research communications
N-methyl-4-[(4-phenyl-1,2,3-triazol-1-yl)methyl]isoxazolidine-3-carboxamide
of 5-chloromethyl-aUniversité de Monastir, Laboratoire de Synthèse Hétérocyclique, Produits Naturels et Réactivités, Faculté des Sciences de Monastir, Avenue de l'Environnement, 5000 Monastir, Tunisia, bLaboratoire de Physico-chimie des Matériaux, Faculté des Sciences de Monastir, Avenue de l'Environnement, 5019 Monastir, University of Monastir, Tunisia, cUniversité Lyon 1, Centre de Diffractométrie Henri Longchambon Bâtiment 305, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France, and dUniversité de Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR CNRS 5246, Laboratoire de Chimie Organique 2-Glycochimie, Bâtiment Curien, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
*Correspondence e-mail: jihedbrahmi85@live.fr
The title compound, C15H18ClN5O2, crystallizes with two independent molecules (A and B) in the In both molecules, the isoxazolidine rings have an with the O atoms at the flap positions. Each molecule has three stereogenic centres with configurations 2(S), 3(S) and 4(R), confirmed by Their conformations are significantly different, for example in molecule A the phenyl ring is inclined to the triazole ring by 32.5 (2)°, while in molecule B the corresponding dihedral angle is 10.7 (2)°. In the crystal, the A and B molecules are linked via an N—H⋯O and a C—H⋯O hydrogen bond. These units are linked by C—H⋯O and C—H⋯N hydrogen bonds, forming slabs parallel to the ab plane. There are C—H⋯π interactions present within the slabs.
CCDC reference: 1046833
1. Chemical context
The 1,3-dipolar cycloaddition of nitrones to ; Gothelf et al., 2002). Nitrone cycloadducts are attractive intermediates for the synthesis of several classes of natural products and biologically active compounds, such as unnatural aminoacids (Aouadi, et al., 2006) and for example (+)-febrifugine, (−)-indolizidine 209B (Smith et al., 1988), (+)-sedridine (Louis & Hootelé, 1995, 1997; Huisgen, 1984). We report herein on the synthesis, the molecular structure and the spectroscopic data of the title compound, (2).
provides a straightforward route to isoxazolidines (Frederickson, 19972. Structural commentary
The title compound (2), Fig. 1, crystallized in the non-centrosymmetric P21, with two independent molecules (A and B) in the Each molecule has three stereogenic centres with configurations 2(S), 3(S) and 4(R), confirmed by [Flack parameter = −0.012 (6)]. In molecule B there is an intramolecular N—H⋯N contact present (Table 1).
The conformations of the two molecules differ significantly, as seen in the overlay fit of the two molecules (Fig. 2). In molecule A the phenyl ring is inclined to the triazole ring by 32.5 (2)°, while in molecule B the corresponding dihedral angle is 10.7 (2)°. The torsion angle C6—C7—C8—C13 is 31.5 (5)° in molecule A, while torsion angle C21—C22—C23—C24, is −9.0 (5)° in molecule B. The isoxazolidine rings (O1/N1/C2–C4 in molecule A and O3/N6/C17–C19 in molecule B) adopt envelope conformations. In molecule A atom O1 is displaced by 0.566 (2) Å from the mean plane through atoms N1/C2–C4, while in molecule B atom O3 is displaced by 0.528 (2) Å from the mean plane through atoms N6/C17–C19. Their mean planes are inclined to the relevant triazole ring by 53.95 (19)° in molecule A and by 62.32 (18)° in molecule B.
The triazole N—N distances N2—N3 and N3—N4 in molecule A are 1.340 (4) and 1.307 (4) Å, respectively, and in molecule B distances N7—N8 and N8—N9 are 1.346 (3) and 1.305 (4) Å, respectively. They are close to the values reported for related triazole compounds, for example 2-allyl-3-[(1-benzyl-1H-1,2,3-triazol-4-yl)methoxy]-4-methoxyphenol (Chang et al., 2014), with distances 1.357 (9) and 1.336 (7) Å. The N—O bond lengths of the isoxazolidine rings are O1—N1 = 1.442 (3) Å in A and O3—N6 = 1.445 (4) Å in B, also close to values reported for related compounds (Lee et al., 2010; Molander & Cavalcanti, 2013).
3. Supramolecular features
In the crystal of (2), the two independent molecules are linked via an N—H⋯O and a C—H⋯O hydrogen bond (Table 1 and Fig. 3). These units are then linked via C—H⋯O and C—H⋯N hydrogen bonds, forming slabs lying parallel to the ab plane (Table 1 and Fig. 3). Within the slabs there are C—H⋯π interactions present involving symmetry-related A molecules (Table 1).
4. Synthesis and crystallization
The title compound, (2), was synthesized in two steps. Starting with a 1,3-dipolar cycloaddition between (1S,2S,5S)-3′-(azidomethyl)-2′-(cholormethyl)-2-isopropyl-5,5′-dimethyldihydro-5′H-spiro[cyclohexane-1,6′-imidazo[1,5-b]isoxasol]-4′(5′H)-one and phenylacetylene lead to the formation of 1,2,3-triazolyl-functionalized isoxazolidine, compound (1) [yield 88%]. The cycloadduct (1) (200 mg, 0.42 mmol) was then dissolved in Ac2O (2 ml), AcOH (3 ml), concentrated H2SO4 (0.8 ml) and the reaction was stirred at 323 K for 7 h. After cooling to 273 K, an aqueous solution of 5% NaOH was added drop wise over a period of 2 h until pH 8. The mixture was then poured slowly into a saturated aqueous NaHCO3 solution (280 ml). The resulting mixture was extracted with CH2Cl2 (3 × 100 ml) and the combined organic phases were dried with Na2SO4. After filtration and evaporation of the solvents under reduced pressure, the residue was purified by flash (silica gel: EtOAc/PE, 8:2) to afford the desired title compound (2) as a white solid (97 mg, yield 69%); see Fig. 4. Colourless block-like crystals of (2) were obtained by slow evaporation of a solution in dichloromethane.
5. Spectroscopic investigations
The spectroscopic measurements are consistent with the 2). High-resolution in positive-ion mode gave an [M + H]+ ion of 336.1221 m/z, close to the calculated mass of 336.1222 m/z. The 1H NMR spectrum of (2) shows the presence the triazole ring proton at 7.96 p.p.m. The 13C NMR spectrum confirms the existence of the three, C2, C3 and C4, stereogenic centres (80.3 p.p.m., 64.2 p.p.m. and 48.4 p.p.m., respectively).
of (Rf = 0.58 [EtOAc/PE 9/1]. NMR 1H (400 MHz, CDCl3): δ(p.p.m.): 2.81 (d, 3H, CH3, J 4.0 Hz), 3.49 (quin, 1H, J 5.6 Hz), 3.84 (dd, 1H, J 4.0, 9.6 Hz), 3.92 (d, 1H, J 4.4 Hz), 4.04 (dd, 1H, J 3.6, 9.6 Hz), 4.46 (dd, 1H, J 4.4, 9.6 Hz), 4.89 (m, 2H), 7.35 (t, 1H, J 6.0 Hz), 7.43 (t, 2H, J 6.0 Hz), 7.81 (d, 2H, J 5.6 Hz), 7.96 (s, 1H triazole). NMR 13C (100 MHz, CDCl3): δ(p.p.m.): 30.9, 42.2, 48.4, 50.9, 64.2, 80.3, 120.4, 125.7, 128.5, 128.9, 130.0, 148.4, 170.6 (C=O). HRMS, (ESI) calculated C15H19ClN5O2 [M + H+] = 336.1222, found: 336.1221. [α]22 = + 32.6 (c = 1; CH2Cl2).
6. Refinement
Crystal data, data collection and structure . The NH H atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were fixed geometrically and treated as riding: C—H = 0.93–0.98 Å with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1046833
10.1107/S2056989016002784/su5281sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989016002784/su5281Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989016002784/su5281Isup3.cml
The 1,3-dipolar cycloaddition of nitrones to
provides a straightforward route to isoxazolidines (Frederickson, 1997; Gothelf et al., 2002). Nitrone cycloadducts are attractive intermediates for the synthesis of several classes of natural products and biologically active compounds, such as unnatural aminoacids (Aouadi, et al., 2006) and for example (+)-febrifugine, (-)-indolizidine 209B (Smith et al., 1988), (+)-sedridine (Louis & Hootelé, 1995, 1997; Huisgen, 1984). We report herein on the synthesis, the molecular structure and the spectroscopic data of the title compound, (2).The title compound (2), Fig. 1, crystallized in the non-centrosymmetric
P21, with two independent molecules (A and B) in the Each molecule has three stereogenic centres with configurations 2(S), 3(S) and 4(R), confirmed by [Flack parameter = −0.012 (6)]. In molecule B there is an intramolecular N—H···N contact present (Table 1).The conformations of the two molecules differ significantly, as seen in the molecular fit figure of the two molecules (Fig. 2). In molecule A the phenyl ring is inclined to the triazole ring by 32.5 (2)°, while in molecule B the corresponding dihedral angle is 10.7 (2)°. The torsion angle C6—C7—C8—C13 is 31.5 (5)° in molecule A, while torsion angle C21—C22—C23—C24, is −9.0 (5)° in molecule B. The isoxazolidine rings (O1/N1/C2–C4 in molecule A and O3/N6/C17–C19 in molecule B) adopt envelope conformations. In molecule A atom O1 is displaced by 0.566 Å from the mean plane through atoms N1/C2–C4, while in molecule B atom O3 is displaced by 0.528 Å from the mean plane through atoms N6/C17–C19. Their mean planes are inclined to the relevant triazole ring by 53.95 (19)° in molecule A and by 62.32 (18)° in molecule B.
The triazole N—N distances N2—N3 and N3—N4 in molecule A are 1.340 (4) and 1.307 (4) Å, respectively, and in molecule B distances N7—N8 and N8—N9 are 1.346 (3) and 1.305 (4) Å, respectively. They are close to the values reported for related triazole compounds, for example 2-allyl-3-[(1-benzyl-1H-1,2,3-triazol-4-yl)methoxy]-4-methoxyphenol (Chang et al., 2014), with distances 1.357 (9) and 1.336 (7) Å. The N—O bond lengths of the isoxazolidine rings are O1—N1 = 1.442 (3) Å in A and O3—N6 = 1.445 (4) Å in B, also close to values reported for related compounds (Lee et al., 2010; Molander & Cavalcanti, 2013).
In the crystal of (2), the two independent molecules are linked via an N—H···O and a C—H···O hydrogen bond (Table 1 and Fig. 3). These units are then linked via C—H···O and C—H···N hydrogen bonds, forming slabs lying parallel to the ab plane (Table 1 and Fig. 3). Within the slabs there are C—H···π interactions present involving symmetry-related A molecules (Table 1).
\ The title compound, (2), was synthesized in two steps. Starting with a 1,3-dipolar cycloaddition between (1S,2S,5S)-3'-(azidomethyl)-2'-(cholormethyl)-2-\ isopropyl-5,5'-dimethyldihydro-5'H-spiro[cyclohexane-1,6'-imidazo[1,\ 5 − b]isoxasol]-4'(5'H)-one and phenylacetylene lead to the formation of 1,2,3-triazolyl-functionalized isoxazolidine, compound (1) [yield 88%]. The cycloadduct (1) (200 mg, 0.42 mmol) was then dissolved in Ac2O (2 ml), AcOH (3 ml), concentrated H2SO4 (0.8 ml) and the reaction was stirred at 323 K for 7 h. After cooling to 273 K, an aqueous solution of 5% NaOH was added drop wise over a period of 2 h until pH 8. The mixture was then poured slowly into a saturated aqueous NaHCO3 solution (280 ml). The resulting mixture was extracted with CH2Cl2 (3 × 100 ml) and the combined organic phases were dried with Na2SO4. After filtration and evaporation of the solvents under reduced pressure, the residue was purified by flash
(silica gel: EtOAc/PE, 8:2) to afford the desired title compound (2) as a white solid (97 mg, yield 69%); see Scheme. Colourless block-like crystals of (2) were obtained by slow evaporation of a solution in dichloromethane.The spectroscopic measurements confirm the structure of the title compound (2). High-resolution
in positive-ion mode gave an [M + H]+ ion of 336.1221 m/z, close to the calculated mass of 336.1222 m/z. The 1H NMR spectrum of (2) shows the presence the triazole ring proton at 7.96 p.p.m. The 13C NMR spectrum confirms the existence of the three, C2, C3 and C4, stereogenic centres (80.3 p.p.m., 64.2 p.p.m. and 48.4 p.p.m., respectively).Rf = 0.58 [EtOAc/PE 9/1]. NMR 1H (400 MHz, CDCl3): δ(p.p.m.): 2.81 (d, 3H, CH3, J 4.0 Hz), 3.49 (quin, 1H, J 5.6 Hz), 3.84 (dd, 1H, J 4.0, 9.6 Hz), 3.92 (d, 1H, J 4.4 Hz), 4.04 (dd, 1H, J 3.6, 9.6 Hz), 4.46 (dd, 1H, J 4.4, 9.6 Hz), 4.89 (m, 2H), 7.35 (t, 1H, J 6.0 Hz), 7.43 (t, 2H, J 6.0 Hz), 7.81 (d, 2H, J 5.6 Hz), 7.96 (s, 1H triazole). NMR 13C (100 MHz, CDCl3): δ(p.p.m.): 30.9, 42.2, 48.4, 50.9, 64.2, 80.3, 120.4, 125.7, 128.5, 128.9, 130.0, 148.4, 170.6 (C═ O). HRMS, (ESI) calculated C15H19ClN5O2 [M + H+] = 336.1222, found: 336.1221. [α]22 = + 32.6 (c = 1; CH2Cl2).
The 1,3-dipolar cycloaddition of nitrones to
provides a straightforward route to isoxazolidines (Frederickson, 1997; Gothelf et al., 2002). Nitrone cycloadducts are attractive intermediates for the synthesis of several classes of natural products and biologically active compounds, such as unnatural aminoacids (Aouadi, et al., 2006) and for example (+)-febrifugine, (-)-indolizidine 209B (Smith et al., 1988), (+)-sedridine (Louis & Hootelé, 1995, 1997; Huisgen, 1984). We report herein on the synthesis, the molecular structure and the spectroscopic data of the title compound, (2).The title compound (2), Fig. 1, crystallized in the non-centrosymmetric
P21, with two independent molecules (A and B) in the Each molecule has three stereogenic centres with configurations 2(S), 3(S) and 4(R), confirmed by [Flack parameter = −0.012 (6)]. In molecule B there is an intramolecular N—H···N contact present (Table 1).The conformations of the two molecules differ significantly, as seen in the molecular fit figure of the two molecules (Fig. 2). In molecule A the phenyl ring is inclined to the triazole ring by 32.5 (2)°, while in molecule B the corresponding dihedral angle is 10.7 (2)°. The torsion angle C6—C7—C8—C13 is 31.5 (5)° in molecule A, while torsion angle C21—C22—C23—C24, is −9.0 (5)° in molecule B. The isoxazolidine rings (O1/N1/C2–C4 in molecule A and O3/N6/C17–C19 in molecule B) adopt envelope conformations. In molecule A atom O1 is displaced by 0.566 Å from the mean plane through atoms N1/C2–C4, while in molecule B atom O3 is displaced by 0.528 Å from the mean plane through atoms N6/C17–C19. Their mean planes are inclined to the relevant triazole ring by 53.95 (19)° in molecule A and by 62.32 (18)° in molecule B.
The triazole N—N distances N2—N3 and N3—N4 in molecule A are 1.340 (4) and 1.307 (4) Å, respectively, and in molecule B distances N7—N8 and N8—N9 are 1.346 (3) and 1.305 (4) Å, respectively. They are close to the values reported for related triazole compounds, for example 2-allyl-3-[(1-benzyl-1H-1,2,3-triazol-4-yl)methoxy]-4-methoxyphenol (Chang et al., 2014), with distances 1.357 (9) and 1.336 (7) Å. The N—O bond lengths of the isoxazolidine rings are O1—N1 = 1.442 (3) Å in A and O3—N6 = 1.445 (4) Å in B, also close to values reported for related compounds (Lee et al., 2010; Molander & Cavalcanti, 2013).
In the crystal of (2), the two independent molecules are linked via an N—H···O and a C—H···O hydrogen bond (Table 1 and Fig. 3). These units are then linked via C—H···O and C—H···N hydrogen bonds, forming slabs lying parallel to the ab plane (Table 1 and Fig. 3). Within the slabs there are C—H···π interactions present involving symmetry-related A molecules (Table 1).
The spectroscopic measurements confirm the structure of the title compound (2). High-resolution
in positive-ion mode gave an [M + H]+ ion of 336.1221 m/z, close to the calculated mass of 336.1222 m/z. The 1H NMR spectrum of (2) shows the presence the triazole ring proton at 7.96 p.p.m. The 13C NMR spectrum confirms the existence of the three, C2, C3 and C4, stereogenic centres (80.3 p.p.m., 64.2 p.p.m. and 48.4 p.p.m., respectively).Rf = 0.58 [EtOAc/PE 9/1]. NMR 1H (400 MHz, CDCl3): δ(p.p.m.): 2.81 (d, 3H, CH3, J 4.0 Hz), 3.49 (quin, 1H, J 5.6 Hz), 3.84 (dd, 1H, J 4.0, 9.6 Hz), 3.92 (d, 1H, J 4.4 Hz), 4.04 (dd, 1H, J 3.6, 9.6 Hz), 4.46 (dd, 1H, J 4.4, 9.6 Hz), 4.89 (m, 2H), 7.35 (t, 1H, J 6.0 Hz), 7.43 (t, 2H, J 6.0 Hz), 7.81 (d, 2H, J 5.6 Hz), 7.96 (s, 1H triazole). NMR 13C (100 MHz, CDCl3): δ(p.p.m.): 30.9, 42.2, 48.4, 50.9, 64.2, 80.3, 120.4, 125.7, 128.5, 128.9, 130.0, 148.4, 170.6 (C═ O). HRMS, (ESI) calculated C15H19ClN5O2 [M + H+] = 336.1222, found: 336.1221. [α]22 = + 32.6 (c = 1; CH2Cl2).
\ The title compound, (2), was synthesized in two steps. Starting with a 1,3-dipolar cycloaddition between (1S,2S,5S)-3'-(azidomethyl)-2'-(cholormethyl)-2-\ isopropyl-5,5'-dimethyldihydro-5'H-spiro[cyclohexane-1,6'-imidazo[1,\ 5 − b]isoxasol]-4'(5'H)-one and phenylacetylene lead to the formation of 1,2,3-triazolyl-functionalized isoxazolidine, compound (1) [yield 88%]. The cycloadduct (1) (200 mg, 0.42 mmol) was then dissolved in Ac2O (2 ml), AcOH (3 ml), concentrated H2SO4 (0.8 ml) and the reaction was stirred at 323 K for 7 h. After cooling to 273 K, an aqueous solution of 5% NaOH was added drop wise over a period of 2 h until pH 8. The mixture was then poured slowly into a saturated aqueous NaHCO3 solution (280 ml). The resulting mixture was extracted with CH2Cl2 (3 × 100 ml) and the combined organic phases were dried with Na2SO4. After filtration and evaporation of the solvents under reduced pressure, the residue was purified by flash
(silica gel: EtOAc/PE, 8:2) to afford the desired title compound (2) as a white solid (97 mg, yield 69%); see Scheme. Colourless block-like crystals of (2) were obtained by slow evaporation of a solution in dichloromethane. detailsCrystal data, data collection and structure
details are summarized in Table 2. The NH H atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were fixed geometrically and treated as riding: C—H = 0.93–0.98 Å with Uiso(H) = 1.2Ueq(C).Data collection: CrysAlis PRO (Agilent, 2013); cell
CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the two independent molecules of compound (2), showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. C-bound H atoms have been omitted for clarity. | |
Fig. 2. AutoMolFit (Spek, 2009) of the two independent molecules (A black, B red) of compound (2). | |
Fig. 3. A view along the c axis of the crystal packing of compound (2). Hydrogen bonds are shown as dashed lines (see Table 1) and H atoms not involved in these interactions have been omitted for clarity. | |
Fig. 4. Reaction scheme. |
C15H18ClN5O2 | F(000) = 704 |
Mr = 335.79 | Dx = 1.354 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54178 Å |
a = 10.8355 (2) Å | Cell parameters from 16111 reflections |
b = 10.8865 (2) Å | θ = 4.1–66.7° |
c = 14.5653 (2) Å | µ = 2.20 mm−1 |
β = 106.481 (2)° | T = 293 K |
V = 1647.54 (5) Å3 | Block, colourless |
Z = 4 | 0.36 × 0.34 × 0.17 mm |
Agilent Xcalibur (Atlas, Gemini ultra) diffractometer | 5824 independent reflections |
Radiation source: Enhance Ultra (Cu) X-ray Source | 5486 reflections with I > 2σ(I) |
Detector resolution: 10.4678 pixels mm-1 | Rint = 0.050 |
ω scans | θmax = 66.7°, θmin = 3.2° |
Absorption correction: analytical (CrysAlis PRO; Agilent, 2013) | h = −12→12 |
Tmin = 0.518, Tmax = 0.721 | k = −12→12 |
33842 measured reflections | l = −17→17 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.036 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.098 | w = 1/[σ2(Fo2) + (0.0615P)2 + 0.2009P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
5824 reflections | Δρmax = 0.17 e Å−3 |
431 parameters | Δρmin = −0.25 e Å−3 |
1 restraint | Absolute structure: Flack x determined using 2460 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.012 (6) |
C15H18ClN5O2 | V = 1647.54 (5) Å3 |
Mr = 335.79 | Z = 4 |
Monoclinic, P21 | Cu Kα radiation |
a = 10.8355 (2) Å | µ = 2.20 mm−1 |
b = 10.8865 (2) Å | T = 293 K |
c = 14.5653 (2) Å | 0.36 × 0.34 × 0.17 mm |
β = 106.481 (2)° |
Agilent Xcalibur (Atlas, Gemini ultra) diffractometer | 5824 independent reflections |
Absorption correction: analytical (CrysAlis PRO; Agilent, 2013) | 5486 reflections with I > 2σ(I) |
Tmin = 0.518, Tmax = 0.721 | Rint = 0.050 |
33842 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.098 | Δρmax = 0.17 e Å−3 |
S = 1.02 | Δρmin = −0.25 e Å−3 |
5824 reflections | Absolute structure: Flack x determined using 2460 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
431 parameters | Absolute structure parameter: −0.012 (6) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.13936 (13) | 0.47609 (9) | 0.24767 (6) | 0.0825 (3) | |
Cl2 | 0.73439 (12) | 0.41058 (9) | 0.36164 (7) | 0.0820 (3) | |
O1 | 0.2546 (2) | 0.3689 (2) | 0.45141 (15) | 0.0517 (5) | |
O2 | 0.0503 (3) | 0.2666 (3) | 0.6455 (2) | 0.0865 (9) | |
O3 | 0.6733 (2) | 0.28927 (18) | 0.53585 (18) | 0.0581 (5) | |
O4 | 0.5087 (3) | 0.3654 (3) | 0.7570 (2) | 0.0739 (7) | |
N1 | 0.2650 (3) | 0.2979 (3) | 0.53684 (19) | 0.0517 (6) | |
H1N | 0.205 (4) | 0.247 (4) | 0.514 (3) | 0.055 (11)* | |
N2 | 0.0602 (2) | 0.6113 (2) | 0.63212 (17) | 0.0419 (5) | |
N3 | −0.0647 (3) | 0.5920 (3) | 0.6239 (2) | 0.0570 (7) | |
N4 | −0.0824 (2) | 0.6133 (3) | 0.7076 (2) | 0.0562 (7) | |
N5 | 0.2516 (3) | 0.2708 (3) | 0.7437 (2) | 0.0620 (7) | |
H5N | 0.334 (4) | 0.295 (4) | 0.751 (3) | 0.064 (11)* | |
N6 | 0.7486 (3) | 0.3170 (3) | 0.6325 (2) | 0.0555 (6) | |
H6N | 0.818 (4) | 0.364 (4) | 0.628 (3) | 0.068 (11)* | |
N7 | 0.5466 (2) | 0.6450 (2) | 0.67354 (17) | 0.0437 (5) | |
N8 | 0.4305 (2) | 0.6292 (2) | 0.68824 (19) | 0.0511 (6) | |
N9 | 0.4348 (2) | 0.6829 (3) | 0.76918 (19) | 0.0517 (6) | |
N10 | 0.6278 (4) | 0.2017 (3) | 0.7438 (3) | 0.0762 (10) | |
H10N | 0.685 (4) | 0.183 (4) | 0.724 (3) | 0.060 (12)* | |
C1 | 0.1254 (4) | 0.5279 (3) | 0.3610 (2) | 0.0621 (9) | |
H1A | 0.1957 | 0.5835 | 0.3897 | 0.075* | |
H1B | 0.0453 | 0.5727 | 0.3514 | 0.075* | |
C2 | 0.1281 (3) | 0.4226 (3) | 0.4275 (2) | 0.0432 (6) | |
H2 | 0.0650 | 0.3611 | 0.3947 | 0.052* | |
C3 | 0.2096 (3) | 0.3809 (2) | 0.5948 (2) | 0.0431 (6) | |
H3 | 0.2765 | 0.4371 | 0.6309 | 0.052* | |
C4 | 0.1038 (3) | 0.4550 (2) | 0.52417 (19) | 0.0406 (6) | |
H4 | 0.0199 | 0.4219 | 0.5246 | 0.049* | |
C5 | 0.1076 (3) | 0.5915 (3) | 0.5481 (2) | 0.0428 (6) | |
H5A | 0.1952 | 0.6217 | 0.5614 | 0.051* | |
H5B | 0.0545 | 0.6367 | 0.4938 | 0.051* | |
C6 | 0.1227 (3) | 0.6479 (3) | 0.7208 (2) | 0.0423 (6) | |
H6 | 0.2093 | 0.6685 | 0.7443 | 0.051* | |
C7 | 0.0312 (3) | 0.6486 (3) | 0.7694 (2) | 0.0452 (6) | |
C8 | 0.0431 (3) | 0.6797 (3) | 0.8698 (2) | 0.0544 (8) | |
C9 | −0.0314 (4) | 0.6204 (5) | 0.9194 (3) | 0.0740 (11) | |
H9 | −0.0916 | 0.5621 | 0.8883 | 0.089* | |
C10 | −0.0172 (5) | 0.6469 (6) | 1.0144 (3) | 0.0953 (16) | |
H10 | −0.0682 | 0.6065 | 1.0465 | 0.114* | |
C11 | 0.0695 (6) | 0.7304 (6) | 1.0614 (3) | 0.0981 (17) | |
H11 | 0.0791 | 0.7470 | 1.1257 | 0.118* | |
C12 | 0.1425 (5) | 0.7898 (6) | 1.0141 (3) | 0.1006 (16) | |
H12 | 0.2021 | 0.8478 | 1.0464 | 0.121* | |
C13 | 0.1303 (4) | 0.7658 (5) | 0.9179 (3) | 0.0772 (11) | |
H13 | 0.1809 | 0.8079 | 0.8865 | 0.093* | |
C14 | 0.1629 (3) | 0.3015 (3) | 0.6648 (2) | 0.0510 (7) | |
C15 | 0.2257 (5) | 0.1867 (4) | 0.8142 (3) | 0.0798 (12) | |
H15A | 0.3024 | 0.1763 | 0.8663 | 0.120* | |
H15B | 0.1586 | 0.2200 | 0.8380 | 0.120* | |
H15C | 0.1990 | 0.1086 | 0.7847 | 0.120* | |
C16 | 0.6835 (3) | 0.4838 (3) | 0.4541 (2) | 0.0504 (7) | |
H16A | 0.7586 | 0.5112 | 0.5038 | 0.060* | |
H16B | 0.6328 | 0.5557 | 0.4280 | 0.060* | |
C17 | 0.6038 (3) | 0.3994 (3) | 0.4983 (2) | 0.0475 (6) | |
H17 | 0.5246 | 0.3770 | 0.4492 | 0.057* | |
C18 | 0.6645 (3) | 0.3930 (3) | 0.6704 (2) | 0.0460 (6) | |
H18 | 0.7162 | 0.4560 | 0.7121 | 0.055* | |
C19 | 0.5684 (3) | 0.4565 (2) | 0.5844 (2) | 0.0412 (6) | |
H19 | 0.4811 | 0.4305 | 0.5823 | 0.049* | |
C20 | 0.5741 (3) | 0.5967 (3) | 0.5880 (2) | 0.0465 (6) | |
H20A | 0.6591 | 0.6235 | 0.5869 | 0.056* | |
H20B | 0.5121 | 0.6297 | 0.5316 | 0.056* | |
C21 | 0.6248 (3) | 0.7090 (3) | 0.7458 (2) | 0.0465 (6) | |
H21 | 0.7097 | 0.7316 | 0.7526 | 0.056* | |
C22 | 0.5530 (3) | 0.7341 (3) | 0.8071 (2) | 0.0460 (6) | |
C23 | 0.5844 (3) | 0.8079 (3) | 0.8951 (2) | 0.0516 (7) | |
C24 | 0.7070 (4) | 0.8516 (3) | 0.9358 (2) | 0.0605 (8) | |
H24 | 0.7733 | 0.8293 | 0.9104 | 0.073* | |
C25 | 0.7319 (5) | 0.9290 (4) | 1.0149 (3) | 0.0801 (12) | |
H25 | 0.8147 | 0.9595 | 1.0407 | 0.096* | |
C26 | 0.6387 (6) | 0.9607 (5) | 1.0550 (3) | 0.0882 (13) | |
H26 | 0.6572 | 1.0113 | 1.1086 | 0.106* | |
C27 | 0.5183 (6) | 0.9182 (7) | 1.0163 (4) | 0.1109 (19) | |
H27 | 0.4532 | 0.9412 | 1.0429 | 0.133* | |
C28 | 0.4899 (5) | 0.8403 (6) | 0.9372 (3) | 0.0947 (16) | |
H28 | 0.4069 | 0.8100 | 0.9126 | 0.114* | |
C29 | 0.5929 (3) | 0.3181 (3) | 0.7277 (2) | 0.0535 (7) | |
C30 | 0.5727 (6) | 0.1189 (5) | 0.7996 (5) | 0.112 (2) | |
H30A | 0.6119 | 0.0394 | 0.8020 | 0.168* | |
H30B | 0.5879 | 0.1505 | 0.8633 | 0.168* | |
H30C | 0.4817 | 0.1119 | 0.7701 | 0.168* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.1368 (9) | 0.0649 (5) | 0.0552 (4) | 0.0136 (6) | 0.0425 (5) | −0.0007 (4) |
Cl2 | 0.1252 (9) | 0.0624 (5) | 0.0743 (5) | −0.0052 (5) | 0.0539 (6) | −0.0140 (4) |
O1 | 0.0530 (12) | 0.0532 (12) | 0.0547 (11) | 0.0096 (9) | 0.0248 (9) | 0.0016 (9) |
O2 | 0.0750 (18) | 0.092 (2) | 0.0879 (19) | −0.0397 (16) | 0.0165 (14) | 0.0207 (16) |
O3 | 0.0695 (14) | 0.0334 (10) | 0.0765 (14) | 0.0012 (10) | 0.0289 (11) | −0.0027 (10) |
O4 | 0.0809 (17) | 0.0718 (16) | 0.0832 (16) | 0.0124 (13) | 0.0463 (14) | 0.0203 (13) |
N1 | 0.0594 (16) | 0.0423 (13) | 0.0569 (14) | 0.0089 (13) | 0.0222 (12) | 0.0025 (11) |
N2 | 0.0374 (12) | 0.0398 (12) | 0.0513 (12) | 0.0022 (9) | 0.0169 (10) | −0.0050 (10) |
N3 | 0.0412 (14) | 0.0680 (17) | 0.0646 (15) | −0.0060 (12) | 0.0199 (12) | −0.0174 (13) |
N4 | 0.0444 (14) | 0.0663 (17) | 0.0634 (15) | −0.0047 (12) | 0.0244 (12) | −0.0107 (13) |
N5 | 0.0652 (19) | 0.0701 (19) | 0.0548 (15) | −0.0044 (15) | 0.0235 (13) | 0.0141 (13) |
N6 | 0.0457 (14) | 0.0476 (14) | 0.0754 (17) | 0.0045 (12) | 0.0207 (13) | 0.0107 (13) |
N7 | 0.0459 (13) | 0.0361 (11) | 0.0530 (12) | 0.0002 (10) | 0.0202 (10) | −0.0014 (10) |
N8 | 0.0416 (13) | 0.0498 (14) | 0.0630 (15) | −0.0039 (11) | 0.0165 (11) | −0.0046 (12) |
N9 | 0.0444 (14) | 0.0527 (14) | 0.0618 (15) | −0.0016 (11) | 0.0211 (11) | −0.0035 (12) |
N10 | 0.076 (2) | 0.0606 (19) | 0.103 (3) | 0.0159 (16) | 0.043 (2) | 0.0395 (18) |
C1 | 0.095 (3) | 0.0444 (16) | 0.0530 (16) | 0.0131 (17) | 0.0312 (17) | 0.0003 (14) |
C2 | 0.0448 (15) | 0.0368 (13) | 0.0492 (14) | −0.0011 (11) | 0.0154 (11) | −0.0054 (11) |
C3 | 0.0460 (15) | 0.0358 (13) | 0.0503 (14) | −0.0021 (11) | 0.0180 (12) | −0.0012 (11) |
C4 | 0.0397 (13) | 0.0361 (14) | 0.0488 (13) | −0.0022 (10) | 0.0171 (11) | −0.0062 (11) |
C5 | 0.0507 (16) | 0.0337 (13) | 0.0477 (14) | 0.0012 (11) | 0.0201 (12) | −0.0042 (11) |
C6 | 0.0393 (14) | 0.0406 (13) | 0.0474 (14) | 0.0010 (11) | 0.0131 (11) | −0.0014 (11) |
C7 | 0.0432 (15) | 0.0439 (15) | 0.0511 (15) | 0.0056 (12) | 0.0177 (12) | 0.0022 (12) |
C8 | 0.0516 (17) | 0.063 (2) | 0.0511 (16) | 0.0173 (15) | 0.0190 (13) | 0.0029 (14) |
C9 | 0.072 (2) | 0.095 (3) | 0.067 (2) | 0.016 (2) | 0.0379 (19) | 0.012 (2) |
C10 | 0.098 (3) | 0.133 (4) | 0.068 (3) | 0.027 (3) | 0.045 (2) | 0.019 (3) |
C11 | 0.109 (4) | 0.136 (5) | 0.052 (2) | 0.037 (3) | 0.026 (2) | −0.002 (3) |
C12 | 0.103 (4) | 0.128 (5) | 0.064 (2) | −0.003 (3) | 0.013 (2) | −0.020 (3) |
C13 | 0.078 (3) | 0.092 (3) | 0.062 (2) | −0.005 (2) | 0.0208 (18) | −0.013 (2) |
C14 | 0.0614 (19) | 0.0409 (15) | 0.0547 (16) | −0.0089 (13) | 0.0229 (14) | −0.0029 (13) |
C15 | 0.102 (3) | 0.081 (3) | 0.063 (2) | −0.010 (2) | 0.034 (2) | 0.0181 (19) |
C16 | 0.0645 (19) | 0.0386 (14) | 0.0508 (14) | −0.0064 (14) | 0.0210 (13) | −0.0058 (13) |
C17 | 0.0482 (16) | 0.0351 (14) | 0.0570 (15) | −0.0053 (12) | 0.0111 (12) | −0.0040 (12) |
C18 | 0.0426 (15) | 0.0369 (14) | 0.0555 (15) | −0.0021 (11) | 0.0091 (12) | 0.0034 (12) |
C19 | 0.0403 (14) | 0.0319 (13) | 0.0514 (14) | −0.0021 (10) | 0.0129 (11) | 0.0032 (11) |
C20 | 0.0572 (17) | 0.0313 (13) | 0.0553 (15) | 0.0038 (11) | 0.0230 (13) | 0.0046 (12) |
C21 | 0.0399 (15) | 0.0432 (15) | 0.0593 (16) | −0.0034 (11) | 0.0190 (12) | −0.0026 (12) |
C22 | 0.0450 (16) | 0.0408 (14) | 0.0536 (15) | −0.0002 (11) | 0.0163 (12) | 0.0041 (12) |
C23 | 0.0570 (17) | 0.0487 (16) | 0.0520 (15) | −0.0010 (14) | 0.0200 (13) | 0.0000 (13) |
C24 | 0.067 (2) | 0.0546 (18) | 0.0584 (18) | −0.0084 (16) | 0.0151 (15) | −0.0011 (15) |
C25 | 0.100 (3) | 0.066 (2) | 0.066 (2) | −0.016 (2) | 0.010 (2) | −0.0085 (19) |
C26 | 0.127 (4) | 0.076 (3) | 0.060 (2) | −0.004 (3) | 0.024 (2) | −0.017 (2) |
C27 | 0.116 (4) | 0.138 (5) | 0.094 (3) | 0.002 (4) | 0.055 (3) | −0.042 (4) |
C28 | 0.074 (3) | 0.131 (4) | 0.090 (3) | −0.013 (3) | 0.040 (2) | −0.042 (3) |
C29 | 0.0532 (17) | 0.0525 (18) | 0.0544 (16) | 0.0037 (14) | 0.0146 (13) | 0.0132 (14) |
C30 | 0.111 (4) | 0.089 (3) | 0.151 (5) | 0.014 (3) | 0.062 (4) | 0.072 (4) |
Cl1—C1 | 1.791 (3) | C8—C13 | 1.374 (6) |
Cl2—C16 | 1.782 (3) | C8—C9 | 1.386 (5) |
O1—C2 | 1.439 (3) | C9—C10 | 1.378 (7) |
O1—N1 | 1.442 (3) | C9—H9 | 0.9300 |
O2—C14 | 1.231 (4) | C10—C11 | 1.347 (9) |
O3—C17 | 1.439 (4) | C10—H10 | 0.9300 |
O3—N6 | 1.445 (4) | C11—C12 | 1.352 (8) |
O4—C29 | 1.226 (4) | C11—H11 | 0.9300 |
N1—C3 | 1.476 (4) | C12—C13 | 1.393 (6) |
N1—H1N | 0.85 (4) | C12—H12 | 0.9300 |
N2—C6 | 1.338 (4) | C13—H13 | 0.9300 |
N2—N3 | 1.340 (4) | C15—H15A | 0.9600 |
N2—C5 | 1.471 (3) | C15—H15B | 0.9600 |
N3—N4 | 1.307 (4) | C15—H15C | 0.9600 |
N4—C7 | 1.359 (4) | C16—C17 | 1.523 (4) |
N5—C14 | 1.316 (5) | C16—H16A | 0.9700 |
N5—C15 | 1.461 (5) | C16—H16B | 0.9700 |
N5—H5N | 0.91 (4) | C17—C19 | 1.542 (4) |
N6—C18 | 1.452 (4) | C17—H17 | 0.9800 |
N6—H6N | 0.93 (5) | C18—C29 | 1.525 (4) |
N7—C21 | 1.343 (4) | C18—C19 | 1.546 (4) |
N7—N8 | 1.346 (3) | C18—H18 | 0.9800 |
N7—C20 | 1.459 (4) | C19—C20 | 1.528 (4) |
N8—N9 | 1.305 (4) | C19—H19 | 0.9800 |
N9—C22 | 1.362 (4) | C20—H20A | 0.9700 |
N10—C29 | 1.324 (5) | C20—H20B | 0.9700 |
N10—C30 | 1.451 (5) | C21—C22 | 1.368 (4) |
N10—H10N | 0.78 (4) | C21—H21 | 0.9300 |
C1—C2 | 1.495 (4) | C22—C23 | 1.468 (4) |
C1—H1A | 0.9700 | C23—C24 | 1.377 (5) |
C1—H1B | 0.9700 | C23—C28 | 1.380 (5) |
C2—C4 | 1.544 (4) | C24—C25 | 1.391 (5) |
C2—H2 | 0.9800 | C24—H24 | 0.9300 |
C3—C14 | 1.528 (4) | C25—C26 | 1.346 (7) |
C3—C4 | 1.534 (4) | C25—H25 | 0.9300 |
C3—H3 | 0.9800 | C26—C27 | 1.348 (8) |
C4—C5 | 1.525 (4) | C26—H26 | 0.9300 |
C4—H4 | 0.9800 | C27—C28 | 1.393 (7) |
C5—H5A | 0.9700 | C27—H27 | 0.9300 |
C5—H5B | 0.9700 | C28—H28 | 0.9300 |
C6—C7 | 1.372 (4) | C30—H30A | 0.9600 |
C6—H6 | 0.9300 | C30—H30B | 0.9600 |
C7—C8 | 1.471 (4) | C30—H30C | 0.9600 |
C2—O1—N1 | 105.2 (2) | C8—C13—C12 | 119.8 (5) |
C17—O3—N6 | 106.7 (2) | C8—C13—H13 | 120.1 |
O1—N1—C3 | 102.7 (2) | C12—C13—H13 | 120.1 |
O1—N1—H1N | 98 (3) | O2—C14—N5 | 123.5 (3) |
C3—N1—H1N | 104 (3) | O2—C14—C3 | 121.1 (3) |
C6—N2—N3 | 110.8 (2) | N5—C14—C3 | 115.4 (3) |
C6—N2—C5 | 130.2 (2) | N5—C15—H15A | 109.5 |
N3—N2—C5 | 119.0 (2) | N5—C15—H15B | 109.5 |
N4—N3—N2 | 107.5 (2) | H15A—C15—H15B | 109.5 |
N3—N4—C7 | 108.8 (2) | N5—C15—H15C | 109.5 |
C14—N5—C15 | 122.3 (3) | H15A—C15—H15C | 109.5 |
C14—N5—H5N | 118 (3) | H15B—C15—H15C | 109.5 |
C15—N5—H5N | 119 (3) | C17—C16—Cl2 | 112.6 (2) |
O3—N6—C18 | 104.3 (2) | C17—C16—H16A | 109.1 |
O3—N6—H6N | 107 (2) | Cl2—C16—H16A | 109.1 |
C18—N6—H6N | 109 (3) | C17—C16—H16B | 109.1 |
C21—N7—N8 | 110.6 (2) | Cl2—C16—H16B | 109.1 |
C21—N7—C20 | 128.3 (2) | H16A—C16—H16B | 107.8 |
N8—N7—C20 | 121.1 (2) | O3—C17—C16 | 111.4 (2) |
N9—N8—N7 | 107.0 (2) | O3—C17—C19 | 104.5 (2) |
N8—N9—C22 | 109.7 (2) | C16—C17—C19 | 113.7 (2) |
C29—N10—C30 | 123.5 (4) | O3—C17—H17 | 109.0 |
C29—N10—H10N | 113 (3) | C16—C17—H17 | 109.0 |
C30—N10—H10N | 123 (3) | C19—C17—H17 | 109.0 |
C2—C1—Cl1 | 111.4 (2) | N6—C18—C29 | 112.0 (3) |
C2—C1—H1A | 109.3 | N6—C18—C19 | 107.3 (2) |
Cl1—C1—H1A | 109.3 | C29—C18—C19 | 110.6 (2) |
C2—C1—H1B | 109.3 | N6—C18—H18 | 109.0 |
Cl1—C1—H1B | 109.3 | C29—C18—H18 | 109.0 |
H1A—C1—H1B | 108.0 | C19—C18—H18 | 109.0 |
O1—C2—C1 | 108.1 (3) | C20—C19—C17 | 114.4 (2) |
O1—C2—C4 | 105.6 (2) | C20—C19—C18 | 114.1 (2) |
C1—C2—C4 | 116.0 (2) | C17—C19—C18 | 102.3 (2) |
O1—C2—H2 | 109.0 | C20—C19—H19 | 108.6 |
C1—C2—H2 | 109.0 | C17—C19—H19 | 108.6 |
C4—C2—H2 | 109.0 | C18—C19—H19 | 108.6 |
N1—C3—C14 | 107.5 (2) | N7—C20—C19 | 111.9 (2) |
N1—C3—C4 | 106.6 (2) | N7—C20—H20A | 109.2 |
C14—C3—C4 | 114.8 (2) | C19—C20—H20A | 109.2 |
N1—C3—H3 | 109.3 | N7—C20—H20B | 109.2 |
C14—C3—H3 | 109.3 | C19—C20—H20B | 109.2 |
C4—C3—H3 | 109.3 | H20A—C20—H20B | 107.9 |
C5—C4—C3 | 113.1 (2) | N7—C21—C22 | 105.4 (3) |
C5—C4—C2 | 115.5 (2) | N7—C21—H21 | 127.3 |
C3—C4—C2 | 101.7 (2) | C22—C21—H21 | 127.3 |
C5—C4—H4 | 108.7 | N9—C22—C21 | 107.3 (3) |
C3—C4—H4 | 108.7 | N9—C22—C23 | 122.4 (3) |
C2—C4—H4 | 108.7 | C21—C22—C23 | 130.1 (3) |
N2—C5—C4 | 109.9 (2) | C24—C23—C28 | 117.8 (3) |
N2—C5—H5A | 109.7 | C24—C23—C22 | 121.5 (3) |
C4—C5—H5A | 109.7 | C28—C23—C22 | 120.7 (3) |
N2—C5—H5B | 109.7 | C23—C24—C25 | 120.2 (4) |
C4—C5—H5B | 109.7 | C23—C24—H24 | 119.9 |
H5A—C5—H5B | 108.2 | C25—C24—H24 | 119.9 |
N2—C6—C7 | 104.9 (2) | C26—C25—C24 | 121.4 (4) |
N2—C6—H6 | 127.5 | C26—C25—H25 | 119.3 |
C7—C6—H6 | 127.5 | C24—C25—H25 | 119.3 |
N4—C7—C6 | 107.9 (3) | C25—C26—C27 | 119.2 (4) |
N4—C7—C8 | 122.1 (3) | C25—C26—H26 | 120.4 |
C6—C7—C8 | 130.0 (3) | C27—C26—H26 | 120.4 |
C13—C8—C9 | 118.0 (4) | C26—C27—C28 | 121.0 (5) |
C13—C8—C7 | 121.2 (3) | C26—C27—H27 | 119.5 |
C9—C8—C7 | 120.8 (4) | C28—C27—H27 | 119.5 |
C10—C9—C8 | 120.6 (5) | C23—C28—C27 | 120.4 (5) |
C10—C9—H9 | 119.7 | C23—C28—H28 | 119.8 |
C8—C9—H9 | 119.7 | C27—C28—H28 | 119.8 |
C11—C10—C9 | 121.1 (5) | O4—C29—N10 | 122.9 (3) |
C11—C10—H10 | 119.5 | O4—C29—C18 | 120.7 (3) |
C9—C10—H10 | 119.5 | N10—C29—C18 | 116.4 (3) |
C10—C11—C12 | 119.2 (4) | N10—C30—H30A | 109.5 |
C10—C11—H11 | 120.4 | N10—C30—H30B | 109.5 |
C12—C11—H11 | 120.4 | H30A—C30—H30B | 109.5 |
C11—C12—C13 | 121.4 (5) | N10—C30—H30C | 109.5 |
C11—C12—H12 | 119.3 | H30A—C30—H30C | 109.5 |
C13—C12—H12 | 119.3 | H30B—C30—H30C | 109.5 |
C2—O1—N1—C3 | −43.5 (3) | N1—C3—C14—O2 | −94.4 (4) |
C6—N2—N3—N4 | −1.5 (4) | C4—C3—C14—O2 | 24.0 (4) |
C5—N2—N3—N4 | 178.8 (3) | N1—C3—C14—N5 | 83.4 (3) |
N2—N3—N4—C7 | 1.1 (4) | C4—C3—C14—N5 | −158.2 (3) |
C17—O3—N6—C18 | 39.2 (3) | N6—O3—C17—C16 | 86.8 (3) |
C21—N7—N8—N9 | 0.0 (3) | N6—O3—C17—C19 | −36.4 (3) |
C20—N7—N8—N9 | −179.4 (2) | Cl2—C16—C17—O3 | 57.2 (3) |
N7—N8—N9—C22 | 0.3 (3) | Cl2—C16—C17—C19 | 175.0 (2) |
N1—O1—C2—C1 | 161.7 (2) | O3—N6—C18—C29 | 96.0 (3) |
N1—O1—C2—C4 | 36.9 (3) | O3—N6—C18—C19 | −25.6 (3) |
Cl1—C1—C2—O1 | 67.3 (3) | O3—C17—C19—C20 | 143.0 (2) |
Cl1—C1—C2—C4 | −174.4 (2) | C16—C17—C19—C20 | 21.3 (4) |
O1—N1—C3—C14 | 156.5 (2) | O3—C17—C19—C18 | 19.1 (3) |
O1—N1—C3—C4 | 32.9 (3) | C16—C17—C19—C18 | −102.6 (3) |
N1—C3—C4—C5 | −135.3 (2) | N6—C18—C19—C20 | −120.2 (3) |
C14—C3—C4—C5 | 105.8 (3) | C29—C18—C19—C20 | 117.4 (3) |
N1—C3—C4—C2 | −10.8 (3) | N6—C18—C19—C17 | 4.0 (3) |
C14—C3—C4—C2 | −129.7 (2) | C29—C18—C19—C17 | −118.5 (3) |
O1—C2—C4—C5 | 107.6 (3) | C21—N7—C20—C19 | 116.5 (3) |
C1—C2—C4—C5 | −12.1 (4) | N8—N7—C20—C19 | −64.3 (4) |
O1—C2—C4—C3 | −15.3 (3) | C17—C19—C20—N7 | −176.9 (2) |
C1—C2—C4—C3 | −135.0 (3) | C18—C19—C20—N7 | −59.5 (3) |
C6—N2—C5—C4 | 111.7 (3) | N8—N7—C21—C22 | −0.3 (3) |
N3—N2—C5—C4 | −68.7 (3) | C20—N7—C21—C22 | 179.0 (3) |
C3—C4—C5—N2 | −73.6 (3) | N8—N9—C22—C21 | −0.5 (4) |
C2—C4—C5—N2 | 169.7 (2) | N8—N9—C22—C23 | 175.9 (3) |
N3—N2—C6—C7 | 1.2 (3) | N7—C21—C22—N9 | 0.5 (3) |
C5—N2—C6—C7 | −179.2 (3) | N7—C21—C22—C23 | −175.6 (3) |
N3—N4—C7—C6 | −0.4 (4) | N9—C22—C23—C24 | 175.4 (3) |
N3—N4—C7—C8 | 179.8 (3) | C21—C22—C23—C24 | −9.0 (5) |
N2—C6—C7—N4 | −0.5 (3) | N9—C22—C23—C28 | −7.6 (5) |
N2—C6—C7—C8 | 179.3 (3) | C21—C22—C23—C28 | 168.0 (4) |
N4—C7—C8—C13 | −148.7 (4) | C28—C23—C24—C25 | −2.0 (6) |
C6—C7—C8—C13 | 31.5 (5) | C22—C23—C24—C25 | 175.1 (3) |
N4—C7—C8—C9 | 33.0 (5) | C23—C24—C25—C26 | 1.6 (6) |
C6—C7—C8—C9 | −146.8 (4) | C24—C25—C26—C27 | −1.2 (8) |
C13—C8—C9—C10 | −0.5 (6) | C25—C26—C27—C28 | 1.3 (10) |
C7—C8—C9—C10 | 177.9 (4) | C24—C23—C28—C27 | 2.1 (8) |
C8—C9—C10—C11 | −0.3 (8) | C22—C23—C28—C27 | −175.0 (5) |
C9—C10—C11—C12 | 0.7 (8) | C26—C27—C28—C23 | −1.8 (10) |
C10—C11—C12—C13 | −0.4 (9) | C30—N10—C29—O4 | −1.5 (7) |
C9—C8—C13—C12 | 0.8 (6) | C30—N10—C29—C18 | 177.9 (5) |
C7—C8—C13—C12 | −177.5 (4) | N6—C18—C29—O4 | −172.9 (3) |
C11—C12—C13—C8 | −0.4 (8) | C19—C18—C29—O4 | −53.2 (4) |
C15—N5—C14—O2 | 3.2 (6) | N6—C18—C29—N10 | 7.6 (4) |
C15—N5—C14—C3 | −174.6 (3) | C19—C18—C29—N10 | 127.3 (3) |
Cg2 is the centroid of the triazole ring N2–N4/C6/C7 in molecule A. |
D—H···A | D—H | H···A | D···A | D—H···A |
N10—H10N···N6 | 0.78 (4) | 2.21 (4) | 2.668 (4) | 118 (4) |
N5—H5N···O4 | 0.91 (4) | 2.02 (4) | 2.925 (4) | 173 (4) |
C6—H6···N9 | 0.93 | 2.37 | 3.275 (4) | 164 |
C1—H1B···O2i | 0.97 | 2.36 | 3.208 (4) | 146 |
C5—H5B···O2i | 0.97 | 2.47 | 3.432 (4) | 171 |
C16—H16A···N3ii | 0.97 | 2.37 | 3.335 (4) | 176 |
C2—H2···Cg2iii | 0.95 | 2.90 | 3.806 (3) | 154 |
Symmetry codes: (i) −x, y+1/2, −z+1; (ii) x+1, y, z; (iii) −x, y−1/2, −z+1. |
Cg2 is the centroid of the triazole ring N2–N4/C6/C7 in molecule A. |
D—H···A | D—H | H···A | D···A | D—H···A |
N10—H10N···N6 | 0.78 (4) | 2.21 (4) | 2.668 (4) | 118 (4) |
N5—H5N···O4 | 0.91 (4) | 2.02 (4) | 2.925 (4) | 173 (4) |
C6—H6···N9 | 0.93 | 2.37 | 3.275 (4) | 164 |
C1—H1B···O2i | 0.97 | 2.36 | 3.208 (4) | 146 |
C5—H5B···O2i | 0.97 | 2.47 | 3.432 (4) | 171 |
C16—H16A···N3ii | 0.97 | 2.37 | 3.335 (4) | 176 |
C2—H2···Cg2iii | 0.95 | 2.90 | 3.806 (3) | 154 |
Symmetry codes: (i) −x, y+1/2, −z+1; (ii) x+1, y, z; (iii) −x, y−1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C15H18ClN5O2 |
Mr | 335.79 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 293 |
a, b, c (Å) | 10.8355 (2), 10.8865 (2), 14.5653 (2) |
β (°) | 106.481 (2) |
V (Å3) | 1647.54 (5) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 2.20 |
Crystal size (mm) | 0.36 × 0.34 × 0.17 |
Data collection | |
Diffractometer | Agilent Xcalibur (Atlas, Gemini ultra) |
Absorption correction | Analytical (CrysAlis PRO; Agilent, 2013) |
Tmin, Tmax | 0.518, 0.721 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 33842, 5824, 5486 |
Rint | 0.050 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.098, 1.02 |
No. of reflections | 5824 |
No. of parameters | 431 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.17, −0.25 |
Absolute structure | Flack x determined using 2460 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Absolute structure parameter | −0.012 (6) |
Computer programs: CrysAlis PRO (Agilent, 2013), SIR2004 (Burla et al., 2005), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).
Acknowledgements
The authors are grateful to the Ministry of Higher Education and Scientific Research of Tunisia for financial support.
References
Agilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England. Google Scholar
Aouadi, K., Vidal, S., Msaddek, M. & Praly, J.-P. (2006). Synlett, pp. 3299–3303. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Chang, M.-Y., Lin, S.-Y. & Chan, C.-K. (2014). Heterocycles, 89, 1905–1912. CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frederickson, M. (1997). Tetrahedron, 53, 403–425. CrossRef CAS Web of Science Google Scholar
Gothelf, A. S., Gothelf, K. V., Hazell, R. G. & Jørgensen, K. A. (2002). Angew. Chem. Int. Ed. 41, 4236–4238. CrossRef CAS Google Scholar
Huisgen, R. (1984). In 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa. New York: Wiley. Google Scholar
Lee, C.-W., Park, J.-Y., Kim, H.-U. & Chi, K.-W. (2010). Bull. Korean Chem. Soc. 31, 1172–1176. CSD CrossRef CAS Google Scholar
Louis, C. & Hootelé, C. (1995). Tetrahedron Asymmetry, 6, 2149–2152. CrossRef CAS Google Scholar
Louis, C. & Hootelé, C. (1997). Tetrahedron Asymmetry, 8, 109–131. CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Molander, G. A. & Cavalcanti, L. N. (2013). Org. Lett. 15, 3166–3169. CSD CrossRef CAS PubMed Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smith, A., Williams, F., Holmes, A. B., Hughes, L. R., Swithenbank, C. & Lidert, Z. (1988). J. Am. Chem. Soc. 110, 8696–8698. CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.