research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 3| March 2016| Pages 374-377

Crystal structure of di­aqua­tris­­(1-ethyl-1H-imidazole-κN3)(sulfato-κO)nickel(II)

CROSSMARK_Color_square_no_text.svg

aChemical Crystallography Research Group, Institute of Organic Chemistry, Hungarian Academy of Sciences, Magyar Tudosok Korutja 2, Budapest H-1117, Hungary, bNMR Research Group, Institute of Organic Chemistry, Hungarian Academy of Sciences, Magyar Tudosok Korutja 2, Budapest H-1117, Hungary, and cPolymer Chemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudosok Korutja 2, Budapest H-1117, Hungary
*Correspondence e-mail: holczbauer.tamas@ttk.mta.hu

Edited by A. J. Lough, University of Toronto, Canada (Received 4 January 2016; accepted 17 February 2016; online 20 February 2016)

In the title complex, [Ni(SO4)(C5H8N2)3(H2O)2], the NiII ion is coordinated by three facial 1-ethyl-1H-imidazole ligands, one monodentate sulfate ligand and two water mol­ecules in a slightly distorted octa­hedral coordination environment. In the crystal, two pairs of O—H⋯O hydrogen bonds link complex mol­ecules, forming inversion dimers incorporating R24(8), R22(8) and R22(12) rings. The dimeric unit also contains two symmetry-unique intra­molecular O—H⋯O hydrogen bonds. In addition, weak C—H⋯O hydrogen bonds, weak C—H⋯π inter­actions and ππ inter­actions with a centroid–centroid distance of 3.560 (2) Å combine to form a three-dimensional network. One of the ethyl groups is disordered over two sets of sites with occupancies in the ratio 0.586 (7):0.414 (7).

1. Chemical context

In spite of efforts in the past decades to synthesize structurally highly varying metal-organic complexes, no structures up to this point have been reported which contain the combination of a hydro­philic sulfate anion, water mol­ecules and hydro­phobic 1-ethyl-1H-imidazole mol­ecules as ligands. The title compound was prepared by the reaction of NiSO4·6H2O and 1-ethyl-1H-imidazole. The crystal structure of the title compound is presented herein.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The NiII ion is coordinated in a slightly distorted octa­hedral geometry by three facially arranged 1-ethyl-1H-imidazole ligands, one monodentate sulfate ligand and two water mol­ecules. The Ni—N bond lengths are in the range 2.0630 (16)–2.0817 (17)Å and the Ni—O bond lengths are in the range 2.1195 (15)–2.1502 (14). The Niii ion is displaced by 0.1038 (3) Å from the O1/O2/N11/N13 plane. The distances of two water O atoms O1 and O2 from the S1/O3/Ni1/N12 plane are the same within experimental error, with values of 1.520 (2) and −1.504 (2) Å, respectively. The sulfate atom O6 is displaced by only 0.144 (2) Å from the S1/O3/Ni1/N12 plane, while atoms O4 and O5 are displaced by 1.114 (2) and −1.298 (2) Å, respectively, from this plane (see Fig. 2[link].).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Only the major component of disorder is shown.
[Figure 2]
Figure 2
The distances of the atoms N12, Ni1, O3, S1 and O6 from the least-squares plane defined by S1/O3/Ni1/N12.

3. Supra­molecular features

In the crystal, two pairs of O—H⋯O hydrogen bonds (Table 1[link]) link complex mol­ecules, forming inversion dimers incorporating R24(8), R22(8) and R22(12) rings. The dimeric unit also contains two symmetry-unique intra­molecular O—H⋯O hydrogen bonds (Fig. 3[link]). In addition, weak C—H⋯O hydrogen bonds, weak C—H⋯π inter­actions and ππ inter­actions with a centroid–centroid distance of 3.560 (2) Å combine to form a three-dimensional network. The ππ inter­action is observed between the N11/C21/N31/C41/C51 ring and the inversion-related ring at (1 − x, −y, 1 − z).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N13–C23–N33–C43–C53 ring and Cg2 is the centroid of the N12–C22–N32–C42–C52 ring

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O4 0.84 (3) 1.88 (3) 2.706 (2) 170 (3)
O1—H1B⋯O5i 0.77 (3) 2.02 (3) 2.786 (2) 173 (3)
O2—H2B⋯O4i 0.85 (3) 1.88 (3) 2.720 (2) 171 (3)
O2—H2A⋯O5 0.81 (3) 2.00 (3) 2.791 (2) 165 (3)
C22—H22⋯O5i 0.95 2.60 3.511 (3) 162
C23—H23⋯O6ii 0.95 2.56 3.409 (3) 150
C52—H52⋯O6ii 0.95 2.42 3.315 (3) 157
C73—H73B⋯O6iii 0.98 2.40 3.347 (3) 163
C61—H61ACg1iv 0.99 2.80 3.779 (3) 169
C61—H61BCg2v 0.99 2.97 3.816 (3) 144
Symmetry codes: (i) -x, -y, -z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y, -z; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x+1, -y, -z+1.
[Figure 3]
Figure 3
An inversion dimer of the title compound. Hydrogen bonds are shown as dotted blue lines.

4. Database survey

A search of the Cambridge Structural Database (CSD; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for mol­ecules with two water ligands, a sulfate anion and three nitro­gen-containing mol­ecules gave the following hits with Ni: ARUZIW (Ouyang et al., 2004[Ouyang, X.-M., Li, Z.-W., Okamura, T., Li, Y.-Z., Sun, W.-Y., Tang, W.-X. & Ueyama, N. (2004). J. Solid State Chem. 177, 350-360.]), BEDSEJ (Wan et al., 2003[Wan, S.-Y., Li, Y.-Z., Okamura, T., Fan, J., Sun, W.-Y. & Ueyama, N. (2003). Eur. J. Inorg. Chem. pp. 3783-3789.]), FOXRAM (Xu et al., 2009[Xu, G.-C., Ding, Y.-J., Okamura, T., Huang, Y.-Q., Bai, Z.-S., Hua, Q., Liu, G.-X., Sun, W.-Y. & Ueyama, N. (2009). Cryst. Growth Des. 9, 395-403.]), REHKUL (Díaz de Vivar et al., 2006[Díaz de Vivar, M. E., Baggio, S. & Baggio, R. (2006). Acta Cryst. E62, m986-m988.]), ZAMFUO (Mukherjee et al., 1995[Mukherjee, M., Mukherjee, A. K., Pariya, C. & Ray Chaudhuri, N. (1995). Acta Cryst. C51, 1543-1545.]), and with Cu: ODAHEI, ODAHOS (Adarsh et al., 2011[Adarsh, N. N., Kumar, D. K. & Dastidar, P. (2011). Curr. Sci. 101, 869-880.]), XIHSAI (Gómez-Saiz et al., 2002[Gómez-Saiz, P., García-Tojal, J., Maestro, M. A., Arnaiz, F. J. & Rojo, T. (2002). Inorg. Chem. 41, 1345-1347.]) and QUSJAP (Calatayud et al., 2000[Calatayud, M. L., Castro, I., Sletten, J., Lloret, F. & Julve, M. (2000). Inorg. Chim. Acta, 300-302, 846-854.]).

A similar type of hydrogen bonding occurs between the sulfate anion and water mol­ecules in the complex BEDSEJ. In ARUZIW, one of the hydrogen bonds of the sulfate anion involves the protonated hydrogen-acceptor nitro­gen atom. Unlike the title compound, one of the water ligands in FOXRAM, REHKUL and ZAMFUO is trans to the sulfate ligand. This also the case in the copper-containing structure QUSJUP, but in ODAHEI, ODAHOS and XIHSAI the two aqua ligands are trans to each other.

Complexes with one NiII ion and at least three 1-ethyl-1H-imidazole ligands have already been reported in the literature (DEDLIJ: Huxel et al., 2012[Huxel, T., Riedel, S., Lach, J. & Klingele, J. (2012). Z. Anorg. Allg. Chem. 638, 925-934.]; IDEJAE: Çetinkaya et al., 2013[Çetinkaya, F., Kürkçüoğlu, G. S., Yeşilel, O. Z., Hökelek, T. & Süzen, Y. (2013). J. Mol. Struct. 1048, 252-260.]; WENYAK: Liu et al., 2006[Liu, F.-Q., Chen, H.-N., Li, R.-X., Liu, G.-Y. & Li, W.-H. (2006). Acta Cryst. E62, m2457-m2458.]). Complexes have also been reported for Cu (GEVGEV: Hoogerstraete et al., 2012[Hoogerstraete, T. V., Brooks, N. R., Norberg, B., Wouters, J., Van Hecke, K., Van Meervelt, L. & Binnemans, K. (2012). CrystEngComm, 14, 4902-4911.]; UFOMIM: Liu et al., 2008[Liu, G. Y., Chen, H. N., Liu, F. Q., Huang, S. Y., Li, S. X. & Li, W. (2008). J. Chem. Crystallogr. 38, 631-634.]; XIKXEV: Liu et al., 2007[Liu, F.-Q., Liu, W.-L., Li, W., Li, R.-X. & Liu, G.-Y. (2007). Acta Cryst. E63, m2454.]).

5. Synthesis and crystallization

NiSO4·6H2O and 1-ethyl-1H-imidazole in a 1:1 stoichiometric ratio formed an exothermic reaction. The compound was dissolved in methanol and the solution was precipitated with ethyl acetate. After one week, blue crystals suitable for X-ray diffraction grew in the vessel.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Six reflections were found to be shaded by the beamstop and removed from the data set. The hydrogen atoms of the water mol­ecules were located in a difference map and refined freely. Hydrogen atoms bonded to C atoms were placed in calculated positions and refined in a riding-model approximation. One of the ethyl groups is disordered over two sets of sites with occupancies in the ratio 0.586 (7):0.414 (7).

Table 2
Experimental details

Crystal data
Chemical formula [Ni(SO4)(C5H8N2)3(H2O)2]
Mr 478.97
Crystal system, space group Monoclinic, P21/c
Temperature (K) 131
a, b, c (Å) 12.0252 (13), 14.3481 (15), 15.3502 (11)
β (°) 128.980 (5)
V3) 2058.9 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.09
Crystal size (mm) 0.40 × 0.25 × 0.15
 
Data collection
Diffractometer Rigaku R-AXIS RAPID-S
Absorption correction Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.705, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 28931, 4723, 4284
Rint 0.030
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.085, 1.07
No. of reflections 4723
No. of parameters 290
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.04, −1.12
Computer programs: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

In spite of efforts in the past decades to synthesize structurally highly varying metal-organic complexes, no structures up to this point have been reported which contain the combination of a hydro­philic sulfate anion, water molecules and hydro­phobic 1-ethyl-1H-imidazole molecules as ligands. The title compound was prepared by the reaction of NiSO4·6H2O and 1-ethyl-1H-imidazole. The crystal structure of the title compound is presented herein.

