research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 3| March 2016| Pages 283-286

Crystal structure of 3-{5-[3-(4-fluoro­phen­yl)-1-iso­propyl-1H-indol-2-yl]-1H-pyrazol-1-yl}indolin-2-one ethanol monosolvate

CROSSMARK_Color_square_no_text.svg

aUniversity Malaysia Pahang, Faculty of Industrial Sciences and Technology, 26300 Gambang, Kuantan, Pahang, Malaysia, bDepartment of Chemistry, KLS's Gogte Institute of Technology, Jnana Ganga, Udyambag, Belagavi-590008 Karnataka, India, cSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: lutfor73@gmail.com

Edited by S. Parkin, University of Kentucky, USA (Received 10 December 2015; accepted 26 January 2016; online 3 February 2016)

The title indolin-2-one compound, C28H23FN4O·C2H6O, crystallizes as a 1:1 ethanol solvate. The ethanol mol­ecule is disordered over two positions with refined site occupancies of 0.560 (14) and 0.440 (14). The pyrazole ring makes dihedral angles of 84.16 (10) and 85.33 (9)° with the indolin-2-one and indole rings, respectively, whereas the dihedral angle between indolin-2-one and indole rings is 57.30 (7)°. In the crystal, the components are linked by N—H⋯O and O—H⋯O hydrogen bonds, forming an inversion mol­ecule–solvate 2:2 dimer with R44(12) ring motifs. The crystal structure is consolidated by ππ inter­action between pairs of inversion-related indolin-2-one rings [inter­planar spacing = 3.599 (2) Å].

1. Chemical context

Heterocyclic compounds containing the pyrazolone nucleus, indole, and its derivatives play an important role in biological activities. The synthesis and biological activity of some new indole derivatives containing a pyrazole moiety have been reported (Raju et al., 2013[Raju, P. A. G., Mallikarjunarao, R., Gopal, K. V., Sreeramulu, J., Reddy, D. M., Krishnamurthi, K. P. & Reddy, S. R. (2013). J. Chem. Pharm. Res. 5, 21-27.]). Pyrazole and its analogues have been found to exhibit industrial and biologically active applications (el-Kashef et al., 2000[el-Kashef, H. S., el-Emary, T., Gasquet, M., Timon-David, P., Maldonado, J. & Vanelle, P. (2000). Pharmazie, 55, 572-576.]; Taha et al., 2001[Taha, M., Moukha-Chafiq, O., Lazrek, H. B., Vasseur, J. & Imbach, J. (2001). Nucleosides Nucleotides Nucleic Acids, 20, 955-958.]; Brzozowski & Sączewski,, 2002[Brzozowski, Z. & Sączewski, F. (2002). Eur. J. Med. Chem. 37, 709-720.]). Consequently, synthesis of indole derivatives has been a major topic in organic and medicinal chemistry over the past few decades. Nitro­gen-containing heterocycles are universal systems in nature and are consequently considered as privileged structures in drug discovery (Raju et al., 2013[Raju, P. A. G., Mallikarjunarao, R., Gopal, K. V., Sreeramulu, J., Reddy, D. M., Krishnamurthi, K. P. & Reddy, S. R. (2013). J. Chem. Pharm. Res. 5, 21-27.]). A literature survey shows that some pyrazoles plays an essential role in biologically active compounds and also in medicinal chemistry (Penning et al., 2006[Penning, T. D., Khilevich, A., Chen, B. B., Russell, M. A., Boys, M. L., Wang, Y., Duffin, T., Engleman, V. W., Finn, M. B., Freeman, S. K., Hanneke, M. L., Keene, J. L., Klover, J. A., Nickols, G. A., Nickols, M. A., Rader, R. K., Settle, S. L., Shannon, K. E., Steininger, C. N., Westlin, M. M. & Westlin, W. F. (2006). Bioorg. Med. Chem. Lett. 16, 3156-3161.]), exhibiting phenomena such as anti­bacterial (Pevarello et al., 2006[Pevarello, P., Fancelli, D., Vulpetti, A., Amici, R., Villa, M., Pittalà, V., Vianello, P., Cameron, A., Ciomei, M., Mercurio, C., Bischoff, J. R., Roletto, F., Varasi, M. & Brasca, M. G. (2006). Bioorg. Med. Chem. Lett. 16, 1084-1090.]), anti­fungal, anti­viral (Meghashyam et al., 2011[Meghashyam, N. N. (2011). J. Chem. Pharm. Res. 3, 38-47.]), anti-oxidant (Singarave & Sarkkarai, 2011[Singarave, M. & Sarkkarai, A. (2011). J. Chem. Pharm. Res. 3, 402-413.]), anti-inflammatory (Mana et al., 2010[Mana, S., Pahari, N. & Sharma, N. K. (2010). The Pharma. Res. 3, 51-59.]), and anti­cancer (Pathak et al., 2010[Pathak, T. P., Gligorich, K. M., Welm, B. E. & Sigman, M. S. (2010). J. Am. Chem. Soc. 132, 7870-7871.]) effects etc. Certain indole derivatives have also been reported to exhibit wide-spectrum activities such as anti­parkinsonian and anti­convulsant effects (Siddiqui et al., 2008[Siddiqui, N., Alam, M. S. & Ahsan, W. (2008). Acta Pharm. 58, 445-454.]; Archana et al., 2002[Archana, V. K. S., Srivastava, V. K. & Kumar, A. (2002). Eur. J. Med. Chem. 37, 873-882.]). In addition, pyrazoles have played a crucial role in the development of theory in heterocyclic chemistry, and are also used extensively as useful synthons in organic synthesis. Isatin, an endogenous indole and its derivatives have been shown to exhibit a wide range of biological activities (Daisley & Shah, 1984[Daisley, R. W. & Shah, V. K. (1984). J. Pharm. Sci. 73, 407-408.]; Pandeya et al., 1999[Pandeya, S. N., Sriram, D., Nath, G. & DeClercq, E. (1999). Eur. J. Pharm. Sci. 9, 25-31.]). In addition, the biological significance of fluvastatin, an indole derivative, is well established (Repič et al., 2001[Repič, O., Prasad, K. & Lee, G. T. (2001). Org. Process Res. Dev. 5, 519-527.]). As part of our studies in this area, we now present a pyrazole as a central unit linked with 3-[3-(4-fluoro­phen­yl)-1-iso­propyl­indolin-2-yl]acryl­aldehyde and 3-hydrazonoindolin-2-one, synthesized according to a procedure reported in the literature (Elkanzi, 2013[Elkanzi, N. A. A. (2013). Int. J. Res. Pharm. Biomed. Sci. 4, 17-26.]).

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound (Fig. 1[link]) comprises of a 3-{5-[3-(4-fluoro­phen­yl)-1-isopropyl-1H-indol-2-yl]-1H-pyrazol-1-yl}indolin-2-one and an ethanol solvent mol­ecule. The pyrrolidin-2-one ring has an essentially planar conformation, with maximum deviation from the mean plane of the ring of 0.04 (2) Å at C25. The pyrazole ring is almost planar [maximum deviation of ±0.006 (2) Å for atoms N2 and C15], as are the fluoro­phenyl [maximum deviation of ± 0.011 (2) Å for atoms C10 and C13] and indole [maximum deviation of ± 0.0019 (2) Å for atom C14] rings. The connecting pyrazole ring is almost normal to both indol-2-one and indole rings with dihedral angles of 84.16 (10)° and 85.33 (9)°, respectively, while the indole and fluoro­phenyl rings are tilted toward one another by 40.74 (8)°. The bond lengths and angles in the fluoro­phenyl-indole moiety of the title mol­ecule are comparable to those of previously reported compounds (Kulkarni et al., 2015a[Kulkarni, A. D., Rahman, M. L., Mohd. Yusoff, M., Kwong, H. C. & Quah, C. K. (2015a). Acta Cryst. E71, 1411-1413.],b[Kulkarni, A. D., Rahman, M. L., Mohd. Yusoff, M., Kwong, H. C. & Quah, C. K. (2015b). Acta Cryst. E71, 1525-1527.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Only the major component of the disordered ethanol solvent mol­ecule is shown.

3. Supra­molecular features

In the crystal, the main mol­ecules and ethanol solvate mol­ecules are linked via pairs of N4—H1N1⋯O2 and O2—H1O2⋯O1 hydrogen bonds (Table 1[link]), forming an inversion-related mol­ecule-solvate 2:2 dimer with an [R_{4}^{4}](12) ring motif (Fig. 2[link]) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). The crystal structure also features ππ inter­actions between pairs of inversion-related (1 − x, 1 − y, 1 − z) indolin-2-one rings with an inter­planar spacing of 3.599 (2) Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H1N1⋯O2i 0.85 (2) 1.92 (3) 2.750 (19) 165 (2)
O2—H1O2⋯O1ii 0.98 (9) 1.67 (9) 2.650 (2) 172 (11)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y-1, z.
[Figure 2]
Figure 2
The crystal packing of the title compound viewed along the b axis. The N—H⋯O and O—H⋯O hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 35.6, last update May 2015; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) using 4-(λ1-azan­yl)-5-methyl-2,4-di­hydro-3H-1,2,4-triazole-3-thione as the main skeleton, revealed the presence of 57 structures containing the triazole-thione moiety but only four structures containing the fluvastatin nucleus. These include 5-[3-(4-fluoro­phen­yl)-1-isopropyl-1H-indol-2-yl]-1-(X)penta-2,4-diene-1-one, where X = 4-nitro­phenyl (NUHNAH), 2-hy­droxy­phenyl (NUHNEL), 4-meth­oxy­phenyl (NUHNIP) and 4-chloro­phenyl (NUHNOV) (Kalalbandi et al., 2015[Kalalbandi, V. K. A., Seetharamappa, J. & Katrahalli, U. (2015). RSC Adv. 5, 38748-38759.]). In these four compounds, the 4-fluoro­phenyl ring of the fluvastatin nucleus is inclined to the indole ring by dihedral angles ranging from ca 46.66 to 68.59°, compared to 40.74 (8)° for the title compound.

5. Synthesis and crystallization

The title compound was synthesized by refluxing a hot methano­lic solution (30 mL) of 3-(3-(4-fluoro­phen­yl)-1-iso­propyl­indolin-2-yl)acryl­aldehyde (0.01mol) and a hot methano­lic solution (30 mL) of 3-hydrazonoeindolin-2-one (0.01mol) for 5 h with addition of 4 drops of conc. hydro­chloric acid (Ajaykumar et al., 2009[Ajaykumar, K., Sangamesh, A. P. & Prema, S. B. (2009). Int. J. Electrochem. Sci. 4, 717-729.]). The product obtained after evaporation of the solvent was filtered, washed with cold MeOH and recrystallized from ETOH. The single crystal used for the crystal analysis was grown by the slow evaporation of a solution in chloro­form–ethanol (1:1). Yield (m.p.): 78% (551 K). 1HNMR (CDCl3) in p.p.m.: 7.94 (s, 1H, NH, indole), 7.76 (d, 1H, Ar-H), 7.72 (m, 2H, Ar–H), 7.37 (m, 2H, Ar-H), 7.32 (t, 1H, Ar-H), 7.20 (t, 1H, Ar-H), 7.13 (d, 1H, Ar-H), 7.10 (d, 2H, Ar-H), 6.77 (t, 1H, Ar-H), 6.70 (d, 1H, Ar-H), 6.67 (d, 1H, pyrazole), 5.48 (d, 2H, pyrazole), 5.37 (s, 1H, indole), 4.73 (m, 1H, isoprop­yl), 1.73 (m, 6H, meth­yl). IR (KBr) cm−1: 3250 (N—H, indole), 2827 (–CH3), 1720 (C=O, ketone), 1618 (C=C, Ar), 1520 (C—C, Ar), 1469 (–CH3), 1221 (C—N).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The ethanol mol­ecule is disordered over two positions with refined site occupancies of 0.560 (14): 0.440 (14). The disorder components were restrained to have similar geometry. The N-bound H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and refined using a riding model with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C28H23FN4O·C2H6O
Mr 496.57
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 297
a, b, c (Å) 9.9754 (8), 10.2139 (8), 14.0294 (11)
α, β, γ (°) 75.7386 (15), 71.0062 (14), 83.1264 (14)
V3) 1308.73 (18)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.42 × 0.22 × 0.22
 
Data collection
Diffractometer Bruker APEXII DUO CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.884, 0.955
No. of measured, independent and observed [I > 2σ(I)] reflections 32072, 5778, 3733
Rint 0.032
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.130, 1.21
No. of reflections 5778
No. of parameters 375
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.15, −0.19
Computer programs: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

Heterocyclic compounds containing the pyrazolone nucleus, indole, and its derivatives play an important role in biological activities. The synthesis and biological activity of some new indole derivatives containing a pyrazole moiety have been reported (Raju et al., 2013" class="citationquerygreen">). Pyrazole and its analogues have been found to exhibit industrial and biologically active applications (el-Kashef et al., 2000; Taha et al., 2001" class="citationquerygreen">; Brzozowski & Sączewski,, 2002" class="citationquerygreen">). Consequently, synthesis of indole derivatives has been a major topic in organic and medicinal chemistry over the past few decades. Nitro­gen-containing heterocycles are universal systems in nature and are consequently considered as privileged structures in drug discovery (Raju et al., 2013). A literature survey shows that some pyrazoles plays an essential role in biologically active compounds and also in medicinal chemistry (Penning et al., 2006" class="citationquerygreen">), exhibiting phenomena such as anti­bacterial (Pevarello et al., 2006), anti­fungal, anti­viral (Meghashyam et al., 2011), anti-oxidant (Singarave & Sarkkarai, 2011), anti-inflammatory (Mana et al., 2010), and anti­cancer (Pathak et al., 2010) effects etc. Certain indole derivatives have also been reported to exhibit wide-spectrum activities such as anti­parkinsonian and anti­convulsant effects (Siddiqui et al., 2008; Archana et al., 2002). In addition, pyrazoles have played a crucial role in the development of theory in heterocyclic chemistry, and are also used extensively as useful synthons in organic synthesis. Isatin, an endogenous indole and its derivatives have been shown to exhibit a wide range of biological activities (Daisley & Shah, 1984; Pandeya et al., 1999). In addition, the biological significance of fluvastatin, an indole derivative, is well established (Repič et al., 2001). Thus we herein present a pyrazole as a central unit linked with 3-[3-(4-fluoro­phenyl)-1-iso­propyl­indolin-2-yl]acryl­aldehyde and 3-hydrazonoindolin-2-one, synthesized according to a procedure reported in the literature (Elkanzi, 2013).

Structural commentary top

\ The asymmetric unit of the title compound (Fig. 1) comprises of a 3-{5-[3-(4-fluoro­phenyl)-1-iso­propyl-1H-indol-2-yl]-1H-pyrazol-\ 1-yl}indolin-2-one and an ethanol solvent molecule. Pyrrolidin-2-one ring has an essentially planar conformation, with maximum deviation from the mean plane of the ring of 0.04 (2) Å at C25. The pyrazole ring is almost planar [maximum deviation of ±0.006 (2) Å for atoms N2 and C15], as are the fluoro­phenyl [maximum deviation of ± 0.011 (2) Å for atoms C10 and C13] and indole [maximum deviation of ± 0.0019 (2) Å for atom C14] rings. The connecting pyrazole ring is almost normal to both indol-2-one and indole rings with dihedral angles of 84.16 (10)° and 85.33 (9)°, respectively, while the indole and fluoro­phenyl rings are tilted toward one another by 40.74 (8)°. The bond lengths and angles in the fluoro­phenyl-indole moiety of the title molecule are comparable to those of previously reported compounds (Kulkarni et al., 2015a,b).

Supra­molecular features top

In the crystal, the main molecules and ethanol solvate molecules are linked via pairs of N4—H1N1···O2 and O2—H1O2···O1 hydrogen bonds (Table 1), forming an inversion-related molecule-solvate 2:2 dimer with an R44(12) ring motif (Fig. 2) (Bernstein et al., 1995" class="citationquerygreen">). The crystal structure is further stabilized by ππ inter­actions between pairs of inversion-related (1 - x, 1 - y, 1 - z) indolin-2-one rings with an inter­planar spacing of 3.599 (2) Å.

Database survey top

\ A search of the Cambridge Structural Database (CSD, Version 35.6, last update May 2015; Groom & Allen, 2014" class="citationquerygreen">) using 4-(λ1-aza­nyl)-5-methyl-2,4-di­hydro-3H-1,2,4-triazole-3-thione as the main skeleton, revealed the presence of 57 structures containing the triazole-thione moiety but only four structures containing the fluvastatin nucleus. These include 5-[3-(4-fluoro­phenyl)-1-iso­propyl-1H-indol-2-yl]-1-(X)penta-2,\ 4-diene-1-one, where X = 4-nitro­phenyl (NUHNAH), 2-hy­droxy­phenyl (NUHNEL), 4-meth­oxy­phenyl (NUHNIP) and 4-chloro­phenyl (NUHNOV) (Kalalbandi et al., 2015). In these four compounds, the 4-fluoro­phenyl ring of the fluvastatin nucleus is inclined to the indole ring by dihedral angles ranging from ca 46.66 to 68.59°, compared to 40.74 (8)° for the title compound.

Synthesis and crystallization top

The title compound was synthesized by refluxing a hot methano­lic solution (30 mL) of 3-(3-(4-fluoro­phenyl)-1-iso­propyl­indolin-2-yl)acryl­aldehyde (0.01mol) and a hot methano­lic solution (30 mL) of 3-hydrazonoeindolin-2-one (0.01mol) for 5 h with addition of 4 drops of conc. hydro­chloric acid (Ajaykumar et al., 2009). The product obtained after evaporation of the solvent was filtered, washed with cold MeOH and recrystallized from ETOH. The single crystal suitable for the crystal analysis was grown by the slow evaporation of a solution in chloro­form–ethanol (1:1). Yield (m.p.): 78% (551 K). 1HNMR (CDCl3) in p.p.m.: 7.94 (s, 1H, NH, indole), 7.76 (d, 1H, Ar—H), 7.72 (m, 2H, Ar–H), 7.37 (m, 2H, Ar—H), 7.32 (t, 1H, Ar—H), 7.20 (t, 1H, Ar—H), 7.13 (d, 1H, Ar—H), 7.10 (d, 2H, Ar—H), 6.77 (t, 1H, Ar—H), 6.70 (d, 1H, Ar—H), 6.67 (d, 1H, pyrazole), 5.48 (d, 2H, pyrazole), 5.37 (s, 1H, indole), 4.73 (m, 1H, iso­propyl), 1.73 (m, 6H, methyl). IR (KBr) cm-1: 3250 (N—H, indole), 2827 (–CH3), 1720 (CO, ketone), 1618 (CC, Ar), 1520 (C—C, Ar), 1469 (–CH3), 1221 (C—N).

Refinement top

The ethanol molecule is disordered over two positions with refined site occupancies of 0.560 (14): 0.440 (14). The disorder components were restrained to have similar geometry. The N-bound H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and refined using a riding model with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.

Related literature top

For related literature, see: Ajaykumar et al., (2009); Kulkarni et al., (2015a); Kulkarni et al., (2015b); Raju et al., (2013); El-kashef et al., (2000); Taha et al., (2001); Brzozowski & Sączewski,, (2002); Penning et al., (2006); Pevarello et al., (2006); Meghashyam et al., (2011); Singarave & Sarkkarai (2011); Mana et al., (2010); Pathak et al., (2010); Siddiqui and Ahsan (2008); Archana et al., (2002); Daisley et al., (1984); Pandeya et al., (1999); Repič et al., (2001); Elkanzi, (2013).

Structure description top

Heterocyclic compounds containing the pyrazolone nucleus, indole, and its derivatives play an important role in biological activities. The synthesis and biological activity of some new indole derivatives containing a pyrazole moiety have been reported (Raju et al., 2013" class="citationquerygreen">). Pyrazole and its analogues have been found to exhibit industrial and biologically active applications (el-Kashef et al., 2000; Taha et al., 2001" class="citationquerygreen">; Brzozowski & Sączewski,, 2002" class="citationquerygreen">). Consequently, synthesis of indole derivatives has been a major topic in organic and medicinal chemistry over the past few decades. Nitro­gen-containing heterocycles are universal systems in nature and are consequently considered as privileged structures in drug discovery (Raju et al., 2013). A literature survey shows that some pyrazoles plays an essential role in biologically active compounds and also in medicinal chemistry (Penning et al., 2006" class="citationquerygreen">), exhibiting phenomena such as anti­bacterial (Pevarello et al., 2006), anti­fungal, anti­viral (Meghashyam et al., 2011), anti-oxidant (Singarave & Sarkkarai, 2011), anti-inflammatory (Mana et al., 2010), and anti­cancer (Pathak et al., 2010) effects etc. Certain indole derivatives have also been reported to exhibit wide-spectrum activities such as anti­parkinsonian and anti­convulsant effects (Siddiqui et al., 2008; Archana et al., 2002). In addition, pyrazoles have played a crucial role in the development of theory in heterocyclic chemistry, and are also used extensively as useful synthons in organic synthesis. Isatin, an endogenous indole and its derivatives have been shown to exhibit a wide range of biological activities (Daisley & Shah, 1984; Pandeya et al., 1999). In addition, the biological significance of fluvastatin, an indole derivative, is well established (Repič et al., 2001). Thus we herein present a pyrazole as a central unit linked with 3-[3-(4-fluoro­phenyl)-1-iso­propyl­indolin-2-yl]acryl­aldehyde and 3-hydrazonoindolin-2-one, synthesized according to a procedure reported in the literature (Elkanzi, 2013).

\ The asymmetric unit of the title compound (Fig. 1) comprises of a 3-{5-[3-(4-fluoro­phenyl)-1-iso­propyl-1H-indol-2-yl]-1H-pyrazol-\ 1-yl}indolin-2-one and an ethanol solvent molecule. Pyrrolidin-2-one ring has an essentially planar conformation, with maximum deviation from the mean plane of the ring of 0.04 (2) Å at C25. The pyrazole ring is almost planar [maximum deviation of ±0.006 (2) Å for atoms N2 and C15], as are the fluoro­phenyl [maximum deviation of ± 0.011 (2) Å for atoms C10 and C13] and indole [maximum deviation of ± 0.0019 (2) Å for atom C14] rings. The connecting pyrazole ring is almost normal to both indol-2-one and indole rings with dihedral angles of 84.16 (10)° and 85.33 (9)°, respectively, while the indole and fluoro­phenyl rings are tilted toward one another by 40.74 (8)°. The bond lengths and angles in the fluoro­phenyl-indole moiety of the title molecule are comparable to those of previously reported compounds (Kulkarni et al., 2015a,b).

In the crystal, the main molecules and ethanol solvate molecules are linked via pairs of N4—H1N1···O2 and O2—H1O2···O1 hydrogen bonds (Table 1), forming an inversion-related molecule-solvate 2:2 dimer with an R44(12) ring motif (Fig. 2) (Bernstein et al., 1995" class="citationquerygreen">). The crystal structure is further stabilized by ππ inter­actions between pairs of inversion-related (1 - x, 1 - y, 1 - z) indolin-2-one rings with an inter­planar spacing of 3.599 (2) Å.

\ A search of the Cambridge Structural Database (CSD, Version 35.6, last update May 2015; Groom & Allen, 2014" class="citationquerygreen">) using 4-(λ1-aza­nyl)-5-methyl-2,4-di­hydro-3H-1,2,4-triazole-3-thione as the main skeleton, revealed the presence of 57 structures containing the triazole-thione moiety but only four structures containing the fluvastatin nucleus. These include 5-[3-(4-fluoro­phenyl)-1-iso­propyl-1H-indol-2-yl]-1-(X)penta-2,\ 4-diene-1-one, where X = 4-nitro­phenyl (NUHNAH), 2-hy­droxy­phenyl (NUHNEL), 4-meth­oxy­phenyl (NUHNIP) and 4-chloro­phenyl (NUHNOV) (Kalalbandi et al., 2015). In these four compounds, the 4-fluoro­phenyl ring of the fluvastatin nucleus is inclined to the indole ring by dihedral angles ranging from ca 46.66 to 68.59°, compared to 40.74 (8)° for the title compound.

For related literature, see: Ajaykumar et al., (2009); Kulkarni et al., (2015a); Kulkarni et al., (2015b); Raju et al., (2013); El-kashef et al., (2000); Taha et al., (2001); Brzozowski & Sączewski,, (2002); Penning et al., (2006); Pevarello et al., (2006); Meghashyam et al., (2011); Singarave & Sarkkarai (2011); Mana et al., (2010); Pathak et al., (2010); Siddiqui and Ahsan (2008); Archana et al., (2002); Daisley et al., (1984); Pandeya et al., (1999); Repič et al., (2001); Elkanzi, (2013).

Synthesis and crystallization top

The title compound was synthesized by refluxing a hot methano­lic solution (30 mL) of 3-(3-(4-fluoro­phenyl)-1-iso­propyl­indolin-2-yl)acryl­aldehyde (0.01mol) and a hot methano­lic solution (30 mL) of 3-hydrazonoeindolin-2-one (0.01mol) for 5 h with addition of 4 drops of conc. hydro­chloric acid (Ajaykumar et al., 2009). The product obtained after evaporation of the solvent was filtered, washed with cold MeOH and recrystallized from ETOH. The single crystal suitable for the crystal analysis was grown by the slow evaporation of a solution in chloro­form–ethanol (1:1). Yield (m.p.): 78% (551 K). 1HNMR (CDCl3) in p.p.m.: 7.94 (s, 1H, NH, indole), 7.76 (d, 1H, Ar—H), 7.72 (m, 2H, Ar–H), 7.37 (m, 2H, Ar—H), 7.32 (t, 1H, Ar—H), 7.20 (t, 1H, Ar—H), 7.13 (d, 1H, Ar—H), 7.10 (d, 2H, Ar—H), 6.77 (t, 1H, Ar—H), 6.70 (d, 1H, Ar—H), 6.67 (d, 1H, pyrazole), 5.48 (d, 2H, pyrazole), 5.37 (s, 1H, indole), 4.73 (m, 1H, iso­propyl), 1.73 (m, 6H, methyl). IR (KBr) cm-1: 3250 (N—H, indole), 2827 (–CH3), 1720 (CO, ketone), 1618 (CC, Ar), 1520 (C—C, Ar), 1469 (–CH3), 1221 (C—N).

Refinement details top

The ethanol molecule is disordered over two positions with refined site occupancies of 0.560 (14): 0.440 (14). The disorder components were restrained to have similar geometry. The N-bound H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and refined using a riding model with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXL2013 (Sheldrick, 2015) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Only the major component of the disordered ethanol solvent molecule is shown.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis. The N—H···O and O—H···O hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
3-{5-[3-(4-Fluorophenyl)-1-isopropyl-1H-indol-2-yl]-1H-pyrazol-1-yl}indolin-2-one ethanol monosolvate top
Crystal data top
C28H23FN4O·C2H6OZ = 2
Mr = 496.57F(000) = 524
Triclinic, P1Dx = 1.260 Mg m3
a = 9.9754 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.2139 (8) ÅCell parameters from 9792 reflections
c = 14.0294 (11) Åθ = 2.3–27.6°
α = 75.7386 (15)°µ = 0.09 mm1
β = 71.0062 (14)°T = 297 K
γ = 83.1264 (14)°Block, colourless
V = 1308.73 (18) Å30.42 × 0.22 × 0.22 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
5778 independent reflections
Radiation source: fine-focus sealed tube3733 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.884, Tmax = 0.955k = 1313
32072 measured reflectionsl = 1818
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0361P)2 + 0.3328P]
where P = (Fo2 + 2Fc2)/3
S = 1.21(Δ/σ)max < 0.001
5778 reflectionsΔρmax = 0.15 e Å3
375 parametersΔρmin = 0.19 e Å3
Crystal data top
C28H23FN4O·C2H6Oγ = 83.1264 (14)°
Mr = 496.57V = 1308.73 (18) Å3
Triclinic, P1Z = 2
a = 9.9754 (8) ÅMo Kα radiation
b = 10.2139 (8) ŵ = 0.09 mm1
c = 14.0294 (11) ÅT = 297 K
α = 75.7386 (15)°0.42 × 0.22 × 0.22 mm
β = 71.0062 (14)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
5778 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3733 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.955Rint = 0.032
32072 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0573 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.21Δρmax = 0.15 e Å3
5778 reflectionsΔρmin = 0.19 e Å3
375 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.95103 (15)0.08376 (14)0.14670 (13)0.0965 (5)
N10.37863 (16)0.67252 (16)0.16316 (12)0.0496 (4)
H1N10.596 (2)0.795 (2)0.5053 (16)0.059*
N20.66480 (15)0.68580 (15)0.23475 (11)0.0477 (4)
N30.77904 (17)0.76065 (17)0.21225 (13)0.0571 (4)
N40.5929 (2)0.7342 (2)0.47443 (14)0.0662 (5)
O10.47523 (17)0.85895 (18)0.36321 (13)0.0801 (5)
C10.28456 (19)0.5768 (2)0.17372 (14)0.0500 (5)
C20.1405 (2)0.5909 (3)0.18238 (16)0.0638 (6)
H2A0.09240.67490.18060.077*
C30.0725 (2)0.4771 (3)0.19350 (18)0.0732 (7)
H3A0.02360.48410.19960.088*
C40.1431 (2)0.3511 (3)0.19594 (18)0.0706 (6)
H4A0.09350.27560.20380.085*
C50.2849 (2)0.3364 (2)0.18689 (16)0.0587 (5)
H5A0.33160.25180.18820.070*
C60.35815 (19)0.45041 (19)0.17569 (13)0.0468 (4)
C70.50280 (18)0.47104 (18)0.16459 (13)0.0436 (4)
C80.62068 (19)0.36889 (18)0.16080 (14)0.0452 (4)
C90.6011 (2)0.2407 (2)0.22518 (16)0.0565 (5)
H9A0.51220.21970.27250.068*
C100.7109 (2)0.1441 (2)0.22023 (19)0.0671 (6)
H10A0.69640.05790.26240.081*
C110.8413 (2)0.1780 (2)0.15208 (19)0.0640 (6)
C120.8657 (2)0.3021 (2)0.08737 (18)0.0613 (5)
H12A0.95560.32250.04160.074*
C130.75482 (19)0.3966 (2)0.09108 (16)0.0522 (5)
H13A0.76990.48090.04600.063*
C140.51043 (18)0.60667 (18)0.15671 (13)0.0432 (4)
C150.63180 (18)0.68060 (17)0.14957 (14)0.0428 (4)
C160.7318 (2)0.75366 (19)0.06796 (15)0.0547 (5)
H16A0.73980.76860.00180.066*
C170.8187 (2)0.8008 (2)0.11080 (16)0.0549 (5)
H17A0.89570.85430.07250.066*
C180.5866 (2)0.6370 (2)0.34278 (14)0.0502 (5)
H18A0.50280.59040.34900.060*
C190.6725 (2)0.5487 (2)0.40595 (14)0.0523 (5)
C200.7444 (2)0.4273 (2)0.39863 (18)0.0666 (6)
H20A0.74230.38230.34900.080*
C210.8208 (3)0.3727 (3)0.4674 (2)0.0833 (7)
H21A0.87150.29060.46320.100*
C220.8225 (3)0.4381 (3)0.5413 (2)0.0877 (8)
H22A0.87460.39980.58630.105*
C230.7486 (3)0.5592 (3)0.55029 (17)0.0770 (7)
H23A0.74890.60300.60100.092*
C240.6745 (2)0.6130 (2)0.48173 (15)0.0583 (5)
C250.5419 (2)0.7586 (2)0.39376 (17)0.0593 (5)
C260.3559 (2)0.8204 (2)0.14204 (17)0.0607 (5)
H26A0.44300.85760.14010.073*
C270.2370 (3)0.8682 (3)0.2271 (2)0.0910 (8)
H27A0.23500.96510.21450.137*
H27B0.25260.82990.29250.137*
H27C0.14800.84010.22810.137*
C280.3389 (3)0.8721 (3)0.0352 (2)0.0960 (9)
H28A0.33470.96910.01900.144*
H28B0.25290.84000.03410.144*
H28C0.41830.83970.01490.144*
O20.3483 (14)0.060 (2)0.4525 (12)0.115 (5)0.560 (14)
H1O20.401 (10)0.016 (8)0.423 (8)0.138*0.560 (14)
C290.1962 (7)0.0616 (11)0.4632 (7)0.088 (2)0.560 (14)
H29A0.16540.14800.42740.106*0.560 (14)
H29B0.17690.00960.43530.106*0.560 (14)
C300.1250 (16)0.039 (2)0.5740 (8)0.186 (9)0.560 (14)
H30A0.02430.04000.58710.279*0.560 (14)
H30B0.14680.11000.60010.279*0.560 (14)
H30C0.15690.04640.60780.279*0.560 (14)
O2A0.3340 (15)0.080 (2)0.4359 (12)0.077 (3)0.440 (14)
H2O20.384 (13)0.024 (9)0.415 (9)0.092*0.440 (14)
C29A0.2173 (11)0.0028 (13)0.5152 (12)0.101 (4)0.440 (14)
H29C0.17180.04910.48220.121*0.440 (14)
H29D0.25500.06990.56320.121*0.440 (14)
C30A0.1171 (11)0.089 (2)0.5688 (13)0.128 (6)0.440 (14)
H30D0.03190.04250.61020.192*0.440 (14)
H30E0.09530.16440.51940.192*0.440 (14)
H30F0.15730.11950.61240.192*0.440 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0752 (9)0.0731 (9)0.1446 (14)0.0267 (7)0.0456 (9)0.0283 (9)
N10.0461 (9)0.0524 (9)0.0552 (9)0.0063 (8)0.0226 (7)0.0154 (7)
N20.0442 (9)0.0535 (9)0.0478 (9)0.0089 (7)0.0156 (7)0.0103 (7)
N30.0507 (10)0.0629 (11)0.0610 (11)0.0173 (8)0.0171 (8)0.0129 (8)
N40.0666 (12)0.0836 (14)0.0578 (11)0.0107 (10)0.0164 (9)0.0328 (10)
O10.0743 (11)0.0801 (11)0.0922 (12)0.0141 (9)0.0286 (9)0.0347 (10)
C10.0439 (11)0.0653 (12)0.0441 (10)0.0005 (9)0.0173 (8)0.0139 (9)
C20.0469 (12)0.0835 (16)0.0632 (13)0.0037 (11)0.0217 (10)0.0167 (11)
C30.0428 (12)0.110 (2)0.0685 (15)0.0097 (13)0.0182 (11)0.0177 (14)
C40.0574 (14)0.0905 (18)0.0691 (15)0.0241 (13)0.0209 (11)0.0151 (12)
C50.0551 (12)0.0682 (13)0.0579 (12)0.0115 (10)0.0187 (10)0.0172 (10)
C60.0435 (10)0.0590 (12)0.0415 (10)0.0048 (9)0.0152 (8)0.0136 (8)
C70.0439 (10)0.0496 (10)0.0415 (10)0.0010 (8)0.0165 (8)0.0139 (8)
C80.0456 (10)0.0481 (11)0.0489 (11)0.0003 (8)0.0200 (8)0.0168 (9)
C90.0552 (12)0.0539 (12)0.0599 (12)0.0033 (10)0.0186 (10)0.0103 (10)
C100.0733 (15)0.0502 (12)0.0804 (16)0.0023 (11)0.0345 (13)0.0066 (11)
C110.0553 (13)0.0572 (13)0.0909 (17)0.0167 (11)0.0365 (12)0.0273 (12)
C120.0465 (12)0.0613 (13)0.0792 (15)0.0015 (10)0.0182 (10)0.0244 (12)
C130.0480 (11)0.0476 (11)0.0623 (12)0.0003 (9)0.0169 (9)0.0156 (9)
C140.0428 (10)0.0486 (10)0.0417 (10)0.0023 (8)0.0172 (8)0.0126 (8)
C150.0440 (10)0.0412 (10)0.0469 (10)0.0044 (8)0.0189 (8)0.0131 (8)
C160.0605 (12)0.0545 (12)0.0474 (11)0.0048 (10)0.0153 (10)0.0085 (9)
C170.0509 (11)0.0497 (11)0.0587 (13)0.0071 (9)0.0102 (10)0.0091 (9)
C180.0468 (11)0.0604 (12)0.0463 (11)0.0129 (9)0.0132 (9)0.0133 (9)
C190.0498 (11)0.0611 (12)0.0459 (11)0.0156 (10)0.0143 (9)0.0056 (9)
C200.0711 (14)0.0623 (14)0.0647 (14)0.0098 (12)0.0221 (12)0.0062 (11)
C210.0802 (17)0.0738 (16)0.0876 (19)0.0054 (13)0.0323 (15)0.0069 (14)
C220.0842 (18)0.106 (2)0.0709 (17)0.0246 (17)0.0405 (14)0.0165 (16)
C230.0804 (17)0.104 (2)0.0514 (13)0.0295 (15)0.0261 (12)0.0049 (13)
C240.0553 (12)0.0755 (15)0.0457 (11)0.0182 (11)0.0141 (9)0.0107 (10)
C250.0486 (12)0.0704 (14)0.0597 (13)0.0066 (11)0.0112 (10)0.0215 (11)
C260.0644 (13)0.0514 (12)0.0739 (14)0.0118 (10)0.0336 (11)0.0173 (10)
C270.0857 (18)0.0839 (18)0.113 (2)0.0301 (15)0.0360 (16)0.0465 (16)
C280.133 (2)0.0728 (17)0.090 (2)0.0009 (16)0.0625 (19)0.0015 (14)
O20.070 (5)0.111 (9)0.192 (12)0.006 (4)0.033 (6)0.099 (9)
C290.081 (5)0.095 (5)0.094 (5)0.007 (3)0.031 (4)0.025 (4)
C300.175 (13)0.31 (2)0.089 (7)0.110 (12)0.025 (7)0.046 (9)
O2A0.064 (7)0.082 (5)0.085 (4)0.007 (5)0.006 (4)0.041 (3)
C29A0.089 (7)0.106 (8)0.109 (9)0.013 (5)0.018 (6)0.038 (7)
C30A0.041 (5)0.148 (9)0.186 (14)0.015 (5)0.006 (6)0.071 (8)
Geometric parameters (Å, º) top
F1—C111.364 (2)C17—H17A0.9300
N1—C11.384 (2)C18—C191.500 (3)
N1—C141.389 (2)C18—C251.532 (3)
N1—C261.470 (2)C18—H18A0.9800
N2—C151.353 (2)C19—C201.365 (3)
N2—N31.356 (2)C19—C241.386 (3)
N2—C181.451 (2)C20—C211.391 (3)
N3—C171.317 (2)C20—H20A0.9300
N4—C251.344 (3)C21—C221.370 (4)
N4—C241.399 (3)C21—H21A0.9300
N4—H1N10.85 (2)C22—C231.374 (4)
O1—C251.218 (3)C22—H22A0.9300
C1—C21.395 (3)C23—C241.371 (3)
C1—C61.406 (3)C23—H23A0.9300
C2—C31.367 (3)C26—C271.515 (3)
C2—H2A0.9300C26—C281.519 (3)
C3—C41.389 (3)C26—H26A0.9800
C3—H3A0.9300C27—H27A0.9600
C4—C51.371 (3)C27—H27B0.9600
C4—H4A0.9300C27—H27C0.9600
C5—C61.398 (3)C28—H28A0.9600
C5—H5A0.9300C28—H28B0.9600
C6—C71.436 (2)C28—H28C0.9600
C7—C141.372 (2)O2—C291.474 (13)
C7—C81.472 (2)O2—H1O20.99 (9)
C8—C131.389 (3)C29—C301.456 (12)
C8—C91.390 (3)C29—H29A0.9700
C9—C101.380 (3)C29—H29B0.9700
C9—H9A0.9300C30—H30A0.9600
C10—C111.364 (3)C30—H30B0.9600
C10—H10A0.9300C30—H30C0.9600
C11—C121.361 (3)O2A—C29A1.497 (13)
C12—C131.375 (3)O2A—H2O20.76 (10)
C12—H12A0.9300C29A—C30A1.438 (14)
C13—H13A0.9300C29A—H29C0.9700
C14—C151.466 (2)C29A—H29D0.9700
C15—C161.370 (3)C30A—H30D0.9600
C16—C171.388 (3)C30A—H30E0.9600
C16—H16A0.9300C30A—H30F0.9600
C1—N1—C14107.55 (15)C25—C18—H18A110.2
C1—N1—C26127.68 (16)C20—C19—C24120.1 (2)
C14—N1—C26123.80 (16)C20—C19—C18131.91 (19)
C15—N2—N3112.64 (15)C24—C19—C18107.96 (18)
C15—N2—C18129.00 (15)C19—C20—C21118.2 (2)
N3—N2—C18117.92 (15)C19—C20—H20A120.9
C17—N3—N2104.16 (15)C21—C20—H20A120.9
C25—N4—C24111.97 (18)C22—C21—C20120.9 (3)
C25—N4—H1N1122.7 (14)C22—C21—H21A119.5
C24—N4—H1N1122.9 (14)C20—C21—H21A119.5
N1—C1—C2130.23 (19)C21—C22—C23121.3 (2)
N1—C1—C6108.26 (15)C21—C22—H22A119.4
C2—C1—C6121.50 (19)C23—C22—H22A119.4
C3—C2—C1117.7 (2)C24—C23—C22117.5 (2)
C3—C2—H2A121.2C24—C23—H23A121.3
C1—C2—H2A121.2C22—C23—H23A121.3
C2—C3—C4121.7 (2)C23—C24—C19122.0 (2)
C2—C3—H3A119.1C23—C24—N4128.3 (2)
C4—C3—H3A119.1C19—C24—N4109.66 (18)
C5—C4—C3121.0 (2)O1—C25—N4127.7 (2)
C5—C4—H4A119.5O1—C25—C18124.8 (2)
C3—C4—H4A119.5N4—C25—C18107.5 (2)
C4—C5—C6119.0 (2)N1—C26—C27112.74 (19)
C4—C5—H5A120.5N1—C26—C28110.06 (18)
C6—C5—H5A120.5C27—C26—C28113.7 (2)
C5—C6—C1119.09 (17)N1—C26—H26A106.6
C5—C6—C7133.46 (18)C27—C26—H26A106.6
C1—C6—C7107.45 (16)C28—C26—H26A106.6
C14—C7—C6106.08 (15)C26—C27—H27A109.5
C14—C7—C8126.39 (16)C26—C27—H27B109.5
C6—C7—C8127.53 (16)H27A—C27—H27B109.5
C13—C8—C9117.72 (17)C26—C27—H27C109.5
C13—C8—C7121.00 (17)H27A—C27—H27C109.5
C9—C8—C7121.27 (17)H27B—C27—H27C109.5
C10—C9—C8121.3 (2)C26—C28—H28A109.5
C10—C9—H9A119.4C26—C28—H28B109.5
C8—C9—H9A119.4H28A—C28—H28B109.5
C11—C10—C9118.5 (2)C26—C28—H28C109.5
C11—C10—H10A120.8H28A—C28—H28C109.5
C9—C10—H10A120.8H28B—C28—H28C109.5
C12—C11—F1118.5 (2)C29—O2—H1O2111 (6)
C12—C11—C10122.39 (19)C30—C29—O2104.6 (11)
F1—C11—C10119.1 (2)C30—C29—H29A110.8
C11—C12—C13118.7 (2)O2—C29—H29A110.8
C11—C12—H12A120.7C30—C29—H29B110.8
C13—C12—H12A120.7O2—C29—H29B110.8
C12—C13—C8121.40 (19)H29A—C29—H29B108.9
C12—C13—H13A119.3C29—C30—H30A109.5
C8—C13—H13A119.3C29—C30—H30B109.5
C7—C14—N1110.64 (16)H30A—C30—H30B109.5
C7—C14—C15128.66 (16)C29—C30—H30C109.5
N1—C14—C15120.57 (15)H30A—C30—H30C109.5
N2—C15—C16105.47 (16)H30B—C30—H30C109.5
N2—C15—C14121.55 (16)C29A—O2A—H2O299 (10)
C16—C15—C14132.98 (17)C30A—C29A—O2A107.1 (13)
C15—C16—C17105.79 (18)C30A—C29A—H29C110.3
C15—C16—H16A127.1O2A—C29A—H29C110.3
C17—C16—H16A127.1C30A—C29A—H29D110.3
N3—C17—C16111.93 (18)O2A—C29A—H29D110.3
N3—C17—H17A124.0H29C—C29A—H29D108.5
C16—C17—H17A124.0C29A—C30A—H30D109.5
N2—C18—C19114.71 (15)C29A—C30A—H30E109.5
N2—C18—C25108.29 (16)H30D—C30A—H30E109.5
C19—C18—C25102.81 (16)C29A—C30A—H30F109.5
N2—C18—H18A110.2H30D—C30A—H30F109.5
C19—C18—H18A110.2H30E—C30A—H30F109.5
C15—N2—N3—C170.9 (2)N3—N2—C15—C161.2 (2)
C18—N2—N3—C17174.05 (16)C18—N2—C15—C16173.39 (17)
C14—N1—C1—C2179.41 (19)N3—N2—C15—C14179.04 (15)
C26—N1—C1—C210.4 (3)C18—N2—C15—C146.9 (3)
C14—N1—C1—C61.1 (2)C7—C14—C15—N282.5 (2)
C26—N1—C1—C6170.05 (17)N1—C14—C15—N293.0 (2)
N1—C1—C2—C3179.1 (2)C7—C14—C15—C1697.1 (3)
C6—C1—C2—C30.4 (3)N1—C14—C15—C1687.3 (2)
C1—C2—C3—C40.2 (3)N2—C15—C16—C171.0 (2)
C2—C3—C4—C50.2 (4)C14—C15—C16—C17179.33 (18)
C3—C4—C5—C60.4 (3)N2—N3—C17—C160.3 (2)
C4—C5—C6—C10.2 (3)C15—C16—C17—N30.5 (2)
C4—C5—C6—C7180.0 (2)C15—N2—C18—C19129.10 (19)
N1—C1—C6—C5179.39 (16)N3—N2—C18—C1959.1 (2)
C2—C1—C6—C50.2 (3)C15—N2—C18—C25116.7 (2)
N1—C1—C6—C70.7 (2)N3—N2—C18—C2555.1 (2)
C2—C1—C6—C7179.69 (17)N2—C18—C19—C2061.1 (3)
C5—C6—C7—C14180.0 (2)C25—C18—C19—C20178.4 (2)
C1—C6—C7—C140.11 (19)N2—C18—C19—C24117.45 (18)
C5—C6—C7—C80.8 (3)C25—C18—C19—C240.1 (2)
C1—C6—C7—C8179.11 (17)C24—C19—C20—C211.3 (3)
C14—C7—C8—C1340.8 (3)C18—C19—C20—C21177.1 (2)
C6—C7—C8—C13138.22 (19)C19—C20—C21—C220.8 (4)
C14—C7—C8—C9140.51 (19)C20—C21—C22—C230.2 (4)
C6—C7—C8—C940.4 (3)C21—C22—C23—C240.8 (4)
C13—C8—C9—C100.0 (3)C22—C23—C24—C190.3 (3)
C7—C8—C9—C10178.73 (18)C22—C23—C24—N4179.4 (2)
C8—C9—C10—C111.6 (3)C20—C19—C24—C230.8 (3)
C9—C10—C11—C121.7 (3)C18—C19—C24—C23177.95 (19)
C9—C10—C11—F1179.68 (19)C20—C19—C24—N4179.49 (18)
F1—C11—C12—C13178.76 (18)C18—C19—C24—N41.8 (2)
C10—C11—C12—C130.1 (3)C25—N4—C24—C23176.4 (2)
C11—C12—C13—C81.6 (3)C25—N4—C24—C193.3 (2)
C9—C8—C13—C121.7 (3)C24—N4—C25—O1175.0 (2)
C7—C8—C13—C12179.65 (17)C24—N4—C25—C183.3 (2)
C6—C7—C14—N10.55 (19)N2—C18—C25—O154.6 (3)
C8—C7—C14—N1179.78 (16)C19—C18—C25—O1176.3 (2)
C6—C7—C14—C15176.46 (17)N2—C18—C25—N4123.82 (18)
C8—C7—C14—C154.3 (3)C19—C18—C25—N42.0 (2)
C1—N1—C14—C71.0 (2)C1—N1—C26—C2762.8 (3)
C26—N1—C14—C7170.54 (16)C14—N1—C26—C27129.9 (2)
C1—N1—C14—C15177.30 (15)C1—N1—C26—C2865.4 (3)
C26—N1—C14—C1513.2 (3)C14—N1—C26—C28102.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1N1···O2i0.85 (2)1.92 (3)2.750 (19)165 (2)
O2—H1O2···O1ii0.98 (9)1.67 (9)2.650 (2)172 (11)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1N1···O2i0.85 (2)1.92 (3)2.750 (19)165 (2)
O2—H1O2···O1ii0.98 (9)1.67 (9)2.650 (2)172 (11)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC28H23FN4O·C2H6O
Mr496.57
Crystal system, space groupTriclinic, P1
Temperature (K)297
a, b, c (Å)9.9754 (8), 10.2139 (8), 14.0294 (11)
α, β, γ (°)75.7386 (15), 71.0062 (14), 83.1264 (14)
V3)1308.73 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.42 × 0.22 × 0.22
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.884, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
32072, 5778, 3733
Rint0.032
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.130, 1.21
No. of reflections5778
No. of parameters375
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.19

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015) and Mercury (Macrae et al., 2008), SHELXL2013 (Sheldrick, 2015) and PLATON (Spek, 2009).

 

Acknowledgements

This research was supported by a PRGS Research Grant (No. RDU 130121).

References

First citationAjaykumar, K., Sangamesh, A. P. & Prema, S. B. (2009). Int. J. Electrochem. Sci. 4, 717–729.  Google Scholar
First citationArchana, V. K. S., Srivastava, V. K. & Kumar, A. (2002). Eur. J. Med. Chem. 37, 873–882.  CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBrzozowski, Z. & Sączewski, F. (2002). Eur. J. Med. Chem. 37, 709–720.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDaisley, R. W. & Shah, V. K. (1984). J. Pharm. Sci. 73, 407–408.  CrossRef CAS PubMed Web of Science Google Scholar
First citationElkanzi, N. A. A. (2013). Int. J. Res. Pharm. Biomed. Sci. 4, 17–26.  CAS Google Scholar
First citationel-Kashef, H. S., el-Emary, T., Gasquet, M., Timon-David, P., Maldonado, J. & Vanelle, P. (2000). Pharmazie, 55, 572–576.  Web of Science PubMed CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationKalalbandi, V. K. A., Seetharamappa, J. & Katrahalli, U. (2015). RSC Adv. 5, 38748–38759.  Web of Science CSD CrossRef CAS Google Scholar
First citationKulkarni, A. D., Rahman, M. L., Mohd. Yusoff, M., Kwong, H. C. & Quah, C. K. (2015a). Acta Cryst. E71, 1411–1413.  CSD CrossRef IUCr Journals Google Scholar
First citationKulkarni, A. D., Rahman, M. L., Mohd. Yusoff, M., Kwong, H. C. & Quah, C. K. (2015b). Acta Cryst. E71, 1525–1527.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMana, S., Pahari, N. & Sharma, N. K. (2010). The Pharma. Res. 3, 51–59.  Google Scholar
First citationMeghashyam, N. N. (2011). J. Chem. Pharm. Res. 3, 38–47.  Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & DeClercq, E. (1999). Eur. J. Pharm. Sci. 9, 25–31.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPathak, T. P., Gligorich, K. M., Welm, B. E. & Sigman, M. S. (2010). J. Am. Chem. Soc. 132, 7870–7871.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPenning, T. D., Khilevich, A., Chen, B. B., Russell, M. A., Boys, M. L., Wang, Y., Duffin, T., Engleman, V. W., Finn, M. B., Freeman, S. K., Hanneke, M. L., Keene, J. L., Klover, J. A., Nickols, G. A., Nickols, M. A., Rader, R. K., Settle, S. L., Shannon, K. E., Steininger, C. N., Westlin, M. M. & Westlin, W. F. (2006). Bioorg. Med. Chem. Lett. 16, 3156–3161.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPevarello, P., Fancelli, D., Vulpetti, A., Amici, R., Villa, M., Pittalà, V., Vianello, P., Cameron, A., Ciomei, M., Mercurio, C., Bischoff, J. R., Roletto, F., Varasi, M. & Brasca, M. G. (2006). Bioorg. Med. Chem. Lett. 16, 1084–1090.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRaju, P. A. G., Mallikarjunarao, R., Gopal, K. V., Sreeramulu, J., Reddy, D. M., Krishnamurthi, K. P. & Reddy, S. R. (2013). J. Chem. Pharm. Res. 5, 21–27.  Google Scholar
First citationRepič, O., Prasad, K. & Lee, G. T. (2001). Org. Process Res. Dev. 5, 519–527.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiddiqui, N., Alam, M. S. & Ahsan, W. (2008). Acta Pharm. 58, 445–454.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSingarave, M. & Sarkkarai, A. (2011). J. Chem. Pharm. Res. 3, 402–413.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaha, M., Moukha-Chafiq, O., Lazrek, H. B., Vasseur, J. & Imbach, J. (2001). Nucleosides Nucleotides Nucleic Acids, 20, 955–958.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 3| March 2016| Pages 283-286
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds