research communications
of bis(1,4-diazabicyclo[2.2.2]octan-1-ium) thiosulfate dihydrate
aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal, and bDépartement de Chimie, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montréal, Québec, H3C 3J7, Canada
*Correspondence e-mail: dlibasse@gmail.com
The 6H13N2+·S2O32−·2H2O, contains a centrosymmetric cyclic motif of eight hydrogen-bonded molecular subunits. Two DABCOH+ cations (DABCO = 1,4-diazabicyclo[2.2.2]octane) are linked to two water molecules and two thiosulfate anions via O—H⋯N and O—H⋯O hydrogen bonds, respectively. Two other water molecules close the cyclic motif through O—H⋯O contacts to the first two water molecules and to the two thiosulfate anions. A second pair of DABCOH+ cations is N—H⋯O hydrogen bonded to the two anions and is pendant to the ring. Adjacent cyclic motifs are bridged into a block-like arrangement extending along [100] through O—H⋯O interactions involving the second pair of water molecules and neighbouring thiosulfate anions.
of the hydrated title salt, 2CKeywords: crystal structure; DABCOH+ cations; hydrogen bonds; thiosulfate anion; supramolecular structure.
CCDC reference: 1449673
1. Chemical context
The title thiosulfate was isolated accidentally when thioacetamide was mixed in ethanol with DABCO (1,4-diazabicyclo[2.2.2]octane), leading to the formation of the thiosulfate anion in situ.
2. Structural commentary
The ) consists of one thiosulfate anion, two monoprotonated DABCOH+ cations and two water molecules. The thiosulfate anion exhibits approximate C3v symmetry. However, in the crystal it has C1 symmetry with S—O distances in the range 1.4688 (8) to 1.4898 (8) Å and an S—S bond length of 2.0047 (4) Å, and O—S—O and S—S—O angles ranging from 107.47 (4) to 110.48 (5)°. In both DABCOH+ cations, the three N—C bonds involving the protonated N atom are elongated [mean value 1.499 (2) Å] compared to the three N—C bonds involving the non-protonated N atoms [mean value 1.472 (4) Å].
(Fig. 13. Supramolecular features
The thiosulfate anion is linked via charge-assisted N—H⋯O hydrogen bonds to two DABCOH+ cations. The third oxygen atom (O2) of the anion acts as a hydrogen-bond acceptor for one of the water molecules (O4). The second hydrogen bond involving this water molecule is directed towards a symmetry-related thiosulfate anion. The second water molecule (O5) is the donor of one O—H⋯O hydrogen bond to the other water molecule and of one N—H⋯O hydrogen bond to one of the DABCOH+ cations. Numerical details of the hydrogen-bonding interactions are given in Table 1. This arrangement leads to the formation of a centrosymmetric cyclic motif consisting of eight hydrogen-bonded molecules with two pendant DABCOH+ cations (Fig. 2). Adjacent cyclic motifs are bridged through O4—H44⋯O3 contacts into supramolecular blocks running along [100] (Fig. 3).
4. Database survey
A search in the Cambridge Structural Database (CSD Version 5.36 with three updates; Groom & Allen, 2014) for salts with isolated thiosulfate anions returned 25 records with ten of them featuring a metal complex for the cationic part. Entries with simple protonated amine functionalities include structures with tert-butylammonium (Okuniewski et al., 2013) and its hydrate (Dabrowska & Chojnacki, 2014), cyclohexylammonium (Dabrowska & Chojnacki, 2014), tetramethylammonium tetrahydrate (Yang & Ng, 2011), tetraethylammonium dihydrate (Leyten et al., 1988), isopropylammonium (Okuniewski et al., 2013), piperazinium (Srinivasan et al., 2011) and adamantanaminium (Jiang et al., 1998). The thiosulfate anion has also been encapsulated in protonated azacryptands ligands (Maubert et al., 2001; Nelson et al., 2004).
5. Synthesis and crystallization
Crystals suitable for a single-crystal X-ray diffraction study were isolated from a clear ethanolic solution of thioacetamide and DABCO in an equimolar ratio.
6. Refinement
Crystal data, data collection and structure . All H atoms were located from Fourier difference maps and freely refined.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1449673
10.1107/S2056989016001535/wm5264sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989016001535/wm5264Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989016001535/wm5264Isup3.cml
The title thiosulfate was isolated accidentally when thioacetamide was mixed in ethanol with DABCO (1,4-diazabicyclo[2.2.2]octane), leading to the formation of the thiosulfate anion in situ.
The
(Fig. 1) consists of one thiosulfate anion, two monoprotonated DABCOH+ cations and two water molecules. The thiosulfate anion exhibits approximate C3v symmetry. However, in the crystal it has C1 symmetry with S—O distances in the range 1.4688 (8) to 1.4898 (8) Å and an S—S bond length of 2.0047 (4) Å, and O—S—O and S—S—O angles ranging from 107.47 (4) to 110.48 (5)°. In both DABCOH+ cations, the three N—C bonds involving the protonated N atom are elongated [mean value 1.499 (2) Å] compared to the three N—C bonds involving the non-protonated N atoms [mean value 1.472 (4) Å].The thiosulfate anion is linked via charge-assisted N—H···O hydrogen bonds to two DABCOH+ cations. The third oxygen atom (O2) of the anion acts as a hydrogen-bond acceptor for one of the water molecules (O4). The second hydrogen bond involving this water molecule is directed towards a symmetry-related thiosulfate anion. The second water molecule (O5) is the donor of one O—H···O hydrogen bond to the other water molecule and of one N—H···O hydrogen bond to one of the DABCOH+ cations. Numerical details of the hydrogen-bonding interactions are given in Table 1. This arrangement leads to the formation of a centrosymmetric cyclic motif consisting of eight hydrogen-bonded molecules with two pendant DABCOH+ cations (Fig. 2). Adjacent cyclic motifs are bridged through O4—H44···O3 contacts into supramolecular blocks running along [100] (Fig. 3).
A search in the Cambridge Structural Database (CSD Version 5.36 with three updates; Groom & Allen, 2014) for salts with isolated thiosulfate anions returned 25 records with ten of them featuring a metal complex for the cationic part. Entries with simple protonated amine functionalities include structures with tert-butylammonium (Okuniewski et al., 2013) and its hydrate (Dabrowska & Chojnacki, 2014), cyclohexylammonium (Dabrowska & Chojnacki, 2014), tetramethylammonium tetrahydrate (Yang & Ng, 2011), tetraethylammonium dihydrate (Leyten et al., 1988), isopropylammonium (Okuniewski et al., 2013), piperazinium (Srinivasan et al., 2011) and adamantanaminium (Jiang et al., 1998). The thiosulfate anion has also been encapsulated in protonated azacryptands ligands (Maubert et al., 2001; Nelson et al., 2004).
Crystals suitable for a single-crystal X-ray diffraction study were isolated from a clear ethanolic solution of thioacetamide and DABCO in an equimolar ratio.
The title thiosulfate was isolated accidentally when thioacetamide was mixed in ethanol with DABCO (1,4-diazabicyclo[2.2.2]octane), leading to the formation of the thiosulfate anion in situ.
The
(Fig. 1) consists of one thiosulfate anion, two monoprotonated DABCOH+ cations and two water molecules. The thiosulfate anion exhibits approximate C3v symmetry. However, in the crystal it has C1 symmetry with S—O distances in the range 1.4688 (8) to 1.4898 (8) Å and an S—S bond length of 2.0047 (4) Å, and O—S—O and S—S—O angles ranging from 107.47 (4) to 110.48 (5)°. In both DABCOH+ cations, the three N—C bonds involving the protonated N atom are elongated [mean value 1.499 (2) Å] compared to the three N—C bonds involving the non-protonated N atoms [mean value 1.472 (4) Å].The thiosulfate anion is linked via charge-assisted N—H···O hydrogen bonds to two DABCOH+ cations. The third oxygen atom (O2) of the anion acts as a hydrogen-bond acceptor for one of the water molecules (O4). The second hydrogen bond involving this water molecule is directed towards a symmetry-related thiosulfate anion. The second water molecule (O5) is the donor of one O—H···O hydrogen bond to the other water molecule and of one N—H···O hydrogen bond to one of the DABCOH+ cations. Numerical details of the hydrogen-bonding interactions are given in Table 1. This arrangement leads to the formation of a centrosymmetric cyclic motif consisting of eight hydrogen-bonded molecules with two pendant DABCOH+ cations (Fig. 2). Adjacent cyclic motifs are bridged through O4—H44···O3 contacts into supramolecular blocks running along [100] (Fig. 3).
A search in the Cambridge Structural Database (CSD Version 5.36 with three updates; Groom & Allen, 2014) for salts with isolated thiosulfate anions returned 25 records with ten of them featuring a metal complex for the cationic part. Entries with simple protonated amine functionalities include structures with tert-butylammonium (Okuniewski et al., 2013) and its hydrate (Dabrowska & Chojnacki, 2014), cyclohexylammonium (Dabrowska & Chojnacki, 2014), tetramethylammonium tetrahydrate (Yang & Ng, 2011), tetraethylammonium dihydrate (Leyten et al., 1988), isopropylammonium (Okuniewski et al., 2013), piperazinium (Srinivasan et al., 2011) and adamantanaminium (Jiang et al., 1998). The thiosulfate anion has also been encapsulated in protonated azacryptands ligands (Maubert et al., 2001; Nelson et al., 2004).
Crystals suitable for a single-crystal X-ray diffraction study were isolated from a clear ethanolic solution of thioacetamide and DABCO in an equimolar ratio.
detailsCrystal data, data collection and structure
details are summarized in Table 2. A l l H atoms were located from Fourier difference maps and were freely refined.Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).Fig. 1. The asymmetric unit of (I), with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. | |
Fig. 2. View of the content of one unit cell, showing the hydrogen-bonded macrocycle made up from the asymmetric unit and its inversion-symmetry-related counterpart. H atoms not involved in hydrogen bonding (black dotted lines) are omitted for clarity. | |
Fig. 3. View of three successive hydrogen-bonded cycles displayed in red, blue and green. Pendant DABCOH+ cations are shown in orange. H atoms not involved in hydrogen bonding (black dotted lines) are omitted for clarity. |
2C6H13N2+·S2O32−·2H2O | Z = 2 |
Mr = 374.52 | F(000) = 404 |
Triclinic, P1 | Dx = 1.434 Mg m−3 |
a = 6.5063 (2) Å | Ga Kα radiation, λ = 1.34139 Å |
b = 10.5966 (3) Å | Cell parameters from 9855 reflections |
c = 13.2066 (4) Å | θ = 3.0–60.7° |
α = 105.951 (1)° | µ = 1.98 mm−1 |
β = 92.065 (1)° | T = 100 K |
γ = 96.550 (1)° | Platelet, clear light colourless |
V = 867.59 (5) Å3 | 0.51 × 0.18 × 0.06 mm |
Bruker Venture Metaljet diffractometer | 3965 independent reflections |
Radiation source: Metal Jet, Gallium Liquid Metal Jet Source | 3865 reflections with I > 2σ(I) |
Helios MX Mirror Optics monochromator | Rint = 0.040 |
Detector resolution: 10.24 pixels mm-1 | θmax = 60.6°, θmin = 3.0° |
ω and φ scans | h = −8→8 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −13→13 |
Tmin = 0.170, Tmax = 0.311 | l = −17→17 |
24479 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | All H-atom parameters refined |
wR(F2) = 0.079 | w = 1/[σ2(Fo2) + (0.0453P)2 + 0.2876P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
3965 reflections | Δρmax = 0.45 e Å−3 |
328 parameters | Δρmin = −0.31 e Å−3 |
0 restraints |
2C6H13N2+·S2O32−·2H2O | γ = 96.550 (1)° |
Mr = 374.52 | V = 867.59 (5) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.5063 (2) Å | Ga Kα radiation, λ = 1.34139 Å |
b = 10.5966 (3) Å | µ = 1.98 mm−1 |
c = 13.2066 (4) Å | T = 100 K |
α = 105.951 (1)° | 0.51 × 0.18 × 0.06 mm |
β = 92.065 (1)° |
Bruker Venture Metaljet diffractometer | 3965 independent reflections |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | 3865 reflections with I > 2σ(I) |
Tmin = 0.170, Tmax = 0.311 | Rint = 0.040 |
24479 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.079 | All H-atom parameters refined |
S = 1.07 | Δρmax = 0.45 e Å−3 |
3965 reflections | Δρmin = −0.31 e Å−3 |
328 parameters |
Experimental. X-ray crystallographic data for I were collected from a single-crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Venture diffractometer equipped with a Photon 100 CMOS Detector, a Helios MX optics and a Kappa goniometer. The crystal-to-detector distance was 4.0 cm, and the data collection was carried out in 1024 x 1024 pixel mode. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.37120 (14) | 0.25575 (9) | 0.89793 (7) | 0.01709 (19) | |
H1 | 0.474 (3) | 0.2918 (16) | 0.8688 (13) | 0.027 (4)* | |
N2 | 0.07772 (15) | 0.16056 (10) | 0.98667 (8) | 0.0204 (2) | |
C1 | 0.44755 (18) | 0.15612 (12) | 0.94669 (9) | 0.0204 (2) | |
H1A | 0.477 (2) | 0.0796 (16) | 0.8860 (13) | 0.026 (4)* | |
H1B | 0.572 (3) | 0.1986 (16) | 0.9896 (13) | 0.026 (4)* | |
C2 | 0.27163 (19) | 0.11153 (12) | 1.00935 (9) | 0.0227 (2) | |
H2A | 0.308 (3) | 0.1446 (18) | 1.0861 (15) | 0.036 (4)* | |
H2B | 0.250 (3) | 0.0161 (17) | 0.9902 (13) | 0.029 (4)* | |
C3 | 0.19715 (18) | 0.18911 (13) | 0.81671 (9) | 0.0211 (2) | |
H3A | 0.254 (2) | 0.1287 (16) | 0.7618 (13) | 0.025 (4)* | |
H3B | 0.149 (3) | 0.2574 (17) | 0.7886 (13) | 0.032 (4)* | |
C4 | 0.03175 (18) | 0.12017 (12) | 0.87190 (9) | 0.0215 (2) | |
H4A | −0.102 (3) | 0.1438 (16) | 0.8578 (13) | 0.028 (4)* | |
H4B | 0.027 (2) | 0.0273 (17) | 0.8492 (13) | 0.028 (4)* | |
C5 | 0.29855 (19) | 0.36527 (12) | 0.98198 (10) | 0.0226 (2) | |
H5A | 0.268 (3) | 0.4332 (17) | 0.9503 (13) | 0.029 (4)* | |
H5B | 0.417 (3) | 0.3988 (17) | 1.0355 (13) | 0.030 (4)* | |
C6 | 0.1044 (2) | 0.30577 (12) | 1.02479 (11) | 0.0263 (3) | |
H6A | 0.118 (3) | 0.3316 (18) | 1.1015 (15) | 0.037 (4)* | |
H6B | −0.020 (3) | 0.3362 (17) | 0.9978 (13) | 0.032 (4)* | |
N3 | 0.32970 (14) | 0.27267 (9) | 0.50138 (7) | 0.01556 (18) | |
H3 | 0.423 (3) | 0.2931 (16) | 0.5520 (13) | 0.028 (4)* | |
N4 | 0.05427 (14) | 0.20524 (9) | 0.34935 (7) | 0.01749 (19) | |
C7 | 0.02619 (17) | 0.11478 (11) | 0.41613 (9) | 0.0180 (2) | |
H7A | 0.050 (2) | 0.0289 (16) | 0.3785 (12) | 0.022 (4)* | |
H7B | −0.117 (2) | 0.1056 (15) | 0.4338 (11) | 0.020 (3)* | |
C8 | 0.17326 (17) | 0.16570 (11) | 0.51711 (9) | 0.0182 (2) | |
H8A | 0.107 (2) | 0.2033 (15) | 0.5776 (12) | 0.020 (3)* | |
H8B | 0.248 (2) | 0.1029 (16) | 0.5297 (12) | 0.024 (4)* | |
C9 | 0.26331 (18) | 0.20134 (12) | 0.30931 (9) | 0.0197 (2) | |
H9A | 0.265 (2) | 0.1127 (16) | 0.2591 (12) | 0.024 (4)* | |
H9B | 0.287 (2) | 0.2726 (16) | 0.2771 (13) | 0.026 (4)* | |
C10 | 0.43012 (17) | 0.22308 (12) | 0.40030 (8) | 0.0185 (2) | |
H10A | 0.482 (2) | 0.1435 (16) | 0.4030 (12) | 0.024 (4)* | |
H10B | 0.540 (2) | 0.2897 (15) | 0.3999 (12) | 0.022 (4)* | |
C11 | 0.03966 (18) | 0.34059 (11) | 0.41524 (9) | 0.0202 (2) | |
H11A | −0.091 (2) | 0.3368 (14) | 0.4464 (11) | 0.019 (3)* | |
H11B | 0.039 (2) | 0.3977 (16) | 0.3696 (13) | 0.026 (4)* | |
C12 | 0.22526 (17) | 0.39014 (11) | 0.49767 (9) | 0.0188 (2) | |
H12A | 0.328 (3) | 0.4497 (16) | 0.4780 (13) | 0.027 (4)* | |
H12B | 0.184 (2) | 0.4274 (15) | 0.5693 (12) | 0.023 (4)* | |
S1 | 0.73999 (4) | 0.36034 (2) | 0.71916 (2) | 0.01430 (8) | |
S2 | 0.66847 (4) | 0.16633 (3) | 0.64755 (2) | 0.01940 (9) | |
O1 | 0.70661 (12) | 0.38533 (8) | 0.83256 (6) | 0.01974 (17) | |
O2 | 0.95658 (12) | 0.40399 (8) | 0.70450 (6) | 0.02108 (18) | |
O3 | 0.59842 (12) | 0.43146 (8) | 0.67012 (6) | 0.02058 (17) | |
O4 | 0.31661 (15) | 0.56983 (9) | 0.80581 (8) | 0.02666 (19) | |
H4C | 0.211 (3) | 0.5246 (19) | 0.7817 (15) | 0.035 (5)* | |
H4D | 0.402 (3) | 0.5326 (18) | 0.7700 (15) | 0.036 (5)* | |
O5 | 0.31448 (14) | 0.83414 (9) | 0.79500 (7) | 0.02522 (19) | |
H5C | 0.196 (3) | 0.830 (2) | 0.7642 (16) | 0.048 (5)* | |
H5D | 0.308 (3) | 0.751 (2) | 0.8025 (16) | 0.049 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0159 (4) | 0.0205 (4) | 0.0158 (4) | 0.0012 (3) | 0.0031 (3) | 0.0069 (3) |
N2 | 0.0205 (5) | 0.0199 (5) | 0.0201 (5) | 0.0000 (4) | 0.0066 (4) | 0.0045 (4) |
C1 | 0.0186 (5) | 0.0246 (6) | 0.0204 (5) | 0.0038 (4) | 0.0005 (4) | 0.0097 (4) |
C2 | 0.0251 (6) | 0.0253 (6) | 0.0199 (5) | −0.0001 (5) | 0.0018 (4) | 0.0115 (4) |
C3 | 0.0180 (5) | 0.0295 (6) | 0.0151 (5) | 0.0022 (4) | −0.0008 (4) | 0.0059 (4) |
C4 | 0.0161 (5) | 0.0236 (6) | 0.0226 (5) | −0.0003 (4) | −0.0005 (4) | 0.0042 (4) |
C5 | 0.0256 (6) | 0.0174 (5) | 0.0236 (5) | 0.0005 (4) | 0.0064 (5) | 0.0040 (4) |
C6 | 0.0272 (6) | 0.0209 (6) | 0.0284 (6) | 0.0019 (5) | 0.0132 (5) | 0.0020 (5) |
N3 | 0.0135 (4) | 0.0200 (4) | 0.0134 (4) | 0.0025 (3) | 0.0005 (3) | 0.0049 (3) |
N4 | 0.0154 (4) | 0.0190 (4) | 0.0191 (4) | 0.0021 (3) | −0.0008 (3) | 0.0072 (3) |
C7 | 0.0156 (5) | 0.0160 (5) | 0.0230 (5) | 0.0014 (4) | 0.0014 (4) | 0.0069 (4) |
C8 | 0.0175 (5) | 0.0201 (5) | 0.0201 (5) | 0.0033 (4) | 0.0031 (4) | 0.0104 (4) |
C9 | 0.0178 (5) | 0.0263 (6) | 0.0143 (5) | 0.0013 (4) | 0.0009 (4) | 0.0052 (4) |
C10 | 0.0138 (5) | 0.0256 (5) | 0.0154 (5) | 0.0041 (4) | 0.0030 (4) | 0.0039 (4) |
C11 | 0.0178 (5) | 0.0181 (5) | 0.0269 (6) | 0.0047 (4) | 0.0001 (4) | 0.0091 (4) |
C12 | 0.0194 (5) | 0.0156 (5) | 0.0211 (5) | 0.0029 (4) | 0.0029 (4) | 0.0043 (4) |
S1 | 0.01214 (13) | 0.01792 (14) | 0.01419 (13) | 0.00319 (9) | 0.00261 (9) | 0.00605 (9) |
S2 | 0.01877 (14) | 0.01794 (14) | 0.02064 (14) | 0.00461 (10) | 0.00074 (10) | 0.00317 (10) |
O1 | 0.0211 (4) | 0.0228 (4) | 0.0144 (4) | 0.0000 (3) | 0.0044 (3) | 0.0044 (3) |
O2 | 0.0139 (4) | 0.0256 (4) | 0.0247 (4) | 0.0016 (3) | 0.0051 (3) | 0.0085 (3) |
O3 | 0.0199 (4) | 0.0209 (4) | 0.0228 (4) | 0.0063 (3) | −0.0010 (3) | 0.0081 (3) |
O4 | 0.0197 (4) | 0.0269 (5) | 0.0302 (5) | 0.0071 (4) | −0.0005 (4) | 0.0015 (4) |
O5 | 0.0196 (4) | 0.0290 (5) | 0.0251 (4) | 0.0034 (3) | −0.0016 (3) | 0.0047 (3) |
N1—H1 | 0.887 (17) | N4—C7 | 1.4720 (14) |
N1—C1 | 1.4988 (14) | N4—C9 | 1.4778 (14) |
N1—C3 | 1.4984 (14) | N4—C11 | 1.4746 (14) |
N1—C5 | 1.5025 (14) | C7—H7A | 0.942 (16) |
N2—C2 | 1.4694 (16) | C7—H7B | 0.967 (15) |
N2—C4 | 1.4668 (15) | C7—C8 | 1.5428 (15) |
N2—C6 | 1.4691 (15) | C8—H8A | 0.933 (15) |
C1—H1A | 1.013 (16) | C8—H8B | 0.916 (16) |
C1—H1B | 0.959 (17) | C9—H9A | 0.991 (16) |
C1—C2 | 1.5421 (16) | C9—H9B | 0.963 (17) |
C2—H2A | 0.988 (18) | C9—C10 | 1.5401 (15) |
C2—H2B | 0.964 (17) | C10—H10A | 0.952 (16) |
C3—H3A | 0.942 (16) | C10—H10B | 0.947 (16) |
C3—H3B | 0.975 (18) | C11—H11A | 0.960 (15) |
C3—C4 | 1.5469 (16) | C11—H11B | 0.964 (17) |
C4—H4A | 0.960 (17) | C11—C12 | 1.5380 (16) |
C4—H4B | 0.943 (17) | C12—H12A | 0.958 (17) |
C5—H5A | 0.962 (17) | C12—H12B | 0.979 (16) |
C5—H5B | 0.992 (17) | S1—S2 | 2.0047 (4) |
C5—C6 | 1.5424 (16) | S1—O1 | 1.4761 (8) |
C6—H6A | 0.972 (18) | S1—O2 | 1.4688 (8) |
C6—H6B | 0.993 (17) | S1—O3 | 1.4898 (8) |
N3—H3 | 0.850 (18) | O4—H4C | 0.79 (2) |
N3—C8 | 1.4985 (14) | O4—H4D | 0.81 (2) |
N3—C10 | 1.4969 (13) | O5—H5C | 0.85 (2) |
N3—C12 | 1.4958 (14) | O5—H5D | 0.91 (2) |
C1—N1—H1 | 109.6 (10) | C12—N3—C8 | 109.71 (8) |
C1—N1—C5 | 109.73 (9) | C12—N3—C10 | 109.52 (8) |
C3—N1—H1 | 110.5 (11) | C7—N4—C9 | 108.87 (9) |
C3—N1—C1 | 109.37 (9) | C7—N4—C11 | 108.26 (9) |
C3—N1—C5 | 110.23 (9) | C11—N4—C9 | 108.68 (9) |
C5—N1—H1 | 107.4 (11) | N4—C7—H7A | 110.5 (9) |
C4—N2—C2 | 108.23 (9) | N4—C7—H7B | 109.8 (9) |
C4—N2—C6 | 108.88 (10) | N4—C7—C8 | 110.60 (9) |
C6—N2—C2 | 109.51 (10) | H7A—C7—H7B | 105.1 (13) |
N1—C1—H1A | 106.3 (9) | C8—C7—H7A | 110.1 (9) |
N1—C1—H1B | 106.9 (10) | C8—C7—H7B | 110.6 (9) |
N1—C1—C2 | 107.31 (9) | N3—C8—C7 | 107.51 (8) |
H1A—C1—H1B | 111.4 (13) | N3—C8—H8A | 106.7 (9) |
C2—C1—H1A | 110.7 (9) | N3—C8—H8B | 105.6 (10) |
C2—C1—H1B | 113.7 (10) | C7—C8—H8A | 113.8 (9) |
N2—C2—C1 | 111.18 (9) | C7—C8—H8B | 113.4 (10) |
N2—C2—H2A | 108.2 (10) | H8A—C8—H8B | 109.2 (13) |
N2—C2—H2B | 109.3 (10) | N4—C9—H9A | 107.4 (9) |
C1—C2—H2A | 111.0 (11) | N4—C9—H9B | 106.9 (9) |
C1—C2—H2B | 108.9 (10) | N4—C9—C10 | 110.83 (9) |
H2A—C2—H2B | 108.2 (14) | H9A—C9—H9B | 113.4 (13) |
N1—C3—H3A | 107.1 (10) | C10—C9—H9A | 109.4 (9) |
N1—C3—H3B | 106.8 (10) | C10—C9—H9B | 108.9 (10) |
N1—C3—C4 | 107.21 (9) | N3—C10—C9 | 107.32 (9) |
H3A—C3—H3B | 108.1 (14) | N3—C10—H10A | 106.7 (9) |
C4—C3—H3A | 112.5 (10) | N3—C10—H10B | 105.8 (9) |
C4—C3—H3B | 114.6 (10) | C9—C10—H10A | 112.9 (9) |
N2—C4—C3 | 111.11 (9) | C9—C10—H10B | 112.7 (9) |
N2—C4—H4A | 107.9 (10) | H10A—C10—H10B | 111.0 (13) |
N2—C4—H4B | 106.8 (10) | N4—C11—H11A | 106.2 (9) |
C3—C4—H4A | 110.0 (10) | N4—C11—H11B | 108.1 (10) |
C3—C4—H4B | 111.5 (10) | N4—C11—C12 | 110.79 (9) |
H4A—C4—H4B | 109.5 (14) | H11A—C11—H11B | 109.1 (13) |
N1—C5—H5A | 108.0 (10) | C12—C11—H11A | 113.0 (9) |
N1—C5—H5B | 105.4 (10) | C12—C11—H11B | 109.4 (10) |
N1—C5—C6 | 107.54 (9) | N3—C12—C11 | 107.39 (9) |
H5A—C5—H5B | 110.3 (14) | N3—C12—H12A | 105.8 (10) |
C6—C5—H5A | 111.7 (10) | N3—C12—H12B | 105.9 (9) |
C6—C5—H5B | 113.5 (10) | C11—C12—H12A | 112.4 (10) |
N2—C6—C5 | 110.75 (9) | C11—C12—H12B | 113.0 (9) |
N2—C6—H6A | 108.4 (11) | H12A—C12—H12B | 111.7 (13) |
N2—C6—H6B | 107.4 (10) | O1—S1—S2 | 109.01 (3) |
C5—C6—H6A | 109.9 (11) | O1—S1—O3 | 109.73 (5) |
C5—C6—H6B | 108.8 (10) | O2—S1—S2 | 110.12 (4) |
H6A—C6—H6B | 111.6 (14) | O2—S1—O1 | 110.48 (5) |
C8—N3—H3 | 108.5 (11) | O2—S1—O3 | 109.98 (5) |
C10—N3—H3 | 108.3 (11) | O3—S1—S2 | 107.47 (4) |
C10—N3—C8 | 109.88 (9) | H4C—O4—H4D | 103.3 (18) |
C12—N3—H3 | 110.8 (11) | H5C—O5—H5D | 100.6 (18) |
N1—C1—C2—N2 | 10.05 (13) | N4—C7—C8—N3 | −13.10 (12) |
N1—C3—C4—N2 | 10.16 (13) | N4—C9—C10—N3 | −13.22 (13) |
N1—C5—C6—N2 | 11.29 (14) | N4—C11—C12—N3 | −14.10 (12) |
C1—N1—C3—C4 | 55.01 (12) | C7—N4—C9—C10 | −51.09 (12) |
C1—N1—C5—C6 | −66.86 (12) | C7—N4—C11—C12 | 67.80 (11) |
C2—N2—C4—C3 | −65.61 (12) | C8—N3—C10—C9 | 67.72 (11) |
C2—N2—C6—C5 | 52.04 (13) | C8—N3—C12—C11 | −52.05 (11) |
C3—N1—C1—C2 | −66.56 (11) | C9—N4—C7—C8 | 66.64 (11) |
C3—N1—C5—C6 | 53.66 (12) | C9—N4—C11—C12 | −50.30 (12) |
C4—N2—C2—C1 | 53.54 (12) | C10—N3—C8—C7 | −52.78 (11) |
C4—N2—C6—C5 | −66.11 (13) | C10—N3—C12—C11 | 68.63 (11) |
C5—N1—C1—C2 | 54.47 (12) | C11—N4—C7—C8 | −51.34 (11) |
C5—N1—C3—C4 | −65.72 (12) | C11—N4—C9—C10 | 66.62 (12) |
C6—N2—C2—C1 | −65.02 (12) | C12—N3—C8—C7 | 67.68 (11) |
C6—N2—C4—C3 | 53.35 (12) | C12—N3—C10—C9 | −52.85 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.887 (17) | 1.861 (17) | 2.7380 (12) | 169.6 (15) |
N3—H3···O3 | 0.850 (18) | 2.030 (17) | 2.8003 (12) | 150.4 (15) |
O4—H4C···O2i | 0.79 (2) | 2.02 (2) | 2.8121 (13) | 173.4 (18) |
O4—H4D···O3 | 0.81 (2) | 2.04 (2) | 2.8511 (13) | 175.1 (18) |
O5—H5C···N4ii | 0.85 (2) | 2.10 (2) | 2.9273 (13) | 163.9 (19) |
O5—H5D···O4 | 0.91 (2) | 1.94 (2) | 2.8449 (14) | 173.2 (19) |
Symmetry codes: (i) x−1, y, z; (ii) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.887 (17) | 1.861 (17) | 2.7380 (12) | 169.6 (15) |
N3—H3···O3 | 0.850 (18) | 2.030 (17) | 2.8003 (12) | 150.4 (15) |
O4—H4C···O2i | 0.79 (2) | 2.02 (2) | 2.8121 (13) | 173.4 (18) |
O4—H4D···O3 | 0.81 (2) | 2.04 (2) | 2.8511 (13) | 175.1 (18) |
O5—H5C···N4ii | 0.85 (2) | 2.10 (2) | 2.9273 (13) | 163.9 (19) |
O5—H5D···O4 | 0.91 (2) | 1.94 (2) | 2.8449 (14) | 173.2 (19) |
Symmetry codes: (i) x−1, y, z; (ii) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | 2C6H13N2+·S2O32−·2H2O |
Mr | 374.52 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 6.5063 (2), 10.5966 (3), 13.2066 (4) |
α, β, γ (°) | 105.951 (1), 92.065 (1), 96.550 (1) |
V (Å3) | 867.59 (5) |
Z | 2 |
Radiation type | Ga Kα, λ = 1.34139 Å |
µ (mm−1) | 1.98 |
Crystal size (mm) | 0.51 × 0.18 × 0.06 |
Data collection | |
Diffractometer | Bruker Venture Metaljet |
Absorption correction | Multi-scan (SADABS; Krause et al., 2015) |
Tmin, Tmax | 0.170, 0.311 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 24479, 3965, 3865 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.079, 1.07 |
No. of reflections | 3965 |
No. of parameters | 328 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.45, −0.31 |
Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).
Acknowledgements
The authors acknowledge the Cheikh Anta Diop University of Dakar (Sénégal), the Canada Foundation for Innovation and the Université de Montréal for financial support.
References
Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dabrowska, A. & Chojnacki, J. (2014). Z. Kristallogr. 229, 2194–4946. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Jiang, T., Lough, A., Ozin, G. A. & Bedard, R. L. (1998). J. Mater. Chem. 8, 733–741. Web of Science CSD CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CrossRef CAS IUCr Journals Google Scholar
Leyten, W., Rettig, S. J. & Trotter, J. (1988). Acta Cryst. C44, 1749–1751. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Maubert, B. M., Nelson, J., McKee, V., Town, R. M. & Pál, I. (2001). J. Chem. Soc. Dalton Trans. pp. 1395–1397. Web of Science CSD CrossRef Google Scholar
Nelson, J., Nieuwenhuyzen, M., Pàl, I. & Town, R. M. (2004). Dalton Trans. pp. 2303–2308. Web of Science CSD CrossRef Google Scholar
Okuniewski, A., Chojnacki, J., Baranowska, K. & Becker, B. (2013). Acta Cryst. C69, 195–198. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Srinivasan, B. R., Naik, A. R., Dhuri, S. N., Näther, C. & Bensch, W. (2011). J. Chem. Sci. 123, 55–61. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, Y.-X. & Ng, S. W. (2011). Acta Cryst. E67, o1664. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.