research communications
H-imidazole-κN3)(sulfato-κO)nickel(II)
of diaquatris(1-ethyl-1aChemical Crystallography Research Group, Institute of Organic Chemistry, Hungarian Academy of Sciences, Magyar Tudosok Korutja 2, Budapest H-1117, Hungary, bNMR Research Group, Institute of Organic Chemistry, Hungarian Academy of Sciences, Magyar Tudosok Korutja 2, Budapest H-1117, Hungary, and cPolymer Chemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudosok Korutja 2, Budapest H-1117, Hungary
*Correspondence e-mail: holczbauer.tamas@ttk.mta.hu
In the title complex, [Ni(SO4)(C5H8N2)3(H2O)2], the NiII ion is coordinated by three facial 1-ethyl-1H-imidazole ligands, one monodentate sulfate ligand and two water molecules in a slightly distorted octahedral coordination environment. In the crystal, two pairs of O—H⋯O hydrogen bonds link complex molecules, forming inversion dimers incorporating R24(8), R22(8) and R22(12) rings. The dimeric unit also contains two symmetry-unique intramolecular O—H⋯O hydrogen bonds. In addition, weak C—H⋯O hydrogen bonds, weak C—H⋯π interactions and π–π interactions with a centroid–centroid distance of 3.560 (2) Å combine to form a three-dimensional network. One of the ethyl groups is disordered over two sets of sites with occupancies in the ratio 0.586 (7):0.414 (7).
Keywords: crystal structure; nickel(II) complex; hydrogen bonding; disorder; coordination.
CCDC reference: 1454040
1. Chemical context
In spite of efforts in the past decades to synthesize structurally highly varying metal-organic complexes, no structures up to this point have been reported which contain the combination of a hydrophilic sulfate anion, water molecules and hydrophobic 1-ethyl-1H-imidazole molecules as ligands. The title compound was prepared by the reaction of NiSO4·6H2O and 1-ethyl-1H-imidazole. The of the title compound is presented herein.
2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. The NiII ion is coordinated in a slightly distorted octahedral geometry by three facially arranged 1-ethyl-1H-imidazole ligands, one monodentate sulfate ligand and two water molecules. The Ni—N bond lengths are in the range 2.0630 (16)–2.0817 (17)Å and the Ni—O bond lengths are in the range 2.1195 (15)–2.1502 (14). The Niii ion is displaced by 0.1038 (3) Å from the O1/O2/N11/N13 plane. The distances of two water O atoms O1 and O2 from the S1/O3/Ni1/N12 plane are the same within experimental error, with values of 1.520 (2) and −1.504 (2) Å, respectively. The sulfate atom O6 is displaced by only 0.144 (2) Å from the S1/O3/Ni1/N12 plane, while atoms O4 and O5 are displaced by 1.114 (2) and −1.298 (2) Å, respectively, from this plane (see Fig. 2.).
3. Supramolecular features
In the crystal, two pairs of O—H⋯O hydrogen bonds (Table 1) link complex molecules, forming inversion dimers incorporating R24(8), R22(8) and R22(12) rings. The dimeric unit also contains two symmetry-unique intramolecular O—H⋯O hydrogen bonds (Fig. 3). In addition, weak C—H⋯O hydrogen bonds, weak C—H⋯π interactions and π–π interactions with a centroid–centroid distance of 3.560 (2) Å combine to form a three-dimensional network. The π–π interaction is observed between the N11/C21/N31/C41/C51 ring and the inversion-related ring at (1 − x, −y, 1 − z).
4. Database survey
A search of the Cambridge Structural Database (CSD; Groom & Allen, 2014) for molecules with two water ligands, a sulfate anion and three nitrogen-containing molecules gave the following hits with Ni: ARUZIW (Ouyang et al., 2004), BEDSEJ (Wan et al., 2003), FOXRAM (Xu et al., 2009), REHKUL (Díaz de Vivar et al., 2006), ZAMFUO (Mukherjee et al., 1995), and with Cu: ODAHEI, ODAHOS (Adarsh et al., 2011), XIHSAI (Gómez-Saiz et al., 2002) and QUSJAP (Calatayud et al., 2000).
A similar type of hydrogen bonding occurs between the sulfate anion and water molecules in the complex BEDSEJ. In ARUZIW, one of the hydrogen bonds of the sulfate anion involves the protonated hydrogen-acceptor nitrogen atom. Unlike the title compound, one of the water ligands in FOXRAM, REHKUL and ZAMFUO is trans to the sulfate ligand. This also the case in the copper-containing structure QUSJUP, but in ODAHEI, ODAHOS and XIHSAI the two aqua ligands are trans to each other.
Complexes with one NiII ion and at least three 1-ethyl-1H-imidazole ligands have already been reported in the literature (DEDLIJ: Huxel et al., 2012; IDEJAE: Çetinkaya et al., 2013; WENYAK: Liu et al., 2006). Complexes have also been reported for Cu (GEVGEV: Hoogerstraete et al., 2012; UFOMIM: Liu et al., 2008; XIKXEV: Liu et al., 2007).
5. Synthesis and crystallization
NiSO4·6H2O and 1-ethyl-1H-imidazole in a 1:1 stoichiometric ratio formed an The compound was dissolved in methanol and the solution was precipitated with ethyl acetate. After one week, blue crystals suitable for X-ray diffraction grew in the vessel.
6. Refinement
Crystal data, data collection and structure . Six reflections were found to be shaded by the beamstop and removed from the data set. The hydrogen atoms of the water molecules were located in a difference map and refined freely. Hydrogen atoms bonded to C atoms were placed in calculated positions and refined in a riding-model approximation. One of the ethyl groups is disordered over two sets of sites with occupancies in the ratio 0.586 (7):0.414 (7).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1454040
10.1107/S2056989016002863/lh5802sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989016002863/lh5802Isup2.hkl
In spite of efforts in the past decades to synthesize structurally highly varying metal-organic complexes, no structures up to this point have been reported which contain the combination of a hydrophilic sulfate anion, water molecules and hydrophobic 1-ethyl-1H-imidazole molecules as ligands. The title compound was prepared by the reaction of NiSO4·6H2O and 1-ethyl-1H-imidazole. The
of the title compound is presented herein.The molecular structure of the title compound is shown in Fig. 1. The NiII ion is coordinated in a slightly distorted octahedral geometry by three facial 1-ethyl-1H-imidazole ligands, one sulfate ligand and two water molecules. The Ni—N bond lengths are in the range 2.0630 (16)–2.0817 (17) Å and the Ni—O bond lengths are in the range 2.1195 (15)–2.1502 (14). The Niii ion is displaced by 0.1038 (3) Å from the O1/O2/N11/N13 plane. The distances of two water O atoms O1 and O2 from the S1/O3/Ni1/N12 plane are the same within experimental error, with values of 1.520 (2) and −1.504 (2) Å, respectively. The sulfate atom O6 is displaced by only 0.144 (2) Å from the S1/O3/Ni1/N12 plane, while atoms O4 and O5 are displaced by 1.114 (2) and −1.298 (2) Å, respectively, from this plane (see Fig. 2.).
In the crystal, two pairs of O—H···O hydrogen bonds (Table 1) link complex molecules, forming inversion dimers incorporating R24(8), R22(8) and R22(12) rings. The dimeric unit also contains two symmetry-unique intramolecular O—H···O hydrogen bonds (Fig 3). In addition, weak C—H···O hydrogen bonds, weak C—H···π interactions and π–π interactions with a centroid–centroid distance of 3.560 (2) Å combine to form a three-dimensional network. The π–π interaction is observed between the N11/C21/N31/C41/C51 ring and the inversion-related ring at (1 − x, −y, 1 − z).
A search of the Cambridge Structural Database (CSD; Groom & Allen, 2014) for molecules with two water ligands, a sulfate anion and three nitrogen-containing molecules gave the following hits with Ni: ARUZIW (Ouyang et al., 2004), BEDSEJ (Wan et al., 2003), FOXRAM (Xu et al., 2009), REHKUL (Díaz de Vivar et al., 2006), ZAMFUO (Mukherjee et al., 1995), and with Cu: ODAHEI, ODAHOS (Adarsh et al., 2011), XIHSAI (Gómez-Saiz et al., 2002) and QUSJAP (Calatayud et al., 2000).
A similar type of hydrogen bonding occurs between the sulfate anion and water molecules in the complex BEDSEJ. In ARUZIW, one of the hydrogen bonds of the sulfate anion involves the protonated hydrogen-acceptor nitrogen atoms. Unlike the title compound, one of the water ligands in FOXRAM, REHKUL and ZAMFUO is trans to the sulfate ligand. This also the case in the copper-containing structure QUSJUP, but in ODAHEI, ODAHOS and XIHSAI the two aqua ligands are trans to each other.
Complexes with one NiII ion and at least three 1-ethyl-1H-imidazole ligands have already been reported in the literature (DEDLIJ: Huxel et al., 2012; IDEJAE: Çetinkaya et al., 2013; WENYAK: Liu et al., 2006). Complexes have also been reported for Cu (GEVGEV: Hoogerstraete et al., 2012; UFOMIM: Liu et al., 2008; XIKXEV: Liu et al., 2007).
NiSO4·6H2O and 1-ethyl-1H-imidazole in a 1:1 stoichiometric ratio formed an
The compound was dissolved in methanol and the solution was precipitated with ethyl acetate. After one week, blue crystals suitable for X-ray diffraction grew in the vessel.Crystal data, data collection and structure
details are summarized in Table 2. Six reflections were found to be shaded by the beamstop and removed from the data set. The hydrogen atoms of the water molecules were located in a difference map and refined freely. Hydrogen atoms bonded to C atoms were placed in calculated positions and refined in a riding-model approximation. One of the ethyl groups is disordered over two sets of sites with occupancies in the ratio 0.586 (7):0.414 (7).In spite of efforts in the past decades to synthesize structurally highly varying metal-organic complexes, no structures up to this point have been reported which contain the combination of a hydrophilic sulfate anion, water molecules and hydrophobic 1-ethyl-1H-imidazole molecules as ligands. The title compound was prepared by the reaction of NiSO4·6H2O and 1-ethyl-1H-imidazole. The
of the title compound is presented herein.The molecular structure of the title compound is shown in Fig. 1. The NiII ion is coordinated in a slightly distorted octahedral geometry by three facial 1-ethyl-1H-imidazole ligands, one sulfate ligand and two water molecules. The Ni—N bond lengths are in the range 2.0630 (16)–2.0817 (17) Å and the Ni—O bond lengths are in the range 2.1195 (15)–2.1502 (14). The Niii ion is displaced by 0.1038 (3) Å from the O1/O2/N11/N13 plane. The distances of two water O atoms O1 and O2 from the S1/O3/Ni1/N12 plane are the same within experimental error, with values of 1.520 (2) and −1.504 (2) Å, respectively. The sulfate atom O6 is displaced by only 0.144 (2) Å from the S1/O3/Ni1/N12 plane, while atoms O4 and O5 are displaced by 1.114 (2) and −1.298 (2) Å, respectively, from this plane (see Fig. 2.).
In the crystal, two pairs of O—H···O hydrogen bonds (Table 1) link complex molecules, forming inversion dimers incorporating R24(8), R22(8) and R22(12) rings. The dimeric unit also contains two symmetry-unique intramolecular O—H···O hydrogen bonds (Fig 3). In addition, weak C—H···O hydrogen bonds, weak C—H···π interactions and π–π interactions with a centroid–centroid distance of 3.560 (2) Å combine to form a three-dimensional network. The π–π interaction is observed between the N11/C21/N31/C41/C51 ring and the inversion-related ring at (1 − x, −y, 1 − z).
A search of the Cambridge Structural Database (CSD; Groom & Allen, 2014) for molecules with two water ligands, a sulfate anion and three nitrogen-containing molecules gave the following hits with Ni: ARUZIW (Ouyang et al., 2004), BEDSEJ (Wan et al., 2003), FOXRAM (Xu et al., 2009), REHKUL (Díaz de Vivar et al., 2006), ZAMFUO (Mukherjee et al., 1995), and with Cu: ODAHEI, ODAHOS (Adarsh et al., 2011), XIHSAI (Gómez-Saiz et al., 2002) and QUSJAP (Calatayud et al., 2000).
A similar type of hydrogen bonding occurs between the sulfate anion and water molecules in the complex BEDSEJ. In ARUZIW, one of the hydrogen bonds of the sulfate anion involves the protonated hydrogen-acceptor nitrogen atoms. Unlike the title compound, one of the water ligands in FOXRAM, REHKUL and ZAMFUO is trans to the sulfate ligand. This also the case in the copper-containing structure QUSJUP, but in ODAHEI, ODAHOS and XIHSAI the two aqua ligands are trans to each other.
Complexes with one NiII ion and at least three 1-ethyl-1H-imidazole ligands have already been reported in the literature (DEDLIJ: Huxel et al., 2012; IDEJAE: Çetinkaya et al., 2013; WENYAK: Liu et al., 2006). Complexes have also been reported for Cu (GEVGEV: Hoogerstraete et al., 2012; UFOMIM: Liu et al., 2008; XIKXEV: Liu et al., 2007).
NiSO4·6H2O and 1-ethyl-1H-imidazole in a 1:1 stoichiometric ratio formed an
The compound was dissolved in methanol and the solution was precipitated with ethyl acetate. After one week, blue crystals suitable for X-ray diffraction grew in the vessel. detailsCrystal data, data collection and structure
details are summarized in Table 2. Six reflections were found to be shaded by the beamstop and removed from the data set. The hydrogen atoms of the water molecules were located in a difference map and refined freely. Hydrogen atoms bonded to C atoms were placed in calculated positions and refined in a riding-model approximation. One of the ethyl groups is disordered over two sets of sites with occupancies in the ratio 0.586 (7):0.414 (7).Data collection: CrystalClear (Rigaku, 2008); cell
CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Only the major component of disorder is shown. | |
Fig. 2. The distances of the atoms N12, Ni1, O3, S1 and O6 from the least-squares plane defined by S1/O3/Ni1/N12. | |
Fig. 3. An inversion dimer of the title compound. Hydrogen bonds are shown as dotted blue lines. |
[Ni(SO4)(C5H8N2)3(H2O)2] | F(000) = 1008 |
Mr = 478.97 | Dx = 1.545 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71075 Å |
a = 12.0252 (13) Å | Cell parameters from 24228 reflections |
b = 14.3481 (15) Å | θ = 3.0–29.2° |
c = 15.3502 (11) Å | µ = 1.09 mm−1 |
β = 128.980 (5)° | T = 131 K |
V = 2058.9 (4) Å3 | Prism, blue–green |
Z = 4 | 0.40 × 0.25 × 0.15 mm |
Rigaku R-AXIS RAPID-S diffractometer | 4723 independent reflections |
Radiation source: NORMAL-focus sealed tube | 4284 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 27.5°, θmin = 3.0° |
dtprofit.ref scans | h = −15→15 |
Absorption correction: numerical (NUMABS; Higashi, 1999) | k = −18→18 |
Tmin = 0.705, Tmax = 1.000 | l = −19→19 |
28931 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: mixed |
wR(F2) = 0.085 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0358P)2 + 2.7059P] where P = (Fo2 + 2Fc2)/3 |
4723 reflections | (Δ/σ)max = 0.001 |
290 parameters | Δρmax = 1.04 e Å−3 |
2 restraints | Δρmin = −1.12 e Å−3 |
[Ni(SO4)(C5H8N2)3(H2O)2] | V = 2058.9 (4) Å3 |
Mr = 478.97 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.0252 (13) Å | µ = 1.09 mm−1 |
b = 14.3481 (15) Å | T = 131 K |
c = 15.3502 (11) Å | 0.40 × 0.25 × 0.15 mm |
β = 128.980 (5)° |
Rigaku R-AXIS RAPID-S diffractometer | 4723 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 4284 reflections with I > 2σ(I) |
Tmin = 0.705, Tmax = 1.000 | Rint = 0.030 |
28931 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 2 restraints |
wR(F2) = 0.085 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 1.04 e Å−3 |
4723 reflections | Δρmin = −1.12 e Å−3 |
290 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni1 | 0.32786 (2) | 0.06839 (2) | 0.17394 (2) | 0.01465 (8) | |
S1 | 0.19425 (5) | −0.13289 (3) | 0.04041 (4) | 0.01533 (11) | |
O1 | 0.17269 (16) | 0.02378 (11) | 0.19192 (12) | 0.0184 (3) | |
O2 | 0.16244 (15) | 0.09393 (11) | 0.00106 (12) | 0.0194 (3) | |
O3 | 0.31939 (14) | −0.07108 (9) | 0.11877 (12) | 0.0181 (3) | |
O4 | 0.10655 (15) | −0.13787 (10) | 0.07794 (12) | 0.0203 (3) | |
O5 | 0.10552 (15) | −0.09040 (10) | −0.07368 (12) | 0.0205 (3) | |
O6 | 0.24281 (15) | −0.22575 (10) | 0.03973 (12) | 0.0226 (3) | |
N11 | 0.48566 (17) | 0.02439 (12) | 0.33618 (13) | 0.0171 (3) | |
N12 | 0.30580 (17) | 0.20374 (12) | 0.21002 (14) | 0.0186 (3) | |
N13 | 0.47676 (17) | 0.10307 (12) | 0.15321 (14) | 0.0183 (3) | |
N31 | 0.61057 (18) | −0.07752 (12) | 0.47365 (15) | 0.0205 (3) | |
N32 | 0.1943 (2) | 0.33190 (13) | 0.19606 (18) | 0.0293 (4) | |
N33 | 0.67307 (18) | 0.15163 (12) | 0.18436 (15) | 0.0203 (3) | |
C21 | 0.5071 (2) | −0.06505 (14) | 0.36263 (17) | 0.0182 (4) | |
H21 | 0.4561 | −0.1143 | 0.3101 | 0.022* | |
C22 | 0.1814 (2) | 0.24081 (14) | 0.17007 (19) | 0.0235 (4) | |
H22 | 0.0937 | 0.2074 | 0.1282 | 0.028* | |
C23 | 0.6062 (2) | 0.13902 (14) | 0.22810 (17) | 0.0200 (4) | |
H23 | 0.6465 | 0.1540 | 0.3030 | 0.024* | |
C41 | 0.6587 (2) | 0.00910 (15) | 0.52137 (17) | 0.0215 (4) | |
H41 | 0.7313 | 0.0229 | 0.5985 | 0.026* | |
C42 | 0.3367 (2) | 0.35474 (15) | 0.2570 (2) | 0.0280 (5) | |
H42 | 0.3790 | 0.4141 | 0.2871 | 0.034* | |
C43 | 0.5818 (2) | 0.12208 (15) | 0.07504 (18) | 0.0239 (4) | |
H43 | 0.5989 | 0.1225 | 0.0225 | 0.029* | |
C51 | 0.5813 (2) | 0.07121 (14) | 0.43575 (17) | 0.0211 (4) | |
H51 | 0.5916 | 0.1370 | 0.4434 | 0.025* | |
C52 | 0.4042 (2) | 0.27554 (14) | 0.26545 (18) | 0.0215 (4) | |
H52 | 0.5038 | 0.2701 | 0.3036 | 0.026* | |
C53 | 0.4619 (2) | 0.09216 (15) | 0.05751 (17) | 0.0209 (4) | |
H53 | 0.3798 | 0.0673 | −0.0110 | 0.025* | |
C61 | 0.6605 (3) | −0.16783 (16) | 0.5309 (2) | 0.0306 (5) | |
H61A | 0.5983 | −0.2177 | 0.4768 | 0.037* | |
H61B | 0.6524 | −0.1688 | 0.5912 | 0.037* | |
C62 | 0.0740 (3) | 0.39212 (18) | 0.1578 (3) | 0.0462 (7) | |
H62A | −0.0128 | 0.3533 | 0.1216 | 0.055* | 0.586 (7) |
H62B | 0.0576 | 0.4354 | 0.1005 | 0.055* | 0.586 (7) |
H62C | 0.0944 | 0.4235 | 0.2239 | 0.055* | 0.414 (7) |
H62D | −0.0116 | 0.3526 | 0.1243 | 0.055* | 0.414 (7) |
C63 | 0.8153 (2) | 0.19343 (16) | 0.24232 (19) | 0.0254 (4) | |
H63A | 0.8754 | 0.1508 | 0.2368 | 0.030* | |
H63B | 0.8617 | 0.2014 | 0.3227 | 0.030* | |
C71 | 0.8118 (3) | −0.18738 (19) | 0.5804 (3) | 0.0461 (7) | |
H71A | 0.8749 | −0.1414 | 0.6389 | 0.069* | |
H71B | 0.8215 | −0.1836 | 0.5217 | 0.069* | |
H71C | 0.8384 | −0.2500 | 0.6131 | 0.069* | |
C72A | 0.0951 (4) | 0.4480 (3) | 0.2497 (3) | 0.0344 (11) | 0.586 (7) |
H72A | 0.0106 | 0.4869 | 0.2184 | 0.052* | 0.586 (7) |
H72B | 0.1796 | 0.4878 | 0.2850 | 0.052* | 0.586 (7) |
H72C | 0.1088 | 0.4057 | 0.3059 | 0.052* | 0.586 (7) |
C72B | 0.0385 (8) | 0.4659 (5) | 0.0733 (6) | 0.061 (3) | 0.414 (7) |
H72D | 0.1231 | 0.5044 | 0.1042 | 0.092* | 0.414 (7) |
H72E | −0.0394 | 0.5052 | 0.0568 | 0.092* | 0.414 (7) |
H72F | 0.0086 | 0.4358 | 0.0042 | 0.092* | 0.414 (7) |
C73 | 0.8063 (3) | 0.28677 (17) | 0.1928 (2) | 0.0286 (5) | |
H73A | 0.7374 | 0.3265 | 0.1894 | 0.043* | |
H73B | 0.7752 | 0.2778 | 0.1171 | 0.043* | |
H73C | 0.9006 | 0.3166 | 0.2399 | 0.043* | |
H2A | 0.145 (3) | 0.044 (2) | −0.030 (2) | 0.030 (7)* | |
H2B | 0.083 (3) | 0.112 (2) | −0.017 (2) | 0.038 (8)* | |
H1A | 0.152 (3) | −0.029 (2) | 0.163 (3) | 0.041 (8)* | |
H1B | 0.098 (3) | 0.046 (2) | 0.159 (3) | 0.035 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.01215 (12) | 0.01505 (13) | 0.01544 (13) | −0.00015 (8) | 0.00804 (10) | −0.00036 (9) |
S1 | 0.0129 (2) | 0.0156 (2) | 0.0155 (2) | 0.00119 (16) | 0.00791 (19) | −0.00091 (16) |
O1 | 0.0150 (7) | 0.0182 (7) | 0.0209 (7) | −0.0005 (6) | 0.0107 (6) | −0.0016 (6) |
O2 | 0.0156 (7) | 0.0192 (7) | 0.0201 (7) | 0.0002 (6) | 0.0096 (6) | −0.0001 (6) |
O3 | 0.0135 (6) | 0.0186 (7) | 0.0189 (7) | −0.0002 (5) | 0.0085 (6) | −0.0026 (5) |
O4 | 0.0185 (7) | 0.0215 (7) | 0.0232 (7) | −0.0017 (5) | 0.0143 (6) | −0.0020 (6) |
O5 | 0.0187 (7) | 0.0231 (7) | 0.0160 (7) | 0.0020 (6) | 0.0091 (6) | 0.0005 (6) |
O6 | 0.0208 (7) | 0.0179 (7) | 0.0244 (7) | 0.0034 (6) | 0.0120 (6) | −0.0023 (6) |
N11 | 0.0137 (7) | 0.0195 (8) | 0.0167 (8) | 0.0010 (6) | 0.0089 (7) | 0.0004 (6) |
N12 | 0.0166 (8) | 0.0181 (8) | 0.0206 (8) | −0.0013 (6) | 0.0114 (7) | −0.0012 (6) |
N13 | 0.0173 (8) | 0.0185 (8) | 0.0205 (8) | −0.0001 (6) | 0.0126 (7) | −0.0002 (6) |
N31 | 0.0182 (8) | 0.0211 (8) | 0.0199 (8) | 0.0007 (6) | 0.0109 (7) | 0.0025 (7) |
N32 | 0.0258 (9) | 0.0194 (9) | 0.0452 (12) | 0.0010 (7) | 0.0236 (9) | −0.0013 (8) |
N33 | 0.0173 (8) | 0.0216 (8) | 0.0237 (9) | −0.0012 (7) | 0.0136 (7) | −0.0013 (7) |
C21 | 0.0145 (9) | 0.0201 (9) | 0.0180 (9) | −0.0002 (7) | 0.0093 (8) | 0.0003 (7) |
C22 | 0.0187 (9) | 0.0184 (9) | 0.0306 (11) | −0.0013 (8) | 0.0142 (9) | −0.0021 (8) |
C23 | 0.0178 (9) | 0.0227 (10) | 0.0206 (9) | −0.0014 (8) | 0.0126 (8) | −0.0018 (8) |
C41 | 0.0172 (9) | 0.0252 (10) | 0.0172 (9) | −0.0006 (8) | 0.0084 (8) | −0.0021 (8) |
C42 | 0.0281 (11) | 0.0196 (10) | 0.0389 (13) | −0.0056 (8) | 0.0224 (10) | −0.0052 (9) |
C43 | 0.0219 (10) | 0.0301 (11) | 0.0227 (10) | −0.0027 (8) | 0.0155 (9) | −0.0035 (8) |
C51 | 0.0202 (10) | 0.0200 (10) | 0.0196 (10) | −0.0003 (7) | 0.0109 (8) | −0.0025 (8) |
C52 | 0.0184 (9) | 0.0194 (9) | 0.0264 (10) | −0.0033 (8) | 0.0140 (9) | −0.0017 (8) |
C53 | 0.0182 (9) | 0.0237 (10) | 0.0203 (9) | −0.0014 (8) | 0.0119 (8) | −0.0036 (8) |
C61 | 0.0302 (12) | 0.0242 (11) | 0.0319 (12) | 0.0048 (9) | 0.0169 (10) | 0.0112 (9) |
C62 | 0.0368 (14) | 0.0281 (13) | 0.078 (2) | 0.0115 (11) | 0.0379 (15) | 0.0054 (13) |
C63 | 0.0149 (9) | 0.0286 (11) | 0.0298 (11) | −0.0039 (8) | 0.0127 (9) | −0.0026 (9) |
C71 | 0.0353 (14) | 0.0302 (13) | 0.0618 (18) | 0.0143 (11) | 0.0252 (14) | 0.0112 (12) |
C72A | 0.025 | 0.027 (2) | 0.048 (3) | 0.0004 (15) | 0.0218 (14) | −0.0071 (18) |
C72B | 0.025 | 0.075 (6) | 0.063 (5) | 0.022 (3) | 0.017 (3) | 0.005 (4) |
C73 | 0.0295 (11) | 0.0316 (12) | 0.0298 (11) | −0.0081 (9) | 0.0211 (10) | −0.0042 (9) |
Ni1—N11 | 2.0630 (16) | C41—H41 | 0.9500 |
Ni1—N13 | 2.0667 (16) | C42—C52 | 1.354 (3) |
Ni1—N12 | 2.0817 (17) | C42—H42 | 0.9500 |
Ni1—O2 | 2.1195 (15) | C43—C53 | 1.359 (3) |
Ni1—O1 | 2.1485 (15) | C43—H43 | 0.9500 |
Ni1—O3 | 2.1502 (14) | C51—H51 | 0.9500 |
S1—O6 | 1.4574 (14) | C52—H52 | 0.9500 |
S1—O4 | 1.4878 (14) | C53—H53 | 0.9500 |
S1—O3 | 1.4902 (14) | C61—C71 | 1.492 (3) |
S1—O5 | 1.4920 (14) | C61—H61A | 0.9900 |
O1—H1A | 0.84 (3) | C61—H61B | 0.9900 |
O1—H1B | 0.77 (3) | C62—C72A | 1.499 (3) |
O2—H2A | 0.81 (3) | C62—C72B | 1.512 (3) |
O2—H2B | 0.85 (3) | C62—H62A | 0.9900 |
N11—C21 | 1.322 (3) | C62—H62B | 0.9900 |
N11—C51 | 1.378 (3) | C62—H62C | 0.9900 |
N12—C22 | 1.320 (3) | C62—H62D | 0.9900 |
N12—C52 | 1.385 (3) | C63—C73 | 1.509 (3) |
N13—C23 | 1.326 (3) | C63—H63A | 0.9900 |
N13—C53 | 1.373 (3) | C63—H63B | 0.9900 |
N31—C21 | 1.348 (3) | C71—H71A | 0.9800 |
N31—C41 | 1.372 (3) | C71—H71B | 0.9800 |
N31—C61 | 1.466 (3) | C71—H71C | 0.9800 |
N32—C22 | 1.347 (3) | C72A—H72A | 0.9800 |
N32—C42 | 1.378 (3) | C72A—H72B | 0.9800 |
N32—C62 | 1.455 (3) | C72A—H72C | 0.9800 |
N33—C23 | 1.345 (3) | C72B—H72D | 0.9800 |
N33—C43 | 1.372 (3) | C72B—H72E | 0.9800 |
N33—C63 | 1.471 (3) | C72B—H72F | 0.9800 |
C21—H21 | 0.9500 | C73—H73A | 0.9800 |
C22—H22 | 0.9500 | C73—H73B | 0.9800 |
C23—H23 | 0.9500 | C73—H73C | 0.9800 |
C41—C51 | 1.360 (3) | ||
N11—Ni1—N13 | 91.81 (6) | C53—C43—N33 | 105.81 (18) |
N11—Ni1—N12 | 97.97 (7) | C53—C43—H43 | 127.1 |
N13—Ni1—N12 | 94.83 (7) | N33—C43—H43 | 127.1 |
N11—Ni1—O2 | 172.09 (6) | C41—C51—N11 | 109.81 (18) |
N13—Ni1—O2 | 89.27 (6) | C41—C51—H51 | 125.1 |
N12—Ni1—O2 | 89.74 (6) | N11—C51—H51 | 125.1 |
N11—Ni1—O1 | 88.13 (6) | C42—C52—N12 | 109.66 (18) |
N13—Ni1—O1 | 176.45 (6) | C42—C52—H52 | 125.2 |
N12—Ni1—O1 | 88.70 (6) | N12—C52—H52 | 125.2 |
O2—Ni1—O1 | 90.31 (6) | C43—C53—N13 | 110.15 (18) |
N11—Ni1—O3 | 88.30 (6) | C43—C53—H53 | 124.9 |
N13—Ni1—O3 | 89.68 (6) | N13—C53—H53 | 124.9 |
N12—Ni1—O3 | 172.14 (6) | N31—C61—C71 | 112.3 (2) |
O2—Ni1—O3 | 83.87 (6) | N31—C61—H61A | 109.1 |
O1—Ni1—O3 | 86.76 (6) | C71—C61—H61A | 109.1 |
O6—S1—O4 | 110.10 (9) | N31—C61—H61B | 109.1 |
O6—S1—O3 | 110.12 (8) | C71—C61—H61B | 109.1 |
O4—S1—O3 | 108.54 (8) | H61A—C61—H61B | 107.9 |
O6—S1—O5 | 111.04 (9) | N32—C62—C72A | 113.7 (3) |
O4—S1—O5 | 108.45 (8) | N32—C62—C72B | 115.8 (3) |
O3—S1—O5 | 108.52 (8) | N32—C62—H62A | 108.8 |
Ni1—O1—H1A | 101 (2) | C72A—C62—H62A | 108.8 |
Ni1—O1—H1B | 122 (2) | N32—C62—H62B | 108.8 |
H1A—O1—H1B | 101 (3) | C72A—C62—H62B | 108.8 |
Ni1—O2—H2A | 106 (2) | H62A—C62—H62B | 107.7 |
Ni1—O2—H2B | 116 (2) | N32—C62—H62C | 108.3 |
H2A—O2—H2B | 104 (3) | C72B—C62—H62C | 108.3 |
S1—O3—Ni1 | 130.19 (8) | N32—C62—H62D | 108.3 |
C21—N11—C51 | 105.50 (17) | C72B—C62—H62D | 108.3 |
C21—N11—Ni1 | 121.44 (14) | H62C—C62—H62D | 107.4 |
C51—N11—Ni1 | 133.00 (14) | N33—C63—C73 | 111.69 (18) |
C22—N12—C52 | 105.42 (17) | N33—C63—H63A | 109.3 |
C22—N12—Ni1 | 123.31 (14) | C73—C63—H63A | 109.3 |
C52—N12—Ni1 | 130.90 (13) | N33—C63—H63B | 109.3 |
C23—N13—C53 | 105.29 (16) | C73—C63—H63B | 109.3 |
C23—N13—Ni1 | 128.18 (14) | H63A—C63—H63B | 107.9 |
C53—N13—Ni1 | 126.53 (13) | C61—C71—H71A | 109.5 |
C21—N31—C41 | 107.37 (17) | C61—C71—H71B | 109.5 |
C21—N31—C61 | 125.43 (18) | H71A—C71—H71B | 109.5 |
C41—N31—C61 | 127.20 (18) | C61—C71—H71C | 109.5 |
C22—N32—C42 | 107.12 (18) | H71A—C71—H71C | 109.5 |
C22—N32—C62 | 123.8 (2) | H71B—C71—H71C | 109.5 |
C42—N32—C62 | 128.9 (2) | C62—C72A—H72A | 109.5 |
C23—N33—C43 | 107.43 (17) | C62—C72A—H72B | 109.5 |
C23—N33—C63 | 125.87 (18) | H72A—C72A—H72B | 109.5 |
C43—N33—C63 | 126.65 (18) | C62—C72A—H72C | 109.5 |
N11—C21—N31 | 111.34 (17) | H72A—C72A—H72C | 109.5 |
N11—C21—H21 | 124.3 | H72B—C72A—H72C | 109.5 |
N31—C21—H21 | 124.3 | C62—C72B—H72D | 109.5 |
N12—C22—N32 | 111.58 (18) | C62—C72B—H72E | 109.5 |
N12—C22—H22 | 124.2 | H72D—C72B—H72E | 109.5 |
N32—C22—H22 | 124.2 | C62—C72B—H72F | 109.5 |
N13—C23—N33 | 111.33 (18) | H72D—C72B—H72F | 109.5 |
N13—C23—H23 | 124.3 | H72E—C72B—H72F | 109.5 |
N33—C23—H23 | 124.3 | C63—C73—H73A | 109.5 |
C51—C41—N31 | 105.98 (18) | C63—C73—H73B | 109.5 |
C51—C41—H41 | 127.0 | H73A—C73—H73B | 109.5 |
N31—C41—H41 | 127.0 | C63—C73—H73C | 109.5 |
C52—C42—N32 | 106.21 (19) | H73A—C73—H73C | 109.5 |
C52—C42—H42 | 126.9 | H73B—C73—H73C | 109.5 |
N32—C42—H42 | 126.9 | ||
O6—S1—O3—Ni1 | −172.84 (10) | C23—N33—C43—C53 | −0.2 (2) |
O4—S1—O3—Ni1 | −52.25 (13) | C63—N33—C43—C53 | −177.64 (19) |
O5—S1—O3—Ni1 | 65.42 (13) | N31—C41—C51—N11 | 0.4 (2) |
C51—N11—C21—N31 | 0.3 (2) | C21—N11—C51—C41 | −0.5 (2) |
Ni1—N11—C21—N31 | −177.08 (12) | Ni1—N11—C51—C41 | 176.55 (14) |
C41—N31—C21—N11 | −0.1 (2) | N32—C42—C52—N12 | 0.3 (3) |
C61—N31—C21—N11 | 179.85 (19) | C22—N12—C52—C42 | −0.4 (2) |
C52—N12—C22—N32 | 0.3 (3) | Ni1—N12—C52—C42 | 172.68 (15) |
Ni1—N12—C22—N32 | −173.42 (15) | N33—C43—C53—N13 | 0.4 (2) |
C42—N32—C22—N12 | −0.1 (3) | C23—N13—C53—C43 | −0.4 (2) |
C62—N32—C22—N12 | 176.4 (2) | Ni1—N13—C53—C43 | −179.64 (14) |
C53—N13—C23—N33 | 0.3 (2) | C21—N31—C61—C71 | 114.2 (3) |
Ni1—N13—C23—N33 | 179.50 (13) | C41—N31—C61—C71 | −65.9 (3) |
C43—N33—C23—N13 | −0.1 (2) | C22—N32—C62—C72A | 130.5 (3) |
C63—N33—C23—N13 | 177.42 (18) | C42—N32—C62—C72A | −53.8 (4) |
C21—N31—C41—C51 | −0.2 (2) | C22—N32—C62—C72B | −110.8 (5) |
C61—N31—C41—C51 | 179.9 (2) | C42—N32—C62—C72B | 64.9 (5) |
C22—N32—C42—C52 | −0.1 (3) | C23—N33—C63—C73 | −111.6 (2) |
C62—N32—C42—C52 | −176.4 (2) | C43—N33—C63—C73 | 65.4 (3) |
Cg1 is the centroid of the N13–C23–N33–C43–C53 ring and Cg2 is the centroid of the N12–C22–N32–C42–C52 ring |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O4 | 0.84 (3) | 1.88 (3) | 2.706 (2) | 170 (3) |
O1—H1B···O5i | 0.77 (3) | 2.02 (3) | 2.786 (2) | 173 (3) |
O2—H2B···O4i | 0.85 (3) | 1.88 (3) | 2.720 (2) | 171 (3) |
O2—H2A···O5 | 0.81 (3) | 2.00 (3) | 2.791 (2) | 165 (3) |
C22—H22···O5i | 0.95 | 2.60 | 3.511 (3) | 162 |
C23—H23···O6ii | 0.95 | 2.56 | 3.409 (3) | 150 |
C52—H52···O6ii | 0.95 | 2.42 | 3.315 (3) | 157 |
C73—H73B···O6iii | 0.98 | 2.40 | 3.347 (3) | 163 |
C61—H61A···Cg1iv | 0.99 | 2.80 | 3.779 (3) | 169 |
C61—H61B···Cg2v | 0.99 | 2.97 | 3.816 (3) | 144 |
Symmetry codes: (i) −x, −y, −z; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1, −y, −z; (iv) −x+1, y−1/2, −z+1/2; (v) −x+1, −y, −z+1. |
Cg1 is the centroid of the N13–C23–N33–C43–C53 ring and Cg2 is the centroid of the N12–C22–N32–C42–C52 ring |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O4 | 0.84 (3) | 1.88 (3) | 2.706 (2) | 170 (3) |
O1—H1B···O5i | 0.77 (3) | 2.02 (3) | 2.786 (2) | 173 (3) |
O2—H2B···O4i | 0.85 (3) | 1.88 (3) | 2.720 (2) | 171 (3) |
O2—H2A···O5 | 0.81 (3) | 2.00 (3) | 2.791 (2) | 165 (3) |
C22—H22···O5i | 0.95 | 2.60 | 3.511 (3) | 162 |
C23—H23···O6ii | 0.95 | 2.56 | 3.409 (3) | 150 |
C52—H52···O6ii | 0.95 | 2.42 | 3.315 (3) | 157 |
C73—H73B···O6iii | 0.98 | 2.40 | 3.347 (3) | 163 |
C61—H61A···Cg1iv | 0.99 | 2.80 | 3.779 (3) | 169 |
C61—H61B···Cg2v | 0.99 | 2.97 | 3.816 (3) | 144 |
Symmetry codes: (i) −x, −y, −z; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1, −y, −z; (iv) −x+1, y−1/2, −z+1/2; (v) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ni(SO4)(C5H8N2)3(H2O)2] |
Mr | 478.97 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 131 |
a, b, c (Å) | 12.0252 (13), 14.3481 (15), 15.3502 (11) |
β (°) | 128.980 (5) |
V (Å3) | 2058.9 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.09 |
Crystal size (mm) | 0.40 × 0.25 × 0.15 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID-S |
Absorption correction | Numerical (NUMABS; Higashi, 1999) |
Tmin, Tmax | 0.705, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 28931, 4723, 4284 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.085, 1.07 |
No. of reflections | 4723 |
No. of parameters | 290 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.04, −1.12 |
Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008), PLATON (Spek, 2009).
Acknowledgements
The above project was supported by the Hungarian Scientific and Research Fund (OTKA 100801).
References
Adarsh, N. N., Kumar, D. K. & Dastidar, P. (2011). Curr. Sci. 101, 869–880. CAS Google Scholar
Calatayud, M. L., Castro, I., Sletten, J., Lloret, F. & Julve, M. (2000). Inorg. Chim. Acta, 300–302, 846–854. Web of Science CSD CrossRef CAS Google Scholar
Çetinkaya, F., Kürkçüoğlu, G. S., Yeşilel, O. Z., Hökelek, T. & Süzen, Y. (2013). J. Mol. Struct. 1048, 252–260. Google Scholar
Díaz de Vivar, M. E., Baggio, S. & Baggio, R. (2006). Acta Cryst. E62, m986–m988. CSD CrossRef IUCr Journals Google Scholar
Gómez-Saiz, P., García-Tojal, J., Maestro, M. A., Arnaiz, F. J. & Rojo, T. (2002). Inorg. Chem. 41, 1345–1347. Web of Science CSD CrossRef PubMed Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Hoogerstraete, T. V., Brooks, N. R., Norberg, B., Wouters, J., Van Hecke, K., Van Meervelt, L. & Binnemans, K. (2012). CrystEngComm, 14, 4902–4911. Google Scholar
Huxel, T., Riedel, S., Lach, J. & Klingele, J. (2012). Z. Anorg. Allg. Chem. 638, 925–934. CSD CrossRef CAS Google Scholar
Liu, F.-Q., Chen, H.-N., Li, R.-X., Liu, G.-Y. & Li, W.-H. (2006). Acta Cryst. E62, m2457–m2458. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liu, G. Y., Chen, H. N., Liu, F. Q., Huang, S. Y., Li, S. X. & Li, W. (2008). J. Chem. Crystallogr. 38, 631–634. CSD CrossRef CAS Google Scholar
Liu, F.-Q., Liu, W.-L., Li, W., Li, R.-X. & Liu, G.-Y. (2007). Acta Cryst. E63, m2454. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mukherjee, M., Mukherjee, A. K., Pariya, C. & Ray Chaudhuri, N. (1995). Acta Cryst. C51, 1543–1545. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Ouyang, X.-M., Li, Z.-W., Okamura, T., Li, Y.-Z., Sun, W.-Y., Tang, W.-X. & Ueyama, N. (2004). J. Solid State Chem. 177, 350–360. CSD CrossRef CAS Google Scholar
Rigaku (2008). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wan, S.-Y., Li, Y.-Z., Okamura, T., Fan, J., Sun, W.-Y. & Ueyama, N. (2003). Eur. J. Inorg. Chem. pp. 3783–3789. CSD CrossRef Google Scholar
Xu, G.-C., Ding, Y.-J., Okamura, T., Huang, Y.-Q., Bai, Z.-S., Hua, Q., Liu, G.-X., Sun, W.-Y. & Ueyama, N. (2009). Cryst. Growth Des. 9, 395–403. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.