research communications
of 5′′-benzylidene-1′-methyl-4′-phenyltrispiro[acenaphthylene-1,2′-pyrrolidine-3′,1′′-cyclohexane-3′′,2′′′-[1,3]dioxane]-2,6′′-dione
aResearch Department of Physics, S. D. N. B. Vaishnav College for Women, Chromepet, Chennai 600 044, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: lakssdnbvc@gmail.com
In the title compound, C36H31NO4, two spiro links connect the methyl-substituted pyrrolidine ring to the acenaphthylene and cyclohexanone rings. The cyclohexanone ring is further connected to the dioxalane ring by a third spiro junction. The five-membered ring of the acenaphthylen-1-one ring system adopts a flattened with the ketonic C atom as flap, whereas the dioxalane and pyrrolidine rings each have a twist conformation. The cyclohexanone ring assumes a boat conformation. Three intramolecular C—H⋯O hydrogen bonds involving both ketonic O atoms as acceptors are present. In the crystal, C—H⋯O hydrogen bonds connect centrosymmetrically related molecule into chains parallel to the b axis, forming rings of R22(10)and R22(8) graph-set motifs.
Keywords: crystal structure; trispiropyrrolidines; acenaphthylene; spirocyclohexanones; dioxalane.
CCDC reference: 1454097
1. Chemical context
The biological properties of et al., 2014). This class of compounds possesses pharmacological and therapeutic properties which play a fundamental role in biological processes. Several show diverse biological activities such as anticancer (Chin et al., 2008), antibacterial (van der Sar et al., 2006), anticonvulsant (Obniska & Kaminski, 2006), antimicrobial (Pawar et al., 2009), antituberculosis (Chande et al., 2005), anti-oxidant (Sarma et al., 2010) and pain-relief agents (Frank et al., 2008). Some are used as pesticides (Wei et al., 2009) and laser dyes (Kreuder et al., 1999). They are also used as electroluminescent devices (Lupo et al., 1998). The spiropyrrolidine-3,3′-indole ring system is a recurring structural motif in a number of natural products such as vinblastine and yincristrine which act as cytostatics in cancer chemotherapy (Tan et al., 1992). Spiro pyrrolidines act as inhibitors of human NK-I receptor activity (Kumar, Perumal, Manju et al., 2009). They are also exhibit antimicrobial (Sureshbabu et al., 2008), anticonvulsant and neurotoxic properties (Obniska et al., 2006) and antiproliferative activities (Almansour et al., 2014). Acenaphthalyene derivatives are found to have anti-inflammatory (Smith et al., 1979), antimicrobial (El-Ayaan & Abdel-Aziz, 2005), antifungal (McDavids & Daniels, 1951), antitumor (El-Ayaan et al., 2007) and insecticidal activities (Chen et al., 2014). Dioxalane moieties play a significant role in stabilizing the mutant HIV-1 RT and nucleoside triphosphate. They successfully act as nucleoside reverse transcriptase inhibitors (NRTIs) (Liang et al., 2006).
containing cyclic structures are evident from their presence in many natural products (MolviAn efficient synthesis of dispiroindenoquinoxaline pyrrolizidine derivatives was accomplished by a one-pot four-component 1,3-dipolar cycloaddition reaction. A rare dispiroheterocyclic compound was synthesized through 1,3-dipolar cycloaddition of azomethine ylide for the purpose of designing a new class of complex dispiroheterocycles with potential biological activities. The reaction yielded a series of spiro [2, 2′] acenaphthen-1′-one-spiro[3,2′′]indane −1′,3′′-dione-4-aryl pyrrolizidines (Sureshbabu & Raghunathan, 2006). Novel spiro cyclohexanones have been synthesized by 1,3-dipolar cycloaddition of with antituberculosis activity (Kumar, Perumal, Senthilkumar et al., 2009). Twelve novel acenaphthene derivatives were reported with antitumor activity (Xie et al., 2011). Geometric cis, trans isomers derivatives of 2-substituted-1,3-dioxolanes and 2-substituted-1,3-dioxanes have been designed and studied as antimuscarinic agents (Marucci et al., 2005). A series of new enantiomerically pure and racemic 1,3-dioxolanes was synthesized in good yields by the reaction of salicyaldehyde with commercially available diols using a catalytic amount of Mont K10 (Küçük et al., 2011).
The crystal structures of several biologically significant monospiropyrrolidines (Chandralekha et al., 2014) and dispiropyrrolidines (Palani et al., 2006) have been reported in the literature, but only few reports are available on the of trispiropyrrolidines. In continuation of our work in this field, the of title trispiropyrrolidine is reported on herein.
2. Structural commentary
In the title compound (Fig. 1), the methyl-substituted pyrrolidine ring (C12/C16/C17/N1/C19) is in a twist conformation with puckering parameters q2 = 0.3809 (18) Å, φ = −66.9 (3)°. The dioxalane ring (C10/O3/C14/C15/O4) also has a twist conformation [q2 = 0.327 (2) Å, φ = −58.7 (3)°], while the five-membered ring (C19/C20/C21/C26/C27) of the acenapnthylen-1-one ring system adopts a flattened [q2 = 0.0659 (18) Å, φ = −155.6 (16)°]. The six-membered cyclohexanone ring (C8–C13) adopts a boat conformation [QT = 0.616 (2) Å, θ = 75.36 (19)°, φ = 141.65 (18)°]. The least-squares mean plane through the pyrrolidine ring forms dihedral angles of 87.86 (6), 73.34 (7) and 87.81 (6)° with the mean planes of the attached benzene, cyclohexanone and cyclopentanone ring, respectively. The mean planes through the cyclohexanone and dioxalane rings form a dihedral angle of 77.99 (8)°. Bond lengths and angles are not unusual and in good agreement with the recently reported values of a related trispiropyrrolidine compound (Chandralekha et al., 2015). Three intramolecular C—H⋯O hydrogen bonds (Table 1) are present, involving both ketonic O atoms as acceptors.
3. Supramolecular features
In the crystal, centrosymmetrically-related molecules are linked into dimers forming rings of (10) graph-set motif. The dimers are further connected by C—H⋯O contacts forming rings of (8) graph-set motif, producing chains parallel to the b axis (Fig. 2).
4. Synthesis and crystallization
An equimolar mixture of 7,9-bis [(E)-benzylidine)]-1,4-dioxo-spiro[4,5]decane-8-ones (1 mmol) and sacrosine in methanol (25-30 ml) was refluxed for 4 h. After the completion of the reaction as indicated by TLC, the solid precipitate was filtered and washed with methanol to give the pure trispiropyrrolidine derivative. Single crystals suitable for the X-ray were obtained by slow evaporation of the solvent at room temperature.
5. Refinement
Crystal data, data collection and structure . All H atoms were placed in calculated positions, with C—H = 0.93–0.98 Å and refined using a riding model approximation, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating model was applied to the methyl groups.
details are summarized in Table 2Supporting information
CCDC reference: 1454097
10.1107/S2056989016002875/rz5182sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989016002875/rz5182Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989016002875/rz5182Isup3.cml
The biological properties of
containing cyclic structures are evident from their presence in many natural products (Molvi et al., 2014). This class of compounds possesses pharmacological and therapeutic properties which play a fundamental role in biological processes. Several show diverse biological activities such as anticancer (Chin et al., 2008), antibacterial (van der Sar et al., 2006), anticonvulsant (Obniska & Kaminski, 2006), antimicrobial (Pawar et al., 2009), antituberculosis (Chande et al., 2005), anti-oxidant (Sarma et al., 2010) and pain-relief agents (Frank et al., 2008). Some are used as pesticides (Wei et al., 2009) and laser dyes (Kreuder et al., 1999). They are also used as electroluminescent devices (Lupo et al., 1998). The spiropyrrolidine-3,3'-indole ring system is a recurring structural motif in a number of natural products such as vinblastine and yincristrine which act as cytostatics in cancer chemotherapy (Tan et al., 1992). Spiro pyrrolidines act as inhibitors of human NK—I receptor activity (Kumar, Perumal, Manju et al., 2009). They are also exhibit antimicrobial (Sureshbabu et al., 2008), anticonvulsant and neurotoxic properties (Obniska et al., 2006) and antiproliferative activities (Almansour et al., 2014). Acenaphthalyene derivatives are found to have anti-inflammatory (Smith et al., 1979), antimicrobial (El-Ayaan & Abdel-Aziz, 2005), antifungal (McDavids & Daniels, 1951), antitumor (El-Ayaan et al., 2007) and insecticidal activities (Chen et al., 2014). Dioxalane moieties play a significant role in stabilizing the mutant HIV-1 RT and nucleoside triphosphate. They successfully act as nucleoside reverse transcriptase inhibitors (NRTIs) (Liang et al., 2006).An efficient synthesis of dispiroindenoquinoxaline pyrrolizidine derivatives was accomplished by one-pot four-component 1,3-dipolar cycloaddition reaction. A rare dispiroheterocyclic compound was synthesized through 1,3-dipolar cycloaddition of azomethine ylide for the purpose of designing a new class of complex dispiroheterocycles with potential biological activities. The reaction yielded a series of spiro [2, 2'] acenaphthen-1'-one-spiro[3,2'']indane −1',3''-dione-4-aryl pyrrolizidines (Sureshbabu & Raghunathan, 2006). Novel spiro cyclohexanones have been synthesized by 1,3-dipolar cycloaddition of
with antituberculosis activity (Kumar, Perumal, Senthilkumar et al., 2009). Twelve novel acenaphthene derivatives were reported with antitumor activity (Xie et al., 2011). Geometric cis, trans isomers derivatives of 2-substituted-1,3-dioxolanes and 2-substituted-1,3-dioxanes have been designed and studied as antimuscarinic agents (Marucci et al., 2005). A series of new enantiomerically pure and racemic 1,3-dioxolanes was synthesized in good yields by the reaction of salicyaldehyde with commercially available diols using a catalytic amount of Mont K10 (Küçük et al., 2011).The crystal structures of several biologically significant monospiropyrrolidines (Chandralekha et al., 2014) and dispiropyrrolidines (Palani et al., 2006) have been reported in the literature, but only few reports are available on the
of trispiropyrrolidines. In continuation of our work in this field, the of title trispiropyrrolidine is reported on herein.In the title compound (Fig. 1), the methyl-substituted pyrrolidine ring (C12/C16/C17/N1/C19) is in a twist conformation with puckering parameters q2 = 0.3809 (18) Å, φ = −66.9 (3)°. The dioxalane ring (C10/O3/C14/C15/O4) also has a twist conformation [q2 = 0.327 (2) Å, φ = −58.7 (3)°], while the five-membered ring (C19/C20/C21/C26/C27) of the acenapnthylen-1-one ring system adopts a flattened [q2 = 0.0659 (18) Å, φ = −155.6 (16)°]. The six-membered cyclohexanone ring (C8–C13) adopts a boat conformation [QT = 0.616 (2) Å, θ = 75.36 (19)°, φ = 141.65 (18)°]. The least-squares mean plane through the pyrrolidine ring forms dihedral angles of 87.86 (6), 73.34 (7) and 87.81 (6)° with the mean planes of the attached benzene, cyclohexanone and cyclopentanone ring, respectively. The mean planes through the cyclohexanone and dioxalane rings form a dihedral angle of 77.99 (8)°. Bond lengths and angles are not unusual and in good agreement with the recently reported values of a related trispiropyrrolidine compound (Chandralekha et al., 2015). Three intramolecular C—H···O hydrogen bonds (Table 1) are present, involving both ketonic O atoms as acceptors.
In the crystal, centrosymmetrically related molecules are linked into dimers forming rings of R22(10) graph-set motif. The dimers are further connected by C—H···O contacts forming rings of R22(8) graph-set motif, producing chains parallel to the b axis (Fig. 2).
An equimolar mixture of 7,9-bis [(E)-benzylidine)]-1,4-dioxo-spiro[4,5]decane-8-ones (1 mmol) and sacrosine in methanol (25–30 ml) was refluxed for 4 h. After the completion of the reaction as indicated by TLC, the solid precipitate was filtered and washed with methanol to give the pure trispiropyrrolidine derivative. Single crystals suitable for the X-ray
were obtained by slow evaporation of the solvent at room temperature.Crystal data, data collection and structure
details are summarized in Table 2. A l l H atoms were placed in calculated positions, with C—H = 0.93–0.98 Å and refined using a riding model approximation, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating model was applied to the methyl groups.The biological properties of
containing cyclic structures are evident from their presence in many natural products (Molvi et al., 2014). This class of compounds possesses pharmacological and therapeutic properties which play a fundamental role in biological processes. Several show diverse biological activities such as anticancer (Chin et al., 2008), antibacterial (van der Sar et al., 2006), anticonvulsant (Obniska & Kaminski, 2006), antimicrobial (Pawar et al., 2009), antituberculosis (Chande et al., 2005), anti-oxidant (Sarma et al., 2010) and pain-relief agents (Frank et al., 2008). Some are used as pesticides (Wei et al., 2009) and laser dyes (Kreuder et al., 1999). They are also used as electroluminescent devices (Lupo et al., 1998). The spiropyrrolidine-3,3'-indole ring system is a recurring structural motif in a number of natural products such as vinblastine and yincristrine which act as cytostatics in cancer chemotherapy (Tan et al., 1992). Spiro pyrrolidines act as inhibitors of human NK—I receptor activity (Kumar, Perumal, Manju et al., 2009). They are also exhibit antimicrobial (Sureshbabu et al., 2008), anticonvulsant and neurotoxic properties (Obniska et al., 2006) and antiproliferative activities (Almansour et al., 2014). Acenaphthalyene derivatives are found to have anti-inflammatory (Smith et al., 1979), antimicrobial (El-Ayaan & Abdel-Aziz, 2005), antifungal (McDavids & Daniels, 1951), antitumor (El-Ayaan et al., 2007) and insecticidal activities (Chen et al., 2014). Dioxalane moieties play a significant role in stabilizing the mutant HIV-1 RT and nucleoside triphosphate. They successfully act as nucleoside reverse transcriptase inhibitors (NRTIs) (Liang et al., 2006).An efficient synthesis of dispiroindenoquinoxaline pyrrolizidine derivatives was accomplished by one-pot four-component 1,3-dipolar cycloaddition reaction. A rare dispiroheterocyclic compound was synthesized through 1,3-dipolar cycloaddition of azomethine ylide for the purpose of designing a new class of complex dispiroheterocycles with potential biological activities. The reaction yielded a series of spiro [2, 2'] acenaphthen-1'-one-spiro[3,2'']indane −1',3''-dione-4-aryl pyrrolizidines (Sureshbabu & Raghunathan, 2006). Novel spiro cyclohexanones have been synthesized by 1,3-dipolar cycloaddition of
with antituberculosis activity (Kumar, Perumal, Senthilkumar et al., 2009). Twelve novel acenaphthene derivatives were reported with antitumor activity (Xie et al., 2011). Geometric cis, trans isomers derivatives of 2-substituted-1,3-dioxolanes and 2-substituted-1,3-dioxanes have been designed and studied as antimuscarinic agents (Marucci et al., 2005). A series of new enantiomerically pure and racemic 1,3-dioxolanes was synthesized in good yields by the reaction of salicyaldehyde with commercially available diols using a catalytic amount of Mont K10 (Küçük et al., 2011).The crystal structures of several biologically significant monospiropyrrolidines (Chandralekha et al., 2014) and dispiropyrrolidines (Palani et al., 2006) have been reported in the literature, but only few reports are available on the
of trispiropyrrolidines. In continuation of our work in this field, the of title trispiropyrrolidine is reported on herein.In the title compound (Fig. 1), the methyl-substituted pyrrolidine ring (C12/C16/C17/N1/C19) is in a twist conformation with puckering parameters q2 = 0.3809 (18) Å, φ = −66.9 (3)°. The dioxalane ring (C10/O3/C14/C15/O4) also has a twist conformation [q2 = 0.327 (2) Å, φ = −58.7 (3)°], while the five-membered ring (C19/C20/C21/C26/C27) of the acenapnthylen-1-one ring system adopts a flattened [q2 = 0.0659 (18) Å, φ = −155.6 (16)°]. The six-membered cyclohexanone ring (C8–C13) adopts a boat conformation [QT = 0.616 (2) Å, θ = 75.36 (19)°, φ = 141.65 (18)°]. The least-squares mean plane through the pyrrolidine ring forms dihedral angles of 87.86 (6), 73.34 (7) and 87.81 (6)° with the mean planes of the attached benzene, cyclohexanone and cyclopentanone ring, respectively. The mean planes through the cyclohexanone and dioxalane rings form a dihedral angle of 77.99 (8)°. Bond lengths and angles are not unusual and in good agreement with the recently reported values of a related trispiropyrrolidine compound (Chandralekha et al., 2015). Three intramolecular C—H···O hydrogen bonds (Table 1) are present, involving both ketonic O atoms as acceptors.
In the crystal, centrosymmetrically related molecules are linked into dimers forming rings of R22(10) graph-set motif. The dimers are further connected by C—H···O contacts forming rings of R22(8) graph-set motif, producing chains parallel to the b axis (Fig. 2).
An equimolar mixture of 7,9-bis [(E)-benzylidine)]-1,4-dioxo-spiro[4,5]decane-8-ones (1 mmol) and sacrosine in methanol (25–30 ml) was refluxed for 4 h. After the completion of the reaction as indicated by TLC, the solid precipitate was filtered and washed with methanol to give the pure trispiropyrrolidine derivative. Single crystals suitable for the X-ray
were obtained by slow evaporation of the solvent at room temperature. detailsCrystal data, data collection and structure
details are summarized in Table 2. A l l H atoms were placed in calculated positions, with C—H = 0.93–0.98 Å and refined using a riding model approximation, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating model was applied to the methyl groups.Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius. | |
Fig. 2. Partial crystal packing of the title compound showing the formation of a molecular chain parallel to the b axis through C—H···O hydrogen bonds (dashed lines). |
C36H31NO4 | Z = 2 |
Mr = 541.62 | F(000) = 572 |
Triclinic, P1 | Dx = 1.337 Mg m−3 |
a = 10.8861 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.4899 (4) Å | Cell parameters from 43585 reflections |
c = 11.9171 (4) Å | θ = 5.0–25.7° |
α = 83.83 (1)° | µ = 0.09 mm−1 |
β = 65.253 (8)° | T = 293 K |
γ = 86.397 (10)° | Block, colourless |
V = 1345.60 (12) Å3 | 0.30 × 0.25 × 0.20 mm |
Bruker Kappa APEXII CCD diffractometer | 3465 reflections with I > 2σ(I) |
Radiation source: graphite | Rint = 0.031 |
bruker axs kappa axes2 CCD Diffractometer scans | θmax = 25.0°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −12→12 |
Tmin = 0.710, Tmax = 0.746 | k = −13→13 |
33777 measured reflections | l = −14→14 |
4744 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.038 | w = 1/[σ2(Fo2) + (0.0586P)2 + 0.2573P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.122 | (Δ/σ)max = 0.001 |
S = 1.09 | Δρmax = 0.16 e Å−3 |
4744 reflections | Δρmin = −0.16 e Å−3 |
372 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0109 (19) |
C36H31NO4 | γ = 86.397 (10)° |
Mr = 541.62 | V = 1345.60 (12) Å3 |
Triclinic, P1 | Z = 2 |
a = 10.8861 (4) Å | Mo Kα radiation |
b = 11.4899 (4) Å | µ = 0.09 mm−1 |
c = 11.9171 (4) Å | T = 293 K |
α = 83.83 (1)° | 0.30 × 0.25 × 0.20 mm |
β = 65.253 (8)° |
Bruker Kappa APEXII CCD diffractometer | 4744 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 3465 reflections with I > 2σ(I) |
Tmin = 0.710, Tmax = 0.746 | Rint = 0.031 |
33777 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.122 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.16 e Å−3 |
4744 reflections | Δρmin = −0.16 e Å−3 |
372 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.84726 (14) | 0.91261 (12) | 0.05682 (13) | 0.0608 (4) | |
O2 | 0.50588 (12) | 0.57346 (11) | 0.30977 (12) | 0.0541 (4) | |
O3 | 0.68858 (14) | 0.52854 (12) | −0.03539 (12) | 0.0570 (4) | |
O4 | 0.91793 (14) | 0.51361 (12) | −0.12148 (10) | 0.0575 (4) | |
N1 | 0.59384 (15) | 0.83289 (13) | 0.27966 (13) | 0.0454 (4) | |
C1 | 0.7188 (2) | 0.23372 (19) | 0.45586 (18) | 0.0613 (6) | |
H1 | 0.6532 | 0.2713 | 0.5207 | 0.074* | |
C2 | 0.7788 (3) | 0.1317 (2) | 0.4816 (2) | 0.0742 (7) | |
H2 | 0.7530 | 0.1012 | 0.5636 | 0.089* | |
C3 | 0.8757 (2) | 0.07441 (19) | 0.3887 (2) | 0.0670 (6) | |
H3 | 0.9174 | 0.0064 | 0.4068 | 0.080* | |
C4 | 0.9100 (2) | 0.11882 (19) | 0.2691 (2) | 0.0687 (6) | |
H4 | 0.9746 | 0.0798 | 0.2048 | 0.082* | |
C5 | 0.8507 (2) | 0.22040 (17) | 0.24213 (19) | 0.0612 (6) | |
H5 | 0.8756 | 0.2490 | 0.1597 | 0.073* | |
C6 | 0.75437 (18) | 0.28139 (15) | 0.33522 (16) | 0.0433 (4) | |
C7 | 0.68667 (17) | 0.39106 (15) | 0.31676 (16) | 0.0420 (4) | |
H7 | 0.6202 | 0.4172 | 0.3892 | 0.050* | |
C8 | 0.70355 (16) | 0.46033 (14) | 0.21391 (15) | 0.0378 (4) | |
C9 | 0.80155 (18) | 0.43569 (15) | 0.08521 (14) | 0.0431 (4) | |
H9A | 0.8915 | 0.4241 | 0.0831 | 0.052* | |
H9B | 0.7767 | 0.3638 | 0.0648 | 0.052* | |
C10 | 0.80439 (18) | 0.53226 (15) | −0.00983 (15) | 0.0416 (4) | |
C11 | 0.81188 (17) | 0.64916 (15) | 0.03375 (14) | 0.0381 (4) | |
H11A | 0.8287 | 0.7093 | −0.0343 | 0.046* | |
H11B | 0.8877 | 0.6472 | 0.0566 | 0.046* | |
C12 | 0.68310 (16) | 0.68198 (14) | 0.14449 (14) | 0.0353 (4) | |
C13 | 0.62004 (17) | 0.57025 (15) | 0.22897 (15) | 0.0387 (4) | |
C14 | 0.7340 (3) | 0.5253 (2) | −0.1650 (2) | 0.0846 (8) | |
H14A | 0.6836 | 0.5814 | −0.1971 | 0.102* | |
H14B | 0.7238 | 0.4478 | −0.1849 | 0.102* | |
C15 | 0.8790 (3) | 0.5564 (2) | −0.21767 (19) | 0.0808 (8) | |
H15A | 0.9309 | 0.5185 | −0.2928 | 0.097* | |
H15B | 0.8901 | 0.6404 | −0.2356 | 0.097* | |
C16 | 0.56971 (17) | 0.75410 (16) | 0.11499 (16) | 0.0414 (4) | |
H16 | 0.4871 | 0.7084 | 0.1558 | 0.050* | |
C17 | 0.5450 (2) | 0.86368 (17) | 0.18436 (18) | 0.0515 (5) | |
H17A | 0.5942 | 0.9293 | 0.1288 | 0.062* | |
H17B | 0.4494 | 0.8844 | 0.2209 | 0.062* | |
C18 | 0.6007 (2) | 0.93114 (19) | 0.3440 (2) | 0.0649 (6) | |
H18A | 0.6368 | 0.9047 | 0.4035 | 0.097* | |
H18B | 0.5115 | 0.9639 | 0.3860 | 0.097* | |
H18C | 0.6582 | 0.9897 | 0.2851 | 0.097* | |
C19 | 0.71736 (16) | 0.76445 (14) | 0.22511 (15) | 0.0369 (4) | |
C20 | 0.84408 (18) | 0.83941 (15) | 0.13886 (16) | 0.0400 (4) | |
C21 | 0.95258 (17) | 0.81145 (14) | 0.18008 (16) | 0.0398 (4) | |
C22 | 1.08238 (19) | 0.84868 (17) | 0.13612 (19) | 0.0520 (5) | |
H22 | 1.1199 | 0.8973 | 0.0630 | 0.062* | |
C23 | 1.1570 (2) | 0.81119 (19) | 0.2049 (2) | 0.0642 (6) | |
H23 | 1.2463 | 0.8341 | 0.1753 | 0.077* | |
C24 | 1.1034 (2) | 0.7423 (2) | 0.3136 (2) | 0.0655 (6) | |
H24 | 1.1561 | 0.7206 | 0.3572 | 0.079* | |
C25 | 0.9692 (2) | 0.70332 (17) | 0.36125 (18) | 0.0506 (5) | |
C26 | 0.89807 (17) | 0.73763 (14) | 0.28903 (15) | 0.0388 (4) | |
C27 | 0.76373 (17) | 0.70795 (15) | 0.32229 (15) | 0.0388 (4) | |
C28 | 0.6979 (2) | 0.64478 (17) | 0.43281 (16) | 0.0516 (5) | |
H28 | 0.6076 | 0.6260 | 0.4591 | 0.062* | |
C29 | 0.7674 (3) | 0.6081 (2) | 0.50699 (18) | 0.0656 (6) | |
H29 | 0.7221 | 0.5635 | 0.5818 | 0.079* | |
C30 | 0.8985 (3) | 0.6354 (2) | 0.47332 (19) | 0.0658 (6) | |
H30 | 0.9415 | 0.6091 | 0.5245 | 0.079* | |
C31 | 0.58927 (18) | 0.78399 (16) | −0.01796 (17) | 0.0443 (4) | |
C32 | 0.5014 (2) | 0.74079 (19) | −0.0592 (2) | 0.0581 (5) | |
H32 | 0.4321 | 0.6923 | −0.0051 | 0.070* | |
C33 | 0.5148 (3) | 0.7683 (2) | −0.1794 (2) | 0.0712 (7) | |
H33 | 0.4533 | 0.7394 | −0.2045 | 0.085* | |
C34 | 0.6167 (3) | 0.8373 (2) | −0.2614 (2) | 0.0690 (6) | |
H34 | 0.6269 | 0.8537 | −0.3430 | 0.083* | |
C35 | 0.7037 (2) | 0.8819 (2) | −0.2225 (2) | 0.0651 (6) | |
H35 | 0.7736 | 0.9294 | −0.2777 | 0.078* | |
C36 | 0.6887 (2) | 0.85717 (18) | −0.10156 (19) | 0.0559 (5) | |
H36 | 0.7471 | 0.8906 | −0.0758 | 0.067* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0743 (10) | 0.0539 (8) | 0.0669 (9) | −0.0217 (7) | −0.0449 (8) | 0.0206 (7) |
O2 | 0.0389 (7) | 0.0505 (8) | 0.0549 (8) | −0.0014 (6) | −0.0022 (6) | −0.0034 (6) |
O3 | 0.0746 (9) | 0.0565 (9) | 0.0537 (8) | −0.0048 (7) | −0.0393 (7) | −0.0069 (6) |
O4 | 0.0744 (9) | 0.0536 (8) | 0.0295 (6) | 0.0091 (7) | −0.0074 (6) | −0.0072 (6) |
N1 | 0.0481 (9) | 0.0442 (9) | 0.0493 (9) | 0.0106 (7) | −0.0240 (7) | −0.0177 (7) |
C1 | 0.0773 (15) | 0.0592 (13) | 0.0438 (11) | 0.0070 (11) | −0.0234 (10) | −0.0016 (9) |
C2 | 0.1051 (19) | 0.0647 (15) | 0.0581 (13) | 0.0087 (14) | −0.0431 (14) | 0.0053 (11) |
C3 | 0.0782 (15) | 0.0480 (12) | 0.0836 (16) | 0.0034 (11) | −0.0452 (14) | 0.0048 (12) |
C4 | 0.0709 (15) | 0.0444 (12) | 0.0719 (15) | 0.0082 (11) | −0.0135 (12) | −0.0002 (11) |
C5 | 0.0709 (14) | 0.0433 (11) | 0.0507 (12) | 0.0067 (10) | −0.0094 (10) | 0.0027 (9) |
C6 | 0.0467 (10) | 0.0383 (10) | 0.0425 (10) | −0.0048 (8) | −0.0164 (8) | −0.0008 (8) |
C7 | 0.0421 (10) | 0.0406 (10) | 0.0367 (9) | −0.0028 (8) | −0.0094 (8) | −0.0042 (8) |
C8 | 0.0379 (9) | 0.0347 (9) | 0.0371 (9) | −0.0041 (7) | −0.0112 (7) | −0.0040 (7) |
C9 | 0.0505 (11) | 0.0371 (10) | 0.0359 (9) | 0.0032 (8) | −0.0123 (8) | −0.0056 (7) |
C10 | 0.0485 (10) | 0.0416 (10) | 0.0318 (9) | 0.0020 (8) | −0.0136 (8) | −0.0065 (7) |
C11 | 0.0401 (9) | 0.0386 (9) | 0.0332 (9) | −0.0001 (7) | −0.0132 (7) | −0.0020 (7) |
C12 | 0.0354 (9) | 0.0348 (9) | 0.0350 (9) | 0.0008 (7) | −0.0141 (7) | −0.0045 (7) |
C13 | 0.0368 (10) | 0.0405 (10) | 0.0377 (9) | −0.0025 (7) | −0.0133 (8) | −0.0067 (7) |
C14 | 0.139 (3) | 0.0786 (17) | 0.0646 (15) | 0.0387 (17) | −0.0697 (17) | −0.0342 (13) |
C15 | 0.141 (3) | 0.0565 (14) | 0.0338 (11) | 0.0209 (15) | −0.0278 (14) | −0.0083 (10) |
C16 | 0.0383 (9) | 0.0424 (10) | 0.0469 (10) | 0.0024 (8) | −0.0211 (8) | −0.0067 (8) |
C17 | 0.0536 (11) | 0.0497 (11) | 0.0611 (12) | 0.0155 (9) | −0.0329 (10) | −0.0166 (9) |
C18 | 0.0775 (15) | 0.0575 (13) | 0.0730 (14) | 0.0181 (11) | −0.0408 (12) | −0.0322 (11) |
C19 | 0.0393 (9) | 0.0357 (9) | 0.0371 (9) | 0.0006 (7) | −0.0170 (7) | −0.0058 (7) |
C20 | 0.0508 (10) | 0.0345 (9) | 0.0407 (9) | −0.0027 (8) | −0.0244 (8) | −0.0041 (8) |
C21 | 0.0444 (10) | 0.0323 (9) | 0.0470 (10) | 0.0008 (7) | −0.0223 (8) | −0.0080 (7) |
C22 | 0.0477 (11) | 0.0421 (11) | 0.0675 (13) | −0.0033 (9) | −0.0242 (10) | −0.0072 (9) |
C23 | 0.0516 (12) | 0.0566 (13) | 0.0990 (18) | 0.0005 (10) | −0.0439 (12) | −0.0151 (12) |
C24 | 0.0692 (14) | 0.0612 (14) | 0.0915 (17) | 0.0121 (11) | −0.0579 (13) | −0.0167 (13) |
C25 | 0.0642 (13) | 0.0458 (11) | 0.0552 (11) | 0.0111 (9) | −0.0373 (10) | −0.0144 (9) |
C26 | 0.0483 (10) | 0.0338 (9) | 0.0404 (9) | 0.0077 (8) | −0.0238 (8) | −0.0114 (7) |
C27 | 0.0456 (10) | 0.0384 (9) | 0.0325 (9) | 0.0036 (8) | −0.0161 (8) | −0.0075 (7) |
C28 | 0.0600 (12) | 0.0565 (12) | 0.0352 (9) | −0.0020 (9) | −0.0164 (9) | −0.0057 (8) |
C29 | 0.0916 (18) | 0.0690 (15) | 0.0353 (10) | 0.0018 (13) | −0.0271 (11) | 0.0001 (9) |
C30 | 0.0944 (18) | 0.0678 (14) | 0.0519 (12) | 0.0149 (13) | −0.0486 (13) | −0.0074 (11) |
C31 | 0.0478 (10) | 0.0398 (10) | 0.0541 (11) | 0.0070 (8) | −0.0301 (9) | −0.0081 (8) |
C32 | 0.0603 (12) | 0.0606 (13) | 0.0683 (13) | −0.0010 (10) | −0.0404 (11) | −0.0096 (10) |
C33 | 0.0901 (17) | 0.0723 (15) | 0.0794 (16) | 0.0019 (13) | −0.0619 (15) | −0.0128 (13) |
C34 | 0.0984 (18) | 0.0633 (14) | 0.0622 (14) | 0.0162 (13) | −0.0523 (14) | −0.0060 (11) |
C35 | 0.0805 (15) | 0.0593 (13) | 0.0619 (13) | 0.0006 (11) | −0.0402 (12) | 0.0111 (10) |
C36 | 0.0655 (13) | 0.0526 (12) | 0.0631 (13) | −0.0049 (10) | −0.0417 (11) | 0.0049 (10) |
O1—C20 | 1.210 (2) | C16—C31 | 1.511 (2) |
O2—C13 | 1.2137 (19) | C16—C17 | 1.528 (3) |
O3—C14 | 1.415 (3) | C16—H16 | 0.9800 |
O3—C10 | 1.420 (2) | C17—H17A | 0.9700 |
O4—C15 | 1.412 (3) | C17—H17B | 0.9700 |
O4—C10 | 1.412 (2) | C18—H18A | 0.9600 |
N1—C17 | 1.447 (2) | C18—H18B | 0.9600 |
N1—C19 | 1.447 (2) | C18—H18C | 0.9600 |
N1—C18 | 1.453 (2) | C19—C27 | 1.518 (2) |
C1—C2 | 1.375 (3) | C19—C20 | 1.573 (2) |
C1—C6 | 1.381 (3) | C20—C21 | 1.464 (2) |
C1—H1 | 0.9300 | C21—C22 | 1.365 (2) |
C2—C3 | 1.364 (3) | C21—C26 | 1.392 (2) |
C2—H2 | 0.9300 | C22—C23 | 1.398 (3) |
C3—C4 | 1.362 (3) | C22—H22 | 0.9300 |
C3—H3 | 0.9300 | C23—C24 | 1.360 (3) |
C4—C5 | 1.371 (3) | C23—H23 | 0.9300 |
C4—H4 | 0.9300 | C24—C25 | 1.411 (3) |
C5—C6 | 1.386 (3) | C24—H24 | 0.9300 |
C5—H5 | 0.9300 | C25—C26 | 1.394 (2) |
C6—C7 | 1.462 (3) | C25—C30 | 1.406 (3) |
C7—C8 | 1.338 (2) | C26—C27 | 1.400 (2) |
C7—H7 | 0.9300 | C27—C28 | 1.358 (2) |
C8—C13 | 1.490 (2) | C28—C29 | 1.404 (3) |
C8—C9 | 1.502 (2) | C28—H28 | 0.9300 |
C9—C10 | 1.490 (2) | C29—C30 | 1.359 (3) |
C9—H9A | 0.9700 | C29—H29 | 0.9300 |
C9—H9B | 0.9700 | C30—H30 | 0.9300 |
C10—C11 | 1.510 (2) | C31—C36 | 1.379 (3) |
C11—C12 | 1.530 (2) | C31—C32 | 1.381 (3) |
C11—H11A | 0.9700 | C32—C33 | 1.380 (3) |
C11—H11B | 0.9700 | C32—H32 | 0.9300 |
C12—C13 | 1.545 (2) | C33—C34 | 1.360 (3) |
C12—C19 | 1.581 (2) | C33—H33 | 0.9300 |
C12—C16 | 1.583 (2) | C34—C35 | 1.362 (3) |
C14—C15 | 1.486 (4) | C34—H34 | 0.9300 |
C14—H14A | 0.9700 | C35—C36 | 1.380 (3) |
C14—H14B | 0.9700 | C35—H35 | 0.9300 |
C15—H15A | 0.9700 | C36—H36 | 0.9300 |
C15—H15B | 0.9700 | ||
C14—O3—C10 | 107.71 (17) | C17—C16—H16 | 106.6 |
C15—O4—C10 | 105.68 (16) | C12—C16—H16 | 106.6 |
C17—N1—C19 | 107.28 (13) | N1—C17—C16 | 105.12 (14) |
C17—N1—C18 | 114.20 (15) | N1—C17—H17A | 110.7 |
C19—N1—C18 | 116.15 (15) | C16—C17—H17A | 110.7 |
C2—C1—C6 | 121.1 (2) | N1—C17—H17B | 110.7 |
C2—C1—H1 | 119.5 | C16—C17—H17B | 110.7 |
C6—C1—H1 | 119.5 | H17A—C17—H17B | 108.8 |
C3—C2—C1 | 121.0 (2) | N1—C18—H18A | 109.5 |
C3—C2—H2 | 119.5 | N1—C18—H18B | 109.5 |
C1—C2—H2 | 119.5 | H18A—C18—H18B | 109.5 |
C4—C3—C2 | 118.7 (2) | N1—C18—H18C | 109.5 |
C4—C3—H3 | 120.6 | H18A—C18—H18C | 109.5 |
C2—C3—H3 | 120.6 | H18B—C18—H18C | 109.5 |
C3—C4—C5 | 120.8 (2) | N1—C19—C27 | 111.87 (13) |
C3—C4—H4 | 119.6 | N1—C19—C20 | 113.93 (14) |
C5—C4—H4 | 119.6 | C27—C19—C20 | 100.90 (13) |
C4—C5—C6 | 121.37 (19) | N1—C19—C12 | 103.00 (13) |
C4—C5—H5 | 119.3 | C27—C19—C12 | 118.24 (13) |
C6—C5—H5 | 119.3 | C20—C19—C12 | 109.36 (12) |
C1—C6—C5 | 116.96 (18) | O1—C20—C21 | 126.20 (16) |
C1—C6—C7 | 117.30 (17) | O1—C20—C19 | 124.92 (16) |
C5—C6—C7 | 125.74 (16) | C21—C20—C19 | 108.76 (14) |
C8—C7—C6 | 131.30 (16) | C22—C21—C26 | 120.60 (16) |
C8—C7—H7 | 114.4 | C22—C21—C20 | 132.49 (17) |
C6—C7—H7 | 114.4 | C26—C21—C20 | 106.78 (15) |
C7—C8—C13 | 117.37 (15) | C21—C22—C23 | 117.69 (19) |
C7—C8—C9 | 124.61 (16) | C21—C22—H22 | 121.2 |
C13—C8—C9 | 118.02 (14) | C23—C22—H22 | 121.2 |
C10—C9—C8 | 112.48 (15) | C24—C23—C22 | 122.25 (19) |
C10—C9—H9A | 109.1 | C24—C23—H23 | 118.9 |
C8—C9—H9A | 109.1 | C22—C23—H23 | 118.9 |
C10—C9—H9B | 109.1 | C23—C24—C25 | 121.07 (19) |
C8—C9—H9B | 109.1 | C23—C24—H24 | 119.5 |
H9A—C9—H9B | 107.8 | C25—C24—H24 | 119.5 |
O4—C10—O3 | 106.59 (13) | C26—C25—C30 | 116.33 (19) |
O4—C10—C9 | 108.20 (14) | C26—C25—C24 | 115.90 (18) |
O3—C10—C9 | 110.29 (15) | C30—C25—C24 | 127.77 (19) |
O4—C10—C11 | 110.75 (14) | C21—C26—C25 | 122.38 (17) |
O3—C10—C11 | 110.65 (14) | C21—C26—C27 | 113.75 (15) |
C9—C10—C11 | 110.27 (14) | C25—C26—C27 | 123.74 (16) |
C10—C11—C12 | 113.28 (14) | C28—C27—C26 | 118.09 (16) |
C10—C11—H11A | 108.9 | C28—C27—C19 | 132.38 (17) |
C12—C11—H11A | 108.9 | C26—C27—C19 | 109.35 (14) |
C10—C11—H11B | 108.9 | C27—C28—C29 | 119.40 (19) |
C12—C11—H11B | 108.9 | C27—C28—H28 | 120.3 |
H11A—C11—H11B | 107.7 | C29—C28—H28 | 120.3 |
C11—C12—C13 | 109.58 (13) | C30—C29—C28 | 122.28 (19) |
C11—C12—C19 | 110.40 (13) | C30—C29—H29 | 118.9 |
C13—C12—C19 | 107.26 (12) | C28—C29—H29 | 118.9 |
C11—C12—C16 | 117.13 (13) | C29—C30—C25 | 120.12 (19) |
C13—C12—C16 | 108.78 (13) | C29—C30—H30 | 119.9 |
C19—C12—C16 | 103.13 (13) | C25—C30—H30 | 119.9 |
O2—C13—C8 | 120.57 (15) | C36—C31—C32 | 116.90 (18) |
O2—C13—C12 | 120.24 (15) | C36—C31—C16 | 123.34 (16) |
C8—C13—C12 | 119.12 (14) | C32—C31—C16 | 119.72 (17) |
O3—C14—C15 | 104.76 (18) | C33—C32—C31 | 121.2 (2) |
O3—C14—H14A | 110.8 | C33—C32—H32 | 119.4 |
C15—C14—H14A | 110.8 | C31—C32—H32 | 119.4 |
O3—C14—H14B | 110.8 | C34—C33—C32 | 120.8 (2) |
C15—C14—H14B | 110.8 | C34—C33—H33 | 119.6 |
H14A—C14—H14B | 108.9 | C32—C33—H33 | 119.6 |
O4—C15—C14 | 102.62 (18) | C33—C34—C35 | 119.1 (2) |
O4—C15—H15A | 111.2 | C33—C34—H34 | 120.5 |
C14—C15—H15A | 111.2 | C35—C34—H34 | 120.5 |
O4—C15—H15B | 111.2 | C34—C35—C36 | 120.4 (2) |
C14—C15—H15B | 111.2 | C34—C35—H35 | 119.8 |
H15A—C15—H15B | 109.2 | C36—C35—H35 | 119.8 |
C31—C16—C17 | 111.74 (15) | C31—C36—C35 | 121.60 (19) |
C31—C16—C12 | 120.01 (14) | C31—C36—H36 | 119.2 |
C17—C16—C12 | 104.64 (13) | C35—C36—H36 | 119.2 |
C31—C16—H16 | 106.6 | ||
C6—C1—C2—C3 | 0.2 (4) | C16—C12—C19—N1 | 25.69 (15) |
C1—C2—C3—C4 | −1.5 (4) | C11—C12—C19—C27 | −84.50 (17) |
C2—C3—C4—C5 | 1.3 (4) | C13—C12—C19—C27 | 34.84 (19) |
C3—C4—C5—C6 | 0.2 (4) | C16—C12—C19—C27 | 149.60 (14) |
C2—C1—C6—C5 | 1.3 (3) | C11—C12—C19—C20 | 30.10 (18) |
C2—C1—C6—C7 | −179.1 (2) | C13—C12—C19—C20 | 149.44 (13) |
C4—C5—C6—C1 | −1.5 (3) | C16—C12—C19—C20 | −95.80 (15) |
C4—C5—C6—C7 | 179.0 (2) | N1—C19—C20—O1 | −49.5 (2) |
C1—C6—C7—C8 | 176.3 (2) | C27—C19—C20—O1 | −169.53 (17) |
C5—C6—C7—C8 | −4.2 (3) | C12—C19—C20—O1 | 65.1 (2) |
C6—C7—C8—C13 | −177.51 (17) | N1—C19—C20—C21 | 126.69 (15) |
C6—C7—C8—C9 | 1.7 (3) | C27—C19—C20—C21 | 6.65 (16) |
C7—C8—C9—C10 | −176.22 (17) | C12—C19—C20—C21 | −118.69 (15) |
C13—C8—C9—C10 | 3.0 (2) | O1—C20—C21—C22 | −5.9 (3) |
C15—O4—C10—O3 | 28.40 (19) | C19—C20—C21—C22 | 177.94 (18) |
C15—O4—C10—C9 | 147.01 (17) | O1—C20—C21—C26 | 169.93 (18) |
C15—O4—C10—C11 | −92.02 (18) | C19—C20—C21—C26 | −6.18 (18) |
C14—O3—C10—O4 | −8.6 (2) | C26—C21—C22—C23 | −0.7 (3) |
C14—O3—C10—C9 | −125.79 (17) | C20—C21—C22—C23 | 174.71 (18) |
C14—O3—C10—C11 | 111.93 (17) | C21—C22—C23—C24 | −1.6 (3) |
C8—C9—C10—O4 | 167.52 (14) | C22—C23—C24—C25 | 1.2 (3) |
C8—C9—C10—O3 | −76.25 (18) | C23—C24—C25—C26 | 1.4 (3) |
C8—C9—C10—C11 | 46.3 (2) | C23—C24—C25—C30 | −177.8 (2) |
O4—C10—C11—C12 | 172.25 (13) | C22—C21—C26—C25 | 3.4 (3) |
O3—C10—C11—C12 | 54.28 (18) | C20—C21—C26—C25 | −173.06 (16) |
C9—C10—C11—C12 | −68.01 (19) | C22—C21—C26—C27 | 179.57 (16) |
C10—C11—C12—C13 | 34.08 (18) | C20—C21—C26—C27 | 3.11 (19) |
C10—C11—C12—C19 | 152.01 (14) | C30—C25—C26—C21 | 175.62 (17) |
C10—C11—C12—C16 | −90.41 (18) | C24—C25—C26—C21 | −3.6 (3) |
C7—C8—C13—O2 | −33.8 (2) | C30—C25—C26—C27 | −0.2 (3) |
C9—C8—C13—O2 | 146.87 (17) | C24—C25—C26—C27 | −179.42 (17) |
C7—C8—C13—C12 | 143.18 (16) | C21—C26—C27—C28 | −174.28 (16) |
C9—C8—C13—C12 | −36.1 (2) | C25—C26—C27—C28 | 1.8 (3) |
C11—C12—C13—O2 | −167.12 (15) | C21—C26—C27—C19 | 1.4 (2) |
C19—C12—C13—O2 | 73.01 (19) | C25—C26—C27—C19 | 177.50 (15) |
C16—C12—C13—O2 | −37.9 (2) | N1—C19—C27—C28 | 48.5 (3) |
C11—C12—C13—C8 | 15.8 (2) | C20—C19—C27—C28 | 170.00 (19) |
C19—C12—C13—C8 | −104.02 (16) | C12—C19—C27—C28 | −70.9 (2) |
C16—C12—C13—C8 | 145.07 (15) | N1—C19—C27—C26 | −126.33 (15) |
C10—O3—C14—C15 | −13.4 (2) | C20—C19—C27—C26 | −4.83 (17) |
C10—O4—C15—C14 | −35.8 (2) | C12—C19—C27—C26 | 114.29 (16) |
O3—C14—C15—O4 | 30.2 (2) | C26—C27—C28—C29 | −2.3 (3) |
C11—C12—C16—C31 | 2.1 (2) | C19—C27—C28—C29 | −176.79 (18) |
C13—C12—C16—C31 | −122.82 (16) | C27—C28—C29—C30 | 1.3 (3) |
C19—C12—C16—C31 | 123.53 (16) | C28—C29—C30—C25 | 0.5 (3) |
C11—C12—C16—C17 | −124.29 (16) | C26—C25—C30—C29 | −1.0 (3) |
C13—C12—C16—C17 | 110.81 (15) | C24—C25—C30—C29 | 178.2 (2) |
C19—C12—C16—C17 | −2.85 (17) | C17—C16—C31—C36 | 57.8 (2) |
C19—N1—C17—C16 | 40.07 (19) | C12—C16—C31—C36 | −65.2 (2) |
C18—N1—C17—C16 | 170.29 (16) | C17—C16—C31—C32 | −119.55 (19) |
C31—C16—C17—N1 | −152.50 (15) | C12—C16—C31—C32 | 117.45 (19) |
C12—C16—C17—N1 | −21.15 (19) | C36—C31—C32—C33 | 1.1 (3) |
C17—N1—C19—C27 | −169.24 (14) | C16—C31—C32—C33 | 178.67 (19) |
C18—N1—C19—C27 | 61.6 (2) | C31—C32—C33—C34 | 1.2 (4) |
C17—N1—C19—C20 | 77.11 (17) | C32—C33—C34—C35 | −1.9 (4) |
C18—N1—C19—C20 | −52.0 (2) | C33—C34—C35—C36 | 0.2 (3) |
C17—N1—C19—C12 | −41.23 (17) | C32—C31—C36—C35 | −2.9 (3) |
C18—N1—C19—C12 | −170.35 (15) | C16—C31—C36—C35 | 179.70 (18) |
C11—C12—C19—N1 | 151.59 (13) | C34—C35—C36—C31 | 2.2 (3) |
C13—C12—C19—N1 | −89.07 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9A···O4i | 0.97 | 2.47 | 3.352 (3) | 152 |
C17—H17A···O1 | 0.97 | 2.52 | 3.052 (2) | 114 |
C22—H22···O1ii | 0.93 | 2.44 | 3.291 (2) | 153 |
C28—H28···O2 | 0.93 | 2.59 | 3.199 (3) | 123 |
C36—H36···O1 | 0.93 | 2.31 | 3.174 (3) | 155 |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+2, −y+2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9A···O4i | 0.97 | 2.47 | 3.352 (3) | 152 |
C17—H17A···O1 | 0.97 | 2.52 | 3.052 (2) | 114 |
C22—H22···O1ii | 0.93 | 2.44 | 3.291 (2) | 153 |
C28—H28···O2 | 0.93 | 2.59 | 3.199 (3) | 123 |
C36—H36···O1 | 0.93 | 2.31 | 3.174 (3) | 155 |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+2, −y+2, −z. |
Experimental details
Crystal data | |
Chemical formula | C36H31NO4 |
Mr | 541.62 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 10.8861 (4), 11.4899 (4), 11.9171 (4) |
α, β, γ (°) | 83.83 (1), 65.253 (8), 86.397 (10) |
V (Å3) | 1345.60 (12) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.30 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.710, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 33777, 4744, 3465 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.122, 1.09 |
No. of reflections | 4744 |
No. of parameters | 372 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.16, −0.16 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), publCIF (Westrip, 2010).
Acknowledgements
The authors thank the single-crystal XRD facility, SAIF, IIT Madras, Chennai, for the data collection.
References
Almansour, A. I., Kumar, R. S., Beevi, F., Shirazi, A. N., Osman, H., Ismail, R., Choon, T. S., Sullivan, B., McCaffrey, K., Nahhas, A., Parang, K. & Ali, M. A. (2014). Molecules, 19, 10033–10055. CrossRef PubMed Google Scholar
Bruker (2004). APEX, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chande, M. S., Verma, R. S., Barve, P. A., Khanwelkar, R. R., Vaidya, R. B. & Ajaikumar, K. B. (2005). Eur. J. Med. Chem. 40, 1143–1148. Web of Science CrossRef PubMed CAS Google Scholar
Chandralekha, K., Gavaskar, D., Sureshbabu, A. R. & Lakshmi, S. (2014). Acta Cryst. E70, 124–126. CSD CrossRef IUCr Journals Google Scholar
Chandralekha, K., Gavaskar, D., Sureshbabu, A. R. & Lakshmi, S. (2015). Acta Cryst. E71, o814–o815. CSD CrossRef IUCr Journals Google Scholar
Chen, N. Y., Ren, L. P., Zou, M. M., Xu, Z. P., Shao, X. S., Xu, X. Y. & Li, Z. (2014). Chin. Chem. Lett. 25, 197–200. Web of Science CrossRef CAS Google Scholar
Chin, Y.-W., Salim, A. A., Su, B.-N., Mi, Q., Chai, H.-B., Riswan, S., Kardono, L. B. S., Ruskandi, A., Farnsworth, N. R., Swanson, S. M. & Kinghorn, A. D. (2008). J. Nat. Prod. 71, 390–395. Web of Science CrossRef PubMed CAS Google Scholar
El-Ayaan, U. & Abdel-Aziz, A. A. M. (2005). Eur. J. Med. Chem. 40, 1214–1221. PubMed CAS Google Scholar
El-Ayaan, U., Abdel-Aziz, A. A.-M. & Al-Shihry, S. (2007). Eur. J. Med. Chem. 42, 1325–1333. Web of Science PubMed CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frank, R., Reich, M., Jostock, R., Bahrenberg, G., Schick, H., Henkel, B. & Sonnenschein, H. (2008). US Patent No. 2008269271. Google Scholar
Kreuder, W., Yu, N. & Salbeck, J. (1999). Int. Patent WO 9940655. Google Scholar
Küçük, H., Yusufoğlu, A., Mataracı, E. & Döşler, S. (2011). Molecules, 16, 6806–6815. Web of Science PubMed Google Scholar
Kumar, R. R., Perumal, S., Manju, S. C., Bhatt, P., Yogeeswari, P. & Sriram, D. (2009). Bioorg. Med. Chem. Lett. 19, 3461–3465. PubMed Google Scholar
Kumar, R. R., Perumal, S., Senthilkumar, P., Yogeswari, P. & Sriram, D. (2009). Eur. J. Med. Chem. 44, 3821–3829. PubMed Google Scholar
Liang, Y., Narayanasamy, J., Schinazi, R. F. & Chu, C. K. (2006). Bioorg. Med. Chem. 14, 2178–2189. Web of Science CrossRef PubMed CAS Google Scholar
Lupo, D., Salbeck, J., Schenk, H., Stehlin, T., Stern, R. & Wolf, A. (1998). US Patent No. 5840217. Google Scholar
Marucci, G., Angeli, P., Brasili, L., Buccioni, M., Giardinà, D., Gulini, U., Piergentili, A., Sagratini, G. & Franchini, S. (2005). Med. Chem. Res. 14, 309–331. CrossRef CAS Google Scholar
McDavids, J. E. & Daniels, T. C. (1951). J. Pharm. Sci. 40, 325–326. CrossRef Google Scholar
Molvi, K. I., Haque, N., Awen, B. Z. S. & Zameerudin, M. (2014). World J. Pharm. Pharm. Sci. 3, 536–563. Google Scholar
Obniska, O. & Kamiński, K. (2006). Acta Pol. Pharm. 63, 101–108. PubMed CAS Google Scholar
Obniska, J., Kamiński, K. & Tatarczyńska, E. (2006). Pharmacol. Rep. 58, 207–214. Web of Science PubMed CAS Google Scholar
Palani, K., Ponnuswamy, M. N., Suresh Babu, A. R., Raghunathan, R. & Ravikumar, K. (2006). Acta Cryst. E62, o52–o54. CSD CrossRef IUCr Journals Google Scholar
Pawar, M. J., Burungale, A. B. & Karale, B. K. (2009). ARKIVOC, XIII, 97–107. CrossRef Google Scholar
Sar, S. A. van der, Blunt, J. W. & Munro, M. H. G. (2006). Org. Lett. 8, 2059–2061. PubMed Google Scholar
Sarma, B. K., Manna, D., Minoura, M. & Mugesh, G. (2010). J. Am. Chem. Soc. 132, 5364–5374. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smith, C. E., Williamson, W. R. N., Cashin, C. N. & Kitchen, E. A. (1979). J. Med. Chem. 22, 1464–1469. CrossRef CAS PubMed Web of Science Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suresh Babu, A. R. & Raghunathan, R. (2006). J. Heterocycl. Chem. 43, 1357–1360. Google Scholar
Sureshbabu, A. R., Raghunathan, R., Mathivanan, M., Omprabha, G., Velmurugan, D. & Raghu, R. (2008). Curr. Chem. Biol. 2, 312–320. Google Scholar
Tan, R. X., Jia, Z. J., Zhao, J. & Feng, S. L. (1992). Phytochemistry, 31, 3135–3138. CrossRef CAS Google Scholar
Wei, R., Liu, Y. & Liang, Y. (2009). Chin. J. Org. Chem. 29, 476–487. CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xie, Y.-M., Deng, Y., Dai, X.-Y., Liu, J., Ouyang, L., Wei, Y.-Q. & Zhao, Y.-L. (2011). Molecules, 16, 2519–2526. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.