Structural commentary top

The molecular structure of the title compound is shown in Fig. 1. The NiII ion is coordinated in a slightly distorted o­cta­hedral geometry by three facial 1-ethyl-1H-imidazole ligands, one sulfate ligand and two water molecules. The Ni—N bond lengths are in the range 2.0630 (16)–2.0817 (17) Å and the Ni—O bond lengths are in the range 2.1195 (15)–2.1502 (14). The Niii ion is displaced by 0.1038 (3) Å from the O1/O2/N11/N13 plane. The distances of two water O atoms O1 and O2 from the S1/O3/Ni1/N12 plane are the same within experimental error, with values of 1.520 (2) and −1.504 (2) Å, respectively. The sulfate atom O6 is displaced by only 0.144 (2) Å from the S1/O3/Ni1/N12 plane, while atoms O4 and O5 are displaced by 1.114 (2) and −1.298 (2) Å, respectively, from this plane (see Fig. 2.).

Supra­molecular features top

In the crystal, two pairs of O—H···O hydrogen bonds (Table 1) link complex molecules, forming inversion dimers incorporating R24(8), R22(8) and R22(12) rings. The dimeric unit also contains two symmetry-unique intra­molecular O—H···O hydrogen bonds (Fig 3). In addition, weak C—H···O hydrogen bonds, weak C—H···π inter­actions and ππ inter­actions with a centroid–centroid distance of 3.560 (2) Å combine to form a three-dimensional network. The ππ inter­action is observed between the N11/C21/N31/C41/C51 ring and the inversion-related ring at (1 − x, −y, 1 − z).

Database survey top

A search of the Cambridge Structural Database (CSD; Groom & Allen, 2014) for molecules with two water ligands, a sulfate anion and three nitro­gen-containing molecules gave the following hits with Ni: ARUZIW (Ouyang et al., 2004), BEDSEJ (Wan et al., 2003), FOXRAM (Xu et al., 2009), REHKUL (Díaz de Vivar et al., 2006), ZAMFUO (Mukherjee et al., 1995), and with Cu: ODAHEI, ODAHOS (Adarsh et al., 2011), XIHSAI (Gómez-Saiz et al., 2002) and QUSJAP (Calatayud et al., 2000).

A similar type of hydrogen bonding occurs between the sulfate anion and water molecules in the complex BEDSEJ. In ARUZIW, one of the hydrogen bonds of the sulfate anion involves the protonated hydrogen-acceptor nitro­gen atoms. Unlike the title compound, one of the water ligands in FOXRAM, REHKUL and ZAMFUO is trans to the sulfate ligand. This also the case in the copper-containing structure QUSJUP, but in ODAHEI, ODAHOS and XIHSAI the two aqua ligands are trans to each other.

Complexes with one NiII ion and at least three 1-ethyl-1H-imidazole ligands have already been reported in the literature (DEDLIJ: Huxel et al., 2012; IDEJAE: Çetinkaya et al., 2013; WENYAK: Liu et al., 2006). Complexes have also been reported for Cu (GEVGEV: Hoogerstraete et al., 2012; UFOMIM: Liu et al., 2008; XIKXEV: Liu et al., 2007).

Synthesis and crystallization top

NiSO4·6H2O and 1-ethyl-1H-imidazole in a 1:1 stoichiometric ratio formed an exothermic reaction. The compound was dissolved in methanol and the solution was precipitated with ethyl acetate. After one week, blue crystals suitable for X-ray diffraction grew in the vessel.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. Six reflections were found to be shaded by the beamstop and removed from the data set. The hydrogen atoms of the water molecules were located in a difference map and refined freely. Hydrogen atoms bonded to C atoms were placed in calculated positions and refined in a riding-model approximation. One of the ethyl groups is disordered over two sets of sites with occupancies in the ratio 0.586 (7):0.414 (7).

Structure description top

In spite of efforts in the past decades to synthesize structurally highly varying metal-organic complexes, no structures up to this point have been reported which contain the combination of a hydro­philic sulfate anion, water molecules and hydro­phobic 1-ethyl-1H-imidazole molecules as ligands. The title compound was prepared by the reaction of NiSO4·6H2O and 1-ethyl-1H-imidazole. The crystal structure of the title compound is presented herein.

The molecular structure of the title compound is shown in Fig. 1. The NiII ion is coordinated in a slightly distorted o­cta­hedral geometry by three facial 1-ethyl-1H-imidazole ligands, one sulfate ligand and two water molecules. The Ni—N bond lengths are in the range 2.0630 (16)–2.0817 (17) Å and the Ni—O bond lengths are in the range 2.1195 (15)–2.1502 (14). The Niii ion is displaced by 0.1038 (3) Å from the O1/O2/N11/N13 plane. The distances of two water O atoms O1 and O2 from the S1/O3/Ni1/N12 plane are the same within experimental error, with values of 1.520 (2) and −1.504 (2) Å, respectively. The sulfate atom O6 is displaced by only 0.144 (2) Å from the S1/O3/Ni1/N12 plane, while atoms O4 and O5 are displaced by 1.114 (2) and −1.298 (2) Å, respectively, from this plane (see Fig. 2.).

In the crystal, two pairs of O—H···O hydrogen bonds (Table 1) link complex molecules, forming inversion dimers incorporating R24(8), R22(8) and R22(12) rings. The dimeric unit also contains two symmetry-unique intra­molecular O—H···O hydrogen bonds (Fig 3). In addition, weak C—H···O hydrogen bonds, weak C—H···π inter­actions and ππ inter­actions with a centroid–centroid distance of 3.560 (2) Å combine to form a three-dimensional network. The ππ inter­action is observed between the N11/C21/N31/C41/C51 ring and the inversion-related ring at (1 − x, −y, 1 − z).

A search of the Cambridge Structural Database (CSD; Groom & Allen, 2014) for molecules with two water ligands, a sulfate anion and three nitro­gen-containing molecules gave the following hits with Ni: ARUZIW (Ouyang et al., 2004), BEDSEJ (Wan et al., 2003), FOXRAM (Xu et al., 2009), REHKUL (Díaz de Vivar et al., 2006), ZAMFUO (Mukherjee et al., 1995), and with Cu: ODAHEI, ODAHOS (Adarsh et al., 2011), XIHSAI (Gómez-Saiz et al., 2002) and QUSJAP (Calatayud et al., 2000).

A similar type of hydrogen bonding occurs between the sulfate anion and water molecules in the complex BEDSEJ. In ARUZIW, one of the hydrogen bonds of the sulfate anion involves the protonated hydrogen-acceptor nitro­gen atoms. Unlike the title compound, one of the water ligands in FOXRAM, REHKUL and ZAMFUO is trans to the sulfate ligand. This also the case in the copper-containing structure QUSJUP, but in ODAHEI, ODAHOS and XIHSAI the two aqua ligands are trans to each other.

Complexes with one NiII ion and at least three 1-ethyl-1H-imidazole ligands have already been reported in the literature (DEDLIJ: Huxel et al., 2012; IDEJAE: Çetinkaya et al., 2013; WENYAK: Liu et al., 2006). Complexes have also been reported for Cu (GEVGEV: Hoogerstraete et al., 2012; UFOMIM: Liu et al., 2008; XIKXEV: Liu et al., 2007).

Synthesis and crystallization top

NiSO4·6H2O and 1-ethyl-1H-imidazole in a 1:1 stoichiometric ratio formed an exothermic reaction. The compound was dissolved in methanol and the solution was precipitated with ethyl acetate. After one week, blue crystals suitable for X-ray diffraction grew in the vessel.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. Six reflections were found to be shaded by the beamstop and removed from the data set. The hydrogen atoms of the water molecules were located in a difference map and refined freely. Hydrogen atoms bonded to C atoms were placed in calculated positions and refined in a riding-model approximation. One of the ethyl groups is disordered over two sets of sites with occupancies in the ratio 0.586 (7):0.414 (7).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Only the major component of disorder is shown.
[Figure 2] Fig. 2. The distances of the atoms N12, Ni1, O3, S1 and O6 from the least-squares plane defined by S1/O3/Ni1/N12.
[Figure 3] Fig. 3. An inversion dimer of the title compound. Hydrogen bonds are shown as dotted blue lines.
Diaquatris(1-ethyl-1H-imidazole-κN3)(sulfato-κO)nickel(II) top
Crystal data top
[Ni(SO4)(C5H8N2)3(H2O)2]F(000) = 1008
Mr = 478.97Dx = 1.545 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 12.0252 (13) ÅCell parameters from 24228 reflections
b = 14.3481 (15) Åθ = 3.0–29.2°
c = 15.3502 (11) ŵ = 1.09 mm1
β = 128.980 (5)°T = 131 K
V = 2058.9 (4) Å3Prism, blue–green
Z = 40.40 × 0.25 × 0.15 mm
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
4723 independent reflections
Radiation source: NORMAL-focus sealed tube4284 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 10.0000 pixels mm-1θmax = 27.5°, θmin = 3.0°
dtprofit.ref scansh = 1515
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1818
Tmin = 0.705, Tmax = 1.000l = 1919
28931 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: mixed
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0358P)2 + 2.7059P]
where P = (Fo2 + 2Fc2)/3
4723 reflections(Δ/σ)max = 0.001
290 parametersΔρmax = 1.04 e Å3
2 restraintsΔρmin = 1.12 e Å3
Crystal data top
[Ni(SO4)(C5H8N2)3(H2O)2]V = 2058.9 (4) Å3
Mr = 478.97Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0252 (13) ŵ = 1.09 mm1
b = 14.3481 (15) ÅT = 131 K
c = 15.3502 (11) Å0.40 × 0.25 × 0.15 mm
β = 128.980 (5)°
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
4723 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
4284 reflections with I > 2σ(I)
Tmin = 0.705, Tmax = 1.000Rint = 0.030
28931 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0332 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 1.04 e Å3
4723 reflectionsΔρmin = 1.12 e Å3
290 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.32786 (2)0.06839 (2)0.17394 (2)0.01465 (8)
S10.19425 (5)0.13289 (3)0.04041 (4)0.01533 (11)
O10.17269 (16)0.02378 (11)0.19192 (12)0.0184 (3)
O20.16244 (15)0.09393 (11)0.00106 (12)0.0194 (3)
O30.31939 (14)0.07108 (9)0.11877 (12)0.0181 (3)
O40.10655 (15)0.13787 (10)0.07794 (12)0.0203 (3)
O50.10552 (15)0.09040 (10)0.07368 (12)0.0205 (3)
O60.24281 (15)0.22575 (10)0.03973 (12)0.0226 (3)
N110.48566 (17)0.02439 (12)0.33618 (13)0.0171 (3)
N120.30580 (17)0.20374 (12)0.21002 (14)0.0186 (3)
N130.47676 (17)0.10307 (12)0.15321 (14)0.0183 (3)
N310.61057 (18)0.07752 (12)0.47365 (15)0.0205 (3)
N320.1943 (2)0.33190 (13)0.19606 (18)0.0293 (4)
N330.67307 (18)0.15163 (12)0.18436 (15)0.0203 (3)
C210.5071 (2)0.06505 (14)0.36263 (17)0.0182 (4)
H210.45610.11430.31010.022*
C220.1814 (2)0.24081 (14)0.17007 (19)0.0235 (4)
H220.09370.20740.12820.028*
C230.6062 (2)0.13902 (14)0.22810 (17)0.0200 (4)
H230.64650.15400.30300.024*
C410.6587 (2)0.00910 (15)0.52137 (17)0.0215 (4)
H410.73130.02290.59850.026*
C420.3367 (2)0.35474 (15)0.2570 (2)0.0280 (5)
H420.37900.41410.28710.034*
C430.5818 (2)0.12208 (15)0.07504 (18)0.0239 (4)
H430.59890.12250.02250.029*
C510.5813 (2)0.07121 (14)0.43575 (17)0.0211 (4)
H510.59160.13700.44340.025*
C520.4042 (2)0.27554 (14)0.26545 (18)0.0215 (4)
H520.50380.27010.30360.026*
C530.4619 (2)0.09216 (15)0.05751 (17)0.0209 (4)
H530.37980.06730.01100.025*
C610.6605 (3)0.16783 (16)0.5309 (2)0.0306 (5)
H61A0.59830.21770.47680.037*
H61B0.65240.16880.59120.037*
C620.0740 (3)0.39212 (18)0.1578 (3)0.0462 (7)
H62A0.01280.35330.12160.055*0.586 (7)
H62B0.05760.43540.10050.055*0.586 (7)
H62C0.09440.42350.22390.055*0.414 (7)
H62D0.01160.35260.12430.055*0.414 (7)
C630.8153 (2)0.19343 (16)0.24232 (19)0.0254 (4)
H63A0.87540.15080.23680.030*
H63B0.86170.20140.32270.030*
C710.8118 (3)0.18738 (19)0.5804 (3)0.0461 (7)
H71A0.87490.14140.63890.069*
H71B0.82150.18360.52170.069*
H71C0.83840.25000.61310.069*
C72A0.0951 (4)0.4480 (3)0.2497 (3)0.0344 (11)0.586 (7)
H72A0.01060.48690.21840.052*0.586 (7)
H72B0.17960.48780.28500.052*0.586 (7)
H72C0.10880.40570.30590.052*0.586 (7)
C72B0.0385 (8)0.4659 (5)0.0733 (6)0.061 (3)0.414 (7)
H72D0.12310.50440.10420.092*0.414 (7)
H72E0.03940.50520.05680.092*0.414 (7)
H72F0.00860.43580.00420.092*0.414 (7)
C730.8063 (3)0.28677 (17)0.1928 (2)0.0286 (5)
H73A0.73740.32650.18940.043*
H73B0.77520.27780.11710.043*
H73C0.90060.31660.23990.043*
H2A0.145 (3)0.044 (2)0.030 (2)0.030 (7)*
H2B0.083 (3)0.112 (2)0.017 (2)0.038 (8)*
H1A0.152 (3)0.029 (2)0.163 (3)0.041 (8)*
H1B0.098 (3)0.046 (2)0.159 (3)0.035 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01215 (12)0.01505 (13)0.01544 (13)0.00015 (8)0.00804 (10)0.00036 (9)
S10.0129 (2)0.0156 (2)0.0155 (2)0.00119 (16)0.00791 (19)0.00091 (16)
O10.0150 (7)0.0182 (7)0.0209 (7)0.0005 (6)0.0107 (6)0.0016 (6)
O20.0156 (7)0.0192 (7)0.0201 (7)0.0002 (6)0.0096 (6)0.0001 (6)
O30.0135 (6)0.0186 (7)0.0189 (7)0.0002 (5)0.0085 (6)0.0026 (5)
O40.0185 (7)0.0215 (7)0.0232 (7)0.0017 (5)0.0143 (6)0.0020 (6)
O50.0187 (7)0.0231 (7)0.0160 (7)0.0020 (6)0.0091 (6)0.0005 (6)
O60.0208 (7)0.0179 (7)0.0244 (7)0.0034 (6)0.0120 (6)0.0023 (6)
N110.0137 (7)0.0195 (8)0.0167 (8)0.0010 (6)0.0089 (7)0.0004 (6)
N120.0166 (8)0.0181 (8)0.0206 (8)0.0013 (6)0.0114 (7)0.0012 (6)
N130.0173 (8)0.0185 (8)0.0205 (8)0.0001 (6)0.0126 (7)0.0002 (6)
N310.0182 (8)0.0211 (8)0.0199 (8)0.0007 (6)0.0109 (7)0.0025 (7)
N320.0258 (9)0.0194 (9)0.0452 (12)0.0010 (7)0.0236 (9)0.0013 (8)
N330.0173 (8)0.0216 (8)0.0237 (9)0.0012 (7)0.0136 (7)0.0013 (7)
C210.0145 (9)0.0201 (9)0.0180 (9)0.0002 (7)0.0093 (8)0.0003 (7)
C220.0187 (9)0.0184 (9)0.0306 (11)0.0013 (8)0.0142 (9)0.0021 (8)
C230.0178 (9)0.0227 (10)0.0206 (9)0.0014 (8)0.0126 (8)0.0018 (8)
C410.0172 (9)0.0252 (10)0.0172 (9)0.0006 (8)0.0084 (8)0.0021 (8)
C420.0281 (11)0.0196 (10)0.0389 (13)0.0056 (8)0.0224 (10)0.0052 (9)
C430.0219 (10)0.0301 (11)0.0227 (10)0.0027 (8)0.0155 (9)0.0035 (8)
C510.0202 (10)0.0200 (10)0.0196 (10)0.0003 (7)0.0109 (8)0.0025 (8)
C520.0184 (9)0.0194 (9)0.0264 (10)0.0033 (8)0.0140 (9)0.0017 (8)
C530.0182 (9)0.0237 (10)0.0203 (9)0.0014 (8)0.0119 (8)0.0036 (8)
C610.0302 (12)0.0242 (11)0.0319 (12)0.0048 (9)0.0169 (10)0.0112 (9)
C620.0368 (14)0.0281 (13)0.078 (2)0.0115 (11)0.0379 (15)0.0054 (13)
C630.0149 (9)0.0286 (11)0.0298 (11)0.0039 (8)0.0127 (9)0.0026 (9)
C710.0353 (14)0.0302 (13)0.0618 (18)0.0143 (11)0.0252 (14)0.0112 (12)
C72A0.0250.027 (2)0.048 (3)0.0004 (15)0.0218 (14)0.0071 (18)
C72B0.0250.075 (6)0.063 (5)0.022 (3)0.017 (3)0.005 (4)
C730.0295 (11)0.0316 (12)0.0298 (11)0.0081 (9)0.0211 (10)0.0042 (9)
Geometric parameters (Å, º) top
Ni1—N112.0630 (16)C41—H410.9500
Ni1—N132.0667 (16)C42—C521.354 (3)
Ni1—N122.0817 (17)C42—H420.9500
Ni1—O22.1195 (15)C43—C531.359 (3)
Ni1—O12.1485 (15)C43—H430.9500
Ni1—O32.1502 (14)C51—H510.9500
S1—O61.4574 (14)C52—H520.9500
S1—O41.4878 (14)C53—H530.9500
S1—O31.4902 (14)C61—C711.492 (3)
S1—O51.4920 (14)C61—H61A0.9900
O1—H1A0.84 (3)C61—H61B0.9900
O1—H1B0.77 (3)C62—C72A1.499 (3)
O2—H2A0.81 (3)C62—C72B1.512 (3)
O2—H2B0.85 (3)C62—H62A0.9900
N11—C211.322 (3)C62—H62B0.9900
N11—C511.378 (3)C62—H62C0.9900
N12—C221.320 (3)C62—H62D0.9900
N12—C521.385 (3)C63—C731.509 (3)
N13—C231.326 (3)C63—H63A0.9900
N13—C531.373 (3)C63—H63B0.9900
N31—C211.348 (3)C71—H71A0.9800
N31—C411.372 (3)C71—H71B0.9800
N31—C611.466 (3)C71—H71C0.9800
N32—C221.347 (3)C72A—H72A0.9800
N32—C421.378 (3)C72A—H72B0.9800
N32—C621.455 (3)C72A—H72C0.9800
N33—C231.345 (3)C72B—H72D0.9800
N33—C431.372 (3)C72B—H72E0.9800
N33—C631.471 (3)C72B—H72F0.9800
C21—H210.9500C73—H73A0.9800
C22—H220.9500C73—H73B0.9800
C23—H230.9500C73—H73C0.9800
C41—C511.360 (3)
N11—Ni1—N1391.81 (6)C53—C43—N33105.81 (18)
N11—Ni1—N1297.97 (7)C53—C43—H43127.1
N13—Ni1—N1294.83 (7)N33—C43—H43127.1
N11—Ni1—O2172.09 (6)C41—C51—N11109.81 (18)
N13—Ni1—O289.27 (6)C41—C51—H51125.1
N12—Ni1—O289.74 (6)N11—C51—H51125.1
N11—Ni1—O188.13 (6)C42—C52—N12109.66 (18)
N13—Ni1—O1176.45 (6)C42—C52—H52125.2
N12—Ni1—O188.70 (6)N12—C52—H52125.2
O2—Ni1—O190.31 (6)C43—C53—N13110.15 (18)
N11—Ni1—O388.30 (6)C43—C53—H53124.9
N13—Ni1—O389.68 (6)N13—C53—H53124.9
N12—Ni1—O3172.14 (6)N31—C61—C71112.3 (2)
O2—Ni1—O383.87 (6)N31—C61—H61A109.1
O1—Ni1—O386.76 (6)C71—C61—H61A109.1
O6—S1—O4110.10 (9)N31—C61—H61B109.1
O6—S1—O3110.12 (8)C71—C61—H61B109.1
O4—S1—O3108.54 (8)H61A—C61—H61B107.9
O6—S1—O5111.04 (9)N32—C62—C72A113.7 (3)
O4—S1—O5108.45 (8)N32—C62—C72B115.8 (3)
O3—S1—O5108.52 (8)N32—C62—H62A108.8
Ni1—O1—H1A101 (2)C72A—C62—H62A108.8
Ni1—O1—H1B122 (2)N32—C62—H62B108.8
H1A—O1—H1B101 (3)C72A—C62—H62B108.8
Ni1—O2—H2A106 (2)H62A—C62—H62B107.7
Ni1—O2—H2B116 (2)N32—C62—H62C108.3
H2A—O2—H2B104 (3)C72B—C62—H62C108.3
S1—O3—Ni1130.19 (8)N32—C62—H62D108.3
C21—N11—C51105.50 (17)C72B—C62—H62D108.3
C21—N11—Ni1121.44 (14)H62C—C62—H62D107.4
C51—N11—Ni1133.00 (14)N33—C63—C73111.69 (18)
C22—N12—C52105.42 (17)N33—C63—H63A109.3
C22—N12—Ni1123.31 (14)C73—C63—H63A109.3
C52—N12—Ni1130.90 (13)N33—C63—H63B109.3
C23—N13—C53105.29 (16)C73—C63—H63B109.3
C23—N13—Ni1128.18 (14)H63A—C63—H63B107.9
C53—N13—Ni1126.53 (13)C61—C71—H71A109.5
C21—N31—C41107.37 (17)C61—C71—H71B109.5
C21—N31—C61125.43 (18)H71A—C71—H71B109.5
C41—N31—C61127.20 (18)C61—C71—H71C109.5
C22—N32—C42107.12 (18)H71A—C71—H71C109.5
C22—N32—C62123.8 (2)H71B—C71—H71C109.5
C42—N32—C62128.9 (2)C62—C72A—H72A109.5
C23—N33—C43107.43 (17)C62—C72A—H72B109.5
C23—N33—C63125.87 (18)H72A—C72A—H72B109.5
C43—N33—C63126.65 (18)C62—C72A—H72C109.5
N11—C21—N31111.34 (17)H72A—C72A—H72C109.5
N11—C21—H21124.3H72B—C72A—H72C109.5
N31—C21—H21124.3C62—C72B—H72D109.5
N12—C22—N32111.58 (18)C62—C72B—H72E109.5
N12—C22—H22124.2H72D—C72B—H72E109.5
N32—C22—H22124.2C62—C72B—H72F109.5
N13—C23—N33111.33 (18)H72D—C72B—H72F109.5
N13—C23—H23124.3H72E—C72B—H72F109.5
N33—C23—H23124.3C63—C73—H73A109.5
C51—C41—N31105.98 (18)C63—C73—H73B109.5
C51—C41—H41127.0H73A—C73—H73B109.5
N31—C41—H41127.0C63—C73—H73C109.5
C52—C42—N32106.21 (19)H73A—C73—H73C109.5
C52—C42—H42126.9H73B—C73—H73C109.5
N32—C42—H42126.9
O6—S1—O3—Ni1172.84 (10)C23—N33—C43—C530.2 (2)
O4—S1—O3—Ni152.25 (13)C63—N33—C43—C53177.64 (19)
O5—S1—O3—Ni165.42 (13)N31—C41—C51—N110.4 (2)
C51—N11—C21—N310.3 (2)C21—N11—C51—C410.5 (2)
Ni1—N11—C21—N31177.08 (12)Ni1—N11—C51—C41176.55 (14)
C41—N31—C21—N110.1 (2)N32—C42—C52—N120.3 (3)
C61—N31—C21—N11179.85 (19)C22—N12—C52—C420.4 (2)
C52—N12—C22—N320.3 (3)Ni1—N12—C52—C42172.68 (15)
Ni1—N12—C22—N32173.42 (15)N33—C43—C53—N130.4 (2)
C42—N32—C22—N120.1 (3)C23—N13—C53—C430.4 (2)
C62—N32—C22—N12176.4 (2)Ni1—N13—C53—C43179.64 (14)
C53—N13—C23—N330.3 (2)C21—N31—C61—C71114.2 (3)
Ni1—N13—C23—N33179.50 (13)C41—N31—C61—C7165.9 (3)
C43—N33—C23—N130.1 (2)C22—N32—C62—C72A130.5 (3)
C63—N33—C23—N13177.42 (18)C42—N32—C62—C72A53.8 (4)
C21—N31—C41—C510.2 (2)C22—N32—C62—C72B110.8 (5)
C61—N31—C41—C51179.9 (2)C42—N32—C62—C72B64.9 (5)
C22—N32—C42—C520.1 (3)C23—N33—C63—C73111.6 (2)
C62—N32—C42—C52176.4 (2)C43—N33—C63—C7365.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N13–C23–N33–C43–C53 ring and Cg2 is the centroid of the N12–C22–N32–C42–C52 ring
D—H···AD—HH···AD···AD—H···A
O1—H1A···O40.84 (3)1.88 (3)2.706 (2)170 (3)
O1—H1B···O5i0.77 (3)2.02 (3)2.786 (2)173 (3)
O2—H2B···O4i0.85 (3)1.88 (3)2.720 (2)171 (3)
O2—H2A···O50.81 (3)2.00 (3)2.791 (2)165 (3)
C22—H22···O5i0.952.603.511 (3)162
C23—H23···O6ii0.952.563.409 (3)150
C52—H52···O6ii0.952.423.315 (3)157
C73—H73B···O6iii0.982.403.347 (3)163
C61—H61A···Cg1iv0.992.803.779 (3)169
C61—H61B···Cg2v0.992.973.816 (3)144
Symmetry codes: (i) x, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x+1, y1/2, z+1/2; (v) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N13–C23–N33–C43–C53 ring and Cg2 is the centroid of the N12–C22–N32–C42–C52 ring
D—H···AD—HH···AD···AD—H···A
O1—H1A···O40.84 (3)1.88 (3)2.706 (2)170 (3)
O1—H1B···O5i0.77 (3)2.02 (3)2.786 (2)173 (3)
O2—H2B···O4i0.85 (3)1.88 (3)2.720 (2)171 (3)
O2—H2A···O50.81 (3)2.00 (3)2.791 (2)165 (3)
C22—H22···O5i0.952.603.511 (3)162
C23—H23···O6ii0.952.563.409 (3)150
C52—H52···O6ii0.952.423.315 (3)157
C73—H73B···O6iii0.982.403.347 (3)163
C61—H61A···Cg1iv0.992.803.779 (3)169
C61—H61B···Cg2v0.992.973.816 (3)144
Symmetry codes: (i) x, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x+1, y1/2, z+1/2; (v) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Ni(SO4)(C5H8N2)3(H2O)2]
Mr478.97
Crystal system, space groupMonoclinic, P21/c
Temperature (K)131
a, b, c (Å)12.0252 (13), 14.3481 (15), 15.3502 (11)
β (°) 128.980 (5)
V3)2058.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.40 × 0.25 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID-S
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.705, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
28931, 4723, 4284
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.085, 1.07
No. of reflections4723
No. of parameters290
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.04, 1.12

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008), PLATON (Spek, 2009).

 

Acknowledgements

The above project was supported by the Hungarian Scientific and Research Fund (OTKA 100801).

References

First citationAdarsh, N. N., Kumar, D. K. & Dastidar, P. (2011). Curr. Sci. 101, 869–880.  CAS Google Scholar
First citationCalatayud, M. L., Castro, I., Sletten, J., Lloret, F. & Julve, M. (2000). Inorg. Chim. Acta, 300–302, 846–854.  Web of Science CSD CrossRef CAS Google Scholar
First citationÇetinkaya, F., Kürkçüoğlu, G. S., Yeşilel, O. Z., Hökelek, T. & Süzen, Y. (2013). J. Mol. Struct. 1048, 252–260.  Google Scholar
First citationDíaz de Vivar, M. E., Baggio, S. & Baggio, R. (2006). Acta Cryst. E62, m986–m988.  CSD CrossRef IUCr Journals Google Scholar
First citationGómez-Saiz, P., García-Tojal, J., Maestro, M. A., Arnaiz, F. J. & Rojo, T. (2002). Inorg. Chem. 41, 1345–1347.  Web of Science CSD CrossRef PubMed Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHoogerstraete, T. V., Brooks, N. R., Norberg, B., Wouters, J., Van Hecke, K., Van Meervelt, L. & Binnemans, K. (2012). CrystEngComm, 14, 4902–4911.  Google Scholar
First citationHuxel, T., Riedel, S., Lach, J. & Klingele, J. (2012). Z. Anorg. Allg. Chem. 638, 925–934.  CSD CrossRef CAS Google Scholar
First citationLiu, F.-Q., Chen, H.-N., Li, R.-X., Liu, G.-Y. & Li, W.-H. (2006). Acta Cryst. E62, m2457–m2458.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, G. Y., Chen, H. N., Liu, F. Q., Huang, S. Y., Li, S. X. & Li, W. (2008). J. Chem. Crystallogr. 38, 631–634.  CSD CrossRef CAS Google Scholar
First citationLiu, F.-Q., Liu, W.-L., Li, W., Li, R.-X. & Liu, G.-Y. (2007). Acta Cryst. E63, m2454.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMukherjee, M., Mukherjee, A. K., Pariya, C. & Ray Chaudhuri, N. (1995). Acta Cryst. C51, 1543–1545.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOuyang, X.-M., Li, Z.-W., Okamura, T., Li, Y.-Z., Sun, W.-Y., Tang, W.-X. & Ueyama, N. (2004). J. Solid State Chem. 177, 350–360.  CSD CrossRef CAS Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWan, S.-Y., Li, Y.-Z., Okamura, T., Fan, J., Sun, W.-Y. & Ueyama, N. (2003). Eur. J. Inorg. Chem. pp. 3783–3789.  CSD CrossRef Google Scholar
First citationXu, G.-C., Ding, Y.-J., Okamura, T., Huang, Y.-Q., Bai, Z.-S., Hua, Q., Liu, G.-X., Sun, W.-Y. & Ueyama, N. (2009). Cryst. Growth Des. 9, 395–403.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 3| March 2016| Pages 374-377
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds