research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 3| March 2016| Pages 350-354

Crystal structures of four chiral imine-substituted thio­phene derivatives

CROSSMARK_Color_square_no_text.svg

aLaboratorio de Síntesis de Complejos, Facultad de Ciencias Químicas, Universidad Autónoma de Puebla, A.P. 1067, 72001 Puebla, Pue., Mexico, bInstituto de Física, Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico, and cCentro de Química, Instituto de Ciencias, Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 1 February 2016; accepted 10 February 2016; online 17 February 2016)

A series of thio­phenes substituted in positions 2 and 5 by imine groups have been synthesized using a solvent-free approach, and their crystal structures determined. The substituents are chiral groups, and the expected absolute configuration for each mol­ecule was confirmed by refinement of the Flack parameter. The compounds are 2,5-bis­[(S)-(+)-(1,2,3,4-tetra­hydro­naphthalen-1-yl)imino]­thio­phene, C26H26N2S, (I), 2,5-bis­{[(R)-(−)-1-(4-meth­oxy­phen­yl)eth­yl]imino­meth­yl}thio­phene, C24H26N2O2S, (II), 2,5-bis­{[(R)-(−)-1-(4-fluoro­phen­yl)eth­yl]imino­meth­yl}thio­phene, C22H20F2N2S, (III), and 2,5-bis­{[(S)-(+)-1-(4-chloro­phen­yl)eth­yl]imino­meth­yl}thio­phene, C22H20Cl2N2S, (IV). A common feature of all four mol­ecules is the presence of twofold symmetry. For (I), which crystallizes in the triclinic space group P1, this symmetry is non-crystallographic, but for (II) in C2 and the isomorphous structures (III) and (IV) that crystallize in P21212, the twofold symmetry is crystallographically imposed with one half of each mol­ecule in the asymmetric unit. The comparable mol­ecular symmetry in the four structures is also reflected in similar packing, with mol­ecules aggregated to form chains through weak C—H⋯S inter­actions.

1. Chemical context

Thio­phene­dicarbaldehydes have a variety of applications (Dean, 1982a[Dean, F. M. (1982a). Adv. Heterocycl. Chem. 30, 167-238.],b[Dean, F. M. (1982b). Adv. Heterocycl. Chem. 31, 237-344.]), for instance in the synthesis of annulenones and polyenyl-substituted thio­phenes (Sargent & Cresp, 1975[Sargent, M. V. & Cresp, T. M. (1975). Fortschritte Chem. Forschung, 57, 111-143.]), in the preparation of macrocyclic ligands for bimetallic complexes that are able to mimic enzymes (Nelson et al., 1983[Nelson, S. M., Esho, F., Lavery, A. & Drew, M. G. B. (1983). J. Am. Chem. Soc. 105, 5693-5695.]), in crown ether chemistry (Cram & Trueblood, 1981[Cram, D. J. & Trueblood, K. N. (1981). Top. Curr. Chem. 98, 43-106.]) and, more recently, in the preparation of azomethines for photovoltaic applications (Bolduc et al., 2013a[Bolduc, A., Al Ouahabi, A., Mallet, C. & Skene, W. G. (2013a). J. Org. Chem. 78, 9258-9269.],b[Bolduc, A., Dufresne, S. & Skene, W. G. (2013b). Acta Cryst. C69, 1196-1199.]; Petrus et al., 2014[Petrus, M. L., Bouwer, R. K. M., Lafont, U., Athanasopoulos, S., Greenham, N. C. & Dingemans, T. J. (2014). J. Mater. Chem. A, 2, 9474-9477.]). In regard to this latter application, most of the conjugated materials used in organic electronics are synthesized using time-consuming Suzuki-, Wittig-, or Heck-type coupling reactions that require expensive catalysts, stringent reaction conditions, and tedious purification processes. In order to afford a more economic route towards organic photovoltaic materials, Schiff bases derived from 2,5-thio­phene­dicarbaldehyde as the conjugated linker unit have recently been used. The azomethine bond, which is isoelectronic with the vinyl bond and possesses similar optoelectronic and thermal properties, is easily accessible through the Schiff condensation under near ambient reaction conditions (Morgan et al., 1987[Morgan, P. W., Kwolek, S. L. & Pletcher, T. C. (1987). Macromolecules, 20, 729-739.]; Pérez Guarìn et al., 2007[Pérez Guarìn, S. A., Bourgeaux, M., Dufresne, S. & Skene, W. G. (2007). J. Org. Chem. 72, 2631-2643.]; Sicard et al., 2013[Sicard, L., Navarathne, D., Skalski, T. & Skene, W. G. (2013). Adv. Funct. Mater. 23, 3549-3559.]).

[Scheme 1]

We report here the synthesis and X-ray characterization of such thio­phene derivatives, as a continuation of a partially published record (Bernès et al., 2013[Bernès, S., Hernández-Téllez, G., Sharma, M., Portillo-Moreno, O. & Gutiérrez, R. (2013). Acta Cryst. E69, o1428.]; Mendoza et al., 2014[Mendoza, A., Bernès, S., Hernández-Téllez, G., Portillo-Moreno, O. & Gutiérrez, R. (2014). Acta Cryst. E70, o345.]). We are improving a general solvent-free approach for these syntheses, recognising that ecological aspects in organic chemistry have become a priority, in order to minimize the qu­antity of toxic waste and by-products, and to decrease the amount of solvent in the reaction media or during work-up (Tanaka & Toda, 2000[Tanaka, K. & Toda, F. (2000). Chem. Rev. 100, 1025-1074.]; Noyori, 2005[Noyori, R. (2005). Chem. Commun. pp. 1807-1811.]).

In the synthesis of the thio­phenes reported here, the Schiff condensation generates a single by-product, water, and a one-step recrystallization affords the pure substituted thio­phene in nearly qu­anti­tative yields. Our protocol may be readily extended to any low mol­ecular weight 2,5-susbtituted thio­phene, providing that a liquid amine is used for the condensation. In the present work, the starting material is 2,5-thio­phene­dicarbaldehyde, a low melting-point compound (m.p. = 388–390 K), and four chiral amines were used. We took advantage of the anomalous dispersion of the sulfur sites to confirm that the configuration of the chiral amine is retained during the condensation.

2. Structural commentary

The first compound was synthesized using (S)-(+)-1-amino­tetra­line. The Schiff base (I)[link], C26H26N2S, crystallizes in the space group P1, with the expected absolute configuration (Fig. 1[link]). The general shape of the mol­ecule displays a pseudo-twofold axis, passing through the S atom and the midpoint of the thio­phene C—C σ-bond. As a consequence, the independent benzene rings are placed above and below the thio­phene ring, and are inclined to one another at a dihedral angle of 73.76 (15)°. The central core containing the thio­phene ring and the imine bonds is virtually planar, and the imine bonds are substituted by the tetra­lin ring systems, which present the same conformation. The aliphatic rings C9–C13/C18 and C19–C23/C28 each have a half-chair conformation.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], with displacement ellipsoids for non-H atoms at the 30% probability level.

Compound (II)[link], C24H26N2O2S, was obtained using (R)-(+)-(4-meth­oxy)phenyl­ethyl­amine as the chiral component in the Schiff condensation. The twofold mol­ecular axis, which was a latent symmetry in the case of (I)[link], is a true crystallographic symmetry in (II)[link], and this compound crystallizes in the space group C2 (Fig. 2[link]). The asymmetric unit thus contains half a mol­ecule, and the mol­ecular conformation for the complete mol­ecule is similar to that of (I)[link]. The benzene rings have a free relative orientation, since these rings are not fused in a bicyclic system, as in (I)[link]; the dihedral angle between symmetry-related rings is 61.30 (7)°.

[Figure 2]
Figure 2
The mol­ecular structure of (II)[link], with displacement ellipsoids for non-H atoms at the 30% probability level. Non-labeled atoms are generated by symmetry code (1 − x, y, 1 − z).

Compounds (III)[link] and (IV)[link], synthesized with enanti­o­meri­cally pure (4-halogen)phenyl­ethyl­amines (halogen = F, Cl) are isomorphous and crystallize with ortho­rhom­bic unit cells. The latent twofold symmetry of (I)[link] is again observed, since both mol­ecules lie on the crystallographic twofold axes of the space group P21212 (Fig. 3[link]). The dihedral angle between the benzene rings is close to that observed for (II)[link]: 64.18 (8)° for (III)[link] and 62.03 (9)° for (IV)[link]. The same Schiff base but with Br as the halogen substituent has been published previously (Mendoza et al., 2014[Mendoza, A., Bernès, S., Hernández-Téllez, G., Portillo-Moreno, O. & Gutiérrez, R. (2014). Acta Cryst. E70, o345.]), but is not isomorphous with (III)[link] and (IV)[link]. Instead, this mol­ecule was found to crystallize in the space group C2, with unit-cell parameters and a crystal structure very similar to those of (II)[link]. A systematic trend is thus emerging for these 2,5-substituted thio­phenes, related to the potential twofold mol­ecular symmetry: they have a strong tendency to crystallize in space groups that include at least one C2 axis, such as C2 and P21212 for the chiral crystals. This trend extends to achiral mol­ecules, which also have twofold crystallographic symmetry in the space group C2/c (Kudyakova et al., 2011[Kudyakova, Yu. S., Burgart, Ya. V. & Saloutin, V. I. (2011). Chem. Heterocycl. Compd. 47, 558-563.]; Suganya et al., 2014[Suganya, S., Velmathi, S. & MubarakAli, D. (2014). Dyes Pigments, 104, 116-122.]; Boyle et al., 2015[Boyle, R., Crundwell, G. & Glagovich, N. M. (2015). Acta Cryst. E71, o403.]; Moussallem et al., 2015[Moussallem, C., Allain, M., Mallet, C., Gohier, F. & Frère, P. (2015). J. Fluor. Chem. 178, 34-39.]). The features shared by these related compounds could also be a signature of a propensity towards polymorphism between monoclinic and ortho­rhom­bic systems.

[Figure 3]
Figure 3
The mol­ecular structures of isomorphous compounds (III)[link] and (IV)[link], with displacement ellipsoids for non-H atoms at the 30% probability level. Notice the different configuration for chiral center C5 in (III)[link] and (IV)[link]. Non-labeled atoms are generated by symmetry codes (1 − x, −y, z) and (1 − x, 2 − y, z) for (III)[link] and (IV)[link], respectively.

The difference between non-crystallographic symmetry in (I)[link] and exact C2 mol­ecular symmetry in (II)–(IV) is also reflected in the degree of conjugation between thio­phene rings and imine bonds. For (I)[link], dihedral angles between the thio­phene and C=N—C* mean planes (C* is the chiral C atom bonded to the imine functionality) are 6.9 (7) and 1.9 (6)°. Other crystals have a symmetry restriction, inducing a small deconjugation of the imine bonds. The corresponding dihedral angles with the thio­phene rings are 8.5 (4), 10.1 (3), and 9.8 (3)°, for (II)[link], (III)[link] and (IV)[link], respectively.

3. Supra­molecular features

Although all compounds have benzene rings, neither ππ nor C—H⋯π contacts stabilize the crystal structures. However, these compounds share a common supra­molecular feature. Lone pairs of S atoms inter­act with thio­phenic CH groups of a neighboring mol­ecule in the crystal, forming chains along the short cell axes: [100] for (I)[link], [010] for (II)[link] and [001] for (III)[link] and (IV)[link]. An example is presented in Fig. 4[link], for compound (II)[link]. These bifurcated S⋯C—H contacts have a significant strength for (I)[link], perhaps as a consequence of the relaxed mol­ecular symmetry in space group P1. The contacts are weaker for (II)[link], (III)[link] and (IV)[link], which have a geometry restrained by the crystallographic symmetry (Table 1[link]).

Table 1
Comparison of C—H⋯S hydrogen bonds (Å, °) in compounds (I)–(IV)

Compound Contact C—H H⋯S C⋯S C—H⋯S
(I) C4—H4A⋯S1i 0.93 3.00 3.562 (5) 121
(I) C5—H5A⋯S1i 0.93 2.97 3.547 (5) 122
           
(II) C4—H4A⋯S1ii 0.93 2.99 3.572 (3) 122
(III) C4—H4A⋯S1iii 0.93 3.15 3.743 (3) 124
(IV) C4—H4A⋯S1iv 0.93 3.23 3.828 (4) 124
Symmetry codes: (i) x + 1, y, z; (ii) x, y + 1, z; (iii) x, y, z + 1; (iv) x, y, z − 1.
[Figure 4]
Figure 4
Part of the crystal structure of (II)[link], showing C—H⋯S hydrogen bonds (dashed lines) linking mol­ecules along [010]. [Symmetry codes: (i) 1 − x, y, 1 − z; (ii) x, 1 + y, z.]

4. Database survey

Many thio­phenes substituted in the 2 and 5 positions by imine groups have been characterized; however, almost all were achiral compounds. X-ray structures have been reported mostly in space group C2/c (Suganya et al., 2014[Suganya, S., Velmathi, S. & MubarakAli, D. (2014). Dyes Pigments, 104, 116-122.]; Kudyakova et al., 2011[Kudyakova, Yu. S., Burgart, Ya. V. & Saloutin, V. I. (2011). Chem. Heterocycl. Compd. 47, 558-563.], 2012[Kudyakova, Y. S., Burgart, Y. V., Slepukhin, P. A. & Saloutin, V. I. (2012). Mendeleev Commun. 22, 284-286.]; Bolduc et al., 2013b[Bolduc, A., Dufresne, S. & Skene, W. G. (2013b). Acta Cryst. C69, 1196-1199.]). Other represented space groups for achiral mol­ecules are P21 (Skene & Dufresne, 2006[Skene, W. G. & Dufresne, S. (2006). Acta Cryst. E62, o1116-o1117.]) and P21/c (Wiedermann et al., 2005[Wiedermann, J., Kirchner, K. & Mereiter, K. (2005). Private communication (refcode NAWMAA). CCDC, Cambridge, England.]). Finally, a single case of a mol­ecule presenting mirror symmetry has been described (Fridman & Kaftory, 2007[Fridman, N. & Kaftory, M. (2007). Pol. J. Chem. 81, 825-832.]), in space group Pnma.

The group of chiral mol­ecules belonging to this family is much less populated, with two examples reported by our group in this journal. Both are mol­ecules with the C2 point group and crystallize in space groups C2 (Mendoza et al., 2014[Mendoza, A., Bernès, S., Hernández-Téllez, G., Portillo-Moreno, O. & Gutiérrez, R. (2014). Acta Cryst. E70, o345.]) and P22121 (Bernès et al., 2013[Bernès, S., Hernández-Téllez, G., Sharma, M., Portillo-Moreno, O. & Gutiérrez, R. (2013). Acta Cryst. E69, o1428.]).

5. Synthesis and crystallization

Synthesis. The chiral amines used for the Schiff condensation were obtained directly from suppliers: (S)-(+)-1,2,3,4-tetra­hydro-1-naphthyl­amine for (I)[link], (R)-(+)-1-(4-meth­oxy­phen­yl)ethyl­amine for (II)[link], (R)-(+)-1-(4-fluoro­phen­yl)ethyl­amine for (III)[link] and (S)-(−)-1-(4-chloro­phen­yl)ethyl­amine for (IV)[link]. 2,5-Thio­phene­dicarbaldehyde (100 mg, 0.71 mmol) and the chiral amine (1.4 mmol) in a 1:2 molar ratio were mixed at room temperature under solvent-free conditions, giving light-yellow (II and IV), colorless (III)[link] or light-brown (IV)[link] solids, in 95-97% yields. The crude solids were recrystallized from CH2Cl2, affording colorless crystals of (I)–(IV).

Spectroscopy. (I)[link]: m.p. 437–438 K. [α]20D = +655.4 (c = 1, CHCl3). FTIR: 1616 cm−1 (C=N). 1H NMR (500 MHz, CHCl3/TMS): δ = 1.76–1.86 (m, 2H; H-al), 1.96–2.06 (m, 6H; H-al), 2.74–2.90 (m, 4H; H-al), 4.51 (t, 2H; H-al), 6.98–7.02 (m, 2H; H-ar), 7.09–7.15 (m, 6H; H-ar), 7.28 (s, 2H; H-ar), 8.36 (s, 2H; HC=N). 13C NMR: δ = 19.7, 29.3, 31.1, 67.7 (C-al), 125.7, 126.9, 128.7, 129.1, 129.6, 136.8, 137.1, 145.1 (C-ar), 153.1 (HC=N). MS–EI: m/z = 398 (M+).

(II): m.p. 405–406 K. [α]20D = −626.8 (c = 1, CHCl3). FTIR: 1631 cm−1 (C=N). 1H NMR (500 MHz, CHCl3/TMS): δ = 1.53 (d, 6H; CHCH3), 3.78 (s, 6H; OCH3), 4.47 (q, 2H; CHCH3), 6.85–6.88 (m, 4H; H-ar), 7.19 (s, 2H; H-ar), 7.29–7.32 (m, 4H; H-ar), 8.33 (s, 2H; HC=N). 13C NMR: δ = 24.8 (CHCH3), 55.2 (OCH3), 68.1 (CHCH3), 113.7, 127.6, 129.6, 137.1, 145.2, 152.1 (C-ar), 158.5 (HC=N). MS–EI: m/z = 406 (M+).

(III): m.p. 420–421 K. [α]20D = −542.5 (c = 1, CHCl3). FTIR: 1621 cm−1 (C=N). 1H NMR (500 MHz, CHCl3/TMS): δ = 1.53 (d, 6H; CHCH3), 4.49 (q, 2H; CHCH3), 7.00–7.38 (m, 10H; H-ar), 8.37 (s, 2H; HC=N). 13C NMR: δ = 25.2 (CHCH3), 68.7 (CHCH3), 115.2 (d, JF-C = 21.2 Hz; C-ar), 128.1 (d, JF-C = 8.7 Hz; C-ar), 130.1 (C-ar), 140.7 (d, JF-C = 2.5 Hz; C-ar), 145.1 (C-ar), 161.1 (d, JF-C = 242.5 Hz; C-ar), 152.5 (HC=N). MS–EI: m/z = 382 (M+).

(IV): m.p. 434–435 K. [α]20D = +726.5 (c = 1, CHCl3). FTIR: 1623 cm−1 (C=N). 1H NMR (500 MHz, CHCl3/TMS): δ = 1.53 (d, 6H; CHCH3), 4.48 (q, 2H; CHCH3), 7.23–7.35 (m, 10H; H-ar), 8.37 (s, 2H; HC=N). 13C NMR: δ = 25.2 (CHCH3), 68.7 (CHCH3), 128.0, 128.6, 130.2, 132.5, 143.5, 145.1 (C-ar), 152.7 (HC=N).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. No unusual issues appeared, and refinements were carried out on non-restricted models. All H atoms were placed in calculated positions, and refined as riding on their carrier C atoms, with C—H bond lengths fixed to 0.93 (aromatic CH), 0.96 (methyl CH3), 0.97 (methyl­ene CH2), or 0.98 Å (methine CH). Isotropic displacement parameters were calculated as Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for other H atoms. For all compounds, the absolute configuration was based on the refinement of the Flack parameter (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]), confirming that the configuration of the chiral amine used as the starting material was retained during the Schiff condensation.

Table 2
Experimental details

  (I) (II) (III) (IV)
Crystal data
Chemical formula C26H26N2S C24H26N2O2S C22H20F2N2S C22H20Cl2N2S
Mr 398.55 406.53 382.46 415.36
Crystal system, space group Triclinic, P1 Monoclinic, C2 Orthorhombic, P21212 Orthorhombic, P21212
Temperature (K) 298 298 298 298
a, b, c (Å) 5.9093 (4), 7.6258 (5), 12.6570 (8) 25.3917 (13), 5.9488 (3), 7.5623 (4) 21.1153 (16), 7.7846 (6), 6.1343 (5) 21.893 (2), 7.9212 (6), 6.2315 (4)
α, β, γ (°) 87.802 (5), 78.329 (5), 87.427 (5) 90, 97.174 (4), 90 90, 90, 90 90, 90, 90
V3) 557.76 (6) 1133.34 (10) 1008.32 (14) 1080.66 (15)
Z 1 2 2 2
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.16 0.16 0.19 0.41
Crystal size (mm) 0.34 × 0.12 × 0.06 0.45 × 0.33 × 0.12 0.89 × 0.47 × 0.33 0.52 × 0.40 × 0.07
 
Data collection
Diffractometer Agilent Xcalibur (Atlas, Gemini) Agilent Xcalibur (Atlas, Gemini) Agilent Xcalibur (Atlas, Gemini) Agilent Xcalibur (Atlas, Gemini)
Absorption correction Analytical CrysAlis PRO, (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Analytical (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Analytical CrysAlis PRO, (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Multi-scan CrysAlis PRO, (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.])
Tmin, Tmax 0.969, 0.992 0.973, 0.993 0.904, 0.958 0.692, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6689, 4036, 2958 6341, 2221, 1892 12336, 2067, 1591 14195, 2743, 1534
Rint 0.040 0.027 0.058 0.058
(sin θ/λ)max−1) 0.618 0.618 0.625 0.692
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.127, 1.02 0.036, 0.085, 1.02 0.044, 0.092, 1.06 0.052, 0.117, 1.01
No. of reflections 4036 2221 2067 2743
No. of parameters 262 134 124 124
No. of restraints 3 1 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.19 0.11, −0.17 0.15, −0.25 0.13, −0.17
Absolute structure Flack x determined using 962 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 708 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 518 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 465 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.12 (7) −0.02 (4) 0.07 (6) 0.10 (6)
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Chemical context top

Thio­phene­dicarbaldehydes have a variety of applications (Dean, 1982a,b), for instance in the synthesis of annulenones and polyenyl-substituted thio­phenes (Sargent & Cresp, 1975), in the preparation of macrocyclic ligands for bimetallic complexes that are able to mimic enzymes (Nelson et al., 1983), in crown ether chemistry (Cram & Trueblood, 1981) and, more recently, in the preparation of azomethines for photovoltaic applications (Bolduc et al., 2013a,b; Petrus et al., 2014). In regard to this latter application, most of the conjugated materials used in organic electronics are synthesized using time-consuming Suzuki-, Wittig-, or Heck-type coupling reactions that require expensive catalysts, stringent reaction conditions, and tedious purification processes. In order to afford a more economic route towards organic photovoltaic materials, Schiff bases derived from 2,5-thio­phene­dicarbaldehyde as the conjugated linker unit have recently been used. The azomethine bond, which is isoelectronic with the vinyl bond and possesses similar optoelectronic and thermal properties, is easily accessible through the Schiff condensation under near ambient reaction conditions (Morgan et al., 1987; Pérez Guarìn et al., 2007; Sicard et al., 2013).

We report here the synthesis and X-ray characterization of such thio­phene derivatives, as a continuation of a partially published record (Bernès et al., 2013; Mendoza et al., 2014). We are improving a general solvent-free approach for these syntheses, recognizing that ecological aspects in organic chemistry have become a priority, in order to minimize the qu­antity of toxic waste and by-products, and to decrease the amount of solvent in the reaction media or during work-up (Tanaka & Toda, 2000; Noyori, 2005).

In the synthesis of the thio­phenes reported here, the Schiff condensation generates a single by-product, water, and a one-step recrystallization affords the pure substituted thio­phene in nearly qu­anti­tative yields. Our protocol may be readily extended to any low molecular weight 2,5-susbtituted thio­phene, providing that a liquid amine is used for the condensation. In the present work, the starting material is 2,5-thio­phene­dicarbaldehyde, a low melting-point compound (m.p. = 388–390 K), and four chiral amines were used. We took advantage of the anomalous dispersion of the sulfur sites to confirm that the configuration of the chiral amine is retained during the condensation.

Structural commentary top

The first compound was synthesized using (S)-(+)-1-amino­tetra­line. The Schiff base (I), C26H26N2S, crystallizes in the space group P1, with the expected absolute configuration (Fig. 1). The general shape of the molecule displays a pseudo-twofold axis, passing through the S atom and the midpoint of the thio­phene C—C σ-bond. As a consequence, the independent benzene rings are placed above and below the thio­phene ring, and are inclined to one another at a dihedral angle of 73.76 (15)°. The central core containing the thio­phene ring and the imine bonds is virtually planar, and the imine bonds are substituted by the tetra­lin ring systems, which present the same conformation. The aliphatic rings C9–C13/C18 and C19–C23/C28 each have a half-chair conformation.

Compound (II), C24H26N2O2S, was obtained using (R)-(+)-(4-meth­oxy)­phenyl­ethyl­amine as the chiral component in the Schiff condensation. The twofold molecular axis, which was a latent symmetry in the case of (I), is a true crystallographic symmetry in (II), and this compound crystallizes in the space group C2 (Fig. 2). The asymmetric unit thus contains half a molecule, and the molecular conformation for the complete molecule is similar to that of (I). The benzene rings have a free relative orientation, since these rings are not fused in a bicyclic system, as in (I); the dihedral angle between symmetry-related rings is 61.30 (7)°.

Compounds (III) and (IV), synthesized with enanti­omerically pure (4-halogen)phenyl­ethyl­amines (halogen = F, Cl) are isomorphous and crystallize with orthorhombic unit cells. The latent twofold symmetry of (I) is again observed, since both molecules lie on the crystallographic twofold axes of the space group P21212 (Fig. 3). The dihedral angle between the benzene rings is close to that observed for (II): 64.18 (8)° for (III) and 62.03 (9)° for (IV). The same Schiff base but with Br as the halogen substituent has been published previously (Mendoza et al., 2014), but is not isomorphous with (III) and (IV). Instead, this molecule was found to crystallize in the space group C2, with unit-cell parameters and a crystal structure very similar to those of (II). A systematic trend is thus emerging for these 2,5-substituted thio­phenes, related to the potential twofold molecular symmetry: they have a strong tendency to crystallize in space groups that include at least one C2 axis, such as C2 and P21212 for the chiral crystals. This trend extends to achiral molecules, which also have twofold crystallographic symmetry in the space group C2/c (Kudyakova et al., 2011; Suganya et al., 2014; Boyle et al., 2015; Moussallem et al., 2015). The features shared by these related compounds could also be a signature of a propensity towards polymorphism between monoclinic and orthorhombic systems.

The difference between non-crystallographic symmetry in (I) and exact C2 molecular symmetry in (II)–(IV) is also reflected in the degree of conjugation between thio­phene rings and imine bonds. For (I), dihedral angles between the thio­phene and CN—C* mean planes (C* is the chiral C atom bonded to the imine functionality) are 6.9 (7) and 1.9 (6)°. Other crystals have a symmetry restriction, inducing a small deconjugation of the imine bonds. The corresponding dihedral angles with the thio­phene rings are 8.5 (4), 10.1 (3), and 9.8 (3)°, for (II), (III) and (IV), respectively.

Supra­molecular features top

Although all compounds have benzene rings, neither ππ nor C—H···π contacts stabilize the crystal structures. However, these compounds share a common supra­molecular feature. Lone pairs of S atoms inter­act with thio­phenic CH groups of a neighboring molecule in the crystal, forming chains along the short cell axes: [100] for (I), [010] for (II) and [001] for (III) and (IV). An example is presented in Fig. 4, for compound (II). These bifurcated S···C—H contacts have a significant strength for (I), perhaps as a consequence of the relaxed molecular symmetry in space group P1. The contacts are weaker for (II), (III) and (IV), which have a geometry restrained by the crystallographic symmetry (Table 1).

Database survey top

Many thio­phenes substituted in the 2 and 5 positions by imine groups have been characterized; however, almost all were achiral compounds. X-ray structures have been reported mostly in space group C2/c (Suganya et al., 2014; Kudyakova et al., 2011, 2012; Bolduc et al., 2013b). Other represented space groups for achiral molecules are P21 (Skene & Dufresne, 2006) and P21/c (Wiedermann et al., 2005). Finally, a single case of a molecule presenting mirror symmetry has been described (Fridman & Kaftory, 2007), in space group Pnma.

The group of chiral molecules belonging to this family is much less populated, with two examples reported by our group in this journal. Both are molecules with the C2 point group and crystallize in space groups C2 (Mendoza et al., 2014) and P22121 (Bernès et al., 2013).

Synthesis and crystallization top

Synthesis. The chiral amines used for the Schiff condensation were obtained directly from suppliers: (S)-(+)-1,2,3,4-tetra­hydro-1-naphthyl­amine for (I), (R)-(+)-1-(4-meth­oxy­phenyl)­ethyl­amine for (II), (R)-(+)-1-(4-fluoro­phenyl)­ethyl­amine for (III) and (S)-(-)-1-(4-chloro­phenyl)­ethyl­amine for (IV). 2,5-Thio­phene­dicarbaldehyde (100 mg, 0.71 mmol) and the chiral amine (1.4 mmol) in a 1:2 molar ratio were mixed at room temperature under solvent-free conditions, giving light yellow (II and IV), colorless (III) or light brown (IV) solids, in 95–97% yields. The crude solids were recrystallized from CH2Cl2, affording colorless crystals of (I)–(IV).

Spectroscopy. (I): m.p. 1437–438 K. [α]20D = +655.4 (c =1, CHCl3). FTIR: 1616 cm−1 (CN). 1H NMR (500 MHz, CHCl3/TMS): δ = 1.76–1.86 (m, 2H; H-al), 1.96–2.06 (m, 6H; H-al), 2.74–2.90 (m, 4H; H-al), 4.51 (t, 2H; H-al), 6.98–7.02 (m, 2H; H-ar), 7.09–7.15 (m, 6H; H-ar), 7.28 (s, 2H; H-ar), 8.36 (s, 2H; HCN). 13C-NMR: δ = 19.7, 29.3, 31.1, 67.7 (C-al), 125.7, 126.9, 128.7, 129.1, 129.6, 136.8, 137.1, 145.1 (C-ar), 153.1 (HCN). MS–EI: m/z = 398 (M+).

(II): m.p. 405–406 K. [α]20D = −626.8 (c =1, CHCl3). FTIR: 1631 cm−1 (CN). 1H NMR (500 MHz, CHCl3/TMS): δ = 1.53 (d, 6H; CHCH3), 3.78 (s, 6H; OCH3), 4.47 (q, 2H; CHCH3), 6.85–6.88 (m, 4H; H-ar), 7.19 (s, 2H; H-ar), 7.29–7.32 (m, 4H; H-ar), 8.33 (s, 2H; HCN). 13C-NMR: δ = 24.8 (CHCH3), 55.2 (OCH3), 68.1 (CHCH3), 113.7, 127.6, 129.6, 137.1, 145.2, 152.1 (C-ar), 158.5 (HCN). MS–EI: m/z = 406 (M+).

(III): m.p. 420–421 K. [α]20D = −542.5 (c =1, CHCl3). FTIR: 1621 cm−1 (CN). 1H NMR (500 MHz, CHCl3/TMS): δ = 1.53 (d, 6H; CHCH3), 4.49 (q, 2H; CHCH3), 7.00–7.38 (m, 10H; H-ar), 8.37 (s, 2H; HCN). 13C-NMR: δ = 25.2 (CHCH3), 68.7 (CHCH3), 115.2 (d, JF—C = 21.2 Hz; C-ar), 128.1 (d, JF—C = 8.7 Hz; C-ar), 130.1 (C-ar), 140.7 (d, JF—C = 2.5 Hz; C-ar), 145.1 (C-ar), 161.1 (d, JF—C = 242.5 Hz; C-ar), 152.5 (HCN). MS–EI: m/z = 382 (M+).

(IV): m.p. 434–435 K. [α]20D = +726.5 (c =1, CHCl3). FTIR: 1623 cm−1 (CN). 1H NMR (500 MHz, CHCl3/TMS): δ = 1.53 (d, 6H; CHCH3), 4.48 (q, 2H; CHCH3), 7.23–7.35 (m, 10H; H-ar), 8.37 (s, 2H; HCN). 13C-NMR: δ = 25.2 (CHCH3), 68.7 (CHCH3), 128.0, 128.6, 130.2, 132.5, 143.5, 145.1 (C-ar), 152.7 (HCN).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. No unusual issues appeared, and refinements were carried out on non-restricted models. All H atoms were placed in calculated positions, and refined as riding on their carrier C atoms, with C—H bond lengths fixed to 0.93 (aromatic CH), 0.96 (methyl CH3), 0.97 (methyl­ene CH2), or 0.98 Å (methine CH). Isotropic displacement parameters were calculated as Uiso(H) = 1.5×Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for other H atoms. For all compounds, the absolute configuration was based on the refinement of the Flack parameter (Parsons et al., 2013), confirming that the configuration of the chiral amine used as the starting material was retained during the Schiff condensation.

Structure description top

Thio­phene­dicarbaldehydes have a variety of applications (Dean, 1982a,b), for instance in the synthesis of annulenones and polyenyl-substituted thio­phenes (Sargent & Cresp, 1975), in the preparation of macrocyclic ligands for bimetallic complexes that are able to mimic enzymes (Nelson et al., 1983), in crown ether chemistry (Cram & Trueblood, 1981) and, more recently, in the preparation of azomethines for photovoltaic applications (Bolduc et al., 2013a,b; Petrus et al., 2014). In regard to this latter application, most of the conjugated materials used in organic electronics are synthesized using time-consuming Suzuki-, Wittig-, or Heck-type coupling reactions that require expensive catalysts, stringent reaction conditions, and tedious purification processes. In order to afford a more economic route towards organic photovoltaic materials, Schiff bases derived from 2,5-thio­phene­dicarbaldehyde as the conjugated linker unit have recently been used. The azomethine bond, which is isoelectronic with the vinyl bond and possesses similar optoelectronic and thermal properties, is easily accessible through the Schiff condensation under near ambient reaction conditions (Morgan et al., 1987; Pérez Guarìn et al., 2007; Sicard et al., 2013).

We report here the synthesis and X-ray characterization of such thio­phene derivatives, as a continuation of a partially published record (Bernès et al., 2013; Mendoza et al., 2014). We are improving a general solvent-free approach for these syntheses, recognizing that ecological aspects in organic chemistry have become a priority, in order to minimize the qu­antity of toxic waste and by-products, and to decrease the amount of solvent in the reaction media or during work-up (Tanaka & Toda, 2000; Noyori, 2005).

In the synthesis of the thio­phenes reported here, the Schiff condensation generates a single by-product, water, and a one-step recrystallization affords the pure substituted thio­phene in nearly qu­anti­tative yields. Our protocol may be readily extended to any low molecular weight 2,5-susbtituted thio­phene, providing that a liquid amine is used for the condensation. In the present work, the starting material is 2,5-thio­phene­dicarbaldehyde, a low melting-point compound (m.p. = 388–390 K), and four chiral amines were used. We took advantage of the anomalous dispersion of the sulfur sites to confirm that the configuration of the chiral amine is retained during the condensation.

The first compound was synthesized using (S)-(+)-1-amino­tetra­line. The Schiff base (I), C26H26N2S, crystallizes in the space group P1, with the expected absolute configuration (Fig. 1). The general shape of the molecule displays a pseudo-twofold axis, passing through the S atom and the midpoint of the thio­phene C—C σ-bond. As a consequence, the independent benzene rings are placed above and below the thio­phene ring, and are inclined to one another at a dihedral angle of 73.76 (15)°. The central core containing the thio­phene ring and the imine bonds is virtually planar, and the imine bonds are substituted by the tetra­lin ring systems, which present the same conformation. The aliphatic rings C9–C13/C18 and C19–C23/C28 each have a half-chair conformation.

Compound (II), C24H26N2O2S, was obtained using (R)-(+)-(4-meth­oxy)­phenyl­ethyl­amine as the chiral component in the Schiff condensation. The twofold molecular axis, which was a latent symmetry in the case of (I), is a true crystallographic symmetry in (II), and this compound crystallizes in the space group C2 (Fig. 2). The asymmetric unit thus contains half a molecule, and the molecular conformation for the complete molecule is similar to that of (I). The benzene rings have a free relative orientation, since these rings are not fused in a bicyclic system, as in (I); the dihedral angle between symmetry-related rings is 61.30 (7)°.

Compounds (III) and (IV), synthesized with enanti­omerically pure (4-halogen)phenyl­ethyl­amines (halogen = F, Cl) are isomorphous and crystallize with orthorhombic unit cells. The latent twofold symmetry of (I) is again observed, since both molecules lie on the crystallographic twofold axes of the space group P21212 (Fig. 3). The dihedral angle between the benzene rings is close to that observed for (II): 64.18 (8)° for (III) and 62.03 (9)° for (IV). The same Schiff base but with Br as the halogen substituent has been published previously (Mendoza et al., 2014), but is not isomorphous with (III) and (IV). Instead, this molecule was found to crystallize in the space group C2, with unit-cell parameters and a crystal structure very similar to those of (II). A systematic trend is thus emerging for these 2,5-substituted thio­phenes, related to the potential twofold molecular symmetry: they have a strong tendency to crystallize in space groups that include at least one C2 axis, such as C2 and P21212 for the chiral crystals. This trend extends to achiral molecules, which also have twofold crystallographic symmetry in the space group C2/c (Kudyakova et al., 2011; Suganya et al., 2014; Boyle et al., 2015; Moussallem et al., 2015). The features shared by these related compounds could also be a signature of a propensity towards polymorphism between monoclinic and orthorhombic systems.

The difference between non-crystallographic symmetry in (I) and exact C2 molecular symmetry in (II)–(IV) is also reflected in the degree of conjugation between thio­phene rings and imine bonds. For (I), dihedral angles between the thio­phene and CN—C* mean planes (C* is the chiral C atom bonded to the imine functionality) are 6.9 (7) and 1.9 (6)°. Other crystals have a symmetry restriction, inducing a small deconjugation of the imine bonds. The corresponding dihedral angles with the thio­phene rings are 8.5 (4), 10.1 (3), and 9.8 (3)°, for (II), (III) and (IV), respectively.

Although all compounds have benzene rings, neither ππ nor C—H···π contacts stabilize the crystal structures. However, these compounds share a common supra­molecular feature. Lone pairs of S atoms inter­act with thio­phenic CH groups of a neighboring molecule in the crystal, forming chains along the short cell axes: [100] for (I), [010] for (II) and [001] for (III) and (IV). An example is presented in Fig. 4, for compound (II). These bifurcated S···C—H contacts have a significant strength for (I), perhaps as a consequence of the relaxed molecular symmetry in space group P1. The contacts are weaker for (II), (III) and (IV), which have a geometry restrained by the crystallographic symmetry (Table 1).

Many thio­phenes substituted in the 2 and 5 positions by imine groups have been characterized; however, almost all were achiral compounds. X-ray structures have been reported mostly in space group C2/c (Suganya et al., 2014; Kudyakova et al., 2011, 2012; Bolduc et al., 2013b). Other represented space groups for achiral molecules are P21 (Skene & Dufresne, 2006) and P21/c (Wiedermann et al., 2005). Finally, a single case of a molecule presenting mirror symmetry has been described (Fridman & Kaftory, 2007), in space group Pnma.

The group of chiral molecules belonging to this family is much less populated, with two examples reported by our group in this journal. Both are molecules with the C2 point group and crystallize in space groups C2 (Mendoza et al., 2014) and P22121 (Bernès et al., 2013).

Synthesis and crystallization top

Synthesis. The chiral amines used for the Schiff condensation were obtained directly from suppliers: (S)-(+)-1,2,3,4-tetra­hydro-1-naphthyl­amine for (I), (R)-(+)-1-(4-meth­oxy­phenyl)­ethyl­amine for (II), (R)-(+)-1-(4-fluoro­phenyl)­ethyl­amine for (III) and (S)-(-)-1-(4-chloro­phenyl)­ethyl­amine for (IV). 2,5-Thio­phene­dicarbaldehyde (100 mg, 0.71 mmol) and the chiral amine (1.4 mmol) in a 1:2 molar ratio were mixed at room temperature under solvent-free conditions, giving light yellow (II and IV), colorless (III) or light brown (IV) solids, in 95–97% yields. The crude solids were recrystallized from CH2Cl2, affording colorless crystals of (I)–(IV).

Spectroscopy. (I): m.p. 1437–438 K. [α]20D = +655.4 (c =1, CHCl3). FTIR: 1616 cm−1 (CN). 1H NMR (500 MHz, CHCl3/TMS): δ = 1.76–1.86 (m, 2H; H-al), 1.96–2.06 (m, 6H; H-al), 2.74–2.90 (m, 4H; H-al), 4.51 (t, 2H; H-al), 6.98–7.02 (m, 2H; H-ar), 7.09–7.15 (m, 6H; H-ar), 7.28 (s, 2H; H-ar), 8.36 (s, 2H; HCN). 13C-NMR: δ = 19.7, 29.3, 31.1, 67.7 (C-al), 125.7, 126.9, 128.7, 129.1, 129.6, 136.8, 137.1, 145.1 (C-ar), 153.1 (HCN). MS–EI: m/z = 398 (M+).

(II): m.p. 405–406 K. [α]20D = −626.8 (c =1, CHCl3). FTIR: 1631 cm−1 (CN). 1H NMR (500 MHz, CHCl3/TMS): δ = 1.53 (d, 6H; CHCH3), 3.78 (s, 6H; OCH3), 4.47 (q, 2H; CHCH3), 6.85–6.88 (m, 4H; H-ar), 7.19 (s, 2H; H-ar), 7.29–7.32 (m, 4H; H-ar), 8.33 (s, 2H; HCN). 13C-NMR: δ = 24.8 (CHCH3), 55.2 (OCH3), 68.1 (CHCH3), 113.7, 127.6, 129.6, 137.1, 145.2, 152.1 (C-ar), 158.5 (HCN). MS–EI: m/z = 406 (M+).

(III): m.p. 420–421 K. [α]20D = −542.5 (c =1, CHCl3). FTIR: 1621 cm−1 (CN). 1H NMR (500 MHz, CHCl3/TMS): δ = 1.53 (d, 6H; CHCH3), 4.49 (q, 2H; CHCH3), 7.00–7.38 (m, 10H; H-ar), 8.37 (s, 2H; HCN). 13C-NMR: δ = 25.2 (CHCH3), 68.7 (CHCH3), 115.2 (d, JF—C = 21.2 Hz; C-ar), 128.1 (d, JF—C = 8.7 Hz; C-ar), 130.1 (C-ar), 140.7 (d, JF—C = 2.5 Hz; C-ar), 145.1 (C-ar), 161.1 (d, JF—C = 242.5 Hz; C-ar), 152.5 (HCN). MS–EI: m/z = 382 (M+).

(IV): m.p. 434–435 K. [α]20D = +726.5 (c =1, CHCl3). FTIR: 1623 cm−1 (CN). 1H NMR (500 MHz, CHCl3/TMS): δ = 1.53 (d, 6H; CHCH3), 4.48 (q, 2H; CHCH3), 7.23–7.35 (m, 10H; H-ar), 8.37 (s, 2H; HCN). 13C-NMR: δ = 25.2 (CHCH3), 68.7 (CHCH3), 128.0, 128.6, 130.2, 132.5, 143.5, 145.1 (C-ar), 152.7 (HCN).

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. No unusual issues appeared, and refinements were carried out on non-restricted models. All H atoms were placed in calculated positions, and refined as riding on their carrier C atoms, with C—H bond lengths fixed to 0.93 (aromatic CH), 0.96 (methyl CH3), 0.97 (methyl­ene CH2), or 0.98 Å (methine CH). Isotropic displacement parameters were calculated as Uiso(H) = 1.5×Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for other H atoms. For all compounds, the absolute configuration was based on the refinement of the Flack parameter (Parsons et al., 2013), confirming that the configuration of the chiral amine used as the starting material was retained during the Schiff condensation.

Computing details top

For all compounds, data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for (I); SHELXT (Sheldrick, 2015a) for (II), (III), (IV). For all compounds, program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids for non-H atoms at the 30% probability level.
[Figure 2] Fig. 2. The molecular structure of (II), with displacement ellipsoids for non-H atoms at the 30% probability level. Non-labeled atoms are generated by symmetry code (1 − x, y, 1 − z).
[Figure 3] Fig. 3. The molecular structures of isomorphous compounds (III) and (IV), with displacement ellipsoids for non-H atoms at the 30% probability level. Notice the different configuration for chiral center C5 in (III) and (IV). Non-labeled atoms are generated by symmetry codes (1 − x, −y, z) and (1 − x, 2 − y, z) for (III) and (IV), respectively.
[Figure 4] Fig. 4. Part of the crystal structure of (II), showing C—H···S hydrogen bonds (dashed lines) linking molecules along [010]. [Symmetry codes: (i) 1 − x, y, 1 − z; (ii) x, 1 + y, z.]
(I) 2,5-Bis[(S)-(+)-(1,2,3,4-tetrahydro-1-naphthyl)imino]thiophene top
Crystal data top
C26H26N2SF(000) = 212
Mr = 398.55Dx = 1.187 Mg m3
Triclinic, P1Melting point: 437 K
a = 5.9093 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.6258 (5) ÅCell parameters from 2148 reflections
c = 12.6570 (8) Åθ = 3.3–22.6°
α = 87.802 (5)°µ = 0.16 mm1
β = 78.329 (5)°T = 298 K
γ = 87.427 (5)°Plate, colorless
V = 557.76 (6) Å30.34 × 0.12 × 0.06 mm
Z = 1
Data collection top
Agilent Xcalibur (Atlas, Gemini)
diffractometer
4036 independent reflections
Radiation source: Enhance (Mo) X-ray Source2958 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 10.5564 pixels mm-1θmax = 26.1°, θmin = 3.1°
ω scansh = 77
Absorption correction: analytical
CrysAlis PRO, (Agilent, 2013)
k = 99
Tmin = 0.969, Tmax = 0.992l = 1515
6689 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0525P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4036 reflectionsΔρmax = 0.31 e Å3
262 parametersΔρmin = 0.19 e Å3
3 restraintsAbsolute structure: Flack x determined using 962 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 constraintsAbsolute structure parameter: 0.12 (7)
Primary atom site location: structure-invariant direct methods
Crystal data top
C26H26N2Sγ = 87.427 (5)°
Mr = 398.55V = 557.76 (6) Å3
Triclinic, P1Z = 1
a = 5.9093 (4) ÅMo Kα radiation
b = 7.6258 (5) ŵ = 0.16 mm1
c = 12.6570 (8) ÅT = 298 K
α = 87.802 (5)°0.34 × 0.12 × 0.06 mm
β = 78.329 (5)°
Data collection top
Agilent Xcalibur (Atlas, Gemini)
diffractometer
4036 independent reflections
Absorption correction: analytical
CrysAlis PRO, (Agilent, 2013)
2958 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.992Rint = 0.040
6689 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.127Δρmax = 0.31 e Å3
S = 1.02Δρmin = 0.19 e Å3
4036 reflectionsAbsolute structure: Flack x determined using 962 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
262 parametersAbsolute structure parameter: 0.12 (7)
3 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.66581 (19)0.49640 (17)0.11819 (12)0.0488 (4)
N10.5097 (7)0.7980 (6)0.2625 (3)0.0507 (12)
C20.7239 (10)0.7657 (7)0.2474 (4)0.0490 (13)
H2A0.81320.83000.28340.059*
C30.8355 (8)0.6297 (7)0.1747 (4)0.0469 (13)
C41.0622 (9)0.5892 (7)0.1402 (5)0.0575 (15)
H4A1.17920.64610.16280.069*
C51.1042 (8)0.4510 (7)0.0658 (5)0.0595 (15)
H5A1.25130.40750.03480.071*
C60.9068 (8)0.3894 (6)0.0450 (4)0.0425 (12)
C70.8786 (9)0.2528 (7)0.0268 (4)0.0503 (14)
H7A1.00940.19430.06510.060*
N80.6816 (8)0.2106 (6)0.0390 (3)0.0518 (12)
C90.4190 (9)0.9453 (7)0.3325 (4)0.0518 (13)
H9A0.53650.97450.37300.062*
C100.3728 (12)1.1032 (8)0.2631 (5)0.0772 (18)
H10A0.27511.07130.21430.093*
H10B0.51741.14310.22010.093*
C110.2537 (13)1.2501 (8)0.3345 (5)0.0802 (19)
H11A0.34491.27490.38750.096*
H11B0.24071.35600.29090.096*
C120.0161 (11)1.1958 (8)0.3911 (5)0.0682 (18)
H12A0.04681.27960.44620.082*
H12B0.08471.19910.33930.082*
C130.0174 (9)1.0143 (7)0.4429 (4)0.0486 (14)
C140.1721 (10)0.9610 (9)0.5196 (5)0.0620 (16)
H14A0.29501.04100.54060.074*
C150.1846 (11)0.7955 (9)0.5651 (5)0.0749 (18)
H15A0.31430.76350.61590.090*
C160.0009 (13)0.6756 (9)0.5347 (6)0.080 (2)
H16A0.00680.56210.56440.095*
C170.1892 (11)0.7268 (8)0.4602 (5)0.0665 (16)
H17A0.31340.64710.44140.080*
C180.2020 (8)0.8935 (7)0.4123 (4)0.0465 (12)
C190.6721 (9)0.0655 (6)0.1121 (4)0.0498 (13)
H19A0.82940.04000.15230.060*
C200.5911 (13)0.0955 (8)0.0465 (5)0.0728 (17)
H20A0.45150.06680.00580.087*
H20B0.70860.13900.00750.087*
C210.5425 (13)0.2380 (8)0.1206 (5)0.0755 (19)
H21A0.68020.26280.17500.091*
H21B0.50240.34530.07860.091*
C220.3465 (11)0.1769 (9)0.1746 (5)0.0688 (18)
H22A0.33500.25840.23000.083*
H22B0.20280.17820.12160.083*
C230.3768 (9)0.0051 (8)0.2248 (4)0.0503 (14)
C240.2515 (10)0.0601 (9)0.3022 (4)0.0624 (15)
H24A0.15320.01750.32330.075*
C250.2684 (12)0.2252 (10)0.3484 (5)0.079 (2)
H25A0.18300.25910.40040.095*
C260.4143 (14)0.3418 (9)0.3167 (6)0.086 (2)
H26A0.42690.45500.34690.103*
C270.5398 (11)0.2877 (8)0.2403 (5)0.0671 (17)
H27A0.63910.36530.21990.080*
C280.5226 (8)0.1213 (7)0.1928 (4)0.0484 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0351 (7)0.0574 (8)0.0551 (7)0.0009 (5)0.0088 (5)0.0201 (6)
N10.045 (3)0.058 (3)0.049 (3)0.004 (2)0.006 (2)0.026 (2)
C20.049 (3)0.055 (3)0.047 (3)0.007 (3)0.013 (2)0.016 (3)
C30.039 (3)0.058 (3)0.048 (3)0.002 (2)0.016 (2)0.014 (3)
C40.036 (3)0.071 (4)0.070 (4)0.000 (3)0.017 (3)0.027 (3)
C50.033 (3)0.075 (4)0.072 (4)0.005 (3)0.010 (2)0.031 (3)
C60.031 (3)0.050 (3)0.046 (3)0.004 (2)0.006 (2)0.011 (2)
C70.046 (3)0.057 (3)0.048 (3)0.010 (3)0.007 (2)0.018 (3)
N80.048 (3)0.059 (3)0.050 (3)0.003 (2)0.008 (2)0.023 (2)
C90.049 (3)0.053 (3)0.054 (3)0.001 (3)0.009 (3)0.022 (3)
C100.102 (5)0.061 (4)0.060 (4)0.002 (3)0.005 (3)0.015 (3)
C110.109 (5)0.050 (4)0.070 (4)0.005 (3)0.010 (4)0.007 (3)
C120.082 (5)0.062 (4)0.060 (4)0.024 (3)0.015 (3)0.022 (3)
C130.048 (3)0.057 (3)0.043 (3)0.002 (3)0.012 (3)0.016 (3)
C140.056 (3)0.075 (4)0.056 (3)0.009 (3)0.009 (3)0.027 (3)
C150.075 (4)0.082 (5)0.062 (4)0.011 (4)0.006 (3)0.022 (4)
C160.104 (5)0.061 (4)0.066 (4)0.012 (4)0.001 (4)0.002 (4)
C170.072 (4)0.059 (4)0.064 (4)0.007 (3)0.003 (3)0.011 (3)
C180.045 (3)0.054 (3)0.043 (3)0.001 (3)0.012 (2)0.019 (3)
C190.052 (3)0.053 (3)0.044 (3)0.000 (3)0.007 (2)0.017 (3)
C200.114 (5)0.060 (4)0.051 (3)0.010 (4)0.030 (3)0.011 (3)
C210.119 (5)0.055 (4)0.056 (4)0.012 (4)0.021 (4)0.009 (3)
C220.074 (4)0.078 (5)0.056 (4)0.028 (4)0.008 (3)0.017 (3)
C230.048 (3)0.057 (3)0.043 (3)0.007 (3)0.001 (3)0.019 (3)
C240.056 (3)0.079 (4)0.054 (3)0.003 (3)0.013 (3)0.028 (3)
C250.096 (5)0.084 (5)0.066 (4)0.026 (4)0.037 (4)0.028 (4)
C260.129 (6)0.057 (4)0.080 (5)0.016 (4)0.044 (5)0.010 (4)
C270.084 (4)0.059 (4)0.064 (4)0.003 (3)0.022 (4)0.019 (3)
C280.050 (3)0.046 (3)0.049 (3)0.006 (2)0.006 (2)0.018 (3)
Geometric parameters (Å, º) top
S1—C61.724 (5)C14—H14A0.9300
S1—C31.728 (5)C15—C161.390 (9)
N1—C21.255 (6)C15—H15A0.9300
N1—C91.471 (6)C16—C171.373 (9)
C2—C31.458 (7)C16—H16A0.9300
C2—H2A0.9300C17—C181.386 (8)
C3—C41.348 (7)C17—H17A0.9300
C4—C51.420 (7)C19—C201.496 (7)
C4—H4A0.9300C19—C281.518 (7)
C5—C61.355 (6)C19—H19A0.9800
C5—H5A0.9300C20—C211.536 (8)
C6—C71.445 (7)C20—H20A0.9700
C7—N81.263 (6)C20—H20B0.9700
C7—H7A0.9300C21—C221.508 (9)
N8—C191.479 (6)C21—H21A0.9700
C9—C101.512 (8)C21—H21B0.9700
C9—C181.520 (7)C22—C231.507 (9)
C9—H9A0.9800C22—H22A0.9700
C10—C111.522 (8)C22—H22B0.9700
C10—H10A0.9700C23—C241.384 (8)
C10—H10B0.9700C23—C281.389 (7)
C11—C121.510 (9)C24—C251.367 (9)
C11—H11A0.9700C24—H24A0.9300
C11—H11B0.9700C25—C261.390 (10)
C12—C131.509 (8)C25—H25A0.9300
C12—H12A0.9700C26—C271.374 (8)
C12—H12B0.9700C26—H26A0.9300
C13—C141.390 (8)C27—C281.382 (7)
C13—C181.398 (7)C27—H27A0.9300
C14—C151.366 (9)
C6—S1—C391.5 (2)C16—C15—H15A120.4
C2—N1—C9116.5 (4)C17—C16—C15119.2 (7)
N1—C2—C3121.5 (5)C17—C16—H16A120.4
N1—C2—H2A119.3C15—C16—H16A120.4
C3—C2—H2A119.3C16—C17—C18122.1 (6)
C4—C3—C2129.7 (5)C16—C17—H17A119.0
C4—C3—S1111.3 (4)C18—C17—H17A119.0
C2—C3—S1119.1 (4)C17—C18—C13118.7 (5)
C3—C4—C5113.2 (5)C17—C18—C9120.0 (5)
C3—C4—H4A123.4C13—C18—C9121.2 (5)
C5—C4—H4A123.4N8—C19—C20109.4 (4)
C6—C5—C4112.6 (5)N8—C19—C28110.1 (4)
C6—C5—H5A123.7C20—C19—C28113.3 (4)
C4—C5—H5A123.7N8—C19—H19A108.0
C5—C6—C7129.0 (5)C20—C19—H19A108.0
C5—C6—S1111.4 (4)C28—C19—H19A108.0
C7—C6—S1119.6 (4)C19—C20—C21109.9 (4)
N8—C7—C6121.9 (5)C19—C20—H20A109.7
N8—C7—H7A119.1C21—C20—H20A109.7
C6—C7—H7A119.1C19—C20—H20B109.7
C7—N8—C19117.5 (4)C21—C20—H20B109.7
N1—C9—C10109.1 (4)H20A—C20—H20B108.2
N1—C9—C18110.3 (4)C22—C21—C20109.9 (5)
C10—C9—C18111.6 (5)C22—C21—H21A109.7
N1—C9—H9A108.6C20—C21—H21A109.7
C10—C9—H9A108.6C22—C21—H21B109.7
C18—C9—H9A108.6C20—C21—H21B109.7
C9—C10—C11109.6 (5)H21A—C21—H21B108.2
C9—C10—H10A109.7C23—C22—C21112.9 (5)
C11—C10—H10A109.7C23—C22—H22A109.0
C9—C10—H10B109.7C21—C22—H22A109.0
C11—C10—H10B109.7C23—C22—H22B109.0
H10A—C10—H10B108.2C21—C22—H22B109.0
C12—C11—C10109.6 (5)H22A—C22—H22B107.8
C12—C11—H11A109.7C24—C23—C28119.1 (5)
C10—C11—H11A109.7C24—C23—C22119.5 (5)
C12—C11—H11B109.7C28—C23—C22121.4 (5)
C10—C11—H11B109.7C25—C24—C23121.8 (6)
H11A—C11—H11B108.2C25—C24—H24A119.1
C13—C12—C11112.9 (5)C23—C24—H24A119.1
C13—C12—H12A109.0C24—C25—C26119.3 (6)
C11—C12—H12A109.0C24—C25—H25A120.4
C13—C12—H12B109.0C26—C25—H25A120.4
C11—C12—H12B109.0C27—C26—C25119.1 (6)
H12A—C12—H12B107.8C27—C26—H26A120.4
C14—C13—C18118.4 (5)C25—C26—H26A120.4
C14—C13—C12120.1 (5)C26—C27—C28121.9 (6)
C18—C13—C12121.5 (5)C26—C27—H27A119.1
C15—C14—C13122.5 (6)C28—C27—H27A119.1
C15—C14—H14A118.8C27—C28—C23118.8 (5)
C13—C14—H14A118.8C27—C28—C19119.8 (5)
C14—C15—C16119.1 (6)C23—C28—C19121.3 (5)
C14—C15—H15A120.4
C9—N1—C2—C3176.4 (5)C12—C13—C18—C17177.8 (5)
N1—C2—C3—C4172.4 (6)C14—C13—C18—C9177.3 (5)
N1—C2—C3—S16.2 (7)C12—C13—C18—C95.4 (7)
C6—S1—C3—C41.4 (5)N1—C9—C18—C1739.8 (6)
C6—S1—C3—C2177.5 (4)C10—C9—C18—C17161.1 (5)
C2—C3—C4—C5177.8 (5)N1—C9—C18—C13143.5 (4)
S1—C3—C4—C50.9 (6)C10—C9—C18—C1322.1 (6)
C3—C4—C5—C60.2 (7)C7—N8—C19—C20105.5 (6)
C4—C5—C6—C7178.9 (5)C7—N8—C19—C28129.5 (5)
C4—C5—C6—S11.3 (6)N8—C19—C20—C21170.8 (5)
C3—S1—C6—C51.5 (4)C28—C19—C20—C2147.7 (7)
C3—S1—C6—C7178.7 (4)C19—C20—C21—C2264.0 (7)
C5—C6—C7—N8179.1 (6)C20—C21—C22—C2349.0 (7)
S1—C6—C7—N81.1 (7)C21—C22—C23—C24161.6 (5)
C6—C7—N8—C19178.2 (5)C21—C22—C23—C2820.5 (8)
C2—N1—C9—C10102.3 (6)C28—C23—C24—C250.4 (8)
C2—N1—C9—C18134.9 (5)C22—C23—C24—C25178.4 (6)
N1—C9—C10—C11173.7 (5)C23—C24—C25—C260.3 (9)
C18—C9—C10—C1151.6 (7)C24—C25—C26—C270.5 (10)
C9—C10—C11—C1266.2 (7)C25—C26—C27—C280.9 (10)
C10—C11—C12—C1348.1 (7)C26—C27—C28—C231.0 (8)
C11—C12—C13—C14164.1 (5)C26—C27—C28—C19177.5 (6)
C11—C12—C13—C1818.7 (8)C24—C23—C28—C270.7 (7)
C18—C13—C14—C150.5 (8)C22—C23—C28—C27178.7 (6)
C12—C13—C14—C15176.8 (5)C24—C23—C28—C19177.2 (5)
C13—C14—C15—C160.5 (9)C22—C23—C28—C194.9 (8)
C14—C15—C16—C170.5 (10)N8—C19—C28—C2741.7 (6)
C15—C16—C17—C181.6 (10)C20—C19—C28—C27164.5 (5)
C16—C17—C18—C131.6 (9)N8—C19—C28—C23141.9 (5)
C16—C17—C18—C9178.4 (6)C20—C19—C28—C2319.1 (7)
C14—C13—C18—C170.5 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···S1i0.933.003.562 (5)121
C5—H5A···S1i0.932.973.547 (5)122
Symmetry code: (i) x+1, y, z.
(II) 2,5-Bis{[(R)-(-)-1-(4-methoxyphenyl)ethyl]iminomethyl}thiophene top
Crystal data top
C24H26N2O2SDx = 1.191 Mg m3
Mr = 406.53Melting point: 405 K
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
a = 25.3917 (13) ÅCell parameters from 2504 reflections
b = 5.9488 (3) Åθ = 3.0–24.2°
c = 7.5623 (4) ŵ = 0.16 mm1
β = 97.174 (4)°T = 298 K
V = 1133.34 (10) Å3Prism, colourless
Z = 20.45 × 0.33 × 0.12 mm
F(000) = 432
Data collection top
Agilent Xcalibur (Atlas, Gemini)
diffractometer
2221 independent reflections
Radiation source: Enhance (Mo) X-ray Source1892 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 26.1°, θmin = 3.0°
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2013)
h = 3131
Tmin = 0.973, Tmax = 0.993k = 77
6341 measured reflectionsl = 99
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0393P)2 + 0.1801P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.11 e Å3
2221 reflectionsΔρmin = 0.17 e Å3
134 parametersAbsolute structure: Flack x determined using 708 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.02 (4)
Crystal data top
C24H26N2O2SV = 1133.34 (10) Å3
Mr = 406.53Z = 2
Monoclinic, C2Mo Kα radiation
a = 25.3917 (13) ŵ = 0.16 mm1
b = 5.9488 (3) ÅT = 298 K
c = 7.5623 (4) Å0.45 × 0.33 × 0.12 mm
β = 97.174 (4)°
Data collection top
Agilent Xcalibur (Atlas, Gemini)
diffractometer
2221 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2013)
1892 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.993Rint = 0.027
6341 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.085Δρmax = 0.11 e Å3
S = 1.02Δρmin = 0.17 e Å3
2221 reflectionsAbsolute structure: Flack x determined using 708 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
134 parametersAbsolute structure parameter: 0.02 (4)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.50000.37429 (14)0.50000.0490 (3)
N10.56565 (9)0.3213 (4)0.1855 (3)0.0471 (6)
C20.55195 (11)0.5176 (5)0.2189 (4)0.0469 (7)
H2A0.56080.63240.14450.056*
C30.52314 (10)0.5774 (5)0.3665 (4)0.0449 (6)
C40.51313 (13)0.7856 (5)0.4229 (4)0.0596 (8)
H4A0.52250.91590.36650.072*
C50.59848 (11)0.2933 (4)0.0386 (4)0.0484 (7)
H5A0.59490.42910.03540.058*
C60.57863 (13)0.0963 (6)0.0754 (4)0.0658 (8)
H6A0.54160.11620.11640.099*
H6B0.58350.03940.00650.099*
H6C0.59810.08610.17590.099*
C70.65613 (11)0.2719 (4)0.1189 (3)0.0441 (6)
C80.69277 (11)0.4349 (4)0.0871 (4)0.0494 (7)
H8A0.68170.55850.01680.059*
C90.74515 (11)0.4171 (5)0.1576 (4)0.0571 (8)
H9A0.76920.52780.13430.069*
C100.76215 (11)0.2354 (6)0.2628 (4)0.0546 (7)
C110.72642 (12)0.0745 (6)0.2994 (4)0.0593 (8)
H11A0.73750.04690.37220.071*
C120.67374 (12)0.0936 (6)0.2275 (4)0.0551 (8)
H12A0.64970.01610.25280.066*
O10.81556 (9)0.2307 (5)0.3227 (3)0.0781 (7)
C130.83539 (15)0.0345 (9)0.4189 (5)0.1010 (15)
H13A0.87340.04340.44320.152*
H13B0.82570.09700.34870.152*
H13C0.82040.02580.52920.152*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0540 (6)0.0354 (5)0.0603 (6)0.0000.0183 (4)0.000
N10.0442 (13)0.0512 (16)0.0477 (13)0.0014 (10)0.0129 (10)0.0058 (10)
C20.0460 (15)0.0443 (18)0.0507 (16)0.0021 (13)0.0071 (13)0.0121 (13)
C30.0421 (14)0.0392 (14)0.0534 (17)0.0002 (12)0.0062 (13)0.0052 (12)
C40.074 (2)0.0365 (16)0.071 (2)0.0007 (13)0.0193 (16)0.0074 (13)
C50.0497 (16)0.0537 (18)0.0434 (15)0.0015 (12)0.0120 (12)0.0097 (12)
C60.0626 (19)0.079 (2)0.0551 (19)0.0010 (18)0.0058 (15)0.0036 (17)
C70.0468 (15)0.0492 (15)0.0387 (14)0.0022 (13)0.0147 (12)0.0018 (12)
C80.0559 (17)0.0500 (17)0.0451 (14)0.0025 (13)0.0169 (13)0.0045 (12)
C90.0528 (17)0.067 (2)0.0548 (17)0.0139 (16)0.0177 (14)0.0004 (16)
C100.0455 (16)0.078 (2)0.0414 (16)0.0001 (15)0.0080 (13)0.0080 (15)
C110.0575 (18)0.068 (2)0.0524 (18)0.0087 (17)0.0086 (14)0.0150 (15)
C120.0527 (17)0.0569 (17)0.0574 (19)0.0031 (14)0.0138 (14)0.0147 (15)
O10.0478 (13)0.121 (2)0.0642 (14)0.0021 (14)0.0011 (10)0.0011 (14)
C130.063 (2)0.161 (4)0.075 (3)0.022 (3)0.0086 (19)0.022 (3)
Geometric parameters (Å, º) top
S1—C3i1.724 (3)C7—C121.381 (4)
S1—C31.724 (3)C7—C81.385 (3)
N1—C21.253 (3)C8—C91.374 (4)
N1—C51.480 (3)C8—H8A0.9300
C2—C31.453 (4)C9—C101.379 (4)
C2—H2A0.9300C9—H9A0.9300
C3—C41.345 (4)C10—C111.371 (4)
C4—C4i1.413 (6)C10—O11.375 (3)
C4—H4A0.9300C11—C121.384 (4)
C5—C61.504 (4)C11—H11A0.9300
C5—C71.519 (4)C12—H12A0.9300
C5—H5A0.9800O1—C131.433 (5)
C6—H6A0.9600C13—H13A0.9600
C6—H6B0.9600C13—H13B0.9600
C6—H6C0.9600C13—H13C0.9600
C3i—S1—C391.01 (19)C12—C7—C5121.8 (2)
C2—N1—C5116.9 (2)C8—C7—C5120.4 (2)
N1—C2—C3124.2 (3)C9—C8—C7121.2 (3)
N1—C2—H2A117.9C9—C8—H8A119.4
C3—C2—H2A117.9C7—C8—H8A119.4
C4—C3—C2127.1 (3)C8—C9—C10120.1 (3)
C4—C3—S1111.6 (2)C8—C9—H9A119.9
C2—C3—S1121.3 (2)C10—C9—H9A119.9
C3—C4—C4i112.91 (17)C11—C10—O1124.7 (3)
C3—C4—H4A123.5C11—C10—C9119.8 (3)
C4i—C4—H4A123.5O1—C10—C9115.5 (3)
N1—C5—C6109.7 (2)C10—C11—C12119.7 (3)
N1—C5—C7108.3 (2)C10—C11—H11A120.2
C6—C5—C7113.7 (2)C12—C11—H11A120.2
N1—C5—H5A108.3C7—C12—C11121.5 (3)
C6—C5—H5A108.3C7—C12—H12A119.3
C7—C5—H5A108.3C11—C12—H12A119.3
C5—C6—H6A109.5C10—O1—C13117.0 (3)
C5—C6—H6B109.5O1—C13—H13A109.5
H6A—C6—H6B109.5O1—C13—H13B109.5
C5—C6—H6C109.5H13A—C13—H13B109.5
H6A—C6—H6C109.5O1—C13—H13C109.5
H6B—C6—H6C109.5H13A—C13—H13C109.5
C12—C7—C8117.8 (3)H13B—C13—H13C109.5
C5—N1—C2—C3175.3 (2)C12—C7—C8—C91.5 (4)
N1—C2—C3—C4171.0 (3)C5—C7—C8—C9179.4 (3)
N1—C2—C3—S15.7 (4)C7—C8—C9—C100.3 (4)
C3i—S1—C3—C40.22 (17)C8—C9—C10—C111.1 (4)
C3i—S1—C3—C2176.9 (3)C8—C9—C10—O1178.3 (2)
C2—C3—C4—C4i176.3 (3)O1—C10—C11—C12178.1 (3)
S1—C3—C4—C4i0.6 (4)C9—C10—C11—C121.2 (4)
C2—N1—C5—C6136.4 (3)C8—C7—C12—C111.4 (4)
C2—N1—C5—C799.0 (3)C5—C7—C12—C11179.6 (3)
N1—C5—C7—C1263.9 (3)C10—C11—C12—C70.0 (5)
C6—C5—C7—C1258.3 (3)C11—C10—O1—C134.8 (4)
N1—C5—C7—C8115.0 (3)C9—C10—O1—C13174.6 (3)
C6—C5—C7—C8122.7 (3)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···S1ii0.932.993.572 (3)122
Symmetry code: (ii) x, y+1, z.
(III) 2,5-Bis{[(R)-(-)-1-(4-fluorophenyl)ethyl]iminomethyl}thiophene top
Crystal data top
C22H20F2N2SDx = 1.260 Mg m3
Mr = 382.46Melting point: 420 K
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
a = 21.1153 (16) ÅCell parameters from 2744 reflections
b = 7.7846 (6) Åθ = 3.8–23.2°
c = 6.1343 (5) ŵ = 0.19 mm1
V = 1008.32 (14) Å3T = 298 K
Z = 2Prism, colourless
F(000) = 4000.89 × 0.47 × 0.33 mm
Data collection top
Agilent Xcalibur (Atlas, Gemini)
diffractometer
2067 independent reflections
Radiation source: Enhance (Mo) X-ray Source1591 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 10.5564 pixels mm-1θmax = 26.4°, θmin = 3.8°
ω scansh = 2626
Absorption correction: analytical
CrysAlis PRO, (Agilent, 2013)
k = 99
Tmin = 0.904, Tmax = 0.958l = 77
12336 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0384P)2 + 0.0613P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2067 reflectionsΔρmax = 0.15 e Å3
124 parametersΔρmin = 0.25 e Å3
0 restraintsAbsolute structure: Flack x determined using 518 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (6)
Crystal data top
C22H20F2N2SV = 1008.32 (14) Å3
Mr = 382.46Z = 2
Orthorhombic, P21212Mo Kα radiation
a = 21.1153 (16) ŵ = 0.19 mm1
b = 7.7846 (6) ÅT = 298 K
c = 6.1343 (5) Å0.89 × 0.47 × 0.33 mm
Data collection top
Agilent Xcalibur (Atlas, Gemini)
diffractometer
2067 independent reflections
Absorption correction: analytical
CrysAlis PRO, (Agilent, 2013)
1591 reflections with I > 2σ(I)
Tmin = 0.904, Tmax = 0.958Rint = 0.058
12336 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.092Δρmax = 0.15 e Å3
S = 1.06Δρmin = 0.25 e Å3
2067 reflectionsAbsolute structure: Flack x determined using 518 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
124 parametersAbsolute structure parameter: 0.07 (6)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.50000.00001.06817 (15)0.0479 (3)
F10.85802 (10)0.3203 (3)0.5731 (5)0.1163 (9)
N10.58698 (11)0.3119 (3)1.0120 (4)0.0498 (6)
C20.56853 (13)0.2830 (4)1.2046 (5)0.0479 (8)
H2A0.57950.36101.31300.057*
C30.53102 (13)0.1344 (4)1.2646 (4)0.0461 (8)
C40.51751 (14)0.0774 (4)1.4690 (4)0.0556 (8)
H4A0.53000.13421.59530.067*
C50.62513 (14)0.4679 (4)0.9770 (5)0.0568 (8)
H5A0.63360.52161.11850.068*
C60.58661 (16)0.5931 (5)0.8368 (7)0.0829 (12)
H6A0.54760.62000.90940.124*
H6B0.57770.54120.69830.124*
H6C0.61050.69670.81490.124*
C70.68777 (14)0.4223 (3)0.8702 (5)0.0462 (7)
C80.74419 (15)0.4799 (4)0.9563 (5)0.0577 (8)
H8A0.74360.54271.08520.069*
C90.80144 (15)0.4470 (4)0.8567 (7)0.0697 (10)
H9A0.83910.48730.91630.084*
C100.80134 (17)0.3551 (5)0.6707 (7)0.0689 (10)
C110.74733 (18)0.2932 (4)0.5777 (5)0.0654 (9)
H11A0.74890.23010.44910.078*
C120.69042 (15)0.3265 (4)0.6789 (5)0.0543 (8)
H12A0.65320.28430.61840.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0499 (6)0.0559 (6)0.0379 (5)0.0056 (6)0.0000.000
F10.0687 (14)0.1167 (19)0.164 (2)0.0047 (14)0.0485 (15)0.030 (2)
N10.0452 (14)0.0502 (15)0.0540 (16)0.0082 (12)0.0032 (11)0.0028 (11)
C20.0405 (16)0.054 (2)0.0489 (18)0.0028 (15)0.0043 (14)0.0073 (16)
C30.0388 (15)0.0544 (19)0.0452 (17)0.0011 (15)0.0013 (13)0.0024 (14)
C40.056 (2)0.071 (2)0.0396 (15)0.0115 (15)0.0020 (13)0.0040 (14)
C50.0545 (18)0.0513 (19)0.0647 (18)0.0104 (16)0.0112 (15)0.0111 (16)
C60.065 (2)0.060 (2)0.123 (3)0.0111 (19)0.023 (2)0.016 (2)
C70.0468 (17)0.0403 (15)0.0514 (17)0.0063 (14)0.0002 (14)0.0001 (13)
C80.0576 (19)0.0492 (17)0.0662 (19)0.0090 (17)0.0002 (16)0.0104 (18)
C90.047 (2)0.064 (2)0.099 (3)0.0114 (17)0.0023 (19)0.007 (2)
C100.054 (2)0.058 (2)0.095 (3)0.0009 (18)0.021 (2)0.001 (2)
C110.075 (2)0.063 (2)0.0577 (19)0.000 (2)0.011 (2)0.0053 (18)
C120.0499 (18)0.0573 (19)0.0557 (18)0.0058 (17)0.0063 (16)0.0020 (16)
Geometric parameters (Å, º) top
S1—C3i1.725 (3)C6—H6A0.9600
S1—C31.725 (3)C6—H6B0.9600
F1—C101.365 (4)C6—H6C0.9600
N1—C21.264 (4)C7—C81.378 (4)
N1—C51.473 (4)C7—C121.392 (4)
C2—C31.450 (4)C8—C91.378 (4)
C2—H2A0.9300C8—H8A0.9300
C3—C41.360 (4)C9—C101.347 (5)
C4—C4i1.414 (6)C9—H9A0.9300
C4—H4A0.9300C10—C111.363 (5)
C5—C71.518 (4)C11—C121.377 (4)
C5—C61.533 (5)C11—H11A0.9300
C5—H5A0.9800C12—H12A0.9300
C3i—S1—C391.4 (2)H6A—C6—H6C109.5
C2—N1—C5116.8 (3)H6B—C6—H6C109.5
N1—C2—C3123.2 (3)C8—C7—C12117.6 (3)
N1—C2—H2A118.4C8—C7—C5120.8 (3)
C3—C2—H2A118.4C12—C7—C5121.6 (3)
C4—C3—C2127.5 (3)C7—C8—C9121.9 (3)
C4—C3—S1111.5 (2)C7—C8—H8A119.1
C2—C3—S1120.9 (2)C9—C8—H8A119.1
C3—C4—C4i112.81 (18)C10—C9—C8118.2 (3)
C3—C4—H4A123.6C10—C9—H9A120.9
C4i—C4—H4A123.6C8—C9—H9A120.9
N1—C5—C7110.3 (2)C9—C10—C11122.9 (3)
N1—C5—C6108.4 (2)C9—C10—F1118.4 (3)
C7—C5—C6111.6 (2)C11—C10—F1118.7 (3)
N1—C5—H5A108.8C10—C11—C12118.4 (3)
C7—C5—H5A108.8C10—C11—H11A120.8
C6—C5—H5A108.8C12—C11—H11A120.8
C5—C6—H6A109.5C11—C12—C7121.1 (3)
C5—C6—H6B109.5C11—C12—H12A119.5
H6A—C6—H6B109.5C7—C12—H12A119.5
C5—C6—H6C109.5
C5—N1—C2—C3179.6 (2)C6—C5—C7—C1267.4 (4)
N1—C2—C3—C4168.6 (3)C12—C7—C8—C91.0 (5)
N1—C2—C3—S18.7 (4)C5—C7—C8—C9176.9 (3)
C3i—S1—C3—C40.29 (16)C7—C8—C9—C100.4 (5)
C3i—S1—C3—C2177.4 (3)C8—C9—C10—C110.2 (5)
C2—C3—C4—C4i176.7 (3)C8—C9—C10—F1179.1 (3)
S1—C3—C4—C4i0.8 (4)C9—C10—C11—C120.0 (6)
C2—N1—C5—C7124.5 (3)F1—C10—C11—C12179.0 (3)
C2—N1—C5—C6113.0 (3)C10—C11—C12—C70.6 (5)
N1—C5—C7—C8129.0 (3)C8—C7—C12—C111.1 (4)
C6—C5—C7—C8110.4 (3)C5—C7—C12—C11176.7 (3)
N1—C5—C7—C1253.2 (4)
Symmetry code: (i) x+1, y, z.
(IV) 2,5-Bis{[(S)-(+)-1-(4-chlorophenyl)ethyl]iminomethyl}thiophene top
Crystal data top
C22H20Cl2N2SDx = 1.276 Mg m3
Mr = 415.36Melting point: 434 K
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
a = 21.893 (2) ÅCell parameters from 2744 reflections
b = 7.9212 (6) Åθ = 3.7–21.5°
c = 6.2315 (4) ŵ = 0.41 mm1
V = 1080.66 (15) Å3T = 298 K
Z = 2Prism, colorless
F(000) = 4320.52 × 0.40 × 0.07 mm
Data collection top
Agilent Xcalibur (Atlas, Gemini)
diffractometer
2743 independent reflections
Radiation source: Enhance (Mo) X-ray Source1534 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 10.5564 pixels mm-1θmax = 29.5°, θmin = 3.3°
ω scansh = 2827
Absorption correction: multi-scan
CrysAlis PRO, (Agilent, 2013)
k = 109
Tmin = 0.692, Tmax = 1.000l = 88
14195 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0483P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2743 reflectionsΔρmax = 0.13 e Å3
124 parametersΔρmin = 0.17 e Å3
0 restraintsAbsolute structure: Flack x determined using 465 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.10 (6)
Crystal data top
C22H20Cl2N2SV = 1080.66 (15) Å3
Mr = 415.36Z = 2
Orthorhombic, P21212Mo Kα radiation
a = 21.893 (2) ŵ = 0.41 mm1
b = 7.9212 (6) ÅT = 298 K
c = 6.2315 (4) Å0.52 × 0.40 × 0.07 mm
Data collection top
Agilent Xcalibur (Atlas, Gemini)
diffractometer
2743 independent reflections
Absorption correction: multi-scan
CrysAlis PRO, (Agilent, 2013)
1534 reflections with I > 2σ(I)
Tmin = 0.692, Tmax = 1.000Rint = 0.058
14195 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.117Δρmax = 0.13 e Å3
S = 1.01Δρmin = 0.17 e Å3
2743 reflectionsAbsolute structure: Flack x determined using 465 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
124 parametersAbsolute structure parameter: 0.10 (6)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.50001.00000.13764 (18)0.0590 (4)
Cl10.15354 (6)0.67176 (16)0.4970 (2)0.1059 (5)
N10.41391 (14)0.6958 (3)0.0839 (5)0.0612 (8)
C20.43185 (16)0.7244 (4)0.2735 (6)0.0589 (10)
H2A0.42040.64960.38120.071*
C30.46969 (15)0.8689 (4)0.3311 (5)0.0544 (9)
C40.48309 (16)0.9247 (4)0.5338 (5)0.0640 (10)
H4A0.47110.86880.65810.077*
C50.37559 (18)0.5438 (4)0.0520 (7)0.0677 (11)
H5A0.36250.50210.19270.081*
C60.4148 (2)0.4087 (5)0.0553 (9)0.0986 (17)
H6A0.44840.38030.03690.148*
H6B0.39050.30980.08100.148*
H6C0.43020.45090.18920.148*
C70.31964 (17)0.5839 (4)0.0796 (5)0.0555 (9)
C80.26313 (19)0.5202 (5)0.0255 (7)0.0701 (10)
H8A0.25930.45750.09990.084*
C90.21198 (19)0.5464 (5)0.1512 (7)0.0735 (11)
H9A0.17440.50200.11090.088*
C100.21746 (18)0.6384 (5)0.3351 (6)0.0640 (10)
C110.2728 (2)0.7062 (5)0.3945 (6)0.0691 (10)
H11A0.27610.76920.51990.083*
C120.32346 (18)0.6802 (4)0.2665 (5)0.0623 (9)
H12A0.36070.72760.30560.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0694 (9)0.0596 (7)0.0482 (6)0.0040 (7)0.0000.000
Cl10.0878 (9)0.1061 (9)0.1238 (10)0.0069 (7)0.0384 (8)0.0026 (9)
N10.062 (2)0.0569 (18)0.0643 (19)0.0089 (15)0.0064 (15)0.0009 (14)
C20.055 (2)0.060 (2)0.061 (2)0.0015 (17)0.0031 (19)0.0056 (18)
C30.050 (2)0.060 (2)0.0523 (19)0.0004 (17)0.0008 (16)0.0008 (17)
C40.063 (3)0.080 (2)0.0487 (18)0.0130 (18)0.0011 (17)0.0059 (17)
C50.071 (3)0.057 (2)0.075 (2)0.0098 (18)0.015 (2)0.0050 (18)
C60.085 (3)0.064 (2)0.147 (4)0.011 (2)0.040 (3)0.019 (3)
C70.061 (2)0.0442 (17)0.061 (2)0.0052 (17)0.0039 (18)0.0020 (16)
C80.073 (3)0.061 (2)0.076 (2)0.017 (2)0.002 (2)0.014 (2)
C90.063 (3)0.067 (3)0.091 (3)0.0168 (19)0.003 (2)0.007 (2)
C100.065 (3)0.056 (2)0.072 (2)0.0010 (19)0.007 (2)0.007 (2)
C110.081 (3)0.068 (2)0.059 (2)0.002 (2)0.003 (2)0.0067 (18)
C120.059 (2)0.065 (2)0.063 (2)0.004 (2)0.010 (2)0.002 (2)
Geometric parameters (Å, º) top
S1—C31.724 (3)C6—H6A0.9600
S1—C3i1.724 (3)C6—H6B0.9600
Cl1—C101.746 (4)C6—H6C0.9600
N1—C21.265 (4)C7—C81.378 (5)
N1—C51.481 (4)C7—C121.394 (4)
C2—C31.458 (5)C8—C91.382 (5)
C2—H2A0.9300C8—H8A0.9300
C3—C41.370 (4)C9—C101.363 (5)
C4—C4i1.404 (7)C9—H9A0.9300
C4—H4A0.9300C10—C111.376 (5)
C5—C71.508 (5)C11—C121.382 (5)
C5—C61.527 (5)C11—H11A0.9300
C5—H5A0.9800C12—H12A0.9300
C3—S1—C3i91.3 (2)H6A—C6—H6C109.5
C2—N1—C5116.6 (3)H6B—C6—H6C109.5
N1—C2—C3123.2 (3)C8—C7—C12117.3 (4)
N1—C2—H2A118.4C8—C7—C5121.3 (3)
C3—C2—H2A118.4C12—C7—C5121.4 (3)
C4—C3—C2127.0 (3)C7—C8—C9122.2 (4)
C4—C3—S1111.6 (3)C7—C8—H8A118.9
C2—C3—S1121.3 (2)C9—C8—H8A118.9
C3—C4—C4i112.8 (2)C10—C9—C8119.0 (4)
C3—C4—H4A123.6C10—C9—H9A120.5
C4i—C4—H4A123.6C8—C9—H9A120.5
N1—C5—C7111.2 (3)C9—C10—C11120.8 (4)
N1—C5—C6108.1 (3)C9—C10—Cl1119.8 (3)
C7—C5—C6111.5 (3)C11—C10—Cl1119.4 (3)
N1—C5—H5A108.7C10—C11—C12119.5 (3)
C7—C5—H5A108.7C10—C11—H11A120.2
C6—C5—H5A108.7C12—C11—H11A120.2
C5—C6—H6A109.5C11—C12—C7121.0 (4)
C5—C6—H6B109.5C11—C12—H12A119.5
H6A—C6—H6B109.5C7—C12—H12A119.5
C5—C6—H6C109.5
C5—N1—C2—C3179.8 (3)C6—C5—C7—C1274.9 (4)
N1—C2—C3—C4168.8 (4)C12—C7—C8—C91.2 (5)
N1—C2—C3—S17.3 (5)C5—C7—C8—C9175.8 (3)
C3i—S1—C3—C40.42 (19)C7—C8—C9—C100.0 (6)
C3i—S1—C3—C2176.3 (4)C8—C9—C10—C110.8 (6)
C2—C3—C4—C4i175.3 (4)C8—C9—C10—Cl1179.6 (3)
S1—C3—C4—C4i1.1 (5)C9—C10—C11—C120.3 (6)
C2—N1—C5—C7132.2 (3)Cl1—C10—C11—C12179.9 (3)
C2—N1—C5—C6105.1 (4)C10—C11—C12—C71.0 (6)
N1—C5—C7—C8137.3 (4)C8—C7—C12—C111.7 (5)
C6—C5—C7—C8102.0 (4)C5—C7—C12—C11175.3 (3)
N1—C5—C7—C1245.8 (4)
Symmetry code: (i) x+1, y+2, z.
Comparison of C—H···S hydrogen bonds (Å, °) in compounds (I)–(IV) top
CompoundContactC—HH···SC···SC—H···S
(I)C4—H4A···S1i0.933.003.562 (5)120.6
(I)C5—H5A···S1i0.932.973.547 (5)121.6
(II)C4—H4A···S1ii0.932.993.572 (3)122.3
(III)C4—H4A···S1iii0.933.153.743 (3)123.6
(IV)C4—H4A···S1iv0.933.233.828 (4)124.2
Symmetry codes: (i) x + 1, y, z; (ii) x, y + 1, z; (iii) x, y, z + 1; (iv) x, y, z − 1.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC26H26N2SC24H26N2O2SC22H20F2N2SC22H20Cl2N2S
Mr398.55406.53382.46415.36
Crystal system, space groupTriclinic, P1Monoclinic, C2Orthorhombic, P21212Orthorhombic, P21212
Temperature (K)298298298298
a, b, c (Å)5.9093 (4), 7.6258 (5), 12.6570 (8)25.3917 (13), 5.9488 (3), 7.5623 (4)21.1153 (16), 7.7846 (6), 6.1343 (5)21.893 (2), 7.9212 (6), 6.2315 (4)
α, β, γ (°)87.802 (5), 78.329 (5), 87.427 (5)90, 97.174 (4), 9090, 90, 9090, 90, 90
V3)557.76 (6)1133.34 (10)1008.32 (14)1080.66 (15)
Z1222
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.160.160.190.41
Crystal size (mm)0.34 × 0.12 × 0.060.45 × 0.33 × 0.120.89 × 0.47 × 0.330.52 × 0.40 × 0.07
Data collection
DiffractometerAgilent Xcalibur (Atlas, Gemini)Agilent Xcalibur (Atlas, Gemini)Agilent Xcalibur (Atlas, Gemini)Agilent Xcalibur (Atlas, Gemini)
Absorption correctionAnalytical
CrysAlis PRO, (Agilent, 2013)
Analytical
(CrysAlis PRO; Agilent, 2013)
Analytical
CrysAlis PRO, (Agilent, 2013)
Multi-scan
CrysAlis PRO, (Agilent, 2013)
Tmin, Tmax0.969, 0.9920.973, 0.9930.904, 0.9580.692, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6689, 4036, 2958 6341, 2221, 1892 12336, 2067, 1591 14195, 2743, 1534
Rint0.0400.0270.0580.058
(sin θ/λ)max1)0.6180.6180.6250.692
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.127, 1.02 0.036, 0.085, 1.02 0.044, 0.092, 1.06 0.052, 0.117, 1.01
No. of reflections4036222120672743
No. of parameters262134124124
No. of restraints3100
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.190.11, 0.170.15, 0.250.13, 0.17
Absolute structureFlack x determined using 962 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)Flack x determined using 708 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)Flack x determined using 518 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)Flack x determined using 465 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.12 (7)0.02 (4)0.07 (6)0.10 (6)

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS97 (Sheldrick, 2008), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), Mercury (Macrae et al., 2008).

 

Acknowledgements

Support from VIEP–UAP is acknowledged.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationBernès, S., Hernández-Téllez, G., Sharma, M., Portillo-Moreno, O. & Gutiérrez, R. (2013). Acta Cryst. E69, o1428.  CSD CrossRef IUCr Journals Google Scholar
First citationBolduc, A., Al Ouahabi, A., Mallet, C. & Skene, W. G. (2013a). J. Org. Chem. 78, 9258–9269.  CSD CrossRef CAS PubMed Google Scholar
First citationBolduc, A., Dufresne, S. & Skene, W. G. (2013b). Acta Cryst. C69, 1196–1199.  CSD CrossRef IUCr Journals Google Scholar
First citationBoyle, R., Crundwell, G. & Glagovich, N. M. (2015). Acta Cryst. E71, o403.  CSD CrossRef IUCr Journals Google Scholar
First citationCram, D. J. & Trueblood, K. N. (1981). Top. Curr. Chem. 98, 43–106.  CrossRef CAS Google Scholar
First citationDean, F. M. (1982a). Adv. Heterocycl. Chem. 30, 167–238.  CrossRef CAS Google Scholar
First citationDean, F. M. (1982b). Adv. Heterocycl. Chem. 31, 237–344.  CrossRef CAS Google Scholar
First citationFridman, N. & Kaftory, M. (2007). Pol. J. Chem. 81, 825–832.  CAS Google Scholar
First citationKudyakova, Yu. S., Burgart, Ya. V. & Saloutin, V. I. (2011). Chem. Heterocycl. Compd. 47, 558–563.  CrossRef CAS Google Scholar
First citationKudyakova, Y. S., Burgart, Y. V., Slepukhin, P. A. & Saloutin, V. I. (2012). Mendeleev Commun. 22, 284–286.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMendoza, A., Bernès, S., Hernández-Téllez, G., Portillo-Moreno, O. & Gutiérrez, R. (2014). Acta Cryst. E70, o345.  CSD CrossRef IUCr Journals Google Scholar
First citationMorgan, P. W., Kwolek, S. L. & Pletcher, T. C. (1987). Macromolecules, 20, 729–739.  CrossRef CAS Google Scholar
First citationMoussallem, C., Allain, M., Mallet, C., Gohier, F. & Frère, P. (2015). J. Fluor. Chem. 178, 34–39.  CSD CrossRef CAS Google Scholar
First citationNelson, S. M., Esho, F., Lavery, A. & Drew, M. G. B. (1983). J. Am. Chem. Soc. 105, 5693–5695.  CSD CrossRef CAS Google Scholar
First citationNoyori, R. (2005). Chem. Commun. pp. 1807–1811.  Web of Science CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPérez Guarìn, S. A., Bourgeaux, M., Dufresne, S. & Skene, W. G. (2007). J. Org. Chem. 72, 2631–2643.  Web of Science PubMed Google Scholar
First citationPetrus, M. L., Bouwer, R. K. M., Lafont, U., Athanasopoulos, S., Greenham, N. C. & Dingemans, T. J. (2014). J. Mater. Chem. A, 2, 9474–9477.  CrossRef CAS Google Scholar
First citationSargent, M. V. & Cresp, T. M. (1975). Fortschritte Chem. Forschung, 57, 111–143.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSicard, L., Navarathne, D., Skalski, T. & Skene, W. G. (2013). Adv. Funct. Mater. 23, 3549–3559.  CrossRef CAS Google Scholar
First citationSkene, W. G. & Dufresne, S. (2006). Acta Cryst. E62, o1116–o1117.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSuganya, S., Velmathi, S. & MubarakAli, D. (2014). Dyes Pigments, 104, 116–122.  Web of Science CSD CrossRef CAS Google Scholar
First citationTanaka, K. & Toda, F. (2000). Chem. Rev. 100, 1025–1074.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWiedermann, J., Kirchner, K. & Mereiter, K. (2005). Private communication (refcode NAWMAA). CCDC, Cambridge, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 3| March 2016| Pages 350-354
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds