research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 3| March 2016| Pages 378-381

Crystal structure of 5-chloro­methyl-N-methyl-4-[(4-phenyl-1,2,3-triazol-1-yl)meth­yl]isoxazolidine-3-carboxamide

CROSSMARK_Color_square_no_text.svg

aUniversité de Monastir, Laboratoire de Synthèse Hétérocyclique, Produits Naturels et Réactivités, Faculté des Sciences de Monastir, Avenue de l'Environnement, 5000 Monastir, Tunisia, bLaboratoire de Physico-chimie des Matériaux, Faculté des Sciences de Monastir, Avenue de l'Environnement, 5019 Monastir, University of Monastir, Tunisia, cUniversité Lyon 1, Centre de Diffractométrie Henri Longchambon Bâtiment 305, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France, and dUniversité de Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR CNRS 5246, Laboratoire de Chimie Organique 2-Glycochimie, Bâtiment Curien, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
*Correspondence e-mail: jihedbrahmi85@live.fr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 10 February 2016; accepted 16 February 2016; online 20 February 2016)

The title compound, C15H18ClN5O2, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. In both mol­ecules, the isoxazolidine rings have an envelope conformation with the O atoms at the flap positions. Each mol­ecule has three stereogenic centres with configurations 2(S), 3(S) and 4(R), confirmed by resonant scattering. Their conformations are significantly different, for example in mol­ecule A the phenyl ring is inclined to the triazole ring by 32.5 (2)°, while in mol­ecule B the corresponding dihedral angle is 10.7 (2)°. In the crystal, the A and B mol­ecules are linked via an N—H⋯O and a C—H⋯O hydrogen bond. These units are linked by C—H⋯O and C—H⋯N hydrogen bonds, forming slabs parallel to the ab plane. There are C—H⋯π inter­actions present within the slabs.

1. Chemical context

The 1,3-dipolar cyclo­addition of nitro­nes to alkenes provides a straightforward route to isoxazolidines (Frederickson, 1997[Frederickson, M. (1997). Tetrahedron, 53, 403-425.]; Gothelf et al., 2002[Gothelf, A. S., Gothelf, K. V., Hazell, R. G. & Jørgensen, K. A. (2002). Angew. Chem. Int. Ed. 41, 4236-4238.]). Nitrone cyclo­adducts are attractive inter­mediates for the synthesis of several classes of natural products and biologically active compounds, such as unnatural amino­acids (Aouadi, et al., 2006[Aouadi, K., Vidal, S., Msaddek, M. & Praly, J.-P. (2006). Synlett, pp. 3299-3303.]) and alkaloids; for example (+)-febrifugine, (−)-indolizidine 209B (Smith et al., 1988[Smith, A., Williams, F., Holmes, A. B., Hughes, L. R., Swithenbank, C. & Lidert, Z. (1988). J. Am. Chem. Soc. 110, 8696-8698.]), (+)-sedridine (Louis & Hootelé, 1995[Louis, C. & Hootelé, C. (1995). Tetrahedron Asymmetry, 6, 2149-2152.], 1997[Louis, C. & Hootelé, C. (1997). Tetrahedron Asymmetry, 8, 109-131.]; Huisgen, 1984[Huisgen, R. (1984). In 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa. New York: Wiley.]). We report herein on the synthesis, the mol­ecular structure and the spectroscopic data of the title compound, (2).

[Scheme 1]

2. Structural commentary

The title compound (2), Fig. 1[link], crystallized in the non-centrosymmetric space group P21, with two independent mol­ecules (A and B) in the asymmetric unit. Each mol­ecule has three stereogenic centres with configurations 2(S), 3(S) and 4(R), confirmed by resonant scattering [Flack parameter = −0.012 (6)]. In mol­ecule B there is an intra­molecular N—H⋯N contact present (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the triazole ring N2–N4/C6/C7 in mol­ecule A.

D—H⋯A D—H H⋯A DA D—H⋯A
N10—H10N⋯N6 0.78 (4) 2.21 (4) 2.668 (4) 118 (4)
N5—H5N⋯O4 0.91 (4) 2.02 (4) 2.925 (4) 173 (4)
C6—H6⋯N9 0.93 2.37 3.275 (4) 164
C1—H1B⋯O2i 0.97 2.36 3.208 (4) 146
C5—H5B⋯O2i 0.97 2.47 3.432 (4) 171
C16—H16A⋯N3ii 0.97 2.37 3.335 (4) 176
C2—H2⋯Cg2iii 0.95 2.90 3.806 (3) 154
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+1]; (ii) x+1, y, z; (iii) [-x, y-{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of the two independent mol­ecules of compound (2), showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. C-bound H atoms have been omitted for clarity.

The conformations of the two mol­ecules differ significantly, as seen in the overlay fit of the two mol­ecules (Fig. 2[link]). In mol­ecule A the phenyl ring is inclined to the triazole ring by 32.5 (2)°, while in mol­ecule B the corresponding dihedral angle is 10.7 (2)°. The torsion angle C6—C7—C8—C13 is 31.5 (5)° in mol­ecule A, while torsion angle C21—C22—C23—C24, is −9.0 (5)° in mol­ecule B. The isoxazolidine rings (O1/N1/C2–C4 in mol­ecule A and O3/N6/C17–C19 in mol­ecule B) adopt envelope conformations. In mol­ecule A atom O1 is displaced by 0.566 (2) Å from the mean plane through atoms N1/C2–C4, while in mol­ecule B atom O3 is displaced by 0.528 (2) Å from the mean plane through atoms N6/C17–C19. Their mean planes are inclined to the relevant triazole ring by 53.95 (19)° in mol­ecule A and by 62.32 (18)° in mol­ecule B.

[Figure 2]
Figure 2
AutoMolFit (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) of the two independent mol­ecules (A black, B red) of compound (2).

The triazole N—N distances N2—N3 and N3—N4 in mol­ecule A are 1.340 (4) and 1.307 (4) Å, respectively, and in mol­ecule B distances N7—N8 and N8—N9 are 1.346 (3) and 1.305 (4) Å, respectively. They are close to the values reported for related triazole compounds, for example 2-allyl-3-[(1-benzyl-1H-1,2,3-triazol-4-yl)meth­oxy]-4-meth­oxy­phenol (Chang et al., 2014[Chang, M.-Y., Lin, S.-Y. & Chan, C.-K. (2014). Heterocycles, 89, 1905-1912.]), with distances 1.357 (9) and 1.336 (7) Å. The N—O bond lengths of the isoxazolidine rings are O1—N1 = 1.442 (3) Å in A and O3—N6 = 1.445 (4) Å in B, also close to values reported for related compounds (Lee et al., 2010[Lee, C.-W., Park, J.-Y., Kim, H.-U. & Chi, K.-W. (2010). Bull. Korean Chem. Soc. 31, 1172-1176.]; Molander & Cavalcanti, 2013[Molander, G. A. & Cavalcanti, L. N. (2013). Org. Lett. 15, 3166-3169.]).

3. Supra­molecular features

In the crystal of (2), the two independent mol­ecules are linked via an N—H⋯O and a C—H⋯O hydrogen bond (Table 1[link] and Fig. 3[link]). These units are then linked via C—H⋯O and C—H⋯N hydrogen bonds, forming slabs lying parallel to the ab plane (Table 1[link] and Fig. 3[link]). Within the slabs there are C—H⋯π inter­actions present involving symmetry-related A mol­ecules (Table 1[link]).

[Figure 3]
Figure 3
A view along the c axis of the crystal packing of compound (2). Hydrogen bonds are shown as dashed lines (see Table 1[link]) and H atoms not involved in these inter­actions have been omitted for clarity.

4. Synthesis and crystallization

The title compound, (2), was synthesized in two steps. Starting with a 1,3-dipolar cyclo­addition between (1S,2S,5S)-3′-(azido­meth­yl)-2′-(cholormeth­yl)-2-isopropyl-5,5′-di­methyl­dihydro-5′H-spiro­[cyclo­hexane-1,6′-imidazo[1,5-b]isoxasol]-4′(5′H)-one and phenyl­acetyl­ene lead to the formation of 1,2,3-triazolyl-functionalized isoxazolidine, compound (1) [yield 88%]. The cyclo­adduct (1) (200 mg, 0.42 mmol) was then dissolved in Ac2O (2 ml), AcOH (3 ml), concentrated H2SO4 (0.8 ml) and the reaction was stirred at 323 K for 7 h. After cooling to 273 K, an aqueous solution of 5% NaOH was added drop wise over a period of 2 h until pH 8. The mixture was then poured slowly into a saturated aqueous NaHCO3 solution (280 ml). The resulting mixture was extracted with CH2Cl2 (3 × 100 ml) and the combined organic phases were dried with Na2SO4. After filtration and evaporation of the solvents under reduced pressure, the residue was purified by flash chromatography (silica gel: EtOAc/PE, 8:2) to afford the desired title compound (2) as a white solid (97 mg, yield 69%); see Fig. 4[link]. Colourless block-like crystals of (2) were obtained by slow evaporation of a solution in di­chloro­methane.

[Figure 4]
Figure 4
Reaction scheme.

5. Spectroscopic investigations

The spectroscopic measurements are consistent with the crystal structure of (2). High-resolution mass spectrometry in positive-ion mode gave an [M + H]+ ion of 336.1221 m/z, close to the calculated mass of 336.1222 m/z. The 1H NMR spectrum of (2) shows the presence the triazole ring proton at 7.96 p.p.m. The 13C NMR spectrum confirms the existence of the three, C2, C3 and C4, stereogenic centres (80.3 p.p.m., 64.2 p.p.m. and 48.4 p.p.m., respectively).

Rf = 0.58 [EtOAc/PE 9/1]. NMR 1H (400 MHz, CDCl3): δ(p.p.m.): 2.81 (d, 3H, CH3, J 4.0 Hz), 3.49 (quin, 1H, J 5.6 Hz), 3.84 (dd, 1H, J 4.0, 9.6 Hz), 3.92 (d, 1H, J 4.4 Hz), 4.04 (dd, 1H, J 3.6, 9.6 Hz), 4.46 (dd, 1H, J 4.4, 9.6 Hz), 4.89 (m, 2H), 7.35 (t, 1H, J 6.0 Hz), 7.43 (t, 2H, J 6.0 Hz), 7.81 (d, 2H, J 5.6 Hz), 7.96 (s, 1H triazole). NMR 13C (100 MHz, CDCl3): δ(p.p.m.): 30.9, 42.2, 48.4, 50.9, 64.2, 80.3, 120.4, 125.7, 128.5, 128.9, 130.0, 148.4, 170.6 (C=O). HRMS, (ESI) calculated C15H19ClN5O2 [M + H+] = 336.1222, found: 336.1221. [α]22 = + 32.6 (c = 1; CH2Cl2).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The NH H atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were fixed geometrically and treated as riding: C—H = 0.93–0.98 Å with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C15H18ClN5O2
Mr 335.79
Crystal system, space group Monoclinic, P21
Temperature (K) 293
a, b, c (Å) 10.8355 (2), 10.8865 (2), 14.5653 (2)
β (°) 106.481 (2)
V3) 1647.54 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.20
Crystal size (mm) 0.36 × 0.34 × 0.17
 
Data collection
Diffractometer Agilent Xcalibur (Atlas, Gemini ultra)
Absorption correction Analytical (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.])
Tmin, Tmax 0.518, 0.721
No. of measured, independent and observed [I > 2σ(I)] reflections 33842, 5824, 5486
Rint 0.050
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.03
No. of reflections 5824
No. of parameters 431
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.25
Absolute structure Flack x determined using 2460 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.012 (6)
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]), SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

The 1,3-dipolar cyclo­addition of nitro­nes to alkenes provides a straightforward route to isoxazolidines (Frederickson, 1997; Gothelf et al., 2002). Nitrone cyclo­adducts are attractive inter­mediates for the synthesis of several classes of natural products and biologically active compounds, such as unnatural amino­acids (Aouadi, et al., 2006) and alkaloids; for example (+)-febrifugine, (-)-indolizidine 209B (Smith et al., 1988), (+)-sedridine (Louis & Hootelé, 1995, 1997; Huisgen, 1984). We report herein on the synthesis, the molecular structure and the spectroscopic data of the title compound, (2).

Structural commentary top

The title compound (2), Fig. 1, crystallized in the non-centrosymmetric space group P21, with two independent molecules (A and B) in the asymmetric unit. Each molecule has three stereogenic centres with configurations 2(S), 3(S) and 4(R), confirmed by resonant scattering [Flack parameter = −0.012 (6)]. In molecule B there is an intra­molecular N—H···N contact present (Table 1).

The conformations of the two molecules differ significantly, as seen in the molecular fit figure of the two molecules (Fig. 2). In molecule A the phenyl ring is inclined to the triazole ring by 32.5 (2)°, while in molecule B the corresponding dihedral angle is 10.7 (2)°. The torsion angle C6—C7—C8—C13 is 31.5 (5)° in molecule A, while torsion angle C21—C22—C23—C24, is −9.0 (5)° in molecule B. The isoxazolidine rings (O1/N1/C2–C4 in molecule A and O3/N6/C17–C19 in molecule B) adopt envelope conformations. In molecule A atom O1 is displaced by 0.566 Å from the mean plane through atoms N1/C2–C4, while in molecule B atom O3 is displaced by 0.528 Å from the mean plane through atoms N6/C17–C19. Their mean planes are inclined to the relevant triazole ring by 53.95 (19)° in molecule A and by 62.32 (18)° in molecule B.

The triazole N—N distances N2—N3 and N3—N4 in molecule A are 1.340 (4) and 1.307 (4) Å, respectively, and in molecule B distances N7—N8 and N8—N9 are 1.346 (3) and 1.305 (4) Å, respectively. They are close to the values reported for related triazole compounds, for example 2-allyl-3-[(1-benzyl-1H-1,2,3-triazol-4-yl)meth­oxy]-4-meth­oxy­phenol (Chang et al., 2014), with distances 1.357 (9) and 1.336 (7) Å. The N—O bond lengths of the isoxazolidine rings are O1—N1 = 1.442 (3) Å in A and O3—N6 = 1.445 (4) Å in B, also close to values reported for related compounds (Lee et al., 2010; Molander & Cavalcanti, 2013).

Supra­molecular features top

In the crystal of (2), the two independent molecules are linked via an N—H···O and a C—H···O hydrogen bond (Table 1 and Fig. 3). These units are then linked via C—H···O and C—H···N hydrogen bonds, forming slabs lying parallel to the ab plane (Table 1 and Fig. 3). Within the slabs there are C—H···π inter­actions present involving symmetry-related A molecules (Table 1).

Synthesis and crystallization top

\ The title compound, (2), was synthesized in two steps. Starting with a 1,3-dipolar cyclo­addition between (1S,2S,5S)-3'-(azido­methyl)-2'-(cholormethyl)-2-\ iso­propyl-5,5'-di­methyl­dihydro-5'H-spiro­[cyclo­hexane-1,6'-imidazo[1,\ 5 − b]isoxasol]-4'(5'H)-one and phenyl­acetyl­ene lead to the formation of 1,2,3-triazolyl-functionalized isoxazolidine, compound (1) [yield 88%]. The cyclo­adduct (1) (200 mg, 0.42 mmol) was then dissolved in Ac2O (2 ml), AcOH (3 ml), concentrated H2SO4 (0.8 ml) and the reaction was stirred at 323 K for 7 h. After cooling to 273 K, an aqueous solution of 5% NaOH was added drop wise over a period of 2 h until pH 8. The mixture was then poured slowly into a saturated aqueous NaHCO3 solution (280 ml). The resulting mixture was extracted with CH2Cl2 (3 × 100 ml) and the combined organic phases were dried with Na2SO4. After filtration and evaporation of the solvents under reduced pressure, the residue was purified by flash chromatography (silica gel: EtOAc/PE, 8:2) to afford the desired title compound (2) as a white solid (97 mg, yield 69%); see Scheme. Colourless block-like crystals of (2) were obtained by slow evaporation of a solution in di­chloro­methane.

Spectroscopic investigations top

The spectroscopic measurements confirm the structure of the title compound (2). High-resolution mass spectrometry in positive-ion mode gave an [M + H]+ ion of 336.1221 m/z, close to the calculated mass of 336.1222 m/z. The 1H NMR spectrum of (2) shows the presence the triazole ring proton at 7.96 p.p.m. The 13C NMR spectrum confirms the existence of the three, C2, C3 and C4, stereogenic centres (80.3 p.p.m., 64.2 p.p.m. and 48.4 p.p.m., respectively).

Rf = 0.58 [EtOAc/PE 9/1]. NMR 1H (400 MHz, CDCl3): δ(p.p.m.): 2.81 (d, 3H, CH3, J 4.0 Hz), 3.49 (quin, 1H, J 5.6 Hz), 3.84 (dd, 1H, J 4.0, 9.6 Hz), 3.92 (d, 1H, J 4.4 Hz), 4.04 (dd, 1H, J 3.6, 9.6 Hz), 4.46 (dd, 1H, J 4.4, 9.6 Hz), 4.89 (m, 2H), 7.35 (t, 1H, J 6.0 Hz), 7.43 (t, 2H, J 6.0 Hz), 7.81 (d, 2H, J 5.6 Hz), 7.96 (s, 1H triazole). NMR 13C (100 MHz, CDCl3): δ(p.p.m.): 30.9, 42.2, 48.4, 50.9, 64.2, 80.3, 120.4, 125.7, 128.5, 128.9, 130.0, 148.4, 170.6 (C O). HRMS, (ESI) calculated C15H19ClN5O2 [M + H+] = 336.1222, found: 336.1221. [α]22 = + 32.6 (c = 1; CH2Cl2).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH H atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were fixed geometrically and treated as riding: C—H = 0.93–0.98 Å with Uiso(H) = 1.2Ueq(C).

Structure description top

The 1,3-dipolar cyclo­addition of nitro­nes to alkenes provides a straightforward route to isoxazolidines (Frederickson, 1997; Gothelf et al., 2002). Nitrone cyclo­adducts are attractive inter­mediates for the synthesis of several classes of natural products and biologically active compounds, such as unnatural amino­acids (Aouadi, et al., 2006) and alkaloids; for example (+)-febrifugine, (-)-indolizidine 209B (Smith et al., 1988), (+)-sedridine (Louis & Hootelé, 1995, 1997; Huisgen, 1984). We report herein on the synthesis, the molecular structure and the spectroscopic data of the title compound, (2).

The title compound (2), Fig. 1, crystallized in the non-centrosymmetric space group P21, with two independent molecules (A and B) in the asymmetric unit. Each molecule has three stereogenic centres with configurations 2(S), 3(S) and 4(R), confirmed by resonant scattering [Flack parameter = −0.012 (6)]. In molecule B there is an intra­molecular N—H···N contact present (Table 1).

The conformations of the two molecules differ significantly, as seen in the molecular fit figure of the two molecules (Fig. 2). In molecule A the phenyl ring is inclined to the triazole ring by 32.5 (2)°, while in molecule B the corresponding dihedral angle is 10.7 (2)°. The torsion angle C6—C7—C8—C13 is 31.5 (5)° in molecule A, while torsion angle C21—C22—C23—C24, is −9.0 (5)° in molecule B. The isoxazolidine rings (O1/N1/C2–C4 in molecule A and O3/N6/C17–C19 in molecule B) adopt envelope conformations. In molecule A atom O1 is displaced by 0.566 Å from the mean plane through atoms N1/C2–C4, while in molecule B atom O3 is displaced by 0.528 Å from the mean plane through atoms N6/C17–C19. Their mean planes are inclined to the relevant triazole ring by 53.95 (19)° in molecule A and by 62.32 (18)° in molecule B.

The triazole N—N distances N2—N3 and N3—N4 in molecule A are 1.340 (4) and 1.307 (4) Å, respectively, and in molecule B distances N7—N8 and N8—N9 are 1.346 (3) and 1.305 (4) Å, respectively. They are close to the values reported for related triazole compounds, for example 2-allyl-3-[(1-benzyl-1H-1,2,3-triazol-4-yl)meth­oxy]-4-meth­oxy­phenol (Chang et al., 2014), with distances 1.357 (9) and 1.336 (7) Å. The N—O bond lengths of the isoxazolidine rings are O1—N1 = 1.442 (3) Å in A and O3—N6 = 1.445 (4) Å in B, also close to values reported for related compounds (Lee et al., 2010; Molander & Cavalcanti, 2013).

In the crystal of (2), the two independent molecules are linked via an N—H···O and a C—H···O hydrogen bond (Table 1 and Fig. 3). These units are then linked via C—H···O and C—H···N hydrogen bonds, forming slabs lying parallel to the ab plane (Table 1 and Fig. 3). Within the slabs there are C—H···π inter­actions present involving symmetry-related A molecules (Table 1).

The spectroscopic measurements confirm the structure of the title compound (2). High-resolution mass spectrometry in positive-ion mode gave an [M + H]+ ion of 336.1221 m/z, close to the calculated mass of 336.1222 m/z. The 1H NMR spectrum of (2) shows the presence the triazole ring proton at 7.96 p.p.m. The 13C NMR spectrum confirms the existence of the three, C2, C3 and C4, stereogenic centres (80.3 p.p.m., 64.2 p.p.m. and 48.4 p.p.m., respectively).

Rf = 0.58 [EtOAc/PE 9/1]. NMR 1H (400 MHz, CDCl3): δ(p.p.m.): 2.81 (d, 3H, CH3, J 4.0 Hz), 3.49 (quin, 1H, J 5.6 Hz), 3.84 (dd, 1H, J 4.0, 9.6 Hz), 3.92 (d, 1H, J 4.4 Hz), 4.04 (dd, 1H, J 3.6, 9.6 Hz), 4.46 (dd, 1H, J 4.4, 9.6 Hz), 4.89 (m, 2H), 7.35 (t, 1H, J 6.0 Hz), 7.43 (t, 2H, J 6.0 Hz), 7.81 (d, 2H, J 5.6 Hz), 7.96 (s, 1H triazole). NMR 13C (100 MHz, CDCl3): δ(p.p.m.): 30.9, 42.2, 48.4, 50.9, 64.2, 80.3, 120.4, 125.7, 128.5, 128.9, 130.0, 148.4, 170.6 (C O). HRMS, (ESI) calculated C15H19ClN5O2 [M + H+] = 336.1222, found: 336.1221. [α]22 = + 32.6 (c = 1; CH2Cl2).

Synthesis and crystallization top

\ The title compound, (2), was synthesized in two steps. Starting with a 1,3-dipolar cyclo­addition between (1S,2S,5S)-3'-(azido­methyl)-2'-(cholormethyl)-2-\ iso­propyl-5,5'-di­methyl­dihydro-5'H-spiro­[cyclo­hexane-1,6'-imidazo[1,\ 5 − b]isoxasol]-4'(5'H)-one and phenyl­acetyl­ene lead to the formation of 1,2,3-triazolyl-functionalized isoxazolidine, compound (1) [yield 88%]. The cyclo­adduct (1) (200 mg, 0.42 mmol) was then dissolved in Ac2O (2 ml), AcOH (3 ml), concentrated H2SO4 (0.8 ml) and the reaction was stirred at 323 K for 7 h. After cooling to 273 K, an aqueous solution of 5% NaOH was added drop wise over a period of 2 h until pH 8. The mixture was then poured slowly into a saturated aqueous NaHCO3 solution (280 ml). The resulting mixture was extracted with CH2Cl2 (3 × 100 ml) and the combined organic phases were dried with Na2SO4. After filtration and evaporation of the solvents under reduced pressure, the residue was purified by flash chromatography (silica gel: EtOAc/PE, 8:2) to afford the desired title compound (2) as a white solid (97 mg, yield 69%); see Scheme. Colourless block-like crystals of (2) were obtained by slow evaporation of a solution in di­chloro­methane.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH H atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were fixed geometrically and treated as riding: C—H = 0.93–0.98 Å with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the two independent molecules of compound (2), showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. C-bound H atoms have been omitted for clarity.
[Figure 2] Fig. 2. AutoMolFit (Spek, 2009) of the two independent molecules (A black, B red) of compound (2).
[Figure 3] Fig. 3. A view along the c axis of the crystal packing of compound (2). Hydrogen bonds are shown as dashed lines (see Table 1) and H atoms not involved in these interactions have been omitted for clarity.
[Figure 4] Fig. 4. Reaction scheme.
5-Chloromethyl-N-methyl-4-[(4-phenyl-1,2,3-triazol-1-yl)methyl]isoxazolidine-3-carboxamide top
Crystal data top
C15H18ClN5O2F(000) = 704
Mr = 335.79Dx = 1.354 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 10.8355 (2) ÅCell parameters from 16111 reflections
b = 10.8865 (2) Åθ = 4.1–66.7°
c = 14.5653 (2) ŵ = 2.20 mm1
β = 106.481 (2)°T = 293 K
V = 1647.54 (5) Å3Block, colourless
Z = 40.36 × 0.34 × 0.17 mm
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
5824 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source5486 reflections with I > 2σ(I)
Detector resolution: 10.4678 pixels mm-1Rint = 0.050
ω scansθmax = 66.7°, θmin = 3.2°
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2013)
h = 1212
Tmin = 0.518, Tmax = 0.721k = 1212
33842 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0615P)2 + 0.2009P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
5824 reflectionsΔρmax = 0.17 e Å3
431 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack x determined using 2460 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.012 (6)
Crystal data top
C15H18ClN5O2V = 1647.54 (5) Å3
Mr = 335.79Z = 4
Monoclinic, P21Cu Kα radiation
a = 10.8355 (2) ŵ = 2.20 mm1
b = 10.8865 (2) ÅT = 293 K
c = 14.5653 (2) Å0.36 × 0.34 × 0.17 mm
β = 106.481 (2)°
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
5824 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2013)
5486 reflections with I > 2σ(I)
Tmin = 0.518, Tmax = 0.721Rint = 0.050
33842 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098Δρmax = 0.17 e Å3
S = 1.02Δρmin = 0.25 e Å3
5824 reflectionsAbsolute structure: Flack x determined using 2460 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
431 parametersAbsolute structure parameter: 0.012 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.13936 (13)0.47609 (9)0.24767 (6)0.0825 (3)
Cl20.73439 (12)0.41058 (9)0.36164 (7)0.0820 (3)
O10.2546 (2)0.3689 (2)0.45141 (15)0.0517 (5)
O20.0503 (3)0.2666 (3)0.6455 (2)0.0865 (9)
O30.6733 (2)0.28927 (18)0.53585 (18)0.0581 (5)
O40.5087 (3)0.3654 (3)0.7570 (2)0.0739 (7)
N10.2650 (3)0.2979 (3)0.53684 (19)0.0517 (6)
H1N0.205 (4)0.247 (4)0.514 (3)0.055 (11)*
N20.0602 (2)0.6113 (2)0.63212 (17)0.0419 (5)
N30.0647 (3)0.5920 (3)0.6239 (2)0.0570 (7)
N40.0824 (2)0.6133 (3)0.7076 (2)0.0562 (7)
N50.2516 (3)0.2708 (3)0.7437 (2)0.0620 (7)
H5N0.334 (4)0.295 (4)0.751 (3)0.064 (11)*
N60.7486 (3)0.3170 (3)0.6325 (2)0.0555 (6)
H6N0.818 (4)0.364 (4)0.628 (3)0.068 (11)*
N70.5466 (2)0.6450 (2)0.67354 (17)0.0437 (5)
N80.4305 (2)0.6292 (2)0.68824 (19)0.0511 (6)
N90.4348 (2)0.6829 (3)0.76918 (19)0.0517 (6)
N100.6278 (4)0.2017 (3)0.7438 (3)0.0762 (10)
H10N0.685 (4)0.183 (4)0.724 (3)0.060 (12)*
C10.1254 (4)0.5279 (3)0.3610 (2)0.0621 (9)
H1A0.19570.58350.38970.075*
H1B0.04530.57270.35140.075*
C20.1281 (3)0.4226 (3)0.4275 (2)0.0432 (6)
H20.06500.36110.39470.052*
C30.2096 (3)0.3809 (2)0.5948 (2)0.0431 (6)
H30.27650.43710.63090.052*
C40.1038 (3)0.4550 (2)0.52417 (19)0.0406 (6)
H40.01990.42190.52460.049*
C50.1076 (3)0.5915 (3)0.5481 (2)0.0428 (6)
H5A0.19520.62170.56140.051*
H5B0.05450.63670.49380.051*
C60.1227 (3)0.6479 (3)0.7208 (2)0.0423 (6)
H60.20930.66850.74430.051*
C70.0312 (3)0.6486 (3)0.7694 (2)0.0452 (6)
C80.0431 (3)0.6797 (3)0.8698 (2)0.0544 (8)
C90.0314 (4)0.6204 (5)0.9194 (3)0.0740 (11)
H90.09160.56210.88830.089*
C100.0172 (5)0.6469 (6)1.0144 (3)0.0953 (16)
H100.06820.60651.04650.114*
C110.0695 (6)0.7304 (6)1.0614 (3)0.0981 (17)
H110.07910.74701.12570.118*
C120.1425 (5)0.7898 (6)1.0141 (3)0.1006 (16)
H120.20210.84781.04640.121*
C130.1303 (4)0.7658 (5)0.9179 (3)0.0772 (11)
H130.18090.80790.88650.093*
C140.1629 (3)0.3015 (3)0.6648 (2)0.0510 (7)
C150.2257 (5)0.1867 (4)0.8142 (3)0.0798 (12)
H15A0.30240.17630.86630.120*
H15B0.15860.22000.83800.120*
H15C0.19900.10860.78470.120*
C160.6835 (3)0.4838 (3)0.4541 (2)0.0504 (7)
H16A0.75860.51120.50380.060*
H16B0.63280.55570.42800.060*
C170.6038 (3)0.3994 (3)0.4983 (2)0.0475 (6)
H170.52460.37700.44920.057*
C180.6645 (3)0.3930 (3)0.6704 (2)0.0460 (6)
H180.71620.45600.71210.055*
C190.5684 (3)0.4565 (2)0.5844 (2)0.0412 (6)
H190.48110.43050.58230.049*
C200.5741 (3)0.5967 (3)0.5880 (2)0.0465 (6)
H20A0.65910.62350.58690.056*
H20B0.51210.62970.53160.056*
C210.6248 (3)0.7090 (3)0.7458 (2)0.0465 (6)
H210.70970.73160.75260.056*
C220.5530 (3)0.7341 (3)0.8071 (2)0.0460 (6)
C230.5844 (3)0.8079 (3)0.8951 (2)0.0516 (7)
C240.7070 (4)0.8516 (3)0.9358 (2)0.0605 (8)
H240.77330.82930.91040.073*
C250.7319 (5)0.9290 (4)1.0149 (3)0.0801 (12)
H250.81470.95951.04070.096*
C260.6387 (6)0.9607 (5)1.0550 (3)0.0882 (13)
H260.65721.01131.10860.106*
C270.5183 (6)0.9182 (7)1.0163 (4)0.1109 (19)
H270.45320.94121.04290.133*
C280.4899 (5)0.8403 (6)0.9372 (3)0.0947 (16)
H280.40690.81000.91260.114*
C290.5929 (3)0.3181 (3)0.7277 (2)0.0535 (7)
C300.5727 (6)0.1189 (5)0.7996 (5)0.112 (2)
H30A0.61190.03940.80200.168*
H30B0.58790.15050.86330.168*
H30C0.48170.11190.77010.168*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1368 (9)0.0649 (5)0.0552 (4)0.0136 (6)0.0425 (5)0.0007 (4)
Cl20.1252 (9)0.0624 (5)0.0743 (5)0.0052 (5)0.0539 (6)0.0140 (4)
O10.0530 (12)0.0532 (12)0.0547 (11)0.0096 (9)0.0248 (9)0.0016 (9)
O20.0750 (18)0.092 (2)0.0879 (19)0.0397 (16)0.0165 (14)0.0207 (16)
O30.0695 (14)0.0334 (10)0.0765 (14)0.0012 (10)0.0289 (11)0.0027 (10)
O40.0809 (17)0.0718 (16)0.0832 (16)0.0124 (13)0.0463 (14)0.0203 (13)
N10.0594 (16)0.0423 (13)0.0569 (14)0.0089 (13)0.0222 (12)0.0025 (11)
N20.0374 (12)0.0398 (12)0.0513 (12)0.0022 (9)0.0169 (10)0.0050 (10)
N30.0412 (14)0.0680 (17)0.0646 (15)0.0060 (12)0.0199 (12)0.0174 (13)
N40.0444 (14)0.0663 (17)0.0634 (15)0.0047 (12)0.0244 (12)0.0107 (13)
N50.0652 (19)0.0701 (19)0.0548 (15)0.0044 (15)0.0235 (13)0.0141 (13)
N60.0457 (14)0.0476 (14)0.0754 (17)0.0045 (12)0.0207 (13)0.0107 (13)
N70.0459 (13)0.0361 (11)0.0530 (12)0.0002 (10)0.0202 (10)0.0014 (10)
N80.0416 (13)0.0498 (14)0.0630 (15)0.0039 (11)0.0165 (11)0.0046 (12)
N90.0444 (14)0.0527 (14)0.0618 (15)0.0016 (11)0.0211 (11)0.0035 (12)
N100.076 (2)0.0606 (19)0.103 (3)0.0159 (16)0.043 (2)0.0395 (18)
C10.095 (3)0.0444 (16)0.0530 (16)0.0131 (17)0.0312 (17)0.0003 (14)
C20.0448 (15)0.0368 (13)0.0492 (14)0.0011 (11)0.0154 (11)0.0054 (11)
C30.0460 (15)0.0358 (13)0.0503 (14)0.0021 (11)0.0180 (12)0.0012 (11)
C40.0397 (13)0.0361 (14)0.0488 (13)0.0022 (10)0.0171 (11)0.0062 (11)
C50.0507 (16)0.0337 (13)0.0477 (14)0.0012 (11)0.0201 (12)0.0042 (11)
C60.0393 (14)0.0406 (13)0.0474 (14)0.0010 (11)0.0131 (11)0.0014 (11)
C70.0432 (15)0.0439 (15)0.0511 (15)0.0056 (12)0.0177 (12)0.0022 (12)
C80.0516 (17)0.063 (2)0.0511 (16)0.0173 (15)0.0190 (13)0.0029 (14)
C90.072 (2)0.095 (3)0.067 (2)0.016 (2)0.0379 (19)0.012 (2)
C100.098 (3)0.133 (4)0.068 (3)0.027 (3)0.045 (2)0.019 (3)
C110.109 (4)0.136 (5)0.052 (2)0.037 (3)0.026 (2)0.002 (3)
C120.103 (4)0.128 (5)0.064 (2)0.003 (3)0.013 (2)0.020 (3)
C130.078 (3)0.092 (3)0.062 (2)0.005 (2)0.0208 (18)0.013 (2)
C140.0614 (19)0.0409 (15)0.0547 (16)0.0089 (13)0.0229 (14)0.0029 (13)
C150.102 (3)0.081 (3)0.063 (2)0.010 (2)0.034 (2)0.0181 (19)
C160.0645 (19)0.0386 (14)0.0508 (14)0.0064 (14)0.0210 (13)0.0058 (13)
C170.0482 (16)0.0351 (14)0.0570 (15)0.0053 (12)0.0111 (12)0.0040 (12)
C180.0426 (15)0.0369 (14)0.0555 (15)0.0021 (11)0.0091 (12)0.0034 (12)
C190.0403 (14)0.0319 (13)0.0514 (14)0.0021 (10)0.0129 (11)0.0032 (11)
C200.0572 (17)0.0313 (13)0.0553 (15)0.0038 (11)0.0230 (13)0.0046 (12)
C210.0399 (15)0.0432 (15)0.0593 (16)0.0034 (11)0.0190 (12)0.0026 (12)
C220.0450 (16)0.0408 (14)0.0536 (15)0.0002 (11)0.0163 (12)0.0041 (12)
C230.0570 (17)0.0487 (16)0.0520 (15)0.0010 (14)0.0200 (13)0.0000 (13)
C240.067 (2)0.0546 (18)0.0584 (18)0.0084 (16)0.0151 (15)0.0011 (15)
C250.100 (3)0.066 (2)0.066 (2)0.016 (2)0.010 (2)0.0085 (19)
C260.127 (4)0.076 (3)0.060 (2)0.004 (3)0.024 (2)0.017 (2)
C270.116 (4)0.138 (5)0.094 (3)0.002 (4)0.055 (3)0.042 (4)
C280.074 (3)0.131 (4)0.090 (3)0.013 (3)0.040 (2)0.042 (3)
C290.0532 (17)0.0525 (18)0.0544 (16)0.0037 (14)0.0146 (13)0.0132 (14)
C300.111 (4)0.089 (3)0.151 (5)0.014 (3)0.062 (4)0.072 (4)
Geometric parameters (Å, º) top
Cl1—C11.791 (3)C8—C131.374 (6)
Cl2—C161.782 (3)C8—C91.386 (5)
O1—C21.439 (3)C9—C101.378 (7)
O1—N11.442 (3)C9—H90.9300
O2—C141.231 (4)C10—C111.347 (9)
O3—C171.439 (4)C10—H100.9300
O3—N61.445 (4)C11—C121.352 (8)
O4—C291.226 (4)C11—H110.9300
N1—C31.476 (4)C12—C131.393 (6)
N1—H1N0.85 (4)C12—H120.9300
N2—C61.338 (4)C13—H130.9300
N2—N31.340 (4)C15—H15A0.9600
N2—C51.471 (3)C15—H15B0.9600
N3—N41.307 (4)C15—H15C0.9600
N4—C71.359 (4)C16—C171.523 (4)
N5—C141.316 (5)C16—H16A0.9700
N5—C151.461 (5)C16—H16B0.9700
N5—H5N0.91 (4)C17—C191.542 (4)
N6—C181.452 (4)C17—H170.9800
N6—H6N0.93 (5)C18—C291.525 (4)
N7—C211.343 (4)C18—C191.546 (4)
N7—N81.346 (3)C18—H180.9800
N7—C201.459 (4)C19—C201.528 (4)
N8—N91.305 (4)C19—H190.9800
N9—C221.362 (4)C20—H20A0.9700
N10—C291.324 (5)C20—H20B0.9700
N10—C301.451 (5)C21—C221.368 (4)
N10—H10N0.78 (4)C21—H210.9300
C1—C21.495 (4)C22—C231.468 (4)
C1—H1A0.9700C23—C241.377 (5)
C1—H1B0.9700C23—C281.380 (5)
C2—C41.544 (4)C24—C251.391 (5)
C2—H20.9800C24—H240.9300
C3—C141.528 (4)C25—C261.346 (7)
C3—C41.534 (4)C25—H250.9300
C3—H30.9800C26—C271.348 (8)
C4—C51.525 (4)C26—H260.9300
C4—H40.9800C27—C281.393 (7)
C5—H5A0.9700C27—H270.9300
C5—H5B0.9700C28—H280.9300
C6—C71.372 (4)C30—H30A0.9600
C6—H60.9300C30—H30B0.9600
C7—C81.471 (4)C30—H30C0.9600
C2—O1—N1105.2 (2)C8—C13—C12119.8 (5)
C17—O3—N6106.7 (2)C8—C13—H13120.1
O1—N1—C3102.7 (2)C12—C13—H13120.1
O1—N1—H1N98 (3)O2—C14—N5123.5 (3)
C3—N1—H1N104 (3)O2—C14—C3121.1 (3)
C6—N2—N3110.8 (2)N5—C14—C3115.4 (3)
C6—N2—C5130.2 (2)N5—C15—H15A109.5
N3—N2—C5119.0 (2)N5—C15—H15B109.5
N4—N3—N2107.5 (2)H15A—C15—H15B109.5
N3—N4—C7108.8 (2)N5—C15—H15C109.5
C14—N5—C15122.3 (3)H15A—C15—H15C109.5
C14—N5—H5N118 (3)H15B—C15—H15C109.5
C15—N5—H5N119 (3)C17—C16—Cl2112.6 (2)
O3—N6—C18104.3 (2)C17—C16—H16A109.1
O3—N6—H6N107 (2)Cl2—C16—H16A109.1
C18—N6—H6N109 (3)C17—C16—H16B109.1
C21—N7—N8110.6 (2)Cl2—C16—H16B109.1
C21—N7—C20128.3 (2)H16A—C16—H16B107.8
N8—N7—C20121.1 (2)O3—C17—C16111.4 (2)
N9—N8—N7107.0 (2)O3—C17—C19104.5 (2)
N8—N9—C22109.7 (2)C16—C17—C19113.7 (2)
C29—N10—C30123.5 (4)O3—C17—H17109.0
C29—N10—H10N113 (3)C16—C17—H17109.0
C30—N10—H10N123 (3)C19—C17—H17109.0
C2—C1—Cl1111.4 (2)N6—C18—C29112.0 (3)
C2—C1—H1A109.3N6—C18—C19107.3 (2)
Cl1—C1—H1A109.3C29—C18—C19110.6 (2)
C2—C1—H1B109.3N6—C18—H18109.0
Cl1—C1—H1B109.3C29—C18—H18109.0
H1A—C1—H1B108.0C19—C18—H18109.0
O1—C2—C1108.1 (3)C20—C19—C17114.4 (2)
O1—C2—C4105.6 (2)C20—C19—C18114.1 (2)
C1—C2—C4116.0 (2)C17—C19—C18102.3 (2)
O1—C2—H2109.0C20—C19—H19108.6
C1—C2—H2109.0C17—C19—H19108.6
C4—C2—H2109.0C18—C19—H19108.6
N1—C3—C14107.5 (2)N7—C20—C19111.9 (2)
N1—C3—C4106.6 (2)N7—C20—H20A109.2
C14—C3—C4114.8 (2)C19—C20—H20A109.2
N1—C3—H3109.3N7—C20—H20B109.2
C14—C3—H3109.3C19—C20—H20B109.2
C4—C3—H3109.3H20A—C20—H20B107.9
C5—C4—C3113.1 (2)N7—C21—C22105.4 (3)
C5—C4—C2115.5 (2)N7—C21—H21127.3
C3—C4—C2101.7 (2)C22—C21—H21127.3
C5—C4—H4108.7N9—C22—C21107.3 (3)
C3—C4—H4108.7N9—C22—C23122.4 (3)
C2—C4—H4108.7C21—C22—C23130.1 (3)
N2—C5—C4109.9 (2)C24—C23—C28117.8 (3)
N2—C5—H5A109.7C24—C23—C22121.5 (3)
C4—C5—H5A109.7C28—C23—C22120.7 (3)
N2—C5—H5B109.7C23—C24—C25120.2 (4)
C4—C5—H5B109.7C23—C24—H24119.9
H5A—C5—H5B108.2C25—C24—H24119.9
N2—C6—C7104.9 (2)C26—C25—C24121.4 (4)
N2—C6—H6127.5C26—C25—H25119.3
C7—C6—H6127.5C24—C25—H25119.3
N4—C7—C6107.9 (3)C25—C26—C27119.2 (4)
N4—C7—C8122.1 (3)C25—C26—H26120.4
C6—C7—C8130.0 (3)C27—C26—H26120.4
C13—C8—C9118.0 (4)C26—C27—C28121.0 (5)
C13—C8—C7121.2 (3)C26—C27—H27119.5
C9—C8—C7120.8 (4)C28—C27—H27119.5
C10—C9—C8120.6 (5)C23—C28—C27120.4 (5)
C10—C9—H9119.7C23—C28—H28119.8
C8—C9—H9119.7C27—C28—H28119.8
C11—C10—C9121.1 (5)O4—C29—N10122.9 (3)
C11—C10—H10119.5O4—C29—C18120.7 (3)
C9—C10—H10119.5N10—C29—C18116.4 (3)
C10—C11—C12119.2 (4)N10—C30—H30A109.5
C10—C11—H11120.4N10—C30—H30B109.5
C12—C11—H11120.4H30A—C30—H30B109.5
C11—C12—C13121.4 (5)N10—C30—H30C109.5
C11—C12—H12119.3H30A—C30—H30C109.5
C13—C12—H12119.3H30B—C30—H30C109.5
C2—O1—N1—C343.5 (3)N1—C3—C14—O294.4 (4)
C6—N2—N3—N41.5 (4)C4—C3—C14—O224.0 (4)
C5—N2—N3—N4178.8 (3)N1—C3—C14—N583.4 (3)
N2—N3—N4—C71.1 (4)C4—C3—C14—N5158.2 (3)
C17—O3—N6—C1839.2 (3)N6—O3—C17—C1686.8 (3)
C21—N7—N8—N90.0 (3)N6—O3—C17—C1936.4 (3)
C20—N7—N8—N9179.4 (2)Cl2—C16—C17—O357.2 (3)
N7—N8—N9—C220.3 (3)Cl2—C16—C17—C19175.0 (2)
N1—O1—C2—C1161.7 (2)O3—N6—C18—C2996.0 (3)
N1—O1—C2—C436.9 (3)O3—N6—C18—C1925.6 (3)
Cl1—C1—C2—O167.3 (3)O3—C17—C19—C20143.0 (2)
Cl1—C1—C2—C4174.4 (2)C16—C17—C19—C2021.3 (4)
O1—N1—C3—C14156.5 (2)O3—C17—C19—C1819.1 (3)
O1—N1—C3—C432.9 (3)C16—C17—C19—C18102.6 (3)
N1—C3—C4—C5135.3 (2)N6—C18—C19—C20120.2 (3)
C14—C3—C4—C5105.8 (3)C29—C18—C19—C20117.4 (3)
N1—C3—C4—C210.8 (3)N6—C18—C19—C174.0 (3)
C14—C3—C4—C2129.7 (2)C29—C18—C19—C17118.5 (3)
O1—C2—C4—C5107.6 (3)C21—N7—C20—C19116.5 (3)
C1—C2—C4—C512.1 (4)N8—N7—C20—C1964.3 (4)
O1—C2—C4—C315.3 (3)C17—C19—C20—N7176.9 (2)
C1—C2—C4—C3135.0 (3)C18—C19—C20—N759.5 (3)
C6—N2—C5—C4111.7 (3)N8—N7—C21—C220.3 (3)
N3—N2—C5—C468.7 (3)C20—N7—C21—C22179.0 (3)
C3—C4—C5—N273.6 (3)N8—N9—C22—C210.5 (4)
C2—C4—C5—N2169.7 (2)N8—N9—C22—C23175.9 (3)
N3—N2—C6—C71.2 (3)N7—C21—C22—N90.5 (3)
C5—N2—C6—C7179.2 (3)N7—C21—C22—C23175.6 (3)
N3—N4—C7—C60.4 (4)N9—C22—C23—C24175.4 (3)
N3—N4—C7—C8179.8 (3)C21—C22—C23—C249.0 (5)
N2—C6—C7—N40.5 (3)N9—C22—C23—C287.6 (5)
N2—C6—C7—C8179.3 (3)C21—C22—C23—C28168.0 (4)
N4—C7—C8—C13148.7 (4)C28—C23—C24—C252.0 (6)
C6—C7—C8—C1331.5 (5)C22—C23—C24—C25175.1 (3)
N4—C7—C8—C933.0 (5)C23—C24—C25—C261.6 (6)
C6—C7—C8—C9146.8 (4)C24—C25—C26—C271.2 (8)
C13—C8—C9—C100.5 (6)C25—C26—C27—C281.3 (10)
C7—C8—C9—C10177.9 (4)C24—C23—C28—C272.1 (8)
C8—C9—C10—C110.3 (8)C22—C23—C28—C27175.0 (5)
C9—C10—C11—C120.7 (8)C26—C27—C28—C231.8 (10)
C10—C11—C12—C130.4 (9)C30—N10—C29—O41.5 (7)
C9—C8—C13—C120.8 (6)C30—N10—C29—C18177.9 (5)
C7—C8—C13—C12177.5 (4)N6—C18—C29—O4172.9 (3)
C11—C12—C13—C80.4 (8)C19—C18—C29—O453.2 (4)
C15—N5—C14—O23.2 (6)N6—C18—C29—N107.6 (4)
C15—N5—C14—C3174.6 (3)C19—C18—C29—N10127.3 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the triazole ring N2–N4/C6/C7 in molecule A.
D—H···AD—HH···AD···AD—H···A
N10—H10N···N60.78 (4)2.21 (4)2.668 (4)118 (4)
N5—H5N···O40.91 (4)2.02 (4)2.925 (4)173 (4)
C6—H6···N90.932.373.275 (4)164
C1—H1B···O2i0.972.363.208 (4)146
C5—H5B···O2i0.972.473.432 (4)171
C16—H16A···N3ii0.972.373.335 (4)176
C2—H2···Cg2iii0.952.903.806 (3)154
Symmetry codes: (i) x, y+1/2, z+1; (ii) x+1, y, z; (iii) x, y1/2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the triazole ring N2–N4/C6/C7 in molecule A.
D—H···AD—HH···AD···AD—H···A
N10—H10N···N60.78 (4)2.21 (4)2.668 (4)118 (4)
N5—H5N···O40.91 (4)2.02 (4)2.925 (4)173 (4)
C6—H6···N90.932.373.275 (4)164
C1—H1B···O2i0.972.363.208 (4)146
C5—H5B···O2i0.972.473.432 (4)171
C16—H16A···N3ii0.972.373.335 (4)176
C2—H2···Cg2iii0.952.903.806 (3)154
Symmetry codes: (i) x, y+1/2, z+1; (ii) x+1, y, z; (iii) x, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC15H18ClN5O2
Mr335.79
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)10.8355 (2), 10.8865 (2), 14.5653 (2)
β (°) 106.481 (2)
V3)1647.54 (5)
Z4
Radiation typeCu Kα
µ (mm1)2.20
Crystal size (mm)0.36 × 0.34 × 0.17
Data collection
DiffractometerAgilent Xcalibur (Atlas, Gemini ultra)
Absorption correctionAnalytical
(CrysAlis PRO; Agilent, 2013)
Tmin, Tmax0.518, 0.721
No. of measured, independent and
observed [I > 2σ(I)] reflections
33842, 5824, 5486
Rint0.050
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.02
No. of reflections5824
No. of parameters431
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.25
Absolute structureFlack x determined using 2460 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.012 (6)

Computer programs: CrysAlis PRO (Agilent, 2013), SIR2004 (Burla et al., 2005), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

 

Acknowledgements

The authors are grateful to the Ministry of Higher Education and Scientific Research of Tunisia for financial support.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationAouadi, K., Vidal, S., Msaddek, M. & Praly, J.-P. (2006). Synlett, pp. 3299–3303.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChang, M.-Y., Lin, S.-Y. & Chan, C.-K. (2014). Heterocycles, 89, 1905–1912.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrederickson, M. (1997). Tetrahedron, 53, 403–425.  CrossRef CAS Web of Science Google Scholar
First citationGothelf, A. S., Gothelf, K. V., Hazell, R. G. & Jørgensen, K. A. (2002). Angew. Chem. Int. Ed. 41, 4236–4238.  CrossRef CAS Google Scholar
First citationHuisgen, R. (1984). In 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa. New York: Wiley.  Google Scholar
First citationLee, C.-W., Park, J.-Y., Kim, H.-U. & Chi, K.-W. (2010). Bull. Korean Chem. Soc. 31, 1172–1176.  CSD CrossRef CAS Google Scholar
First citationLouis, C. & Hootelé, C. (1995). Tetrahedron Asymmetry, 6, 2149–2152.  CrossRef CAS Google Scholar
First citationLouis, C. & Hootelé, C. (1997). Tetrahedron Asymmetry, 8, 109–131.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMolander, G. A. & Cavalcanti, L. N. (2013). Org. Lett. 15, 3166–3169.  CSD CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, A., Williams, F., Holmes, A. B., Hughes, L. R., Swithenbank, C. & Lidert, Z. (1988). J. Am. Chem. Soc. 110, 8696–8698.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 3| March 2016| Pages 378-381
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds