H6331.28400.40180.16530.029*
C6341.1368 (3)0.58612 (18)0.15003 (7)0.0215 (4)
C6350.9650 (3)0.67191 (18)0.16161 (7)0.0225 (4)
H6350.94830.75800.14450.027*
C6360.8181 (3)0.63008 (18)0.19851 (7)0.0214 (4)
H6360.70180.68870.20750.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl640.0226 (2)0.0260 (2)0.0333 (2)0.00033 (17)0.01226 (17)0.00087 (18)
S60.0242 (2)0.0180 (2)0.0288 (2)0.00324 (17)0.01066 (17)0.00245 (17)
O60.0289 (7)0.0185 (7)0.0338 (7)0.0011 (5)0.0085 (5)0.0000 (5)
O90.0269 (7)0.0309 (8)0.0423 (8)0.0021 (6)0.0161 (6)0.0031 (6)
N10.0208 (7)0.0204 (8)0.0250 (8)0.0025 (6)0.0051 (6)0.0009 (6)
N30.0225 (7)0.0200 (8)0.0264 (8)0.0019 (6)0.0061 (6)0.0013 (6)
N70.0215 (7)0.0220 (8)0.0300 (8)0.0045 (6)0.0064 (6)0.0005 (6)
N90.0189 (7)0.0221 (8)0.0269 (8)0.0017 (6)0.0065 (6)0.0017 (6)
C20.0222 (8)0.0211 (9)0.0279 (9)0.0047 (7)0.0062 (7)0.0018 (7)
C40.0167 (8)0.0253 (9)0.0215 (8)0.0010 (7)0.0043 (6)0.0017 (7)
C50.0190 (8)0.0202 (9)0.0240 (9)0.0014 (7)0.0039 (7)0.0006 (7)
C60.0183 (8)0.0220 (9)0.0227 (8)0.0001 (7)0.0042 (6)0.0003 (7)
C80.0190 (8)0.0238 (9)0.0277 (9)0.0027 (7)0.0046 (7)0.0032 (7)
C90.0204 (8)0.0272 (10)0.0273 (9)0.0006 (7)0.0063 (7)0.0018 (7)
C610.0255 (9)0.0184 (9)0.0270 (9)0.0021 (7)0.0103 (7)0.0003 (7)
C620.0199 (8)0.0215 (9)0.0232 (8)0.0017 (7)0.0025 (6)0.0008 (7)
C910.0274 (9)0.0307 (11)0.0366 (11)0.0025 (8)0.0134 (8)0.0072 (8)
C6310.0193 (8)0.0202 (9)0.0235 (9)0.0001 (7)0.0045 (7)0.0025 (7)
C6320.0252 (9)0.0182 (9)0.0275 (9)0.0031 (7)0.0048 (7)0.0009 (7)
C6330.0202 (8)0.0248 (10)0.0270 (9)0.0051 (7)0.0050 (7)0.0022 (7)
C6340.0187 (8)0.0225 (9)0.0239 (9)0.0017 (7)0.0058 (7)0.0032 (7)
C6350.0232 (8)0.0173 (9)0.0279 (9)0.0008 (7)0.0062 (7)0.0003 (7)
C6360.0200 (8)0.0181 (9)0.0270 (9)0.0018 (7)0.0063 (7)0.0030 (7)
Geometric parameters (Å, º) top
Cl64—C6341.7433 (17)C9—C911.495 (3)
S6—C61.7446 (18)C61—C621.513 (2)
S6—C611.8038 (17)C61—H61A0.9900
O6—C621.217 (2)C61—H61B0.9900
O9—C91.203 (2)C62—C6311.493 (2)
N1—C21.344 (2)C91—H91A0.9800
N1—C61.344 (2)C91—H91B0.9800
N3—C41.333 (2)C91—H91C0.9800
N3—C21.337 (2)C631—C6361.398 (2)
N7—C81.306 (2)C631—C6321.400 (2)
N7—C51.395 (2)C632—C6331.389 (2)
N9—C81.389 (2)C632—H6320.9500
N9—C41.400 (2)C633—C6341.389 (3)
N9—C91.435 (2)C633—H6330.9500
C2—H20.9500C634—C6351.387 (2)
C4—C51.390 (2)C635—C6361.385 (2)
C5—C61.400 (2)C635—H6350.9500
C8—H80.9500C636—H6360.9500
C6—S6—C61100.50 (8)S6—C61—H61B110.0
C2—N1—C6117.46 (15)H61A—C61—H61B108.4
C4—N3—C2111.27 (15)O6—C62—C631121.52 (16)
C8—N7—C5103.57 (15)O6—C62—C61121.13 (16)
C8—N9—C4105.53 (14)C631—C62—C61117.33 (15)
C8—N9—C9123.49 (15)C9—C91—H91A109.5
C4—N9—C9130.97 (15)C9—C91—H91B109.5
N3—C2—N1129.31 (16)H91A—C91—H91B109.5
N3—C2—H2115.3C9—C91—H91C109.5
N1—C2—H2115.3H91A—C91—H91C109.5
N3—C4—C5126.14 (15)H91B—C91—H91C109.5
N3—C4—N9129.20 (16)C636—C631—C632119.40 (16)
C5—C4—N9104.65 (15)C636—C631—C62121.92 (15)
C4—C5—N7111.89 (15)C632—C631—C62118.68 (16)
C4—C5—C6116.91 (16)C633—C632—C631120.80 (17)
N7—C5—C6131.18 (16)C633—C632—H632119.6
N1—C6—C5118.90 (16)C631—C632—H632119.6
N1—C6—S6122.55 (12)C632—C633—C634118.25 (16)
C5—C6—S6118.54 (13)C632—C633—H633120.9
N7—C8—N9114.35 (15)C634—C633—H633120.9
N7—C8—H8122.8C635—C634—C633122.19 (16)
N9—C8—H8122.8C635—C634—Cl64117.76 (14)
O9—C9—N9118.34 (17)C633—C634—Cl64120.05 (13)
O9—C9—C91125.05 (17)C636—C635—C634118.94 (16)
N9—C9—C91116.61 (15)C636—C635—H635120.5
C62—C61—S6108.47 (12)C634—C635—H635120.5
C62—C61—H61A110.0C635—C636—C631120.38 (16)
S6—C61—H61A110.0C635—C636—H636119.8
C62—C61—H61B110.0C631—C636—H636119.8
C4—N3—C2—N10.7 (3)C4—N9—C8—N70.2 (2)
C6—N1—C2—N30.7 (3)C9—N9—C8—N7179.77 (16)
C2—N3—C4—C50.2 (3)C8—N9—C9—O90.1 (3)
C2—N3—C4—N9178.24 (17)C4—N9—C9—O9179.26 (18)
C8—N9—C4—N3178.49 (18)C8—N9—C9—C91179.93 (17)
C9—N9—C4—N31.0 (3)C4—N9—C9—C910.5 (3)
C8—N9—C4—C50.24 (18)C6—S6—C61—C62177.77 (12)
C9—N9—C4—C5179.73 (17)S6—C61—C62—O64.5 (2)
N3—C4—C5—N7178.60 (16)S6—C61—C62—C631177.32 (12)
N9—C4—C5—N70.2 (2)O6—C62—C631—C636153.51 (18)
N3—C4—C5—C60.2 (3)C61—C62—C631—C63628.3 (2)
N9—C4—C5—C6178.95 (15)O6—C62—C631—C63226.3 (3)
C8—N7—C5—C40.1 (2)C61—C62—C631—C632151.92 (17)
C8—N7—C5—C6178.58 (19)C636—C631—C632—C6331.3 (3)
C2—N1—C6—C50.1 (2)C62—C631—C632—C633178.87 (16)
C2—N1—C6—S6179.32 (13)C631—C632—C633—C6341.7 (3)
C4—C5—C6—N10.2 (2)C632—C633—C634—C6350.5 (3)
N7—C5—C6—N1178.25 (17)C632—C633—C634—Cl64179.20 (13)
C4—C5—C6—S6179.00 (13)C633—C634—C635—C6361.1 (3)
N7—C5—C6—S62.5 (3)Cl64—C634—C635—C636179.18 (13)
C61—S6—C6—N111.73 (17)C634—C635—C636—C6311.5 (3)
C61—S6—C6—C5169.08 (14)C632—C631—C636—C6350.3 (3)
C5—N7—C8—N90.1 (2)C62—C631—C636—C635179.47 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O9i0.952.313.262 (2)176
C61—H61A···O6ii0.992.403.354 (2)162
Symmetry codes: (i) x1, y+1, z+1; (ii) x+1, y+1/2, z+1/2.
(4) 2-[(9-Acetyl-9H-purin-6-yl)sulfanyl]-1-(4-bromophenyl)ethan-1-one top
Crystal data top
C15H11BrN4O2SF(000) = 784
Mr = 391.25Dx = 1.758 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 6.0705 (4) ÅCell parameters from 18109 reflections
b = 10.0668 (7) Åθ = 2.5–27.5°
c = 24.3492 (17) ŵ = 2.94 mm1
β = 96.580 (2)°T = 100 K
V = 1478.19 (18) Å3Plate, colourless
Z = 40.15 × 0.10 × 0.02 mm
Data collection top
Rigaku AFC12 (Right)
diffractometer
3346 independent reflections
Radiation source: Rotating Anode2944 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.064
profile data from ω–scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
CrystalClear-SM Expert (Rigaku, 20112)
h = 77
Tmin = 0.658, Tmax = 1.000k = 1213
18171 measured reflectionsl = 3131
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.1178P)2 + 0.358P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3346 reflectionsΔρmax = 2.91 e Å3
209 parametersΔρmin = 0.92 e Å3
Crystal data top
C15H11BrN4O2SV = 1478.19 (18) Å3
Mr = 391.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.0705 (4) ŵ = 2.94 mm1
b = 10.0668 (7) ÅT = 100 K
c = 24.3492 (17) Å0.15 × 0.10 × 0.02 mm
β = 96.580 (2)°
Data collection top
Rigaku AFC12 (Right)
diffractometer
3346 independent reflections
Absorption correction: multi-scan
CrystalClear-SM Expert (Rigaku, 20112)
2944 reflections with I > 2σ(I)
Tmin = 0.658, Tmax = 1.000Rint = 0.064
18171 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.06Δρmax = 2.91 e Å3
3346 reflectionsΔρmin = 0.92 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br641.32442 (5)0.33869 (3)0.10086 (2)0.02971 (16)
S60.38570 (14)0.51673 (7)0.33803 (3)0.0278 (2)
O60.6441 (5)0.6537 (2)0.26801 (11)0.0318 (5)
O90.4299 (5)0.3392 (2)0.51161 (11)0.0357 (6)
N10.3870 (5)0.2608 (3)0.37506 (10)0.0267 (5)
N30.1320 (5)0.1721 (2)0.43630 (12)0.0279 (6)
N70.0199 (5)0.5157 (3)0.41162 (11)0.0274 (5)
N90.1388 (5)0.3411 (2)0.46032 (12)0.0263 (6)
C20.3003 (6)0.1653 (3)0.40499 (14)0.0290 (7)
H20.36830.08060.40380.035*
C40.0420 (5)0.2942 (3)0.43479 (12)0.0260 (6)
C50.1121 (5)0.4027 (3)0.40513 (12)0.0262 (6)
C60.2904 (5)0.3823 (3)0.37469 (12)0.0255 (6)
C80.1649 (5)0.4742 (3)0.44429 (12)0.0274 (6)
H80.27710.52980.45590.033*
C90.2823 (5)0.2762 (3)0.49460 (13)0.0279 (6)
C610.5714 (5)0.4314 (3)0.29665 (13)0.0278 (6)
H61A0.68610.38270.32090.033*
H61B0.48760.36660.27180.033*
C620.6802 (5)0.5351 (3)0.26272 (12)0.0267 (6)
C910.2352 (6)0.1307 (4)0.50629 (16)0.0346 (7)
H91A0.23410.08270.47130.052*
H91B0.35060.09370.52680.052*
H91C0.09040.12140.52830.052*
C6310.8358 (5)0.4855 (3)0.22393 (12)0.0248 (6)
C6321.0055 (6)0.5701 (3)0.20986 (13)0.0292 (6)
H6321.01780.65720.22500.035*
C6331.1556 (5)0.5285 (3)0.17420 (13)0.0282 (6)
H6331.27250.58500.16570.034*
C6341.1296 (5)0.4012 (3)0.15118 (12)0.0262 (6)
C6350.9596 (6)0.3157 (3)0.16372 (14)0.0291 (6)
H6350.94350.23010.14730.035*
C6360.8144 (6)0.3585 (3)0.20067 (14)0.0273 (6)
H6360.70050.30090.21000.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br640.0279 (2)0.0250 (2)0.0387 (2)0.00019 (11)0.01488 (15)0.00074 (10)
S60.0299 (4)0.0199 (4)0.0361 (4)0.0021 (3)0.0142 (3)0.0016 (3)
O60.0370 (13)0.0205 (12)0.0399 (12)0.0015 (9)0.0127 (10)0.0010 (8)
O90.0334 (14)0.0301 (14)0.0469 (14)0.0016 (9)0.0193 (11)0.0011 (9)
N10.0255 (13)0.0225 (13)0.0335 (12)0.0028 (10)0.0101 (10)0.0010 (10)
N30.0316 (15)0.0206 (13)0.0328 (13)0.0045 (10)0.0095 (11)0.0032 (9)
N70.0258 (13)0.0214 (13)0.0366 (13)0.0036 (10)0.0104 (10)0.0008 (10)
N90.0266 (14)0.0206 (14)0.0332 (13)0.0012 (9)0.0096 (11)0.0011 (9)
C20.0296 (16)0.0222 (16)0.0365 (16)0.0043 (11)0.0087 (13)0.0015 (11)
C40.0260 (15)0.0258 (16)0.0277 (13)0.0002 (12)0.0091 (11)0.0006 (12)
C50.0267 (16)0.0202 (15)0.0325 (14)0.0035 (11)0.0065 (11)0.0008 (11)
C60.0249 (15)0.0209 (14)0.0316 (14)0.0006 (11)0.0070 (11)0.0007 (12)
C80.0284 (16)0.0214 (15)0.0332 (14)0.0025 (11)0.0070 (11)0.0002 (11)
C90.0255 (15)0.0255 (16)0.0342 (14)0.0002 (12)0.0097 (11)0.0009 (12)
C610.0298 (16)0.0202 (15)0.0358 (14)0.0003 (11)0.0143 (12)0.0001 (12)
C620.0269 (16)0.0230 (15)0.0312 (14)0.0026 (11)0.0081 (11)0.0012 (11)
C910.0343 (18)0.0275 (16)0.0448 (18)0.0033 (14)0.0162 (14)0.0072 (14)
C6310.0251 (15)0.0218 (15)0.0287 (13)0.0013 (11)0.0079 (11)0.0003 (11)
C6320.0317 (16)0.0207 (15)0.0364 (15)0.0020 (12)0.0098 (12)0.0007 (12)
C6330.0272 (16)0.0246 (16)0.0339 (14)0.0036 (12)0.0086 (11)0.0017 (12)
C6340.0246 (15)0.0232 (15)0.0321 (14)0.0001 (11)0.0085 (11)0.0015 (11)
C6350.0318 (17)0.0199 (14)0.0376 (15)0.0025 (12)0.0127 (13)0.0016 (12)
C6360.0288 (16)0.0187 (14)0.0360 (15)0.0017 (11)0.0098 (13)0.0011 (11)
Geometric parameters (Å, º) top
Br64—C6341.905 (3)C9—C911.513 (5)
S6—C61.755 (3)C61—C621.528 (4)
S6—C611.812 (3)C61—H61A0.9900
O6—C621.224 (4)C61—H61B0.9900
O9—C91.209 (4)C62—C6311.496 (4)
N1—C21.349 (4)C91—H91A0.9800
N1—C61.356 (4)C91—H91B0.9800
N3—C41.344 (4)C91—H91C0.9800
N3—C21.345 (5)C631—C6361.398 (4)
N7—C81.320 (4)C631—C6321.409 (5)
N7—C51.411 (4)C632—C6331.393 (5)
N9—C81.399 (4)C632—H6320.9500
N9—C41.404 (4)C633—C6341.400 (4)
N9—C91.431 (4)C633—H6330.9500
C2—H20.9500C634—C6351.404 (4)
C4—C51.402 (4)C635—C6361.398 (5)
C5—C61.395 (4)C635—H6350.9500
C8—H80.9500C636—H6360.9500
C6—S6—C61100.33 (15)S6—C61—H61B110.1
C2—N1—C6116.8 (3)H61A—C61—H61B108.4
C4—N3—C2111.3 (3)O6—C62—C631121.7 (3)
C8—N7—C5103.8 (3)O6—C62—C61121.1 (3)
C8—N9—C4105.5 (3)C631—C62—C61117.2 (3)
C8—N9—C9122.9 (3)C9—C91—H91A109.5
C4—N9—C9131.6 (3)C9—C91—H91B109.5
N3—C2—N1129.7 (3)H91A—C91—H91B109.5
N3—C2—H2115.1C9—C91—H91C109.5
N1—C2—H2115.1H91A—C91—H91C109.5
N3—C4—C5125.4 (3)H91B—C91—H91C109.5
N3—C4—N9129.2 (3)C636—C631—C632119.4 (3)
C5—C4—N9105.4 (3)C636—C631—C62121.6 (3)
C6—C5—C4117.3 (3)C632—C631—C62118.9 (3)
C6—C5—N7131.5 (3)C633—C632—C631121.2 (3)
C4—C5—N7111.1 (3)C633—C632—H632119.4
N1—C6—C5119.4 (3)C631—C632—H632119.4
N1—C6—S6122.1 (2)C632—C633—C634118.2 (3)
C5—C6—S6118.5 (2)C632—C633—H633120.9
N7—C8—N9114.2 (3)C634—C633—H633120.9
N7—C8—H8122.9C633—C634—C635121.7 (3)
N9—C8—H8122.9C633—C634—Br64120.7 (2)
O9—C9—N9119.0 (3)C635—C634—Br64117.6 (2)
O9—C9—C91125.1 (3)C636—C635—C634119.0 (3)
N9—C9—C91115.9 (3)C636—C635—H635120.5
C62—C61—S6108.2 (2)C634—C635—H635120.5
C62—C61—H61A110.1C635—C636—C631120.4 (3)
S6—C61—H61A110.1C635—C636—H636119.8
C62—C61—H61B110.1C631—C636—H636119.8
C4—N3—C2—N11.4 (5)C4—N9—C8—N70.1 (4)
C6—N1—C2—N31.6 (5)C9—N9—C8—N7178.5 (3)
C2—N3—C4—C50.5 (5)C8—N9—C9—O91.6 (5)
C2—N3—C4—N9178.1 (3)C4—N9—C9—O9179.6 (3)
C8—N9—C4—N3178.8 (3)C8—N9—C9—C91177.9 (3)
C9—N9—C4—N30.6 (6)C4—N9—C9—C910.0 (5)
C8—N9—C4—C50.0 (3)C6—S6—C61—C62177.8 (2)
C9—N9—C4—C5178.2 (3)S6—C61—C62—O63.2 (4)
N3—C4—C5—C60.1 (5)S6—C61—C62—C631178.1 (2)
N9—C4—C5—C6179.0 (3)O6—C62—C631—C636153.8 (3)
N3—C4—C5—N7179.0 (3)C61—C62—C631—C63627.6 (4)
N9—C4—C5—N70.1 (3)O6—C62—C631—C63225.1 (4)
C8—N7—C5—C6178.7 (3)C61—C62—C631—C632153.6 (3)
C8—N7—C5—C40.2 (3)C636—C631—C632—C6331.5 (5)
C2—N1—C6—C50.8 (4)C62—C631—C632—C633179.6 (3)
C2—N1—C6—S6179.6 (2)C631—C632—C633—C6341.9 (5)
C4—C5—C6—N10.1 (4)C632—C633—C634—C6350.8 (5)
N7—C5—C6—N1179.0 (3)C632—C633—C634—Br64178.7 (2)
C4—C5—C6—S6178.9 (2)C633—C634—C635—C6360.8 (5)
N7—C5—C6—S62.2 (5)Br64—C634—C635—C636179.8 (2)
C61—S6—C6—N112.0 (3)C634—C635—C636—C6311.2 (5)
C61—S6—C6—C5169.3 (3)C632—C631—C636—C6350.1 (5)
C5—N7—C8—N90.2 (4)C62—C631—C636—C635178.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O9i0.952.423.367 (4)177
C61—H61B···O6ii0.992.453.396 (4)160
Symmetry codes: (i) x1, y+1, z+1; (ii) x+1, y1/2, z+1/2.
(5) 1-(3-Methoxyphenyl)-2-[(9H-purin-6-yl)sulfanyl]ethan-1-one top
Crystal data top
C14H12N4O2SF(000) = 624
Mr = 300.34Dx = 1.487 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
a = 7.6683 (5) ÅCell parameters from 16870 reflections
b = 21.8004 (15) Åθ = 2.5–27.5°
c = 8.4131 (5) ŵ = 0.25 mm1
β = 107.507 (2)°T = 100 K
V = 1341.29 (15) Å3Block, colourless
Z = 40.17 × 0.12 × 0.07 mm
Data collection top
Rigaku AFC12 (Right)
diffractometer
3063 independent reflections
Radiation source: Rotating Anode2799 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.060
profile data from ω–scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2012)
h = 99
Tmin = 0.724, Tmax = 1.000k = 2828
17441 measured reflectionsl = 1010
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.055P)2 + 0.4055P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3063 reflectionsΔρmax = 0.30 e Å3
191 parametersΔρmin = 0.37 e Å3
Crystal data top
C14H12N4O2SV = 1341.29 (15) Å3
Mr = 300.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.6683 (5) ŵ = 0.25 mm1
b = 21.8004 (15) ÅT = 100 K
c = 8.4131 (5) Å0.17 × 0.12 × 0.07 mm
β = 107.507 (2)°
Data collection top
Rigaku AFC12 (Right)
diffractometer
3063 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2012)
2799 reflections with I > 2σ(I)
Tmin = 0.724, Tmax = 1.000Rint = 0.060
17441 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
3063 reflectionsΔρmin = 0.37 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S60.17185 (4)0.41173 (2)0.46144 (3)0.02043 (11)
O60.42208 (12)0.47291 (4)0.71480 (12)0.0275 (2)
O630.70355 (13)0.67387 (4)0.97072 (11)0.0288 (2)
N10.06585 (14)0.44463 (5)0.16289 (13)0.0227 (2)
N30.25987 (15)0.37375 (5)0.03578 (13)0.0240 (2)
N70.01119 (14)0.28258 (5)0.30139 (13)0.0211 (2)
N90.21099 (14)0.26758 (5)0.06007 (13)0.0226 (2)
H90.29110.24810.02140.027*
C20.19450 (17)0.42912 (6)0.01862 (15)0.0247 (3)
H60.24510.46230.05380.030*
C40.17933 (16)0.32957 (6)0.07248 (15)0.0206 (2)
C50.04241 (16)0.33841 (5)0.22326 (14)0.0195 (2)
C60.01075 (15)0.39879 (6)0.26754 (14)0.0194 (2)
C80.09352 (16)0.24220 (6)0.19916 (15)0.0225 (3)
H80.08740.19930.22070.027*
C610.21217 (16)0.49315 (6)0.44829 (15)0.0213 (2)
H61A0.26020.50180.35370.026*
H61B0.09690.51630.43120.026*
C620.35075 (16)0.51187 (6)0.61124 (15)0.0207 (2)
C6310.39980 (16)0.57789 (6)0.63995 (15)0.0205 (2)
C6320.52582 (16)0.59345 (5)0.79351 (15)0.0208 (2)
H6320.57440.56260.87450.025*
C6330.57924 (17)0.65409 (6)0.82667 (16)0.0230 (3)
C6340.50351 (18)0.69940 (6)0.70857 (17)0.0259 (3)
H6340.53850.74100.73200.031*
C6350.37787 (18)0.68404 (6)0.55762 (17)0.0265 (3)
H6350.32640.71520.47850.032*
C6360.32641 (16)0.62298 (6)0.52100 (16)0.0238 (3)
H6360.24250.61230.41640.029*
C6370.7840 (2)0.62823 (6)1.09270 (17)0.0301 (3)
H63A0.87240.64761.18860.045*
H63B0.84650.59761.04400.045*
H63C0.68820.60811.12910.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S60.02055 (17)0.02018 (17)0.01696 (16)0.00081 (10)0.00019 (11)0.00014 (10)
O60.0294 (5)0.0212 (5)0.0250 (5)0.0002 (3)0.0021 (4)0.0020 (3)
O630.0378 (5)0.0234 (5)0.0227 (5)0.0077 (4)0.0053 (4)0.0043 (4)
N10.0231 (5)0.0235 (5)0.0196 (5)0.0015 (4)0.0036 (4)0.0024 (4)
N30.0229 (5)0.0282 (6)0.0173 (5)0.0029 (4)0.0005 (4)0.0022 (4)
N70.0203 (5)0.0220 (5)0.0178 (5)0.0011 (4)0.0009 (4)0.0009 (4)
N90.0214 (5)0.0242 (5)0.0179 (5)0.0001 (4)0.0005 (4)0.0024 (4)
C20.0250 (6)0.0272 (7)0.0185 (6)0.0038 (5)0.0016 (5)0.0042 (5)
C40.0188 (5)0.0249 (6)0.0161 (5)0.0011 (4)0.0023 (4)0.0012 (5)
C50.0180 (5)0.0233 (6)0.0150 (5)0.0015 (4)0.0014 (4)0.0006 (4)
C60.0179 (5)0.0227 (6)0.0166 (5)0.0006 (4)0.0038 (4)0.0006 (4)
C80.0224 (6)0.0222 (6)0.0199 (6)0.0004 (4)0.0019 (4)0.0000 (5)
C610.0206 (5)0.0209 (6)0.0203 (6)0.0011 (4)0.0030 (5)0.0002 (4)
C620.0183 (5)0.0225 (6)0.0204 (6)0.0000 (4)0.0046 (4)0.0003 (4)
C6310.0187 (5)0.0219 (6)0.0210 (6)0.0000 (4)0.0060 (4)0.0006 (4)
C6320.0229 (6)0.0202 (6)0.0195 (6)0.0003 (4)0.0065 (5)0.0007 (4)
C6330.0248 (6)0.0240 (6)0.0216 (6)0.0028 (5)0.0091 (5)0.0030 (5)
C6340.0298 (6)0.0184 (6)0.0312 (7)0.0018 (5)0.0118 (5)0.0006 (5)
C6350.0262 (6)0.0228 (6)0.0302 (7)0.0021 (5)0.0082 (5)0.0053 (5)
C6360.0208 (6)0.0247 (7)0.0241 (6)0.0001 (4)0.0042 (5)0.0026 (5)
C6370.0350 (7)0.0315 (7)0.0209 (6)0.0054 (5)0.0039 (5)0.0024 (5)
Geometric parameters (Å, º) top
S6—C61.7477 (12)C61—C621.5162 (16)
S6—C611.8109 (13)C61—H61A0.9900
O6—C621.2219 (15)C61—H61B0.9900
O63—C6331.3669 (15)C62—C6311.4887 (17)
O63—C6371.4293 (17)C631—C6361.3949 (17)
N1—C61.3446 (16)C631—C6321.4025 (17)
N1—C21.3566 (16)C632—C6331.3871 (17)
N3—C21.3342 (17)C632—H6320.9500
N3—C41.3416 (16)C633—C6341.3975 (18)
N7—C81.3206 (16)C634—C6351.3846 (19)
N7—C51.3855 (15)C634—H6340.9500
N9—C81.3612 (15)C635—C6361.3963 (18)
N9—C41.3716 (16)C635—H6350.9500
N9—H90.8800C636—H6360.9500
C2—H60.9500C637—H63A0.9800
C4—C51.3954 (16)C637—H63B0.9800
C5—C61.3950 (17)C637—H63C0.9800
C8—H80.9500
C6—S6—C61100.77 (6)H61A—C61—H61B108.5
C633—O63—C637116.88 (10)O6—C62—C631121.28 (11)
C6—N1—C2117.22 (11)O6—C62—C61119.95 (11)
C2—N3—C4111.58 (11)C631—C62—C61118.75 (10)
C8—N7—C5103.95 (10)C636—C631—C632120.52 (11)
C8—N9—C4106.19 (10)C636—C631—C62122.49 (11)
C8—N9—H9126.9C632—C631—C62116.99 (11)
C4—N9—H9126.9C633—C632—C631119.72 (12)
N3—C2—N1129.01 (12)C633—C632—H632120.1
N3—C2—H6115.5C631—C632—H632120.1
N1—C2—H6115.5O63—C633—C632124.33 (12)
N3—C4—N9128.37 (11)O63—C633—C634115.92 (11)
N3—C4—C5125.80 (12)C632—C633—C634119.75 (12)
N9—C4—C5105.83 (10)C635—C634—C633120.46 (12)
N7—C5—C6132.92 (11)C635—C634—H634119.8
N7—C5—C4110.17 (11)C633—C634—H634119.8
C6—C5—C4116.90 (11)C634—C635—C636120.36 (12)
N1—C6—C5119.44 (11)C634—C635—H635119.8
N1—C6—S6122.55 (10)C636—C635—H635119.8
C5—C6—S6117.99 (9)C631—C636—C635119.17 (12)
N7—C8—N9113.85 (11)C631—C636—H636120.4
N7—C8—H8123.1C635—C636—H636120.4
N9—C8—H8123.1O63—C637—H63A109.5
C62—C61—S6107.14 (8)O63—C637—H63B109.5
C62—C61—H61A110.3H63A—C637—H63B109.5
S6—C61—H61A110.3O63—C637—H63C109.5
C62—C61—H61B110.3H63A—C637—H63C109.5
S6—C61—H61B110.3H63B—C637—H63C109.5
C4—N3—C2—N10.95 (19)C4—N9—C8—N70.34 (14)
C6—N1—C2—N30.9 (2)C6—S6—C61—C62179.54 (8)
C2—N3—C4—N9179.68 (12)S6—C61—C62—O65.56 (14)
C2—N3—C4—C50.74 (18)S6—C61—C62—C631175.65 (9)
C8—N9—C4—N3178.96 (12)O6—C62—C631—C636177.18 (11)
C8—N9—C4—C50.68 (13)C61—C62—C631—C6361.59 (17)
C8—N7—C5—C6178.02 (13)O6—C62—C631—C6322.42 (17)
C8—N7—C5—C40.60 (13)C61—C62—C631—C632178.81 (10)
N3—C4—C5—N7178.84 (11)C636—C631—C632—C6330.64 (18)
N9—C4—C5—N70.81 (13)C62—C631—C632—C633178.98 (11)
N3—C4—C5—C62.29 (18)C637—O63—C633—C6320.86 (17)
N9—C4—C5—C6178.05 (10)C637—O63—C633—C634179.47 (11)
C2—N1—C6—C50.84 (17)C631—C632—C633—O63178.68 (11)
C2—N1—C6—S6177.49 (9)C631—C632—C633—C6341.66 (18)
N7—C5—C6—N1179.21 (12)O63—C633—C634—C635179.22 (11)
C4—C5—C6—N12.24 (17)C632—C633—C634—C6351.09 (19)
N7—C5—C6—S62.39 (18)C633—C634—C635—C6360.5 (2)
C4—C5—C6—S6176.16 (8)C632—C631—C636—C6350.96 (18)
C61—S6—C6—N17.88 (11)C62—C631—C636—C635179.45 (11)
C61—S6—C6—C5173.78 (9)C634—C635—C636—C6311.54 (19)
C5—N7—C8—N90.16 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···N7i0.881.902.7715 (14)171
Symmetry code: (i) x1/2, y+1/2, z1/2.
Selected geometric parameters (Å, º) for (1) top
S6—C61.7438 (19)C61—C621.520 (3)
S6—C611.8017 (18)C62—C6311.491 (3)
C6—S6—C61100.76 (9)
C6—S6—C61—C62178.05 (13)S6—C61—C62—C631172.56 (14)
S6—C61—C62—O68.5 (2)
Selected geometric parameters (Å, º) for (2) top
S6—C61.741 (3)C61—C621.510 (4)
S6—C611.807 (3)C62—C6311.474 (3)
C6—S6—C61100.88 (12)
C6—S6—C61—C62170.8 (2)S6—C61—C62—C631175.8 (2)
S6—C61—C62—O67.7 (3)
Selected geometric parameters (Å, º) for (3) top
S6—C61.7446 (18)C61—C621.513 (2)
S6—C611.8038 (17)C62—C6311.493 (2)
C6—S6—C61100.50 (8)
C6—S6—C61—C62177.77 (12)S6—C61—C62—C631177.32 (12)
S6—C61—C62—O64.5 (2)
Selected geometric parameters (Å, º) for (4) top
S6—C61.755 (3)C61—C621.528 (4)
S6—C611.812 (3)C62—C6311.496 (4)
C6—S6—C61100.33 (15)
C6—S6—C61—C62177.8 (2)S6—C61—C62—C631178.1 (2)
S6—C61—C62—O63.2 (4)
Selected geometric parameters (Å, º) for (5) top
S6—C61.7477 (12)C61—C621.5162 (16)
S6—C611.8109 (13)C62—C6311.4887 (17)
C6—S6—C61100.77 (6)
C6—S6—C61—C62179.54 (8)S6—C61—C62—C631175.65 (9)
S6—C61—C62—O65.56 (14)
Selected dihedral angles (°) top
θ1 is the dihedral angle between the mean planes of the purine and phenyl rings and the phenyl ring. θ2 is the dihedral angles between the mean planes of the purine ring and the plane defined by the S6/C61/C62/O6 atoms. θ3 is the dihedral angle between the mean planes of the phenyl ring and the plane defined by the S6/C61/C62/O6 atoms.
Compoundθ1°θ2°θ3°
(1)2.95 (7)8.45 (8)5.87 (9)
(2)38.89 (9)17.05 (12)22.72 (13)
(3)38.67 (6)14.23 (8)27.82 (8)
(4)37.11 (10)13.58 (13)26.82 (14)
(5)4.74 (5)5.30 (5)3.42 (8)
The maximum deviations from the mean plane of the S–C–C–O bridging unit are for compounds (1)–(5) are 0.0457 (13), −0.041 (2), −0.023 (11), −0.017 (2) and 0.0302 (8) Å respectively. In all cases it is atom C42 which shows the maximum deviation.
Hydrogen-bond geometry (Å, º) for (2) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O64i0.952.483.375 (3)157
C8—H8···O9ii0.952.373.319 (3)178
C61—H61A···O6iii0.992.333.269 (3)159
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x1, y+1, z+1; (iii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (3) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O9i0.952.313.262 (2)176
C61—H61A···O6ii0.992.403.354 (2)162
Symmetry codes: (i) x1, y+1, z+1; (ii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (4) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O9i0.952.423.367 (4)177
C61—H61B···O6ii0.992.453.396 (4)160
Symmetry codes: (i) x1, y+1, z+1; (ii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (5) top
D—H···AD—HH···AD···AD—H···A
N9—H9···N7i0.881.902.7715 (14)171
Symmetry code: (i) x1/2, y+1/2, z1/2.
Selected ππ contacts (Å, °) top
CgI(J) is plane I(J); Cg···Cg is the distance between ring centroids; α is the dihedral angle between planes I and J; CgIperp is the perpendicular distance of Cg(I) on ring J; CgJperp is the perpendicular distance of Cg(J) on ring I; Slippage is the distance between Cg(I) and the perpendicular projection of Cg(J) on ring I. Plane 1 is through the imadazole ring, plane 2 the pyrimidine ring and plane 3 the exocyclic benzene ring.
CompoundCgICgJCg···CgαCgIperpCgJperpSlippage
(1)Cg1Cg3(−x, 1 − y, 1 − z)3.6923 (14)2.62 (12)3.4547 (9)-3.3985 (9)
Cg2Cg3(−x, 1 − y, 1 − z)3.6019 (12)3.26 (11)-3.3477 (9)-3.4071 (9)
(2)Cg1Cg1(−x, 1 − y, −z)3.8561 (16)0.00 (15)3.3156 (11)3.3156 (11)1.969
Cg2Cg3(1 − x, 1/2 + y, 1/2 − z)3.8270 (16)0.80 (12)-3.2463 (10)-3.2391 (11)
(3)Cg1Cg1(−x, 1 − y, −z)3.7799 (11)03.2016 (7)3.2016 (7)2.009
Cg2Cg3(1 − x, 1/2 + y, 1/2 − z)4.0620 (10)6.70 (8)-3.4438 (7)-3.1708 (7)
(4)Cg1Cg1(1 − x, 1 − y, 1 − z)3.8319 (18)0.04 (18)3.1987 (13)3.1987 (13)2.110
Cg2Cg3(1 − x, 1/2 + y, 1/2 − z)4.1601 (18)6.27 (15)-3.4328 (12)-3.1701 (13)
(5)Cg1Cg3(−x, 1 − y, 1 − z)3.6359 (8)5.35 (7)-3.4757 (5)-3.4162 (5)
Cg2Cg3(−x, 1 − y, 1 − z)3.5204 (8)4.43 (6)-3.3669 (5)-3.4160 (5)

Experimental details

(1)(2)(3)
Crystal data
Chemical formulaC16H14N4O3SC16H14N4O3SC15H11ClN4O2S
Mr342.37342.37346.79
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)100100100
a, b, c (Å)7.6343 (5), 26.2356 (18), 8.1332 (5)5.9920 (3), 9.9795 (5), 24.9907 (13)5.9900 (4), 9.9169 (7), 24.3238 (17)
β (°) 112.725 (2) 95.977 (5) 96.072 (2)
V3)1502.54 (17)1486.25 (13)1436.78 (17)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.240.240.43
Crystal size (mm)0.17 × 0.07 × 0.010.05 × 0.04 × 0.010.13 × 0.06 × 0.01
Data collection
DiffractometerRigaku AFC12 (Right)Rigaku AFC12 (Right)Rigaku AFC12 (Right)
Absorption correctionMulti-scan
(CrystalClear-SM Expert; Rigaku, 20112)
Multi-scan
(CrysAlis PRO; Agilent, 2014)
Multi-scan
CrystalClear-SM Expert (Rigaku, 20112)
Tmin, Tmax0, 1.0000.439, 1.0000.809, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
20144, 3450, 2817 15437, 2619, 1852 18353, 3291, 2677
Rint0.0890.1060.050
(sin θ/λ)max1)0.6490.5950.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.148, 1.05 0.048, 0.116, 1.02 0.035, 0.092, 1.02
No. of reflections345026193291
No. of parameters219219209
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 0.510.30, 0.360.34, 0.22


(4)(5)
Crystal data
Chemical formulaC15H11BrN4O2SC14H12N4O2S
Mr391.25300.34
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/n
Temperature (K)100100
a, b, c (Å)6.0705 (4), 10.0668 (7), 24.3492 (17)7.6683 (5), 21.8004 (15), 8.4131 (5)
β (°) 96.580 (2) 107.507 (2)
V3)1478.19 (18)1341.29 (15)
Z44
Radiation typeMo KαMo Kα
µ (mm1)2.940.25
Crystal size (mm)0.15 × 0.10 × 0.020.17 × 0.12 × 0.07
Data collection
DiffractometerRigaku AFC12 (Right)Rigaku AFC12 (Right)
Absorption correctionMulti-scan
CrystalClear-SM Expert (Rigaku, 20112)
Multi-scan
(CrystalClear-SM Expert; Rigaku, 2012)
Tmin, Tmax0.658, 1.0000.724, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
18171, 3346, 2944 17441, 3063, 2799
Rint0.0640.060
(sin θ/λ)max1)0.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.153, 1.06 0.033, 0.093, 1.03
No. of reflections33463063
No. of parameters209191
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.91, 0.920.30, 0.37

Computer programs: CrystalClear-SM Expert (Rigaku, 2012), CrysAlis PRO (Agilent, 2014), OSCAIL (McArdle et al., 2004) and SHELXT (Sheldrick, 2015a), OSCAIL (McArdle et al., 2004), ShelXle (Hübschle et al., 2011) and SHELXL2014 (Sheldrick, 2015b), Mercury (Macrae et al., 2006), SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank the staff at the National Crystallographic Service, University of Southampton, for the data collection, help and advice (Coles & Gale, 2012[Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683-689.]) and the Foundation for Science and Technology (FCT) of Portugal (QUI/UI0081/2015) for financial support. FC (grant SFRH/BPD/74491/2010) is supported by FCT, POPH and QREN.

References

First citationAbdel-Aziz, H. A., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o2262.  CSD CrossRef IUCr Journals Google Scholar
First citationAgilent (2014). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationColes, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHeravi, M. R. P., Khouzani, L., Sadeghi, M. M. M., Zendehdel, M., Jackson, R. F. W. & Adams, H. (2009). Anal. Sci. X-ray Struct. Anal. Online, 25, 43.  Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLambertucci, C., Antonini, I., Buccioni, M., Dal Ben, D., Kachare, D. D., Volpini, R., Klotz, K.-N. & Cristalli, G. (2009). Bioorg. Med. Chem. 17, 2812–2822.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLegraverend, M. (2008). Tetrahedron, 64, 8585–8603.  Web of Science CrossRef CAS Google Scholar
First citationLegraverend, M. & Grierson, D. S. (2006). Bioorg. Med. Chem. 14, 3987–4006.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, T. B., Jiang, W.-Q., Zou, J. P. & Zhang, Y. (2006). Jiegou Huaxue (Chin. J. Struct. Chem.), 25, 1019.  Google Scholar
First citationLoghmani-Khouzani, H., Hajiheidari, D., Robinson, W. T., Abdul Rahman, N. & Kia, R. (2009a). Acta Cryst. E65, o2287.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLoghmani-Khouzani, H., Hajiheidari, D., Robinson, W. T., Abdul Rahman, N. & Kia, R. (2009b). Acta Cryst. E65, o2441.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLynch, D. E. & McClenaghan, I. (2004). Acta Cryst. E60, o363–o364.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMasai, N., Hayashi, T., Kumazawa, Y., Nishikawa, J., Barta, I. & Kawakami, T. (2002). PCT Int. Appl. 2002081472.  Google Scholar
First citationMcArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm, 6, 303–309.  Web of Science CSD CrossRef CAS Google Scholar
First citationRao, Z.-K., Zhang, S.-S., He, Y.-P., Zheng, Y.-T. & Li, C. (2007). Acta Cryst. E63, o3942.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTunçbilek, M., Ateş-Alagöz, Z., Altanlar, N., Karayel, A. & Özbey, S. (2009). Bioorg. Med. Chem. 17, 1693–1700.  Web of Science PubMed Google Scholar
First citationYan, W.-L., Guo, Q., Li, C., Ji, X.-Y. & He, Y.-P. (2011). Acta Cryst. E67, o534.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 3| March 2016| Pages 307-313
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds