research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 3| March 2016| Pages 318-321

Crystal structure of bis­­[tetra­kis­(tri­phenyl­phosphane-κP)silver(I)] (nitrilo­tri­acetato-κ4N,O,O′,O′′)(tri­phenyl­phosphane-κP)argentate(I) with an unknown amount of methanol as solvate

CROSSMARK_Color_square_no_text.svg

aTechnische Universität Chemnitz, Fakultät für Naturwissenschaften, Institut für Chemie, Anorganische Chemie, D-09107 Chemnitz, Germany
*Correspondence e-mail: heinrich.lang@chemie.tu-chemnitz.de

Edited by S. Parkin, University of Kentucky, USA (Received 4 December 2015; accepted 20 January 2016; online 10 February 2016)

The structure of the title compound, [Ag(C18H15P)4]2[Ag(C6H6NO6)(C18H15P)], exhibits trigonal (P-3) symmetry, with a C3 axis through all three complex ions, resulting in an asymmetric unit that contains one third of the atoms present in the formula unit. The formula unit thus contains two of the cations, one anion and disordered mol­ecules of methanol as the packing solvent. Attempts to refine the solvent model were unsuccessful, indicating uninter­pretable disorder. Thus, the SQUEEZE procedure in PLATON [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18] was applied, accounting for 670 electrons per unit cell, representing approximately 18 mol­ecules of methanol in the formula unit. The stated crystal data for Mr, μ etc do not take these into account.

1. Chemical context

Metal nanoparticles are well known in the literature for their use in various applications, e.g., in joining processes (Hausner et al., 2014[Hausner, S., Weis, S., Elssner, M. & Wielage, B. (2014). Adv. Mater. Res. 925, 420-427.]), catalysis (Steffan et al., 2009[Steffan, M., Jakob, A., Claus, P. & Lang, H. (2009). Catal. Commun. 10, 437-441.]; Zhang et al., 2015[Zhang, L., Anderson, R. M., Crooks, R. M. & Henkelman, G. (2015). Surf. Sci. 640, 65-72.]) and electronics (Gilles et al., 2013[Gilles, S., Tuchscherer, A., Lang, H. & Simon, U. (2013). J. Colloid Interface Sci. 406, 256-262.]; Scheideler et al., 2015[Scheideler, W. S., Jang, J., Karim, M. A. U., Kitsomboonloha, R., Zeumault, A. & Subramanian, V. (2015). Appl. Mater. Interfaces, 7, 12679-12687.]). This is caused by the size and shape-dependent properties of the nanoparticles (Wilcoxon & Abrams, 2006[Wilcoxon, J. & Abrams, B. L. (2006). Chem. Soc. Rev. 35, 1162-1194.]). The formation of nanoparticles requires a metal source, reducing as well as stabilizing agents, and can be achieved by the decomposition of precursors either by heat (Adner et al., 2013[Adner, D., Möckel, S., Korb, M., Buschbeck, R., Rüffer, T., Schulze, S., Mertens, L., Hietschold, M., Mehring, M. & Lang, H. (2013). Dalton Trans. 42, 15599-15609.]) or light (Schliebe et al., 2013[Schliebe, C., Jiang, K., Schulze, S., Hietschold, M., Cai, W.-B. & Lang, H. (2013). Chem. Commun. 49, 3991-3993.]). However, to combine the metal source and reducing agents in one mol­ecule, silver (I)[link] carboxyl­ates are convenient compounds. They are known for their light sensitivity and their ability to decompose thermally into elemental silver (Fields & Meyerson, 1976[Fields, E. K. & Meyerson, S. (1976). J. Org. Chem. 41, 916-920.]), but due to their low solubility, the corresponding phosphine complexes can also be used. In the context of this approach, the title compound [Ag(C18H15P)4]2[Ag(C6H6NO6)(C18H15P)], (I)[link], was obtained as a methanol solvate of unknown composition by the reaction of the tri-silver salt of nitrilo­tri­acetic acid with tri­phenyl­phosphane.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound presents one-third of the formula unit (Fig. 1[link]), which contains two of the cations, one anion and approximately 18 mol­ecules of methanol. The whole compound can thus be generated using the C3 symmetry operations (Fig. 1[link]) present for each ion. Thus, the tetra­kis­(tri­phenyl­phosphino)silver cations are built up by one PPh3 ligand, the silver ion and one P(Ph)1 fragment in the asymmetric unit (Fig. 1[link]; c/f, −x + y + 1, −x + 1, z; d/e, −y + 1, x − y, z). A tetra­hedral coordination environment [P—Ag—P = 108.82 (3)–110.11 (3)°] is observed for the silver ions of the cationic fragments with anti-periplanar torsion angles [P—Ag—P—C 175.35 (15) and 177.9 (3)°] between the phenyl rings of the PPh3 ligand towards the opposite Ag—P bond.

[Figure 1]
Figure 1
The structures of the molecular components of (I)[link], with displacement ellipsoids drawn at the 50% probability level. All H atoms have been omitted for clarity. [Symmetry codes: (a) −x + y + 1, −x + 2, z; (b) −y + 2, x − y + 1, z; (c/f) −x + y + 1, −x + 1, z; (d/e) −y + 1, x − y, z.]

With regard to the anionic silver-NTA (NTA = nitrilo­tri­acetate) complex, only one acetato ligand, atoms N1 and Ag1, and a P(Ph)1 fragment are present in the asymmetric unit. In the whole C3-symmetric anion [symmetry codes: (a) −x + y + 1, −x + 2, z; (b) −y + 2, x − y + 1, z; Fig. 1[link]], the silver ion is coordinated by one PPh3 ligand and the N1 atom of the NTA mol­ecule, with a linear N1—Ag1—P1 environment (180.0°). However, a further inter­action between one oxygen atom of each carboxyl­ato moiety and a silver atom within the range of the van der Waals radii [2.599 (4) Å, Σ = 3.24 Å] (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) is present, resulting in a strongly distorted trigonal–bipyramidal complex geometry. The acetato moieties are rotated in a staggered fashion towards the phenyl rings of the PPh3 ligand with X—Ag1—P1—C3 torsion angles of 70.1 (3)° (X = C1) and 30.59 (18)° (X = O1).

The unit cell contains approximately 36 extensively disordered mol­ecules of methanol (i.e., six mol­ecules of MeOH in the asymmetric unit) that were accounted for using the SQUEEZE routine in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) (Fig. 2[link], see also: Refinement).

[Figure 2]
Figure 2
PLUTON cavity plot of the crystal packing of (I)[link] in a view along [110] showing the cavities (pale red) occupied by the disordered methanol solvent. All H atoms have been omitted for clarity.

3. Supra­molecular features

The anions of (I)[link] are packed along the c axis through the N—Ag—P bond (Figs. 2[link] and 3[link]) with the PPh3 ligands of two ions facing each other. The cations, placed within the cell (Fig. 3[link]) form a layer type structure parallel to (001) (Fig. 2[link]), whereas the anions are placed on the cell axes. The omitted methanol solvent is packed above and below these (001) planes, indicating the potential presence of hydrogen bridge-bonds to the carboxyl­ato-oxygen atoms (Fig. 2[link]). Inter- or intra­molecular π inter­actions are not present.

[Figure 3]
Figure 3
Crystal packing of the mol­ecular structure of (I)[link] with the view along [001]. All H atoms have been omitted for clarity.

4. Database survey

Since the first synthesis of nitrilo­tri­acetic acid (Polstorff & Meyer, 1912[Polstorff, K. & Meyer, H. (1912). Ber. Dtsch. Chem. Ges. 45, 1905-1912.]), a wide diversity of complexes with this mol­ecule containing several metals have been synthesized over the last few decades (Hoard et al., 1968[Hoard, J. L., Silverton, E. W. & Silverton, J. V. (1968). J. Am. Chem. Soc. 90, 2300-2308.]; Dung et al., 1988[Dung, N. H., Viossat, B., Busnot, A., Perez, J. M. G., Garcia, S. G. & Gutierrez, J. N. (1988). Inorg. Chem. 27, 1227-1231.]; Kumari et al., 2012[Kumari, N., Ward, B. D., Kar, S. & Mishra, L. (2012). Polyhedron, 33, 425-434.]). In contrast, only three crystal structures in which the N atom of nitrilo­tri­acetic acid is bonded to silver(I) are known (Sun et al., 2011[Sun, D., Zhang, N., Xu, Q. J., Wei, Z.-H., Huang, R. B. & Zheng, L. S. (2011). Inorg. Chim. Acta, 368, 67-73.]; Chen et al., 2005[Chen, C. L., Zhang, Q., Jiang, J. J., Wang, Q. & Su, C. Y. (2005). Aust. J. Chem. 58, 115-118.]), whereas coordin­ation of the O atom of nitrilo­tri­acetic acid to silver(I) is more common (Novitchi et al., 2010[Novitchi, G., Ciornea, V., Costes, J.-P., Gulea, A., Kazheva, O. N., Shova, S. & Arion, V. B. (2010). Polyhedron, 29, 2258-2261.]; Sun et al., 2011[Sun, D., Zhang, N., Xu, Q. J., Wei, Z.-H., Huang, R. B. & Zheng, L. S. (2011). Inorg. Chim. Acta, 368, 67-73.]; Chen et al., 2005[Chen, C. L., Zhang, Q., Jiang, J. J., Wang, Q. & Su, C. Y. (2005). Aust. J. Chem. 58, 115-118.]; Liang et al., 1964[Liang, D.-C., Qiao, G.-Z. & Li, C.-Q. (1964). Acta Phys. Sin. 20, 1153-1163.]). However, many silver(I) complexes with phosphanes as ligands are known in the literature (Frenzel et al., 2014[Frenzel, P., Jakob, A., Schaarschmidt, D., Rüffer, T. & Lang, H. (2014). Acta Cryst. E70, 174-177.]; Rüffer et al., 2011[Rüffer, T., Lang, H., Nawaz, S., Isab, A. A., Ahmad, S. & Athar, M. M. (2011). J. Struct. Chem. 52, 1025-1029.]; Jakob et al., 2005[Jakob, A., Schmidt, H., Walfort, B., Rheinwald, G., Frühauf, S., Schulz, S. E., Gessner, T. & Lang, H. (2005). Z. Anorg. Allg. Chem. 631, 1079-1086.]). Likewise, the coordination of four tri­phenyl­phosphane ligands to one silver(I) ion has occurred in a variety of possible structural motifs in the last few decades (Pelizzi et al., 1984[Pelizzi, C., Pelizzi, G. & Tarasconi, P. (1984). J. Organomet. Chem. 277, 29-35.]; Ng, 2012[Ng, S. W. (2012). Acta Cryst. E68, m1536.]; Bowmaker et al., 1990[Bowmaker, G. A., Healy, P. C., Engelhardt, L. M., Kildea, J. D., Skelton, B. W. & White, A. H. (1990). Aust. J. Chem. 43, 1697-1705.]).

5. Synthesis and crystallization

Synthesis of trisilvernitrilo­tri­acetate:

Colorless [(AgO2CCH2)3N] was prepared by an alternative route to the synthetic methodologies reported by Cotrait and Joussot-Dubien (1966[Cotrait, M. & Joussot-Dubien, J. (1966). Bull. Soc. Chim. Fr. 1, 114-116.]), i.e., by the reaction of nitrilo­tri­acetic acid tris­odium salt with [AgNO3] in water at ambient temperature, and with exclusion of light (Noll et al., 2014[Noll, J., Frenzel, P., Lang, H., Hausner, S., Elssner, M. & Wielage, B. (2014). Proceedings of the 17th Materials Technical Symposium (Werkstofftechnische Kolloquium), pp. 242-246. TU Chemnitz, Germany.]). It is advisable to consecutively wash the respective silver carboxyl­ate with water and diethyl ether to obtain a pure product.

Synthesis of bis­[tetra­kis­(tri­phenyl­phosphane-κP)silver(I)] (nitrilo­tri­acetato-κ4N,O,O,O′′)(tri­phenyl­phosphane-κP)argen­tate(I) methanol solvate (I)[link]:

For this reaction, tri­phenyl­phosphane (0.385 g, 1,47 mmol, 3 eq) was diluted in 30 mL of ethanol and 1 equiv. (0.25 g, 0,49 mmol) of tri-silver-nitrilo­tri­acetate suspended in 30 mL of ethanol was added dropwise. After stirring for 12 h in the dark, the solution was filtered and the solvent removed in vacuo. Suitable crystals were obtained by diffusion of hexane into a methanol solution containing (I)[link] at ambient temperature.

M.p. 390 K. 1H NMR (CD3OD, p.p.m.) δ: 3.72 (s, 6 H), 7.08–7.12 (m, CHoPh, 54 H), 7.14–7.17 (m, CHmPh, 54 H), 7.39–7.43 (m, CHpPh, 27 H). 13C {1H} (CD3OD, p.p.m.) δ: 58.35 (s, CH2) 130.26 (d, CmPh, 3JCP = 9.36 Hz), 131.83 (d, CpPh, 4JCP = 1.17 Hz), 132.95 (d, CiPh, 1JCP = 24.54 Hz), 134.88 (d, CoPh, 2JCP = 15.72 Hz). 31P {1H} (CD3OD, p.p.m.) δ: 6.82. IR (KBr, cm−1): = 3417 (b), 3053 (s), 1890 (w), 1636 (b), 1478 (m), 743 (s), 697 (s).

All reagents and solvents were obtained commercially and used without further purification.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. C-bonded H atoms were placed in calculated positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) and a C—H distance of 0.93 Å for aromatic and 0.97 Å for methyl­ene H atoms. Attempts to avoid the differences in the anisotropic displacement parameters (Hirshfeld, 1976[Hirshfeld, F. L. (1976). Acta Cryst. A32, 239-244.]) of P5 and C45 by using RIGU, SIMU/ISOR, or EADP instructions were not successful (McArdle, 1995[McArdle, P. (1995). J. Appl. Cryst. 28, 65.]; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Table 1
Experimental details

Crystal data
Chemical formula [Ag(C18H15P)4]2[Ag(C6H6NO6)(C18H15P)]
Mr 2872.15
Crystal system, space group Trigonal, P[\overline{3}]
Temperature (K) 110
a, c (Å) 19.0095 (5), 31.9862 (10)
V3) 10010.0 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.40
Crystal size (mm) 0.2 × 0.2 × 0.2
 
Data collection
Diffractometer Oxford Gemini S
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.])
Tmin, Tmax 0.699, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 32447, 12365, 8561
Rint 0.049
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.197, 1.05
No. of reflections 12365
No. of parameters 572
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.34, −0.64
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The crystal contains disordered methanol mol­ecules as the packing solvent. Attempts to refine an adequate disordered solvent model failed, presumably due to the large number of mol­ecules involved and the restraints required for an anisotropic refinement. Thus, the SQUEEZE procedure (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) of PLATON (Spek 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.], 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) was used to delete the solvent contribution. This treatment decreased the R1 value from 0.0920 to 0.0664 and the wR2 value from 0.2832 to 0.1849 by excluding a volume of 4050.5 Å3 (40.5% of the total cell volume) and 670 electrons, respectively. The excluded volume is shown in Fig. 2[link] represented by a PLATON cavity plot (Spek 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.], 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) with the spheres representing the cavities that are filled with the disordered solvent. Given the number of electrons excluded by the SQUEEZE procedure, an estimate of about 36 methanol mol­ecules can be calculated for the whole unit cell, which corresponds to approximately six methanol mol­ecules per asymmetric unit. The stated crystal data for Mr, μ etc (Table 1[link]) do not take these into account.

Supporting information


Chemical context top

Metal nanoparticles are well known in the literature for their use in various applications, e.g., in joining processes (Hausner et al., 2014), catalysis (Steffan et al., 2009; Zhang et al., 2015) and electronics (Gilles et al., 2013; Scheideler et al., 2015). This is caused by the size and shape-dependent properties of the nanoparticles (Wilcoxon et al., 2006). The formation of nanoparticles requires a metal source, reducing as well as stabilizing agents, and can be achieved by the decomposition of precursors either by heat (Adner et al., 2013) or light (Schliebe et al., 2013). However, to combine the metal source and reducing agents in one molecule, silver (I) carboxyl­ates are convenient compounds. They are known for their light sensitivity and their ability to decompose thermally into elemental silver (Fields et al., 1976), but due to their low solubility, the corresponding phosphine complexes can also be used. In the context of this approach, the title compound [Ag(C18H15P)4]2[Ag(C6H6NO6)(C18H15P)], (I), was obtained by the reaction of the tri-silver salt of nitrilo­tri­acetic acid with tri­phenyl­phosphane.

Structural commentary top

The asymmetric unit of the title compound presents one-third of the formula unit (Fig. 1), which contains two of the cations, one anion and approximately 18 molecules of methanol. The whole compound can thus be generated using the C3 symmetry operations (Fig. 1) present for each ion. Thus, the tetra­kis(tri­phenyl­phosphino)silver cations are built up by one PPh3 ligand, the silver ion and one P(Ph)1 fragment in the asymmetric unit (Fig. 1; c/f, −x + y + 1, −x + 1, z; d/e, −y + 1, xy, z). A tetra­hedral coordination environment [P—Ag—P = 108.82 (3)–110.11 (3)°] is observed for the silver ions of the cationic fragments with anti-periplanar torsion angles [P—Ag—P—C 175.35 (15) and 177.9 (3)°] between the phenyl rings of the PPh3 ligand towards the opposite Ag—P bond.

With regard to the anionic silver-NTA (NTA = nitrilo­tri­acetate) complex, only one acetato ligand, atoms N1 and Ag1, and a P(Ph)1 fragment are present in the asymmetric unit. In the whole C3-symmetric anion [symmetry codes: (a) −x + y + 1, −x + 2, z; (b) −y + 2, xy + 1, z; Fig. 1], the silver ion is coordinated by one PPh3 ligand and the N1 atom of the NTA molecule, with a linear N1—Ag1—P1 environment (180.0°). However, a further inter­action between one oxygen atom of each carboxyl­ato moiety and a silver atom within the range of the van der Waals radii [2.599 (4) Å, Σ = 3.24 Å] (Spek, 2009) is present, resulting in a strongly distorted trigonal–bipyramidal complex geometry. The acetato moieties are rotated in a staggered fashion towards the phenyl rings of the PPh3 ligand with X—Ag1—P1—C3 torsion angles of 70.1 (3)° (X = C1) and 30.59 (18)° (X = O1).

The unit cell contains approximately 36 extensively disordered molecules of methanol (i.e., six molecules of MeOH in the asymmetric unit) that were accounted for using the SQUEEZE routine in PLATON (Spek, 2015) (Fig. 2, see also: Refinement).

Supra­molecular features top

The anions of (I) are packed along the c axis through the N—Ag—P bond (Figs. 2 and 3) with the PPh3 ligands of two ions facing each other. The cations, placed within the cell (Fig. 3) form a layer type structure parallel to (002) (Fig. 2), whereas the anions are placed on the cell axes. The omitted methanol solvent is packed above and below these (002) planes, indicating the potential presence of hydrogen bridge-bonds to the carboxyl­ato-oxygen atoms (Fig. 2). Inter- or intra­molecular π inter­actions are not present.

Database survey top

Since the first synthesis of nitrilo­tri­acetic acid (Polstorff & Meyer, 1912), a wide diversity of complexes with this molecule containing several metals have been synthesized over the last few decades (Hoard et al., 1968; Dung et al., 1988; Kumari et al., 2012). In contrast, only three crystal structures in which the nitro­gen of nitrilo­tri­acetic acid is bonded to silver(I) are known (Sun et al., 2011; Chen et al., 2005), whereas coordination of the oxygen of nitrilo­tri­acetic acid to silver(I) is more common (Novitchi et al., 2010; Sun et al., 2011; Chen et al., 2005; Liang et al., 1964). However, many silver(I) complexes with phosphanes as ligands are known in the literature (Frenzel et al., 2014; Rüffer et al., 2011; Jakob et al., 2005). Likewise, the coordination of four tri­phenyl­phosphanes to one silver(I) ion has occurred in a variety of possible structural motifs in the last few decades (Pelizzi et al., 1984; Ng, 2012; Bowmaker et al., 1990).

Synthesis and crystallization top

\ Synthesis of tri-silver-nitrilo­tri­acetate:

Colorless [(AgO2CCH2)3N] was prepared by an alternative route to the synthetic methodologies reported by Cotrait and Joussot-Dubien (1966), i.e., by the reaction of nitrilo­tri­acetic acid tris­odium salt with [AgNO3] in water at ambient temperature, and with exclusion of light (Noll et al., 2014). It is advisable to consecutively wash the respective silver carboxyl­ate with water and di­ethyl ether to obtain a pure product.

Synthesis of bis­[tetra­kis(tri­phenyl­phosphane-κP)silver(I)] (nitrilo­tri­acetato-κ4N,O,\ O',O'')(tri­phenyl­phosphane-\ κP)argentate(I) methanol monosolvate (I):

For this reaction, tri­phenyl­phosphane (0.385 g, 1,47 mmol, 3 eq) was diluted in 30 ml of ethanol and 1 equiv. (0.25 g, 0,49 mmol) of tri-silver-nitrilo­tri­acetate suspended in 30 ml of ethanol was added dropwise. After stirring for 12 h in the dark, the solution was filtered and the solvent removed in vacuo. Suitable crystals were obtained by diffusion of hexane into a methanol solution containing (I) at ambient temperature.

M.p. 390 K. 1H NMR (CD3OD, p.p.m.) d: 3.72 (s, 6 H), 7.08–7.12 (m, CHoPh, 54 H), 7.14–7.17 (m, CHmPh, 54 H), 7.39–7.43 (m, CHpPh, 27 H). 13C {1H} (CD3OD, p.p.m.) d: 58.35 (s, CH2) 130.26 (d, CmPh, 3JCP = 9.36 Hz), 131.83 (d, CpPh, 4JCP = 1.17 Hz), 132.95 (d, CiPh, 1JCP = 24.54 Hz), 134.88 (d, CoPh, 2JCP = 15,72 Hz). 31P {1H} (CD3OD, p.p.m.) d: 6.82. IR (KBr, cm−1): = 3417 (b), 3053 (s), 1890 (w), 1636 (b), 1478 (m), 743 (s), 697 (s).

All reagents and solvents were obtained commercially and used without further purification.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. C-bonded H atoms were placed in calculated positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) and a C—H distance of 0.93 Å for aromatic and Uiso(H) = 1.2Ueq(C) and a C—H distance of 0.97 Å for methyl­ene H atoms. Attempts to avoid the differences in the anisotropic displacement parameters (Hirshfeld, 1976) of P5 and C45 by using RIGU, SIMU/ISOR, or EADP instructions were not successful (McArdle, 1995; Sheldrick, 2008).

The crystal contains disordered methanol molecules as the packing solvent. Attempts to refine an adequate disordered solvent model failed, presumably due to the large number of molecules involved and the restraints required for an anisotropic refinement. Thus, the SQUEEZE procedure (Spek, 2015) of PLATON (Spek 2003, 2009) was used to delete the solvent contribution. This treatment decreased the R1 value from 0.0920 to 0.0664 and the wR2 value from 0.2832 to 0.1849 by excluding a volume of 4050.5 Å3 (40.5% of the total cell volume) and 670 electrons, respectively. The excluded volume is shown in Fig. 2 represented by a PLATON cavity plot (Spek 2003, 2009) with the spheres representing the cavities that are filled with the disordered solvent. Given the number of electrons excluded by the SQUEEZE procedure, an estimate of about 36 methanol molecules can be calculated for the whole unit cell, which corresponds to approximately six methanol molecules per asymmetric unit.

Structure description top

Metal nanoparticles are well known in the literature for their use in various applications, e.g., in joining processes (Hausner et al., 2014), catalysis (Steffan et al., 2009; Zhang et al., 2015) and electronics (Gilles et al., 2013; Scheideler et al., 2015). This is caused by the size and shape-dependent properties of the nanoparticles (Wilcoxon et al., 2006). The formation of nanoparticles requires a metal source, reducing as well as stabilizing agents, and can be achieved by the decomposition of precursors either by heat (Adner et al., 2013) or light (Schliebe et al., 2013). However, to combine the metal source and reducing agents in one molecule, silver (I) carboxyl­ates are convenient compounds. They are known for their light sensitivity and their ability to decompose thermally into elemental silver (Fields et al., 1976), but due to their low solubility, the corresponding phosphine complexes can also be used. In the context of this approach, the title compound [Ag(C18H15P)4]2[Ag(C6H6NO6)(C18H15P)], (I), was obtained by the reaction of the tri-silver salt of nitrilo­tri­acetic acid with tri­phenyl­phosphane.

The asymmetric unit of the title compound presents one-third of the formula unit (Fig. 1), which contains two of the cations, one anion and approximately 18 molecules of methanol. The whole compound can thus be generated using the C3 symmetry operations (Fig. 1) present for each ion. Thus, the tetra­kis(tri­phenyl­phosphino)silver cations are built up by one PPh3 ligand, the silver ion and one P(Ph)1 fragment in the asymmetric unit (Fig. 1; c/f, −x + y + 1, −x + 1, z; d/e, −y + 1, xy, z). A tetra­hedral coordination environment [P—Ag—P = 108.82 (3)–110.11 (3)°] is observed for the silver ions of the cationic fragments with anti-periplanar torsion angles [P—Ag—P—C 175.35 (15) and 177.9 (3)°] between the phenyl rings of the PPh3 ligand towards the opposite Ag—P bond.

With regard to the anionic silver-NTA (NTA = nitrilo­tri­acetate) complex, only one acetato ligand, atoms N1 and Ag1, and a P(Ph)1 fragment are present in the asymmetric unit. In the whole C3-symmetric anion [symmetry codes: (a) −x + y + 1, −x + 2, z; (b) −y + 2, xy + 1, z; Fig. 1], the silver ion is coordinated by one PPh3 ligand and the N1 atom of the NTA molecule, with a linear N1—Ag1—P1 environment (180.0°). However, a further inter­action between one oxygen atom of each carboxyl­ato moiety and a silver atom within the range of the van der Waals radii [2.599 (4) Å, Σ = 3.24 Å] (Spek, 2009) is present, resulting in a strongly distorted trigonal–bipyramidal complex geometry. The acetato moieties are rotated in a staggered fashion towards the phenyl rings of the PPh3 ligand with X—Ag1—P1—C3 torsion angles of 70.1 (3)° (X = C1) and 30.59 (18)° (X = O1).

The unit cell contains approximately 36 extensively disordered molecules of methanol (i.e., six molecules of MeOH in the asymmetric unit) that were accounted for using the SQUEEZE routine in PLATON (Spek, 2015) (Fig. 2, see also: Refinement).

The anions of (I) are packed along the c axis through the N—Ag—P bond (Figs. 2 and 3) with the PPh3 ligands of two ions facing each other. The cations, placed within the cell (Fig. 3) form a layer type structure parallel to (002) (Fig. 2), whereas the anions are placed on the cell axes. The omitted methanol solvent is packed above and below these (002) planes, indicating the potential presence of hydrogen bridge-bonds to the carboxyl­ato-oxygen atoms (Fig. 2). Inter- or intra­molecular π inter­actions are not present.

Since the first synthesis of nitrilo­tri­acetic acid (Polstorff & Meyer, 1912), a wide diversity of complexes with this molecule containing several metals have been synthesized over the last few decades (Hoard et al., 1968; Dung et al., 1988; Kumari et al., 2012). In contrast, only three crystal structures in which the nitro­gen of nitrilo­tri­acetic acid is bonded to silver(I) are known (Sun et al., 2011; Chen et al., 2005), whereas coordination of the oxygen of nitrilo­tri­acetic acid to silver(I) is more common (Novitchi et al., 2010; Sun et al., 2011; Chen et al., 2005; Liang et al., 1964). However, many silver(I) complexes with phosphanes as ligands are known in the literature (Frenzel et al., 2014; Rüffer et al., 2011; Jakob et al., 2005). Likewise, the coordination of four tri­phenyl­phosphanes to one silver(I) ion has occurred in a variety of possible structural motifs in the last few decades (Pelizzi et al., 1984; Ng, 2012; Bowmaker et al., 1990).

Synthesis and crystallization top

\ Synthesis of tri-silver-nitrilo­tri­acetate:

Colorless [(AgO2CCH2)3N] was prepared by an alternative route to the synthetic methodologies reported by Cotrait and Joussot-Dubien (1966), i.e., by the reaction of nitrilo­tri­acetic acid tris­odium salt with [AgNO3] in water at ambient temperature, and with exclusion of light (Noll et al., 2014). It is advisable to consecutively wash the respective silver carboxyl­ate with water and di­ethyl ether to obtain a pure product.

Synthesis of bis­[tetra­kis(tri­phenyl­phosphane-κP)silver(I)] (nitrilo­tri­acetato-κ4N,O,\ O',O'')(tri­phenyl­phosphane-\ κP)argentate(I) methanol monosolvate (I):

For this reaction, tri­phenyl­phosphane (0.385 g, 1,47 mmol, 3 eq) was diluted in 30 ml of ethanol and 1 equiv. (0.25 g, 0,49 mmol) of tri-silver-nitrilo­tri­acetate suspended in 30 ml of ethanol was added dropwise. After stirring for 12 h in the dark, the solution was filtered and the solvent removed in vacuo. Suitable crystals were obtained by diffusion of hexane into a methanol solution containing (I) at ambient temperature.

M.p. 390 K. 1H NMR (CD3OD, p.p.m.) d: 3.72 (s, 6 H), 7.08–7.12 (m, CHoPh, 54 H), 7.14–7.17 (m, CHmPh, 54 H), 7.39–7.43 (m, CHpPh, 27 H). 13C {1H} (CD3OD, p.p.m.) d: 58.35 (s, CH2) 130.26 (d, CmPh, 3JCP = 9.36 Hz), 131.83 (d, CpPh, 4JCP = 1.17 Hz), 132.95 (d, CiPh, 1JCP = 24.54 Hz), 134.88 (d, CoPh, 2JCP = 15,72 Hz). 31P {1H} (CD3OD, p.p.m.) d: 6.82. IR (KBr, cm−1): = 3417 (b), 3053 (s), 1890 (w), 1636 (b), 1478 (m), 743 (s), 697 (s).

All reagents and solvents were obtained commercially and used without further purification.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1. C-bonded H atoms were placed in calculated positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) and a C—H distance of 0.93 Å for aromatic and Uiso(H) = 1.2Ueq(C) and a C—H distance of 0.97 Å for methyl­ene H atoms. Attempts to avoid the differences in the anisotropic displacement parameters (Hirshfeld, 1976) of P5 and C45 by using RIGU, SIMU/ISOR, or EADP instructions were not successful (McArdle, 1995; Sheldrick, 2008).

The crystal contains disordered methanol molecules as the packing solvent. Attempts to refine an adequate disordered solvent model failed, presumably due to the large number of molecules involved and the restraints required for an anisotropic refinement. Thus, the SQUEEZE procedure (Spek, 2015) of PLATON (Spek 2003, 2009) was used to delete the solvent contribution. This treatment decreased the R1 value from 0.0920 to 0.0664 and the wR2 value from 0.2832 to 0.1849 by excluding a volume of 4050.5 Å3 (40.5% of the total cell volume) and 670 electrons, respectively. The excluded volume is shown in Fig. 2 represented by a PLATON cavity plot (Spek 2003, 2009) with the spheres representing the cavities that are filled with the disordered solvent. Given the number of electrons excluded by the SQUEEZE procedure, an estimate of about 36 methanol molecules can be calculated for the whole unit cell, which corresponds to approximately six methanol molecules per asymmetric unit.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. All H atoms have been omitted for clarity. [Symmetry codes: (a) −x + y + 1, −x + 2, z; (b) −y + 2, xy + 1, z; (c/f) −x + y + 1, −x + 1, z; (d/e) −y + 1, xy, z.]
[Figure 2] Fig. 2. PLUTON cavity plot of the crystal packing of (I) in a view along [110] showing the cavities (pale red) occupied by the disordered methanol solvent. All H atoms have been omitted for clarity.
[Figure 3] Fig. 3. Crystal packing of the molecular structure of (I) with the view along [001]. All H atoms have been omitted for clarity.
Bis[tetrakis(triphenylphosphane-κP)silver(I)] (nitrilotriacetato-κ4N,O,O',O'')(triphenylphosphane-κP)argentate(I) methanol monosolvate top
Crystal data top
[Ag(C18H15P)4]2[Ag(C6H6NO6)(C18H15P)]Dx = 0.953 Mg m3
Mr = 2872.15Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3Cell parameters from 6868 reflections
a = 19.0095 (5) Åθ = 3.3–27.6°
c = 31.9862 (10) ŵ = 0.40 mm1
V = 10010.0 (6) Å3T = 110 K
Z = 2Block, colorless
F(000) = 29600.2 × 0.2 × 0.2 mm
Data collection top
Oxford Gemini S
diffractometer
Rint = 0.049
ω scansθmax = 25.5°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
h = 1722
Tmin = 0.699, Tmax = 1.000k = 1823
32447 measured reflectionsl = 3824
12365 independent reflections2 standard reflections every 50 reflections
8561 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.197 w = 1/[σ2(Fo2) + (0.101P)2 + 10.4365P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
12365 reflectionsΔρmax = 1.34 e Å3
572 parametersΔρmin = 0.64 e Å3
Crystal data top
[Ag(C18H15P)4]2[Ag(C6H6NO6)(C18H15P)]Z = 2
Mr = 2872.15Mo Kα radiation
Trigonal, P3µ = 0.40 mm1
a = 19.0095 (5) ÅT = 110 K
c = 31.9862 (10) Å0.2 × 0.2 × 0.2 mm
V = 10010.0 (6) Å3
Data collection top
Oxford Gemini S
diffractometer
8561 reflections with I > 2σ(I)
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Rint = 0.049
Tmin = 0.699, Tmax = 1.0002 standard reflections every 50 reflections
32447 measured reflections intensity decay: none
12365 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.197H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.101P)2 + 10.4365P]
where P = (Fo2 + 2Fc2)/3
12365 reflectionsΔρmax = 1.34 e Å3
572 parametersΔρmin = 0.64 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9981 (4)1.0723 (4)0.77087 (17)0.0510 (15)
H1A1.05141.11950.76670.061*
H1B0.98641.06790.80060.061*
C20.9347 (4)1.0855 (4)0.7476 (2)0.0520 (15)
C31.0199 (3)0.9244 (3)0.58793 (14)0.0249 (10)
C41.0648 (3)0.9386 (3)0.55126 (15)0.0290 (11)
H41.08740.98910.53820.035*
C51.0757 (3)0.8780 (3)0.53427 (16)0.0341 (12)
H51.10630.88790.51000.041*
C61.0413 (3)0.8024 (3)0.55318 (17)0.0378 (13)
H61.04740.76110.54120.045*
C70.9980 (3)0.7884 (3)0.58994 (18)0.0402 (13)
H70.97580.73820.60310.048*
C80.9878 (3)0.8493 (3)0.60683 (16)0.0317 (11)
H80.95860.83970.63150.038*
C90.7784 (2)0.4908 (3)0.48160 (13)0.0227 (9)
C100.7818 (3)0.5545 (3)0.45909 (15)0.0278 (10)
H100.77720.59510.47300.033*
C110.7920 (3)0.5586 (3)0.41567 (15)0.0330 (11)
H110.79350.60130.40070.040*
C120.7997 (3)0.4996 (3)0.39533 (15)0.0362 (12)
H120.80760.50270.36650.043*
C130.7958 (3)0.4347 (3)0.41765 (17)0.0395 (13)
H130.80030.39420.40370.047*
C140.7853 (3)0.4306 (3)0.46039 (15)0.0304 (11)
H140.78280.38730.47520.036*
C150.7362 (3)0.5570 (3)0.55164 (13)0.0218 (9)
C160.6549 (3)0.5326 (3)0.55782 (14)0.0257 (10)
H160.61570.47810.55510.031*
C170.6318 (3)0.5894 (3)0.56809 (14)0.0319 (11)
H170.57720.57230.57250.038*
C180.6885 (3)0.6700 (3)0.57182 (15)0.0345 (12)
H180.67250.70760.57830.041*
C190.7696 (3)0.6952 (3)0.56595 (16)0.0372 (12)
H190.80810.74990.56880.045*
C200.7945 (3)0.6395 (3)0.55582 (14)0.0284 (10)
H200.84920.65690.55190.034*
C210.8692 (3)0.5295 (2)0.55785 (14)0.0216 (9)
C220.9362 (3)0.5552 (3)0.53165 (15)0.0275 (10)
H220.92890.54810.50290.033*
C231.0147 (3)0.5917 (3)0.54861 (16)0.0348 (12)
H231.05940.60840.53120.042*
C241.0255 (3)0.6028 (3)0.59136 (16)0.0350 (12)
H241.07750.62750.60270.042*
C250.9584 (3)0.5770 (3)0.61745 (16)0.0324 (11)
H250.96550.58480.64620.039*
C260.8818 (3)0.5399 (3)0.60066 (15)0.0286 (10)
H260.83730.52130.61840.034*
C270.7674 (3)0.3799 (3)0.67114 (13)0.0263 (10)
C280.7918 (3)0.4372 (3)0.70267 (14)0.0293 (11)
H280.75610.45340.71260.035*
C290.8694 (3)0.4708 (3)0.71949 (14)0.0367 (12)
H290.88620.51060.74000.044*
C300.9217 (3)0.4449 (3)0.70572 (15)0.0388 (13)
H300.97290.46610.71770.047*
C310.8982 (3)0.3876 (3)0.67416 (16)0.0392 (13)
H310.93360.37070.66470.047*
C320.8219 (3)0.3560 (3)0.65699 (15)0.0323 (11)
H320.80620.31800.63560.039*
C330.7197 (3)0.4342 (3)0.83069 (14)0.0324 (11)
C340.7969 (4)0.4884 (3)0.84516 (16)0.0457 (14)
H340.81990.47290.86630.055*
C350.8402 (4)0.5664 (4)0.82803 (17)0.0517 (16)
H350.89220.60270.83760.062*
C360.8046 (4)0.5899 (4)0.79617 (16)0.0465 (14)
H360.83250.64190.78490.056*
C370.7297 (3)0.5358 (3)0.78221 (16)0.0390 (13)
H370.70640.55100.76110.047*
C380.6863 (3)0.4572 (3)0.79896 (14)0.0372 (12)
H380.63500.42060.78870.045*
C390.8225 (4)0.4078 (5)1.0209 (2)0.073 (2)
C400.7801 (4)0.3373 (4)1.04272 (19)0.067 (2)
H400.74700.29001.02790.080*
C410.7834 (5)0.3322 (7)1.0857 (3)0.126 (5)
H410.75670.28251.09950.152*
C420.8294 (5)0.4061 (6)1.1079 (2)0.088 (3)
H420.82920.40631.13690.106*
C430.8754 (5)0.4791 (6)1.0857 (2)0.080 (2)
H430.90860.52661.10040.096*
C440.8725 (4)0.4820 (5)1.0421 (2)0.077 (2)
H440.90210.53061.02760.092*
C450.8742 (4)0.3609 (4)0.9471 (2)0.0607 (18)
C460.8732 (4)0.3449 (4)0.90415 (18)0.0551 (17)
H460.84440.35880.88560.066*
C470.9159 (5)0.3081 (6)0.8899 (3)0.090 (3)
H470.91310.29390.86190.108*
C480.9638 (5)0.2919 (5)0.9180 (3)0.084 (2)
H480.99430.26930.90840.101*
C490.9645 (4)0.3106 (4)0.9606 (2)0.071 (2)
H490.99520.29920.97910.086*
C500.9200 (4)0.3458 (4)0.9760 (3)0.069 (2)
H500.92110.35851.00420.083*
C510.8718 (4)0.5109 (4)0.9494 (2)0.0674 (19)
C520.8434 (3)0.5648 (4)0.95708 (19)0.0499 (15)
H520.79190.54330.96880.060*
C530.8828 (5)0.6430 (5)0.9493 (3)0.104 (3)
H530.86300.67650.95780.124*
C540.9596 (5)0.6749 (5)0.9266 (3)0.082 (2)
H540.98710.72850.91730.098*
C550.9905 (5)0.6236 (5)0.9190 (2)0.074 (2)
H551.04080.64510.90590.088*
C560.9503 (4)0.5414 (5)0.93011 (19)0.067 (2)
H560.97280.50850.92530.080*
O10.9044 (2)1.0481 (2)0.71512 (12)0.0467 (10)
O20.9195 (3)1.1367 (3)0.76428 (15)0.0755 (14)
P11.00001.00000.61143 (6)0.0240 (4)
P20.76469 (7)0.48109 (7)0.53863 (4)0.0214 (3)
P30.66670.33330.64650 (6)0.0230 (4)
P40.66670.33330.85547 (7)0.0315 (5)
P50.81418 (9)0.40685 (9)0.96398 (4)0.0393 (3)
Ag11.00001.00000.68457 (2)0.03511 (19)
Ag20.66670.33330.56556 (2)0.01929 (15)
Ag30.66670.33330.93618 (2)0.03244 (18)
N11.00001.00000.7572 (2)0.0305 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.074 (4)0.047 (3)0.034 (3)0.032 (3)0.005 (3)0.003 (3)
C20.061 (4)0.053 (4)0.055 (4)0.038 (3)0.007 (3)0.002 (3)
C30.020 (2)0.022 (2)0.034 (3)0.012 (2)0.001 (2)0.001 (2)
C40.028 (3)0.026 (2)0.037 (3)0.016 (2)0.003 (2)0.001 (2)
C50.030 (3)0.037 (3)0.040 (3)0.020 (2)0.001 (2)0.002 (2)
C60.030 (3)0.029 (3)0.058 (3)0.017 (2)0.004 (3)0.013 (2)
C70.034 (3)0.022 (3)0.062 (4)0.012 (2)0.002 (3)0.001 (2)
C80.028 (3)0.028 (3)0.040 (3)0.015 (2)0.002 (2)0.001 (2)
C90.013 (2)0.024 (2)0.029 (2)0.0080 (19)0.0010 (18)0.0022 (19)
C100.025 (2)0.023 (2)0.035 (3)0.012 (2)0.003 (2)0.002 (2)
C110.035 (3)0.036 (3)0.031 (3)0.019 (2)0.001 (2)0.011 (2)
C120.030 (3)0.048 (3)0.027 (3)0.016 (2)0.003 (2)0.001 (2)
C130.038 (3)0.035 (3)0.045 (3)0.018 (3)0.005 (2)0.007 (2)
C140.027 (3)0.025 (2)0.038 (3)0.012 (2)0.003 (2)0.003 (2)
C150.025 (2)0.022 (2)0.021 (2)0.013 (2)0.0014 (18)0.0025 (18)
C160.023 (2)0.023 (2)0.031 (2)0.012 (2)0.000 (2)0.0026 (19)
C170.024 (3)0.044 (3)0.034 (3)0.022 (2)0.001 (2)0.002 (2)
C180.042 (3)0.036 (3)0.038 (3)0.029 (3)0.000 (2)0.002 (2)
C190.039 (3)0.022 (3)0.048 (3)0.014 (2)0.002 (2)0.000 (2)
C200.024 (2)0.023 (2)0.037 (3)0.011 (2)0.003 (2)0.002 (2)
C210.020 (2)0.015 (2)0.031 (2)0.0096 (18)0.0005 (19)0.0052 (18)
C220.026 (2)0.025 (2)0.030 (2)0.012 (2)0.005 (2)0.005 (2)
C230.018 (2)0.033 (3)0.046 (3)0.007 (2)0.006 (2)0.007 (2)
C240.023 (3)0.030 (3)0.050 (3)0.012 (2)0.010 (2)0.002 (2)
C250.030 (3)0.025 (3)0.036 (3)0.010 (2)0.005 (2)0.002 (2)
C260.025 (2)0.025 (2)0.036 (3)0.012 (2)0.008 (2)0.010 (2)
C270.022 (2)0.033 (3)0.019 (2)0.011 (2)0.0023 (19)0.003 (2)
C280.034 (3)0.029 (3)0.023 (2)0.014 (2)0.000 (2)0.001 (2)
C290.036 (3)0.040 (3)0.021 (2)0.010 (2)0.007 (2)0.001 (2)
C300.027 (3)0.043 (3)0.030 (3)0.006 (2)0.006 (2)0.006 (2)
C310.033 (3)0.051 (3)0.039 (3)0.025 (3)0.000 (2)0.007 (3)
C320.035 (3)0.032 (3)0.028 (2)0.015 (2)0.003 (2)0.001 (2)
C330.039 (3)0.041 (3)0.020 (2)0.022 (3)0.003 (2)0.004 (2)
C340.053 (4)0.045 (3)0.033 (3)0.021 (3)0.008 (3)0.005 (3)
C350.055 (4)0.044 (3)0.043 (3)0.015 (3)0.014 (3)0.005 (3)
C360.061 (4)0.042 (3)0.029 (3)0.021 (3)0.004 (3)0.002 (2)
C370.054 (4)0.044 (3)0.030 (3)0.032 (3)0.000 (2)0.002 (2)
C380.047 (3)0.048 (3)0.022 (2)0.027 (3)0.000 (2)0.003 (2)
C390.044 (4)0.088 (6)0.051 (4)0.008 (4)0.017 (3)0.001 (4)
C400.052 (4)0.058 (4)0.041 (3)0.011 (3)0.017 (3)0.001 (3)
C410.056 (5)0.159 (9)0.069 (5)0.018 (6)0.032 (4)0.040 (6)
C420.065 (5)0.139 (8)0.044 (4)0.039 (5)0.004 (4)0.005 (5)
C430.069 (5)0.114 (7)0.058 (4)0.047 (5)0.016 (4)0.020 (5)
C440.054 (4)0.115 (7)0.062 (4)0.044 (5)0.022 (4)0.036 (4)
C450.039 (3)0.065 (4)0.061 (4)0.013 (3)0.012 (3)0.008 (3)
C460.055 (4)0.086 (5)0.042 (3)0.048 (4)0.019 (3)0.021 (3)
C470.070 (5)0.123 (7)0.079 (5)0.051 (5)0.026 (4)0.033 (5)
C480.070 (5)0.075 (5)0.107 (7)0.035 (4)0.019 (5)0.015 (5)
C490.066 (5)0.073 (5)0.073 (5)0.034 (4)0.024 (4)0.015 (4)
C500.047 (4)0.050 (4)0.103 (6)0.020 (3)0.035 (4)0.009 (4)
C510.053 (4)0.060 (4)0.082 (5)0.023 (4)0.023 (4)0.006 (4)
C520.032 (3)0.054 (4)0.060 (4)0.018 (3)0.005 (3)0.002 (3)
C530.063 (5)0.058 (5)0.176 (10)0.019 (4)0.042 (6)0.008 (5)
C540.065 (5)0.063 (5)0.102 (6)0.021 (4)0.020 (5)0.008 (4)
C550.055 (4)0.081 (6)0.071 (5)0.023 (4)0.004 (4)0.004 (4)
C560.042 (4)0.074 (5)0.049 (4)0.003 (3)0.009 (3)0.015 (3)
O10.057 (2)0.059 (3)0.042 (2)0.042 (2)0.0079 (19)0.009 (2)
O20.101 (4)0.089 (4)0.070 (3)0.073 (3)0.002 (3)0.014 (3)
P10.0213 (6)0.0213 (6)0.0294 (11)0.0106 (3)0.0000.000
P20.0181 (6)0.0159 (6)0.0278 (6)0.0068 (5)0.0022 (5)0.0028 (5)
P30.0246 (6)0.0246 (6)0.0199 (10)0.0123 (3)0.0000.000
P40.0368 (8)0.0368 (8)0.0208 (10)0.0184 (4)0.0000.000
P50.0368 (8)0.0461 (8)0.0302 (7)0.0171 (7)0.0067 (6)0.0058 (6)
Ag10.0379 (3)0.0379 (3)0.0295 (3)0.01896 (13)0.0000.000
Ag20.0183 (2)0.0183 (2)0.0213 (3)0.00914 (10)0.0000.000
Ag30.0367 (3)0.0367 (3)0.0239 (3)0.01836 (13)0.0000.000
N10.029 (2)0.029 (2)0.034 (4)0.0144 (11)0.0000.000
Geometric parameters (Å, º) top
C1—N11.460 (6)C33—P41.841 (5)
C1—C21.541 (9)C34—C351.399 (8)
C1—H1A0.9700C34—H340.9300
C1—H1B0.9700C35—C361.413 (8)
C2—O11.227 (7)C35—H350.9300
C2—O21.263 (7)C36—C371.349 (8)
C3—C81.380 (6)C36—H360.9300
C3—C41.395 (6)C37—C381.402 (7)
C3—P11.821 (4)C37—H370.9300
C4—C51.381 (7)C38—H380.9300
C4—H40.9300C39—C401.361 (9)
C5—C61.385 (7)C39—C441.420 (10)
C5—H50.9300C39—P51.826 (7)
C6—C71.384 (7)C40—C411.381 (9)
C6—H60.9300C40—H400.9300
C7—C81.376 (7)C41—C421.419 (13)
C7—H70.9300C41—H410.9300
C8—H80.9300C42—C431.407 (11)
C9—C101.382 (6)C42—H420.9300
C9—C141.393 (6)C43—C441.397 (10)
C9—P21.839 (5)C43—H430.9300
C10—C111.399 (6)C44—H440.9300
C10—H100.9300C45—C501.395 (9)
C11—C121.367 (7)C45—C461.406 (8)
C11—H110.9300C45—P51.830 (7)
C12—C131.396 (7)C46—C471.388 (10)
C12—H120.9300C46—H460.9300
C13—C141.378 (7)C47—C481.417 (11)
C13—H130.9300C47—H470.9300
C14—H140.9300C48—C491.406 (10)
C15—C161.387 (6)C48—H480.9300
C15—C201.403 (6)C49—C501.404 (10)
C15—P21.824 (4)C49—H490.9300
C16—C171.392 (6)C50—H500.9300
C16—H160.9300C51—C521.399 (9)
C17—C181.368 (7)C51—C561.441 (10)
C17—H170.9300C51—P51.778 (7)
C18—C191.379 (7)C52—C531.310 (10)
C18—H180.9300C52—H520.9300
C19—C201.397 (7)C53—C541.464 (12)
C19—H190.9300C53—H530.9300
C20—H200.9300C54—C551.388 (11)
C21—C261.387 (6)C54—H540.9300
C21—C221.394 (6)C55—C561.399 (10)
C21—P21.828 (4)C55—H550.9300
C22—C231.403 (6)C56—H560.9300
C22—H220.9300O1—Ag12.599 (4)
C23—C241.383 (7)P1—C3i1.821 (4)
C23—H230.9300P1—C3ii1.821 (5)
C24—C251.392 (7)P1—Ag12.339 (2)
C24—H240.9300P2—Ag22.6210 (11)
C25—C261.370 (6)P3—C27iii1.838 (5)
C25—H250.9300P3—C27iv1.838 (4)
C26—H260.9300P3—Ag22.589 (2)
C27—C281.384 (6)P4—C33iii1.841 (5)
C27—C321.397 (7)P4—C33iv1.841 (5)
C27—P31.838 (4)P4—Ag32.582 (2)
C28—C291.391 (7)P5—Ag32.5862 (14)
C28—H280.9300Ag1—N12.324 (7)
C29—C301.382 (8)Ag1—O1ii2.599 (4)
C29—H290.9300Ag1—O1i2.599 (4)
C30—C311.385 (7)Ag2—P2iii2.6210 (11)
C30—H300.9300Ag2—P2iv2.6211 (11)
C31—C321.378 (7)Ag3—P5iii2.5861 (14)
C31—H310.9300Ag3—P5iv2.5861 (14)
C32—H320.9300N1—C1i1.460 (6)
C33—C381.379 (7)N1—C1ii1.460 (6)
C33—C341.384 (7)
N1—C1—C2113.5 (5)C33—C38—H38120.0
N1—C1—H1A108.9C37—C38—H38120.0
C2—C1—H1A108.9C40—C39—C44120.4 (6)
N1—C1—H1B108.9C40—C39—P5119.8 (5)
C2—C1—H1B108.9C44—C39—P5119.9 (6)
H1A—C1—H1B107.7C39—C40—C41123.7 (7)
O1—C2—O2125.7 (6)C39—C40—H40118.1
O1—C2—C1119.6 (5)C41—C40—H40118.1
O2—C2—C1114.8 (6)C40—C41—C42117.0 (8)
C8—C3—C4118.7 (4)C40—C41—H41121.5
C8—C3—P1118.4 (3)C42—C41—H41121.5
C4—C3—P1122.9 (3)C43—C42—C41119.7 (7)
C5—C4—C3120.1 (5)C43—C42—H42120.1
C5—C4—H4119.9C41—C42—H42120.1
C3—C4—H4119.9C44—C43—C42121.7 (8)
C4—C5—C6120.3 (5)C44—C43—H43119.2
C4—C5—H5119.9C42—C43—H43119.2
C6—C5—H5119.9C43—C44—C39117.2 (8)
C7—C6—C5119.8 (5)C43—C44—H44121.4
C7—C6—H6120.1C39—C44—H44121.4
C5—C6—H6120.1C50—C45—C46123.0 (7)
C8—C7—C6119.6 (5)C50—C45—P5120.4 (6)
C8—C7—H7120.2C46—C45—P5116.6 (5)
C6—C7—H7120.2C47—C46—C45118.8 (6)
C7—C8—C3121.5 (5)C47—C46—H46120.6
C7—C8—H8119.2C45—C46—H46120.6
C3—C8—H8119.2C46—C47—C48120.3 (7)
C10—C9—C14119.0 (4)C46—C47—H47119.9
C10—C9—P2123.2 (3)C48—C47—H47119.9
C14—C9—P2117.8 (3)C49—C48—C47119.0 (8)
C9—C10—C11120.7 (4)C49—C48—H48120.5
C9—C10—H10119.7C47—C48—H48120.5
C11—C10—H10119.7C50—C49—C48121.9 (7)
C12—C11—C10119.7 (4)C50—C49—H49119.0
C12—C11—H11120.1C48—C49—H49119.0
C10—C11—H11120.1C45—C50—C49116.9 (7)
C11—C12—C13120.2 (5)C45—C50—H50121.5
C11—C12—H12119.9C49—C50—H50121.5
C13—C12—H12119.9C52—C51—C56118.8 (7)
C14—C13—C12120.0 (5)C52—C51—P5121.3 (6)
C14—C13—H13120.0C56—C51—P5119.9 (6)
C12—C13—H13120.0C53—C52—C51125.9 (7)
C13—C14—C9120.5 (4)C53—C52—H52117.1
C13—C14—H14119.8C51—C52—H52117.1
C9—C14—H14119.8C52—C53—C54116.9 (8)
C16—C15—C20119.0 (4)C52—C53—H53121.6
C16—C15—P2119.4 (3)C54—C53—H53121.6
C20—C15—P2121.7 (3)C55—C54—C53118.6 (8)
C15—C16—C17120.4 (4)C55—C54—H54120.7
C15—C16—H16119.8C53—C54—H54120.7
C17—C16—H16119.8C54—C55—C56123.6 (8)
C18—C17—C16120.7 (4)C54—C55—H55118.2
C18—C17—H17119.7C56—C55—H55118.2
C16—C17—H17119.7C55—C56—C51115.8 (8)
C17—C18—C19119.7 (5)C55—C56—H56122.1
C17—C18—H18120.1C51—C56—H56122.1
C19—C18—H18120.1C2—O1—Ag1108.3 (4)
C18—C19—C20120.8 (5)C3i—P1—C3ii104.14 (18)
C18—C19—H19119.6C3i—P1—C3104.14 (18)
C20—C19—H19119.6C3ii—P1—C3104.14 (18)
C19—C20—C15119.5 (4)C3i—P1—Ag1114.39 (15)
C19—C20—H20120.3C3ii—P1—Ag1114.39 (15)
C15—C20—H20120.3C3—P1—Ag1114.39 (15)
C26—C21—C22118.7 (4)C15—P2—C21101.7 (2)
C26—C21—P2118.1 (3)C15—P2—C9103.28 (19)
C22—C21—P2123.2 (3)C21—P2—C9102.69 (19)
C21—C22—C23120.1 (4)C15—P2—Ag2116.05 (14)
C21—C22—H22120.0C21—P2—Ag2116.10 (14)
C23—C22—H22120.0C9—P2—Ag2115.02 (14)
C24—C23—C22119.8 (4)C27iii—P3—C27iv102.95 (17)
C24—C23—H23120.1C27iii—P3—C27102.95 (17)
C22—C23—H23120.1C27iv—P3—C27102.95 (17)
C23—C24—C25120.0 (4)C27iii—P3—Ag2115.39 (15)
C23—C24—H24120.0C27iv—P3—Ag2115.39 (15)
C25—C24—H24120.0C27—P3—Ag2115.40 (15)
C26—C25—C24119.8 (5)C33—P4—C33iii102.83 (18)
C26—C25—H25120.1C33—P4—C33iv102.83 (18)
C24—C25—H25120.1C33iii—P4—C33iv102.83 (18)
C25—C26—C21121.6 (4)C33—P4—Ag3115.49 (15)
C25—C26—H26119.2C33iii—P4—Ag3115.50 (15)
C21—C26—H26119.2C33iv—P4—Ag3115.50 (15)
C28—C27—C32118.8 (4)C51—P5—C39104.4 (3)
C28—C27—P3123.3 (4)C51—P5—C45105.6 (3)
C32—C27—P3117.9 (3)C39—P5—C45103.1 (3)
C27—C28—C29120.2 (5)C51—P5—Ag3114.1 (2)
C27—C28—H28119.9C39—P5—Ag3114.4 (2)
C29—C28—H28119.9C45—P5—Ag3114.0 (2)
C30—C29—C28120.0 (5)N1—Ag1—P1180.0
C30—C29—H29120.0N1—Ag1—O1ii67.92 (8)
C28—C29—H29120.0P1—Ag1—O1ii112.08 (8)
C29—C30—C31120.4 (5)N1—Ag1—O1i67.92 (8)
C29—C30—H30119.8P1—Ag1—O1i112.08 (8)
C31—C30—H30119.8O1ii—Ag1—O1i106.74 (9)
C32—C31—C30119.2 (5)N1—Ag1—O167.92 (8)
C32—C31—H31120.4P1—Ag1—O1112.08 (8)
C30—C31—H31120.4O1ii—Ag1—O1106.74 (9)
C31—C32—C27121.3 (5)O1i—Ag1—O1106.74 (9)
C31—C32—H32119.4P3—Ag2—P2iii109.19 (3)
C27—C32—H32119.4P3—Ag2—P2109.19 (3)
C38—C33—C34119.7 (5)P2iii—Ag2—P2109.75 (3)
C38—C33—P4123.2 (4)P3—Ag2—P2iv109.19 (3)
C34—C33—P4117.1 (4)P2iii—Ag2—P2iv109.75 (3)
C33—C34—C35120.1 (5)P2—Ag2—P2iv109.75 (3)
C33—C34—H34120.0P4—Ag3—P5iii110.11 (3)
C35—C34—H34120.0P4—Ag3—P5iv110.11 (3)
C34—C35—C36119.7 (6)P5iii—Ag3—P5iv108.83 (3)
C34—C35—H35120.1P4—Ag3—P5110.11 (3)
C36—C35—H35120.1P5iii—Ag3—P5108.83 (3)
C37—C36—C35119.2 (5)P5iv—Ag3—P5108.82 (3)
C37—C36—H36120.4C1—N1—C1i111.5 (3)
C35—C36—H36120.4C1—N1—C1ii111.5 (3)
C36—C37—C38121.3 (5)C1i—N1—C1ii111.5 (3)
C36—C37—H37119.3C1—N1—Ag1107.4 (3)
C38—C37—H37119.3C1i—N1—Ag1107.4 (3)
C33—C38—C37120.0 (5)C1ii—N1—Ag1107.4 (3)
N1—C1—C2—O115.2 (8)P5—C51—C52—C53176.6 (7)
N1—C1—C2—O2165.8 (5)C51—C52—C53—C546.8 (12)
C8—C3—C4—C50.7 (7)C52—C53—C54—C557.4 (12)
P1—C3—C4—C5178.0 (4)C53—C54—C55—C563.4 (12)
C3—C4—C5—C60.8 (7)C54—C55—C56—C511.5 (10)
C4—C5—C6—C72.0 (8)C52—C51—C56—C552.6 (9)
C5—C6—C7—C81.5 (8)P5—C51—C56—C55178.9 (5)
C6—C7—C8—C30.0 (8)O2—C2—O1—Ag1158.1 (6)
C4—C3—C8—C71.1 (7)C1—C2—O1—Ag120.8 (7)
P1—C3—C8—C7177.6 (4)C8—C3—P1—C3i88.0 (5)
C14—C9—C10—C110.0 (7)C4—C3—P1—C3i90.7 (3)
P2—C9—C10—C11179.7 (3)C8—C3—P1—C3ii163.2 (4)
C9—C10—C11—C120.8 (7)C4—C3—P1—C3ii18.1 (4)
C10—C11—C12—C131.3 (7)C8—C3—P1—Ag137.6 (4)
C11—C12—C13—C141.0 (8)C4—C3—P1—Ag1143.7 (3)
C12—C13—C14—C90.1 (7)C16—C15—P2—C21154.3 (4)
C10—C9—C14—C130.3 (7)C20—C15—P2—C2125.4 (4)
P2—C9—C14—C13179.9 (4)C16—C15—P2—C999.5 (4)
C20—C15—C16—C170.1 (7)C20—C15—P2—C980.9 (4)
P2—C15—C16—C17179.5 (3)C16—C15—P2—Ag227.3 (4)
C15—C16—C17—C180.7 (7)C20—C15—P2—Ag2152.3 (3)
C16—C17—C18—C190.9 (7)C26—C21—P2—C1567.2 (4)
C17—C18—C19—C200.6 (8)C22—C21—P2—C15113.8 (4)
C18—C19—C20—C150.1 (7)C26—C21—P2—C9173.8 (3)
C16—C15—C20—C190.2 (7)C22—C21—P2—C97.1 (4)
P2—C15—C20—C19179.8 (4)C26—C21—P2—Ag259.8 (4)
C26—C21—C22—C230.7 (6)C22—C21—P2—Ag2119.3 (3)
P2—C21—C22—C23179.8 (3)C10—C9—P2—C1511.9 (4)
C21—C22—C23—C240.6 (7)C14—C9—P2—C15167.9 (3)
C22—C23—C24—C250.7 (7)C10—C9—P2—C2193.6 (4)
C23—C24—C25—C260.6 (7)C14—C9—P2—C2186.6 (4)
C24—C25—C26—C212.0 (7)C10—C9—P2—Ag2139.3 (3)
C22—C21—C26—C252.1 (6)C14—C9—P2—Ag240.4 (4)
P2—C21—C26—C25178.8 (4)C28—C27—P3—C27iii102.6 (3)
C32—C27—C28—C290.6 (7)C32—C27—P3—C27iii77.7 (5)
P3—C27—C28—C29179.1 (4)C28—C27—P3—C27iv4.2 (5)
C27—C28—C29—C302.2 (7)C32—C27—P3—C27iv175.5 (3)
C28—C29—C30—C312.2 (7)C28—C27—P3—Ag2130.8 (4)
C29—C30—C31—C320.7 (8)C32—C27—P3—Ag248.9 (4)
C30—C31—C32—C270.8 (7)C38—C33—P4—C33iii101.8 (3)
C28—C27—C32—C310.9 (7)C34—C33—P4—C33iii78.0 (5)
P3—C27—C32—C31179.4 (4)C38—C33—P4—C33iv4.8 (5)
C38—C33—C34—C350.9 (8)C34—C33—P4—C33iv175.4 (4)
P4—C33—C34—C35179.3 (4)C38—C33—P4—Ag3131.5 (4)
C33—C34—C35—C360.5 (9)C34—C33—P4—Ag348.7 (4)
C34—C35—C36—C371.2 (9)C52—C51—P5—C3972.5 (6)
C35—C36—C37—C380.6 (8)C56—C51—P5—C39105.9 (6)
C34—C33—C38—C371.5 (7)C52—C51—P5—C45179.2 (5)
P4—C33—C38—C37178.6 (4)C56—C51—P5—C452.4 (6)
C36—C37—C38—C330.8 (8)C52—C51—P5—Ag353.2 (6)
C44—C39—C40—C411.4 (13)C56—C51—P5—Ag3128.4 (5)
P5—C39—C40—C41179.2 (7)C40—C39—P5—C51175.4 (7)
C39—C40—C41—C424.7 (14)C44—C39—P5—C514.0 (7)
C40—C41—C42—C436.2 (14)C40—C39—P5—C4574.4 (7)
C41—C42—C43—C444.8 (13)C44—C39—P5—C45106.2 (6)
C42—C43—C44—C391.4 (11)C40—C39—P5—Ag349.9 (7)
C40—C39—C44—C430.4 (11)C44—C39—P5—Ag3129.5 (5)
P5—C39—C44—C43179.0 (5)C50—C45—P5—C51101.5 (6)
C50—C45—C46—C473.9 (11)C46—C45—P5—C5176.4 (6)
P5—C45—C46—C47178.2 (6)C50—C45—P5—C397.8 (6)
C45—C46—C47—C484.1 (12)C46—C45—P5—C39174.3 (5)
C46—C47—C48—C492.7 (13)C50—C45—P5—Ag3132.4 (5)
C47—C48—C49—C501.0 (12)C46—C45—P5—Ag349.7 (6)
C46—C45—C50—C492.1 (10)C2—C1—N1—C1i163.9 (5)
P5—C45—C50—C49179.9 (5)C2—C1—N1—C1ii70.9 (8)
C48—C49—C50—C450.6 (11)C2—C1—N1—Ag146.5 (5)
C56—C51—C52—C531.8 (11)
Symmetry codes: (i) x+y+1, x+2, z; (ii) y+2, xy+1, z; (iii) x+y+1, x+1, z; (iv) y+1, xy, z.

Experimental details

Crystal data
Chemical formula[Ag(C18H15P)4]2[Ag(C6H6NO6)(C18H15P)]
Mr2872.15
Crystal system, space groupTrigonal, P3
Temperature (K)110
a, c (Å)19.0095 (5), 31.9862 (10)
V3)10010.0 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerOxford Gemini S
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.699, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
32447, 12365, 8561
Rint0.049
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.197, 1.05
No. of reflections12365
No. of parameters572
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.101P)2 + 10.4365P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.34, 0.64

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

 

Acknowledgements

MK thanks the Fonds der Chemischen Industrie for a Chemiefonds fellowship. This work was performed within the Federal Cluster of Excellence EXC 1075 MERGE Technologies for Multifunctional Lightweight Structures and supported by the German Research Foundation (DFG), the financial support of which is gratefully acknowledged.

References

First citationAdner, D., Möckel, S., Korb, M., Buschbeck, R., Rüffer, T., Schulze, S., Mertens, L., Hietschold, M., Mehring, M. & Lang, H. (2013). Dalton Trans. 42, 15599–15609.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBowmaker, G. A., Healy, P. C., Engelhardt, L. M., Kildea, J. D., Skelton, B. W. & White, A. H. (1990). Aust. J. Chem. 43, 1697–1705.  CSD CrossRef CAS Web of Science Google Scholar
First citationChen, C. L., Zhang, Q., Jiang, J. J., Wang, Q. & Su, C. Y. (2005). Aust. J. Chem. 58, 115–118.  Web of Science CSD CrossRef CAS Google Scholar
First citationCotrait, M. & Joussot-Dubien, J. (1966). Bull. Soc. Chim. Fr. 1, 114–116.  Google Scholar
First citationDung, N. H., Viossat, B., Busnot, A., Perez, J. M. G., Garcia, S. G. & Gutierrez, J. N. (1988). Inorg. Chem. 27, 1227–1231.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFields, E. K. & Meyerson, S. (1976). J. Org. Chem. 41, 916–920.  CrossRef CAS Web of Science Google Scholar
First citationFrenzel, P., Jakob, A., Schaarschmidt, D., Rüffer, T. & Lang, H. (2014). Acta Cryst. E70, 174–177.  CSD CrossRef IUCr Journals Google Scholar
First citationGilles, S., Tuchscherer, A., Lang, H. & Simon, U. (2013). J. Colloid Interface Sci. 406, 256–262.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHausner, S., Weis, S., Elssner, M. & Wielage, B. (2014). Adv. Mater. Res. 925, 420–427.  CrossRef Google Scholar
First citationHirshfeld, F. L. (1976). Acta Cryst. A32, 239–244.  CrossRef IUCr Journals Web of Science Google Scholar
First citationHoard, J. L., Silverton, E. W. & Silverton, J. V. (1968). J. Am. Chem. Soc. 90, 2300–2308.  CSD CrossRef CAS Web of Science Google Scholar
First citationJakob, A., Schmidt, H., Walfort, B., Rheinwald, G., Frühauf, S., Schulz, S. E., Gessner, T. & Lang, H. (2005). Z. Anorg. Allg. Chem. 631, 1079–1086.  Web of Science CSD CrossRef CAS Google Scholar
First citationKumari, N., Ward, B. D., Kar, S. & Mishra, L. (2012). Polyhedron, 33, 425–434.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiang, D.-C., Qiao, G.-Z. & Li, C.-Q. (1964). Acta Phys. Sin. 20, 1153–1163.  Google Scholar
First citationMcArdle, P. (1995). J. Appl. Cryst. 28, 65.  CrossRef IUCr Journals Google Scholar
First citationNg, S. W. (2012). Acta Cryst. E68, m1536.  CSD CrossRef IUCr Journals Google Scholar
First citationNoll, J., Frenzel, P., Lang, H., Hausner, S., Elssner, M. & Wielage, B. (2014). Proceedings of the 17th Materials Technical Symposium (Werkstofftechnische Kolloquium), pp. 242–246. TU Chemnitz, Germany.  Google Scholar
First citationNovitchi, G., Ciornea, V., Costes, J.-P., Gulea, A., Kazheva, O. N., Shova, S. & Arion, V. B. (2010). Polyhedron, 29, 2258–2261.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.  Google Scholar
First citationPelizzi, C., Pelizzi, G. & Tarasconi, P. (1984). J. Organomet. Chem. 277, 29–35.  CSD CrossRef CAS Web of Science Google Scholar
First citationPolstorff, K. & Meyer, H. (1912). Ber. Dtsch. Chem. Ges. 45, 1905–1912.  CrossRef CAS Google Scholar
First citationRüffer, T., Lang, H., Nawaz, S., Isab, A. A., Ahmad, S. & Athar, M. M. (2011). J. Struct. Chem. 52, 1025–1029.  Google Scholar
First citationScheideler, W. S., Jang, J., Karim, M. A. U., Kitsomboonloha, R., Zeumault, A. & Subramanian, V. (2015). Appl. Mater. Interfaces, 7, 12679–12687.  Web of Science CrossRef CAS Google Scholar
First citationSchliebe, C., Jiang, K., Schulze, S., Hietschold, M., Cai, W.-B. & Lang, H. (2013). Chem. Commun. 49, 3991–3993.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteffan, M., Jakob, A., Claus, P. & Lang, H. (2009). Catal. Commun. 10, 437–441.  Web of Science CrossRef CAS Google Scholar
First citationSun, D., Zhang, N., Xu, Q. J., Wei, Z.-H., Huang, R. B. & Zheng, L. S. (2011). Inorg. Chim. Acta, 368, 67–73.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilcoxon, J. & Abrams, B. L. (2006). Chem. Soc. Rev. 35, 1162–1194.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, L., Anderson, R. M., Crooks, R. M. & Henkelman, G. (2015). Surf. Sci. 640, 65–72.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 3| March 2016| Pages 318-321
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds