research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 3| March 2016| Pages 280-282

Crystal structure of cis-aqua­bis­­(2,2′-bi­pyridine-κ2N,N′)chlorido­chromium(III) tetra­chlorido­zincate determined from synchrotron data

CROSSMARK_Color_square_no_text.svg

aPohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr

Edited by M. Weil, Vienna University of Technology, Austria (Received 20 January 2016; accepted 1 February 2016; online 3 February 2016)

The structure of the title salt, [CrCl(C10H8N2)2(H2O)][ZnCl4], has been determined from synchrotron data. The CrIII ion is coordinated by four N atoms from two 2,2′-bi­pyridine (bipy) ligands, one O atom from a water mol­ecule and a chloride anion in a cis arrangement, displaying a distorted octa­hedral geometry. The tetra­hedral [ZnCl4]2− anion is slightly distorted owing to its involvement in O—H⋯Cl hydrogen bonding with the coordinating water mol­ecule. The Cr—N(bipy) bond lengths are in the range 2.0485 (13)–2.0632 (12) Å, while the Cr—Cl and Cr—(OH2) bond lengths are 2.2732 (6) and 1.9876 (12) Å, respectively. In the crystal, mol­ecules are stacked along the a axis.

1. Chemical context

Chromium(III) complexes with polypyridyl ligands such as 2,2′-bi­pyridine (bipy) or phenanthroline (phen) could be potential candidates as emitting materials in electrochemical cells and sensitizers in dye-sensitized solar cells (Brennan et al., 2008[Brennan, N. F., Blom, B., Lotz, S., van Rooyen, P. H., Landman, M., Liles, D. C. & Green, M. J. (2008). Inorg. Chim. Acta, 361, 3042-3052.]; Schönle, 2014[Schönle, J. M. (2014). PhD thesis, University of Basel, Switzerland.]). As a prerequisite for possible applications, a detailed study of the structural and spectroscopic properties is needed. Since counter-anionic species also play a very important role in chemistry, pharmacy, biology and environmental process, the mol­ecular recognition of anions or anion binding is an area of current inter­est (Fabbrizzi & Poggi, 2013[Fabbrizzi, L. & Poggi, A. (2013). Chem. Soc. Rev. 42, 1681-1699.]; Boiocchi et al., 2014[Boiocchi, M., Broglia, A., Fabbrizzi, L., Fusco, N. & Mangano, C. (2014). Can. J. Chem. 92, 794-802.]). Within this context, we report here on the mol­ecular and crystal structure of the title salt, [CrCl(bipy)2(H2O)][ZnCl4], (I)[link].

[Scheme 1]

2. Structural commentary

In the mol­ecular structure, one chloride anion and one water mol­ecule coordinate to the CrIII ion in a cis arrangement, with an O1A—Cr1A—Cl1A angle of 90.13 (4)°. The rest of the coordination sites are occupied by four nitro­gen atoms from two bipy ligands, leading to an overall distorted octa­hedral coordination environment (Fig. 1[link]). The Cr—N(bipy) bond lengths are in the range of 2.0485 (13) to 2.0632 (12) Å, in good agreement with those determined for cis-[Cr(CH3COO)2(bipy)2]PF6 (Wang et al., 2013[Wang, M., England, J., Weyhermüller, T., Kokatam, S.-L., Pollock, C. J., DeBeer, S., Shen, J., Yap, G. P. A., Theopold, K. H. & Wieghardt, K. (2013). Inorg. Chem. 52, 4472-4487.]), cis-[CrCl(bipy)2(H2O)](ClO4)2·2H2O (Wickaramasinghe et al., 1982[Wickaramasinghe, W. A., Bird, R. H., Jamieson, M. A., Serpone, N. & Maestri, M. (1982). Inorg. Chim. Acta, 64, L85-L86.]) or cis-[CrF2(bipy)2]ClO4·H2O (Yamaguchi-Terasaki et al., 2007[Yamaguchi-Terasaki, Y., Fujihara, T., Nagasawa, A. & Kaizaki, S. (2007). Acta Cryst. E63, m593-m595.]). The Cr—Cl and Cr—(OH2) bond lengths in (I)[link] are 2.2732 (6) and 1.9876 (12) Å, respectively. The latter is comparable to the values of 1.99 (1), 1.9579 (10) and 1.996 (4) Å found in cis-[Cr(bipy)2(H2O)2](NO3)3 (Casellato et al., 1986[Casellato, U., Graziani, R., Maccarrone, G. & Bilio, G. M. (1986). J. Crystallogr. Spectrosc. Res. 16, 695-702.]), cis-[CrF(bipy)2(H2O)](ClO4)2·2H2O (Birk & Bendix, 2010[Birk, T. & Bendix, J. (2010). Acta Cryst. E66, m121-m122.]) and trans-[CrF(3,2,3-tet)(H2O)](ClO4)2·H2O (3,2,3-tet = 1,5,8,12-tetra­aza­undeca­ne) (Choi & Lee, 2008[Choi, J.-H. & Lee, U. (2008). Acta Cryst. E64, m1186.]), respectively. The Cr—Cl bond length in (I)[link], however, is slightly shorter than those with 2.289 (9), 2.2941 (15) and 2.3253 (7) Å in cis-[CrCl2(bipy)2](Cl)0.38(PF6)0.62 (Kar et al., 2006[Kar, T., Liao, M. S.-S., Biswas, S., Sarkar, S., Dey, K., Yap, G. P. A. & Kreisel, K. (2006). Spectrochim. Acta Part A, 65, 882-886.]), cis-[CrCl2(phen)2]Cl (Gao, 2011[Gao, X. (2011). Acta Cryst. E67, m139.]) and trans-[CrCl2(Me2tn)2]Cl (Me2tn = 2,2-di­methyl­propane-1,3-di­amine) (Choi et al., 2007[Choi, J.-H., Clegg, W., Nichol, G. S., Lee, S. H., Park, Y. C. & Habibi, M. H. (2007). Spectrochim. Acta Part A, 68, 796-801.]), respectively. The Cl1A—Cr1A—N3A and N1A—Cr1A—N4A angles are 171.51 (5) and 172.67 (5)°, respectively. The bite angles involving the two chelating ligands [N1A—Cr1A—N2A = 79.29 (5) and N3A—Cr1A—N4A = 79.41 (5)°] increase the distortion of the octa­hedral coordination sphere. The ZnII atom in the [ZnCl4]2− anion has a distorted tetra­hedral coordination environment due to the influence of hydrogen bonding on the Zn—Cl bond lengths [range: 2.2348 (7) to 2.3127 (6) Å] and the Cl—Zn—Cl angles [range: 103.92 (2) to 112.67 (2)°].

[Figure 1]
Figure 1
The structure of the mol­ecular components in (I)[link], showing the atom-numbering scheme. Non-H atoms are shown as displacement ellipsoids at the 50% probability level.

3. Supra­molecular features

In the crystal, the mol­ecules are stacked along the a axis. The supra­molecular set-up involves O—H⋯Cl hydrogen bonds between the coordinating water mol­ecule of the cation as donors and two of the tetra­chlorido­zincate Cl atoms (Cl1B, Cl3B) as acceptors (Table 1[link], Fig. 2[link]). It is worth noting that the Cl2B and Cl4B atoms of the [ZnCl4]2− anion and the Cl1A ligand are not involved in hydrogen bonding.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1O1⋯Cl3B 0.82 (1) 2.25 (2) 2.9670 (14) 146 (2)
O1A—H2O1⋯Cl1B 0.83 (1) 2.22 (1) 3.0227 (14) 163 (2)
[Figure 2]
Figure 2
The crystal packing in (I)[link], viewed perpendicular to the bc plane. Dashed lines represent O—H⋯Cl hydrogen-bonding inter­actions.

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, May 2014 with one update; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) indicated a total of 18 hits for CrIII complexes containing two bidentate 2,2′-bi­pyridine ligands. The crystal structures of cis-[Cr(CH3COO)2(bipy)2]PF6 (Wang et al., 2013[Wang, M., England, J., Weyhermüller, T., Kokatam, S.-L., Pollock, C. J., DeBeer, S., Shen, J., Yap, G. P. A., Theopold, K. H. & Wieghardt, K. (2013). Inorg. Chem. 52, 4472-4487.]), cis-[CrCl(bipy)2(H2O)](ClO4)2·2H2O (Wickaramasinghe et al., 1982[Wickaramasinghe, W. A., Bird, R. H., Jamieson, M. A., Serpone, N. & Maestri, M. (1982). Inorg. Chim. Acta, 64, L85-L86.]), cis-[CrF2(bipy)2]ClO4·H2O (Yamaguchi-Terasaki et al., 2007[Yamaguchi-Terasaki, Y., Fujihara, T., Nagasawa, A. & Kaizaki, S. (2007). Acta Cryst. E63, m593-m595.]), cis-[CrF(bipy)2(H2O)](ClO4)2·2H2O (Birk & Bendix, 2010[Birk, T. & Bendix, J. (2010). Acta Cryst. E66, m121-m122.]), cis-[Cr(bipy)2(H2O)2](NO3)3 (Casellato et al., 1986[Casellato, U., Graziani, R., Maccarrone, G. & Bilio, G. M. (1986). J. Crystallogr. Spectrosc. Res. 16, 695-702.]), cis-[Cr(NCS)2(bipy)2]I3 (Walter & Elliott, 2001[Walter, B. J. & Elliott, C. M. (2001). Inorg. Chem. 40, 5924-5927.]), cis-[CrCl2(bipy)2](Cl)0.38(PF6)0.62 (Kar et al., 2006[Kar, T., Liao, M. S.-S., Biswas, S., Sarkar, S., Dey, K., Yap, G. P. A. & Kreisel, K. (2006). Spectrochim. Acta Part A, 65, 882-886.]) and cis-[CrCl2(bipy)2]Cl·H2O (Brennan et al., 2008[Brennan, N. F., Blom, B., Lotz, S., van Rooyen, P. H., Landman, M., Liles, D. C. & Green, M. J. (2008). Inorg. Chim. Acta, 361, 3042-3052.]) have been reported previously.

5. Synthesis and crystallization

All chemicals were reagent grade materials and used without further purification. The starting material, cis-[CrF2(bipy)2]ClO4 was prepared according to the literature (Glerup et al., 1970[Glerup, J., Josephsen, J., Michelsen, K. E., Pedersen, E. & Schäffer, C. E. (1970). Acta Chem. Scand. 24, 247-254.]). The crude perchlorate (0.2 g) was dissolved in 10 mL of 0.01 M HCl at 313 K; 0.5 g of solid ZnCl2 dissolved in 5 mL 1 M HCl were added to this solution. The solution mixture was refluxed for 30 min and filtered. The filtrate was slowly evaporated at room temperature to yield orange crystals of (I)[link] suitable for X-ray structural analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.94 Å, and with Uiso(H) = 1.2Ueq(C). The H atoms of the water mol­ecule were located from difference Fourier maps and restrained with O—H = 0.84 Å using DFIX and DANG commands (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Table 2
Experimental details

Crystal data
Chemical formula [CrCl(C10H8N2)2(H2O)][ZnCl4]
Mr 625.00
Crystal system, space group Monoclinic, P21/c
Temperature (K) 243
a, b, c (Å) 9.6110 (19), 14.837 (3), 17.283 (4)
β (°) 94.93 (3)
V3) 2455.4 (9)
Z 4
Radiation type Synchrotron, λ = 0.600 Å
μ (mm−1) 1.24
Crystal size (mm) 0.15 × 0.11 × 0.09
 
Data collection
Diffractometer ADSC Q210 CCD area-detector
Absorption correction Empirical (using intensity measurements) (HKL-3000SM SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.836, 0.897
No. of measured, independent and observed [I > 2σ(I)] reflections 13540, 7034, 6781
Rint 0.012
(sin θ/λ)max−1) 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.074, 1.06
No. of reflections 7034
No. of parameters 295
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.69, −0.46
Computer programs: PAL BL2D-SMDC (Shin et al., 2016[Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369-373.]), HKL-3000SM (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Putz & Brandenburg, 2014[Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Chromium(III) complexes with polypyridyl ligands such as 2,2'-bi­pyridine (bipy) or phenanthroline (phen) could be potential candidates as emitting materials in electrochemical cells and sensitizers in dye-sensitized solar cells (Brennan et al., 2008; Schönle, 2014). As a prerequisite for possible applications, a detailed study of the structural and spectroscopic properties is needed. Since counter-anionic species also play a very important role in chemistry, pharmacy, biology and environmental process, the molecular recognition of anions or anion binding is an area of current inter­est (Fabbrizzi & Poggi, 2013; Boiocchi et al., 2014). Within this context, we report here on the molecular and crystal structure of the title salt, [CrCl(bipy)2(H2O)][ZnCl4], (I).

Structural commentary top

In the molecular structure, one chloride anion and one water molecule coordinate to the CrIII ion in a cis arrangement, with an O1A—Cr1A—Cl1A angle of 90.13 (4)°. The rest of the coordination sites are occupied by four nitro­gen atoms from two bipy ligands, leading to an overall distorted o­cta­hedral coordination environment (Fig. 1). The Cr—N(bipy) bond lengths are in the range of 2.0485 (13) to 2.0632 (12) Å, in good agreement with those determined for cis-[Cr(CH3COO)2(bipy)2]PF6 (Wang et al., 2013), cis-[CrCl(bipy)2(H2O)](ClO4)2·2H2O (Wickaramasinghe et al., 1982) or cis-[CrF2(bipy)2]ClO4·H2O (Yamaguchi-Terasaki et al., 2007). The Cr—Cl and Cr—(OH2) bond lengths in (I) are 2.2732 (6) and 1.9876 (12) Å, respectively. The latter is comparable to the values of 1.99 (1), 1.9579 (10) and 1.996 (4) Å found in cis-[Cr(bipy)2(H2O)2](NO3)3 (Casellato et al., 1986), cis-[CrF(bipy)2(H2O)](ClO4)2·2H2O (Birk & Bendix, 2010) and trans-[CrF(3,2,3-tet)(H2O)](ClO4)2·H2O (3,2,3-tet = 1,5,8,12-tetra­aza­undecane) (Choi & Lee, 2008), respectively. The Cr—Cl bond length in (I), however, is slightly shorter than those with 2.289 (9), 2.2941 (15) and 2.3253 (7) Å in cis-[CrCl2(bipy)2](Cl)0.38(PF6)0.62 (Kar et al., 2006), cis-[CrCl2(phen)2]Cl (Gao, 2011) and trans-[CrCl2(Me2tn)2]Cl (Me2tn = 2,2-di­methyl­propane-1,3-di­amine) (Choi et al., 2007), respectively. The Cl1A—Cr1A—N3A and N1A—Cr1A—N4A angles are 171.51 (5) and 172.67 (5)°, respectively. The bite angles involving the two chelating ligands [N1A—Cr1A—N2A = 79.29 (5) and N3A—Cr1A—N4A = 79.41 (5)°] increase the distortion of the o­cta­hedral coordination sphere. The ZnII atom in the [ZnCl4]2− anion has a distorted tetra­hedral coordination environment due to the influence of hydrogen bonding on the Zn—Cl bond lengths [range: 2.2348 (7) to 2.3127 (6) Å] and the Cl—Zn—Cl angles [range: 103.92 (2) to 112.67 (2)°].

Supra­molecular features top

In the crystal, the molecules are stacked along the a axis. The supra­molecular set-up involves O—H···Cl hydrogen bonds between the coordinating water molecule of the cation as donors and two of the tetra­chloridozincate Cl atoms (Cl1B, Cl3B) as acceptors (Table 1, Fig. 2). It is worth noting that the Cl2B and Cl4B of the [ZnCl4]2− anion and the Cl1A ligand are not involved in hydrogen bonding.

Database survey top

A search of the Cambridge Structural Database (Version 5.35, May 2014 with one update; Groom & Allen, 2014) indicated a total of 18 hits for CrIII complexes containing two bidentate 2,2'-bi­pyridine ligands. The crystal structures of cis-[Cr(CH3COO)2(bipy)2]PF6 (Wang et al., 2013), cis-[CrCl(bipy)2(H2O)](ClO4)2·2H2O (Wickaramasinghe et al., 1982), cis-[CrF2(bipy)2]ClO4·H2O (Yamaguchi-Terasaki et al., 2007), cis-[CrF(bipy)2(H2O)](ClO4)2·2H2O (Birk & Bendix, 2010), cis-[Cr(bipy)2(H2O)2](NO3)3 (Casellato et al., 1986), cis-[Cr(NCS)2(bipy)2]I3 (Walter & Elliott, 2001), cis-[CrCl2(bipy)2](Cl)0.38(PF6)0.62 (Kar et al., 2006) and cis-[CrCl2(bipy)2]Cl·H2O (Brennan et al., 2008) have been reported previously.

Synthesis and crystallization top

All chemicals were reagent grade materials and used without further purification. The starting material, cis-[CrF2(bipy)2]ClO4 was prepared according to the literature (Glerup et al., 1970). The crude perchlorate (0.2 g) was dissolved in 10 ml of 0.01 M HCl at 313 K; 0.5 g of solid ZnCl2 dissolved in 5 ml 1 M HCl were added to this solution. The solution mixture was refluxed for 30 min and filtered. The filtrate was slowly evaporated at room temperature to yield orange crystals of (I) suitable for X-ray structural analysis.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.94 Å, and with Uiso(H) = 1.2Ueq(C). The H atoms of the water molecule were located from difference Fourier maps and restrained with O—H = 0.84 Å using DFIX and DANG commands (Sheldrick, 2015b).

Structure description top

Chromium(III) complexes with polypyridyl ligands such as 2,2'-bi­pyridine (bipy) or phenanthroline (phen) could be potential candidates as emitting materials in electrochemical cells and sensitizers in dye-sensitized solar cells (Brennan et al., 2008; Schönle, 2014). As a prerequisite for possible applications, a detailed study of the structural and spectroscopic properties is needed. Since counter-anionic species also play a very important role in chemistry, pharmacy, biology and environmental process, the molecular recognition of anions or anion binding is an area of current inter­est (Fabbrizzi & Poggi, 2013; Boiocchi et al., 2014). Within this context, we report here on the molecular and crystal structure of the title salt, [CrCl(bipy)2(H2O)][ZnCl4], (I).

In the molecular structure, one chloride anion and one water molecule coordinate to the CrIII ion in a cis arrangement, with an O1A—Cr1A—Cl1A angle of 90.13 (4)°. The rest of the coordination sites are occupied by four nitro­gen atoms from two bipy ligands, leading to an overall distorted o­cta­hedral coordination environment (Fig. 1). The Cr—N(bipy) bond lengths are in the range of 2.0485 (13) to 2.0632 (12) Å, in good agreement with those determined for cis-[Cr(CH3COO)2(bipy)2]PF6 (Wang et al., 2013), cis-[CrCl(bipy)2(H2O)](ClO4)2·2H2O (Wickaramasinghe et al., 1982) or cis-[CrF2(bipy)2]ClO4·H2O (Yamaguchi-Terasaki et al., 2007). The Cr—Cl and Cr—(OH2) bond lengths in (I) are 2.2732 (6) and 1.9876 (12) Å, respectively. The latter is comparable to the values of 1.99 (1), 1.9579 (10) and 1.996 (4) Å found in cis-[Cr(bipy)2(H2O)2](NO3)3 (Casellato et al., 1986), cis-[CrF(bipy)2(H2O)](ClO4)2·2H2O (Birk & Bendix, 2010) and trans-[CrF(3,2,3-tet)(H2O)](ClO4)2·H2O (3,2,3-tet = 1,5,8,12-tetra­aza­undecane) (Choi & Lee, 2008), respectively. The Cr—Cl bond length in (I), however, is slightly shorter than those with 2.289 (9), 2.2941 (15) and 2.3253 (7) Å in cis-[CrCl2(bipy)2](Cl)0.38(PF6)0.62 (Kar et al., 2006), cis-[CrCl2(phen)2]Cl (Gao, 2011) and trans-[CrCl2(Me2tn)2]Cl (Me2tn = 2,2-di­methyl­propane-1,3-di­amine) (Choi et al., 2007), respectively. The Cl1A—Cr1A—N3A and N1A—Cr1A—N4A angles are 171.51 (5) and 172.67 (5)°, respectively. The bite angles involving the two chelating ligands [N1A—Cr1A—N2A = 79.29 (5) and N3A—Cr1A—N4A = 79.41 (5)°] increase the distortion of the o­cta­hedral coordination sphere. The ZnII atom in the [ZnCl4]2− anion has a distorted tetra­hedral coordination environment due to the influence of hydrogen bonding on the Zn—Cl bond lengths [range: 2.2348 (7) to 2.3127 (6) Å] and the Cl—Zn—Cl angles [range: 103.92 (2) to 112.67 (2)°].

In the crystal, the molecules are stacked along the a axis. The supra­molecular set-up involves O—H···Cl hydrogen bonds between the coordinating water molecule of the cation as donors and two of the tetra­chloridozincate Cl atoms (Cl1B, Cl3B) as acceptors (Table 1, Fig. 2). It is worth noting that the Cl2B and Cl4B of the [ZnCl4]2− anion and the Cl1A ligand are not involved in hydrogen bonding.

A search of the Cambridge Structural Database (Version 5.35, May 2014 with one update; Groom & Allen, 2014) indicated a total of 18 hits for CrIII complexes containing two bidentate 2,2'-bi­pyridine ligands. The crystal structures of cis-[Cr(CH3COO)2(bipy)2]PF6 (Wang et al., 2013), cis-[CrCl(bipy)2(H2O)](ClO4)2·2H2O (Wickaramasinghe et al., 1982), cis-[CrF2(bipy)2]ClO4·H2O (Yamaguchi-Terasaki et al., 2007), cis-[CrF(bipy)2(H2O)](ClO4)2·2H2O (Birk & Bendix, 2010), cis-[Cr(bipy)2(H2O)2](NO3)3 (Casellato et al., 1986), cis-[Cr(NCS)2(bipy)2]I3 (Walter & Elliott, 2001), cis-[CrCl2(bipy)2](Cl)0.38(PF6)0.62 (Kar et al., 2006) and cis-[CrCl2(bipy)2]Cl·H2O (Brennan et al., 2008) have been reported previously.

Synthesis and crystallization top

All chemicals were reagent grade materials and used without further purification. The starting material, cis-[CrF2(bipy)2]ClO4 was prepared according to the literature (Glerup et al., 1970). The crude perchlorate (0.2 g) was dissolved in 10 ml of 0.01 M HCl at 313 K; 0.5 g of solid ZnCl2 dissolved in 5 ml 1 M HCl were added to this solution. The solution mixture was refluxed for 30 min and filtered. The filtrate was slowly evaporated at room temperature to yield orange crystals of (I) suitable for X-ray structural analysis.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.94 Å, and with Uiso(H) = 1.2Ueq(C). The H atoms of the water molecule were located from difference Fourier maps and restrained with O—H = 0.84 Å using DFIX and DANG commands (Sheldrick, 2015b).

Computing details top

Data collection: PAL BL2D-SMDC (Shin et al., 2016); cell refinement: HKL-3000SM (Otwinowski & Minor, 1997); data reduction: HKL-3000SM (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of the molecular components in (I), showing the atom-numbering scheme. Non-H atoms are shown as displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing in (I), viewed perpendicular to the bc plane. Dashed lines represent O—H···Cl hydrogen-bonding interactions.
cis-Aquabis(2,2'-bipyridine-κ2N,N')chloridochromium(III) tetrachloridozincate top
Crystal data top
[CrCl(C10H8N2)2(H2O)][ZnCl4]F(000) = 1252
Mr = 625.00Dx = 1.691 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.600 Å
a = 9.6110 (19) ÅCell parameters from 61381 reflections
b = 14.837 (3) Åθ = 0.3–33.8°
c = 17.283 (4) ŵ = 1.24 mm1
β = 94.93 (3)°T = 243 K
V = 2455.4 (9) Å3Block, orange
Z = 40.15 × 0.11 × 0.09 mm
Data collection top
ADSC Q210 CCD area-detector
diffractometer
6781 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.012
ω scanθmax = 25.0°, θmin = 2.3°
Absorption correction: empirical (using intensity measurements)
(HKL-3000SM SCALEPACK; Otwinowski & Minor, 1997)
h = 1313
Tmin = 0.836, Tmax = 0.897k = 2020
13540 measured reflectionsl = 2424
7034 independent reflections
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0324P)2 + 1.5337P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
7034 reflectionsΔρmax = 0.69 e Å3
295 parametersΔρmin = 0.46 e Å3
Crystal data top
[CrCl(C10H8N2)2(H2O)][ZnCl4]V = 2455.4 (9) Å3
Mr = 625.00Z = 4
Monoclinic, P21/cSynchrotron radiation, λ = 0.600 Å
a = 9.6110 (19) ŵ = 1.24 mm1
b = 14.837 (3) ÅT = 243 K
c = 17.283 (4) Å0.15 × 0.11 × 0.09 mm
β = 94.93 (3)°
Data collection top
ADSC Q210 CCD area-detector
diffractometer
7034 independent reflections
Absorption correction: empirical (using intensity measurements)
(HKL-3000SM SCALEPACK; Otwinowski & Minor, 1997)
6781 reflections with I > 2σ(I)
Tmin = 0.836, Tmax = 0.897Rint = 0.012
13540 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0273 restraints
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.69 e Å3
7034 reflectionsΔρmin = 0.46 e Å3
295 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr1A0.53108 (2)0.78814 (2)0.64562 (2)0.01992 (5)
Cl1A0.43307 (5)0.91296 (3)0.69449 (3)0.03711 (9)
O1A0.61596 (14)0.75652 (9)0.75105 (7)0.0339 (2)
H1O10.605 (2)0.7882 (13)0.7887 (9)0.041*
H2O10.673 (2)0.7155 (11)0.7622 (12)0.041*
N1A0.69545 (12)0.86532 (8)0.61523 (7)0.0249 (2)
N2A0.46774 (12)0.81594 (8)0.53187 (6)0.0216 (2)
N3A0.60919 (12)0.66584 (8)0.61540 (7)0.0223 (2)
N4A0.36310 (12)0.70560 (8)0.66145 (7)0.0228 (2)
C1A0.80607 (17)0.88963 (12)0.66343 (10)0.0346 (3)
H1A0.82010.86180.71230.042*
C2A0.90005 (18)0.95447 (13)0.64336 (11)0.0401 (4)
H2A0.97730.96990.67790.048*
C3A0.87873 (18)0.99611 (12)0.57200 (11)0.0384 (4)
H3A0.93951.04180.55810.046*
C4A0.76646 (17)0.96983 (10)0.52087 (10)0.0321 (3)
H4A0.75180.99630.47140.038*
C5A0.67643 (14)0.90394 (9)0.54406 (8)0.0230 (2)
C6A0.55321 (14)0.87184 (9)0.49560 (8)0.0217 (2)
C7A0.52507 (16)0.89530 (11)0.41818 (8)0.0288 (3)
H7A0.58480.93460.39410.035*
C8A0.40756 (18)0.85998 (12)0.37691 (9)0.0344 (3)
H8A0.38670.87520.32440.041*
C9A0.32154 (17)0.80242 (13)0.41329 (9)0.0349 (3)
H9A0.24190.77750.38600.042*
C10A0.35474 (15)0.78200 (11)0.49104 (9)0.0288 (3)
H10A0.29590.74300.51600.035*
C11A0.73950 (15)0.65088 (11)0.59628 (9)0.0294 (3)
H11A0.79950.70030.59180.035*
C12A0.78853 (17)0.56522 (13)0.58291 (10)0.0375 (3)
H12A0.88090.55660.57040.045*
C13A0.7009 (2)0.49304 (12)0.58806 (12)0.0427 (4)
H13A0.73200.43440.57840.051*
C14A0.56573 (19)0.50750 (11)0.60769 (12)0.0384 (4)
H14A0.50440.45870.61170.046*
C15A0.52214 (15)0.59467 (9)0.62131 (8)0.0252 (2)
C16A0.38330 (14)0.61734 (10)0.64610 (8)0.0250 (2)
C17A0.27915 (18)0.55411 (12)0.65474 (11)0.0363 (3)
H17A0.29350.49310.64290.044*
C18A0.15382 (17)0.58197 (13)0.68100 (11)0.0389 (4)
H18A0.08250.53990.68740.047*
C19A0.13444 (16)0.67164 (13)0.69771 (10)0.0363 (3)
H19A0.05050.69160.71610.044*
C20A0.24126 (16)0.73197 (11)0.68689 (9)0.0304 (3)
H20A0.22800.79330.69770.036*
Zn1B0.89694 (2)0.75938 (2)0.89811 (2)0.02714 (5)
Cl1B0.84654 (4)0.63500 (3)0.82027 (2)0.03349 (8)
Cl2B1.02613 (4)0.85526 (3)0.83270 (3)0.04086 (10)
Cl3B0.68071 (4)0.82280 (2)0.91209 (2)0.02954 (8)
Cl4B1.00317 (4)0.72294 (3)1.01399 (2)0.03789 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr1A0.02060 (10)0.01995 (10)0.01930 (10)0.00291 (7)0.00227 (7)0.00242 (7)
Cl1A0.0480 (2)0.02427 (16)0.0410 (2)0.00339 (14)0.01510 (16)0.00026 (14)
O1A0.0408 (6)0.0361 (6)0.0234 (5)0.0083 (5)0.0045 (4)0.0013 (4)
N1A0.0238 (5)0.0250 (5)0.0260 (5)0.0075 (4)0.0025 (4)0.0005 (4)
N2A0.0197 (5)0.0236 (5)0.0215 (5)0.0012 (4)0.0018 (4)0.0033 (4)
N3A0.0216 (5)0.0235 (5)0.0218 (5)0.0011 (4)0.0023 (4)0.0023 (4)
N4A0.0210 (5)0.0249 (5)0.0232 (5)0.0028 (4)0.0047 (4)0.0043 (4)
C1A0.0305 (7)0.0401 (8)0.0326 (7)0.0130 (6)0.0008 (6)0.0040 (6)
C2A0.0319 (8)0.0431 (9)0.0460 (9)0.0179 (7)0.0067 (7)0.0142 (7)
C3A0.0359 (8)0.0313 (7)0.0504 (9)0.0155 (6)0.0184 (7)0.0104 (7)
C4A0.0340 (7)0.0257 (6)0.0385 (8)0.0075 (6)0.0146 (6)0.0009 (6)
C5A0.0234 (6)0.0192 (5)0.0274 (6)0.0023 (4)0.0081 (5)0.0008 (5)
C6A0.0231 (6)0.0195 (5)0.0232 (6)0.0018 (4)0.0061 (4)0.0021 (4)
C7A0.0322 (7)0.0305 (7)0.0247 (6)0.0046 (5)0.0082 (5)0.0072 (5)
C8A0.0363 (8)0.0454 (9)0.0216 (6)0.0092 (7)0.0016 (5)0.0049 (6)
C9A0.0285 (7)0.0476 (9)0.0272 (7)0.0011 (6)0.0052 (5)0.0006 (6)
C10A0.0230 (6)0.0349 (7)0.0278 (7)0.0039 (5)0.0013 (5)0.0038 (5)
C11A0.0233 (6)0.0355 (7)0.0299 (7)0.0006 (5)0.0046 (5)0.0021 (6)
C12A0.0289 (7)0.0428 (9)0.0411 (8)0.0104 (6)0.0041 (6)0.0008 (7)
C13A0.0413 (9)0.0308 (8)0.0556 (11)0.0127 (7)0.0012 (8)0.0021 (7)
C14A0.0381 (8)0.0240 (7)0.0532 (10)0.0004 (6)0.0038 (7)0.0014 (7)
C15A0.0257 (6)0.0228 (6)0.0269 (6)0.0019 (5)0.0010 (5)0.0024 (5)
C16A0.0245 (6)0.0240 (6)0.0266 (6)0.0042 (5)0.0020 (5)0.0036 (5)
C17A0.0336 (8)0.0289 (7)0.0467 (9)0.0109 (6)0.0054 (6)0.0025 (6)
C18A0.0284 (7)0.0449 (9)0.0438 (9)0.0143 (7)0.0054 (6)0.0082 (7)
C19A0.0242 (6)0.0481 (9)0.0377 (8)0.0042 (6)0.0090 (6)0.0070 (7)
C20A0.0255 (6)0.0336 (7)0.0332 (7)0.0001 (5)0.0091 (5)0.0031 (6)
Zn1B0.02322 (8)0.02820 (9)0.02963 (9)0.00186 (6)0.00013 (6)0.00117 (6)
Cl1B0.03265 (17)0.02719 (16)0.04083 (19)0.00538 (13)0.00427 (14)0.00457 (14)
Cl2B0.03470 (19)0.0391 (2)0.0483 (2)0.00872 (16)0.00058 (16)0.01081 (17)
Cl3B0.02800 (16)0.02993 (16)0.03030 (16)0.00691 (12)0.00020 (12)0.00440 (13)
Cl4B0.02760 (17)0.0549 (2)0.03070 (18)0.00812 (16)0.00009 (13)0.00489 (16)
Geometric parameters (Å, º) top
Cr1A—O1A1.9876 (12)C7A—H7A0.9400
Cr1A—N3A2.0485 (13)C8A—C9A1.377 (3)
Cr1A—N2A2.0494 (12)C8A—H8A0.9400
Cr1A—N1A2.0556 (12)C9A—C10A1.388 (2)
Cr1A—N4A2.0632 (12)C9A—H9A0.9400
Cr1A—Cl1A2.2732 (6)C10A—H10A0.9400
O1A—H1O10.817 (9)C11A—C12A1.382 (2)
O1A—H2O10.831 (9)C11A—H11A0.9400
N1A—C1A1.3425 (19)C12A—C13A1.370 (3)
N1A—C5A1.3551 (18)C12A—H12A0.9400
N2A—C10A1.3413 (18)C13A—C14A1.387 (3)
N2A—C6A1.3580 (16)C13A—H13A0.9400
N3A—C11A1.3409 (18)C14A—C15A1.386 (2)
N3A—C15A1.3564 (17)C14A—H14A0.9400
N4A—C20A1.3440 (19)C15A—C16A1.475 (2)
N4A—C16A1.3534 (19)C16A—C17A1.3893 (19)
C1A—C2A1.384 (2)C17A—C18A1.386 (3)
C1A—H1A0.9400C17A—H17A0.9400
C2A—C3A1.379 (3)C18A—C19A1.378 (3)
C2A—H2A0.9400C18A—H18A0.9400
C3A—C4A1.390 (3)C19A—C20A1.387 (2)
C3A—H3A0.9400C19A—H19A0.9400
C4A—C5A1.3873 (18)C20A—H20A0.9400
C4A—H4A0.9400Zn1B—Cl4B2.2348 (7)
C5A—C6A1.470 (2)Zn1B—Cl2B2.2550 (6)
C6A—C7A1.3865 (19)Zn1B—Cl1B2.3104 (6)
C7A—C8A1.386 (2)Zn1B—Cl3B2.3127 (6)
O1A—Cr1A—N3A83.92 (5)C8A—C7A—C6A118.98 (14)
O1A—Cr1A—N2A172.59 (5)C8A—C7A—H7A120.5
N3A—Cr1A—N2A91.08 (5)C6A—C7A—H7A120.5
O1A—Cr1A—N1A95.85 (6)C9A—C8A—C7A119.61 (14)
N3A—Cr1A—N1A96.99 (5)C9A—C8A—H8A120.2
N2A—Cr1A—N1A79.29 (5)C7A—C8A—H8A120.2
O1A—Cr1A—N4A90.14 (6)C8A—C9A—C10A118.70 (15)
N3A—Cr1A—N4A79.41 (5)C8A—C9A—H9A120.6
N2A—Cr1A—N4A94.32 (5)C10A—C9A—H9A120.6
N1A—Cr1A—N4A172.67 (5)N2A—C10A—C9A122.41 (14)
O1A—Cr1A—Cl1A90.13 (4)N2A—C10A—H10A118.8
N3A—Cr1A—Cl1A171.51 (3)C9A—C10A—H10A118.8
N2A—Cr1A—Cl1A95.39 (4)N3A—C11A—C12A122.18 (15)
N1A—Cr1A—Cl1A89.61 (4)N3A—C11A—H11A118.9
N4A—Cr1A—Cl1A94.61 (4)C12A—C11A—H11A118.9
Cr1A—O1A—H1O1121.6 (15)C13A—C12A—C11A119.19 (15)
Cr1A—O1A—H2O1126.6 (15)C13A—C12A—H12A120.4
H1O1—O1A—H2O1111.3 (18)C11A—C12A—H12A120.4
C1A—N1A—C5A119.17 (13)C12A—C13A—C14A119.26 (16)
C1A—N1A—Cr1A125.19 (11)C12A—C13A—H13A120.4
C5A—N1A—Cr1A114.89 (9)C14A—C13A—H13A120.4
C10A—N2A—C6A118.75 (12)C15A—C14A—C13A119.28 (16)
C10A—N2A—Cr1A126.12 (10)C15A—C14A—H14A120.4
C6A—N2A—Cr1A115.10 (9)C13A—C14A—H14A120.4
C11A—N3A—C15A119.01 (13)N3A—C15A—C14A121.08 (14)
C11A—N3A—Cr1A125.45 (10)N3A—C15A—C16A115.07 (12)
C15A—N3A—Cr1A115.36 (9)C14A—C15A—C16A123.80 (14)
C20A—N4A—C16A119.31 (12)N4A—C16A—C17A121.03 (14)
C20A—N4A—Cr1A125.76 (11)N4A—C16A—C15A115.22 (12)
C16A—N4A—Cr1A114.91 (9)C17A—C16A—C15A123.74 (14)
N1A—C1A—C2A122.03 (16)C18A—C17A—C16A119.22 (16)
N1A—C1A—H1A119.0C18A—C17A—H17A120.4
C2A—C1A—H1A119.0C16A—C17A—H17A120.4
C3A—C2A—C1A119.05 (16)C19A—C18A—C17A119.58 (15)
C3A—C2A—H2A120.5C19A—C18A—H18A120.2
C1A—C2A—H2A120.5C17A—C18A—H18A120.2
C2A—C3A—C4A119.36 (14)C18A—C19A—C20A118.69 (15)
C2A—C3A—H3A120.3C18A—C19A—H19A120.7
C4A—C3A—H3A120.3C20A—C19A—H19A120.7
C5A—C4A—C3A118.90 (15)N4A—C20A—C19A122.16 (15)
C5A—C4A—H4A120.6N4A—C20A—H20A118.9
C3A—C4A—H4A120.6C19A—C20A—H20A118.9
N1A—C5A—C4A121.43 (14)Cl4B—Zn1B—Cl2B111.91 (2)
N1A—C5A—C6A114.80 (11)Cl4B—Zn1B—Cl1B112.67 (2)
C4A—C5A—C6A123.76 (13)Cl2B—Zn1B—Cl1B107.99 (2)
N2A—C6A—C7A121.55 (13)Cl4B—Zn1B—Cl3B110.50 (3)
N2A—C6A—C5A115.13 (11)Cl2B—Zn1B—Cl3B109.52 (2)
C7A—C6A—C5A123.32 (13)Cl1B—Zn1B—Cl3B103.92 (2)
C5A—N1A—C1A—C2A1.4 (2)C15A—N3A—C11A—C12A0.5 (2)
Cr1A—N1A—C1A—C2A168.14 (13)Cr1A—N3A—C11A—C12A174.38 (12)
N1A—C1A—C2A—C3A0.7 (3)N3A—C11A—C12A—C13A1.1 (3)
C1A—C2A—C3A—C4A2.3 (3)C11A—C12A—C13A—C14A0.9 (3)
C2A—C3A—C4A—C5A1.8 (2)C12A—C13A—C14A—C15A0.3 (3)
C1A—N1A—C5A—C4A1.9 (2)C11A—N3A—C15A—C14A0.2 (2)
Cr1A—N1A—C5A—C4A168.70 (11)Cr1A—N3A—C15A—C14A175.58 (13)
C1A—N1A—C5A—C6A179.33 (13)C11A—N3A—C15A—C16A177.30 (12)
Cr1A—N1A—C5A—C6A10.10 (15)Cr1A—N3A—C15A—C16A1.95 (15)
C3A—C4A—C5A—N1A0.3 (2)C13A—C14A—C15A—N3A0.3 (3)
C3A—C4A—C5A—C6A178.97 (14)C13A—C14A—C15A—C16A177.00 (16)
C10A—N2A—C6A—C7A0.9 (2)C20A—N4A—C16A—C17A1.3 (2)
Cr1A—N2A—C6A—C7A178.79 (10)Cr1A—N4A—C16A—C17A179.64 (12)
C10A—N2A—C6A—C5A178.43 (13)C20A—N4A—C16A—C15A177.81 (13)
Cr1A—N2A—C6A—C5A0.56 (14)Cr1A—N4A—C16A—C15A0.51 (15)
N1A—C5A—C6A—N2A7.06 (17)N3A—C15A—C16A—N4A1.62 (18)
C4A—C5A—C6A—N2A171.70 (13)C14A—C15A—C16A—N4A175.83 (15)
N1A—C5A—C6A—C7A172.27 (13)N3A—C15A—C16A—C17A179.28 (14)
C4A—C5A—C6A—C7A9.0 (2)C14A—C15A—C16A—C17A3.3 (2)
N2A—C6A—C7A—C8A0.6 (2)N4A—C16A—C17A—C18A1.3 (2)
C5A—C6A—C7A—C8A178.66 (14)C15A—C16A—C17A—C18A177.74 (15)
C6A—C7A—C8A—C9A0.1 (2)C16A—C17A—C18A—C19A0.3 (3)
C7A—C8A—C9A—C10A0.6 (3)C17A—C18A—C19A—C20A0.7 (3)
C6A—N2A—C10A—C9A0.4 (2)C16A—N4A—C20A—C19A0.3 (2)
Cr1A—N2A—C10A—C9A178.06 (12)Cr1A—N4A—C20A—C19A178.44 (12)
C8A—C9A—C10A—N2A0.3 (3)C18A—C19A—C20A—N4A0.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1O1···Cl3B0.82 (1)2.25 (2)2.9670 (14)146 (2)
O1A—H2O1···Cl1B0.83 (1)2.22 (1)3.0227 (14)163 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1O1···Cl3B0.817 (9)2.252 (15)2.9670 (14)146.3 (19)
O1A—H2O1···Cl1B0.831 (9)2.219 (12)3.0227 (14)163 (2)

Experimental details

Crystal data
Chemical formula[CrCl(C10H8N2)2(H2O)][ZnCl4]
Mr625.00
Crystal system, space groupMonoclinic, P21/c
Temperature (K)243
a, b, c (Å)9.6110 (19), 14.837 (3), 17.283 (4)
β (°) 94.93 (3)
V3)2455.4 (9)
Z4
Radiation typeSynchrotron, λ = 0.600 Å
µ (mm1)1.24
Crystal size (mm)0.15 × 0.11 × 0.09
Data collection
DiffractometerADSC Q210 CCD area-detector
Absorption correctionEmpirical (using intensity measurements)
(HKL-3000SM SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.836, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
13540, 7034, 6781
Rint0.012
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.074, 1.06
No. of reflections7034
No. of parameters295
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.69, 0.46

Computer programs: PAL BL2D-SMDC (Shin et al., 2016), HKL-3000SM (Otwinowski & Minor, 1997), SHELXT2014 (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), DIAMOND (Putz & Brandenburg, 2014), publCIF (Westrip, 2010).

 

Acknowledgements

This work was supported by a grant from 2016 Research Funds of Andong National University. The X-ray crystallography experiment at the PLS-II BL2D-SMC beamline is supported in part by MSIP and POSTECH.

References

First citationBirk, T. & Bendix, J. (2010). Acta Cryst. E66, m121–m122.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBoiocchi, M., Broglia, A., Fabbrizzi, L., Fusco, N. & Mangano, C. (2014). Can. J. Chem. 92, 794–802.  Web of Science CrossRef CAS Google Scholar
First citationBrennan, N. F., Blom, B., Lotz, S., van Rooyen, P. H., Landman, M., Liles, D. C. & Green, M. J. (2008). Inorg. Chim. Acta, 361, 3042–3052.  Web of Science CSD CrossRef CAS Google Scholar
First citationCasellato, U., Graziani, R., Maccarrone, G. & Bilio, G. M. (1986). J. Crystallogr. Spectrosc. Res. 16, 695–702.  CSD CrossRef CAS Web of Science Google Scholar
First citationChoi, J.-H., Clegg, W., Nichol, G. S., Lee, S. H., Park, Y. C. & Habibi, M. H. (2007). Spectrochim. Acta Part A, 68, 796–801.  Web of Science CrossRef Google Scholar
First citationChoi, J.-H. & Lee, U. (2008). Acta Cryst. E64, m1186.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFabbrizzi, L. & Poggi, A. (2013). Chem. Soc. Rev. 42, 1681–1699.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGao, X. (2011). Acta Cryst. E67, m139.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGlerup, J., Josephsen, J., Michelsen, K. E., Pedersen, E. & Schäffer, C. E. (1970). Acta Chem. Scand. 24, 247–254.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationKar, T., Liao, M. S.-S., Biswas, S., Sarkar, S., Dey, K., Yap, G. P. A. & Kreisel, K. (2006). Spectrochim. Acta Part A, 65, 882–886.  Web of Science CSD CrossRef Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPutz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationSchönle, J. M. (2014). PhD thesis, University of Basel, Switzerland.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWalter, B. J. & Elliott, C. M. (2001). Inorg. Chem. 40, 5924–5927.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWang, M., England, J., Weyhermüller, T., Kokatam, S.-L., Pollock, C. J., DeBeer, S., Shen, J., Yap, G. P. A., Theopold, K. H. & Wieghardt, K. (2013). Inorg. Chem. 52, 4472–4487.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWickaramasinghe, W. A., Bird, R. H., Jamieson, M. A., Serpone, N. & Maestri, M. (1982). Inorg. Chim. Acta, 64, L85–L86.  CSD CrossRef Web of Science Google Scholar
First citationYamaguchi-Terasaki, Y., Fujihara, T., Nagasawa, A. & Kaizaki, S. (2007). Acta Cryst. E63, m593–m595.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 3| March 2016| Pages 280-282
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds