research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Isoquinolinium 5-(2,4-di­nitro­phen­yl)-1,3-di­methyl-2,6-dioxo-1,2,3,6-tetra­hydro­pyrimidin-4-olate: crystal structure, Hirshfeld surface analysis and pharmacological evaluation

CROSSMARK_Color_square_no_text.svg

aPG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Tiruchirappalli 620 002, Tamil Nadu, India
*Correspondence e-mail: kalaivbalaj@yahoo.co.in

Edited by V. V. Chernyshev, Moscow State University, Russia (Received 7 March 2016; accepted 24 March 2016; online 31 March 2016)

The asymmetric unit of the title salt C9H8N+·C12H9N4O7, which exhibits anti­convulsant and hypnotic activities, comprises one anion and one cation inter­acting via an N—H⋯O hydrogen bond. In the anion, the six-membered rings are inclined each to other at 42.78 (9)°. The nitro groups in the 2,4-di­nitro­phenyl fragment attached to the aromatic ring in the para and ortho positions are twisted from its plane by 3.1 (2) and 45.5 (2)°, respectively. In the crystal, weak C—H⋯O hydrogen bonds consolidate the crystal packing. The Hirshfeld surface analysis revealed that O⋯H/H⋯O inter­molecular contacts predominate in the crystal packing.

1. Chemical context

Barbiturates play a significant role in biological systems (Hueso-Ureña et al., 2003[Hueso-Ureña, F., Illán-Cabeza, N. A., Moreno-Carretero, M. N., Martínez-Martos, J. M. & Ramírez-Expósito, M. J. (2003). J. Inorg. Biochem. 94, 326-334.]). Epilepsy (convulsion) is a life-threatening neurological disorder which requires immediate treatment with suitable drugs (Shorvon, 2004[Shorvon, S. D. (2004). The Treatment of Epilepsy. Oxford: Blackwell Publishers.]). Barbiturates have been proved to be potent drugs for this dreadful disorder (Nadkarni et al., 2005[Nadkarni, S., LaJoie, J. & Devinsky, O. (2005). Neurology, 64, S2-11.]). The iso­quinoline unit also displays a wide spectrum of activity and it is an important component of many biologically active alkaloids (Montalban, 2011[Montalban, A. G. (2011). Heterocycles in Natural Product Synthesis, pp. 299-339.]). Since 2008, we have been periodically synthesizing new barbiturate derivatives and exploring their anti­convulsant activity (Kalaivani et al., 2008[Kalaivani, D., Malarvizhi, R. & Subbalakshmi, R. (2008). Med. Chem. Res. 17, 369-373.]; Kalaivani & Malarvizhi, 2009[Kalaivani, D. & Malarvizhi, R. (2009). Acta Cryst. E65, o2548.]; Kalaivani & Buvaneswari, 2010[Kalaivani, D. & Buvaneswari, M. (2010). Recent Advances in Clinical Medicine, pp. 255-260. Cambridge, UK: WSEAS Publications.]; Manickkam & Kalaivani, 2011[Manickkam, V. & Kalaivani, D. (2011). Acta Cryst. E67, o3475.]; Babykala & Kalaivani, 2012[Babykala, R. & Kalaivani, D. (2012). Acta Cryst. E68, o541.]; Buvaneswari & Kalaivani, 2013[Buvaneswari, M. & Kalaivani, D. (2013). J. Chem. Crystallogr. 43, 561-567.]; Vaduganathan & Doraisamyraja, 2014[Vaduganathan, M. & Doraisamyraja, K. (2014). Acta Cryst. E70, 256-258.]; Gomathi & Kalaivani, 2015[Gomathi, J. & Kalaivani, D. (2015). Acta Cryst. E71, 723-725.]). The title mol­ecular salt, which is a new derivative of 1,3-di­methyl­barbituric acid (barbiturate), was recently obtained by our group. Herewith we report its crystal structure.

[Scheme 1]

2. Structural commentary

In the title compound, (I)[link] (Fig. 1[link]), all the bond lengths and bond angles are normal and comparable with those observed in the related barbiturates (Sridevi & Kalaivani, 2012[Sridevi, G. & Kalaivani, D. (2012). Acta Cryst. E68, o1044.]; Gunaseelan & Doraisamyraja, 2014[Gunaseelan, S. & Doraisamyraja, K. (2014). Acta Cryst. E70, o1102-o1103.]). The plane of the di­nitro­aromatic ring C1–C6 and that of the barbiturate ring C7/C8/N4/C9/N3/C10 form a dihedral angle of 42.78 (9)°. The nitro groups in the 2,4-di­nitro­phenyl fragment attached to the aromatic ring in the para and ortho positions are twisted from its plane by 3.1 (2) and 45.5 (2)°, respectively. Thus the para nitro group is more involved in delocalizing the negative charge than the ortho nitro group in the anionic part. This sort of delocalization of the charge over a large area imparts a maroon red colour to the title compound.

[Figure 1]
Figure 1
The asymmetric unit of (I)[link] showing the atom numbering and 40% probability displacement ellipsoids. The doubled-dashed line denotes the N—H⋯O hydrogen bond between the cation and anion.

3. Supra­molecular features

The aminium group is involved in formation of an N—H⋯O hydrogen bond (Table 1[link]) between the isoquinolinium cation (N5—H5A) and the deprotonated enol oxygen atom O7. In the crystal, weak C—H⋯O hydrogen bonds (Table 1[link]) consolidate the crystal packing (Fig. 2[link]). An R21(6) motif is generated by the C—H groups [C13—H13 and C20—H20] of the isoquinolinium cation and oxygen atom O5 of the carbonyl group of the barbiturate ring of the anion. Although there are three rings with cyclically delocalized π electron clouds, no ππ stacking inter­actions are observed between them.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯O7 0.93 (6) 1.74 (6) 2.592 (6) 150 (5)
C13—H13⋯O5i 0.93 2.40 3.260 (7) 153
C16—H16⋯O6ii 0.93 2.33 3.187 (7) 154
C17—H17⋯O2iii 0.93 2.61 3.424 (8) 146
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+3, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{5\over 2}}, -y, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal packing of (I)[link] viewed approximately down the a axis. Hydrogen bonds are shown as purple dotted lines.

4. 3D Hirshfeld Surface Analysis and 2D Fingerprint Analysis

Hirshfeld surfaces (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated 2D-fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) of the title mol­ecular salt have been generated using Crystal Explorer 3.1 (Wolff et al., 2013[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2013). Crystal Explorer. University of Western Australia.]). Hirshfeld surfaces mapped with different properties, e.g. de, dnorm, di, shapeindex, curvedness, have proven to be a useful visualization tool for the analysis of inter­molecular inter­actions. The 2D-fingerprint plots of Hirshfeld surfaces have been used to pinpoint and scrutinize the percentage of hydrogen-bonding inter­actions present in the crystal structure. The presented graphical plots use the same red-white-blue color scheme, wherein red highlights the shortest inter­molecular atomic contacts (negative dnorm values), white is used for contacts around the van der Waals separation, and blue corresponds to longer ones (positive dnorm values). Hirshfeld surface analysis of the new barbiturate of present inter­est has dnorm values ranging from −0.723 (red) to 1.464 (blue), as specified in Fig. 3[link]. The globularity value (a measure of the degree to which the surface area differs from that of the shape) is less than 1 (0.743), implying a more structured mol­ecular surface and it is an oblate object (asphericity, 0.282). 2D-Fingerprint plots showing contributions from different contacts: (a) overall inter­actions (b) C⋯H/H⋯C (c) C⋯O/O⋯C (d) H⋯H (e) O⋯H/H⋯O (f) N⋯O/O⋯N are depicted in Fig. 4[link], and Fig. 5[link] (pie chart) clearly demonstrates that the O⋯H/H⋯O inter­actions dominate in the crystal.

[Figure 3]
Figure 3
3D Hirshfeld surface analysis of (I)[link] mapped over (a) dnorm ranging from −0.723 (red) to 1.464 (blue); (b) de; (c) di; (d) curvedness; (e) shapeindex.
[Figure 4]
Figure 4
2D Fingerprint plots showing contributions from different contacts: (a) overall inter­actions; (b) C⋯H/H⋯C; (c) C⋯O/O⋯C; (d) H⋯H; (e) O⋯H/H⋯O and (f) N⋯O/O⋯N.
[Figure 5]
Figure 5
Pie chart showing the qu­anti­tative distribution of inter­molecular inter­actions in (I)[link].

5. Pharmacological activity

Epilepsy affects about 0.5% of the world's population. A seizure is caused by an asynchronous high-frequency discharge of a group of neurons, starting locally and spreading to a varying extent to affect other parts of the brain. 1,3-Di­methyl­barbituric acid is the most significant compound with a heterocyclic structure and exists in two tautomeric forms (keto and enol) due to the mobility of active methyl­ene group hydrogen atoms in its mol­ecule. Barbiturates are drugs that act as central nervous system depressants and can therefore produce a wide spectrum of effects from mild sedation to total anaesthesia. They are also effective as anxiolytics, hypnotics and anti­convulsants. As the mol­ecular salt of the present investigation is a derivative of 1,3-di­methyl­barbituric acid, it has been subjected to the Maximal Electro Shock method to evaluate its anti­convulsant activity (Misra et al.,1973[Misra, A. K., Dandiya, P. C. & Kulkarni, S. K. (1973). Indian J. Pharmacol. 5, 449-450.]; Kulkarni, 1999[Kulkarni, S.K. (1999). Handbook of Experimental Pharamacology, p. 131. Mumbai: Vallabh Prakashan.]). It reduces all phases of convulsion (tonic-flexor, tonic-extensor, clonic-convulsion and stupor) even at low dosage (25 mg kg−1) and the animals recovered after the experiment.

6. Synthesis and crystallization

1-Chloro-2,4-di­nitro­benzene (2.02 g, 0.01 mol) in 40 mL of absolute alcohol was mixed with 1,3-di­methyl­barbituric acid (1.56 g, 0.01 mol) in 30 mL ethanol. To this mixture, 0.02 mol of iso­quinoline was added and the mixture was shaken well for 5 h and kept as such for 24 h. Excess ethanol was removed through evaporation. A maroon-red pasty mass was obtained. This paste was digested with hot ethanol to obtain a maroon-red solid. The solid deposited at the bottom of the flask was filtered, powdered well using an agate mortar, washed again with 20 mL of dry ether and recrystallized from absolute alcohol. Good quality single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of ethanol at room temperature (yield: 80%; m.p. 413 K).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The N-bound H atom was located in a difference Fourier map and refined isotropically. C-bound H atoms were positioned geometrically and refined as riding, with C—H = 0.93–0.96 Å and Uiso(H) = 1.2–1.5 Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C9H8N+·C12H9N4O7
Mr 451.40
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 7.5315 (3), 15.5640 (8), 17.3901 (8)
V3) 2038.47 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.35 × 0.30 × 0.25
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.958, 0.984
No. of measured, independent and observed [I > 2σ(I)] reflections 27633, 3588, 2797
Rint 0.038
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.164, 1.11
No. of reflections 3588
No. of parameters 302
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.26
Absolute structure Flack x determined using 1033 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.5 (4)
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Isoquinolinium 5-(2,4-dinitrophenyl)-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate top
Crystal data top
C9H8N+·C12H9N4O7Dx = 1.471 Mg m3
Mr = 451.40Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9400 reflections
a = 7.5315 (3) Åθ = 2.3–24.0°
b = 15.5640 (8) ŵ = 0.11 mm1
c = 17.3901 (8) ÅT = 296 K
V = 2038.47 (16) Å3Block, brown
Z = 40.35 × 0.30 × 0.25 mm
F(000) = 936
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3588 independent reflections
Radiation source: fine-focus sealed tube2797 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω and φ scanθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 88
Tmin = 0.958, Tmax = 0.984k = 1818
27633 measured reflectionsl = 2020
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.055 w = 1/[σ2(Fo2) + (0.0596P)2 + 2.2423P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.164(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.29 e Å3
3588 reflectionsΔρmin = 0.26 e Å3
302 parametersAbsolute structure: Flack x determined using 1033 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.5 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The elements in the sample do not have sufficient anomalous scattering power for Mo(kα) radiation. Hence the Flack parameter and its standard deviation obtained from refinement have no physical significance.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0128 (8)0.1849 (4)0.6047 (3)0.0420 (13)
C20.9775 (8)0.1140 (3)0.5603 (3)0.0430 (13)
H20.94890.06170.58300.052*
C30.9850 (7)0.1217 (3)0.4818 (3)0.0380 (12)
C41.0322 (7)0.1979 (3)0.4434 (3)0.0360 (11)
C51.0660 (8)0.2679 (3)0.4922 (3)0.0443 (13)
H51.09700.32040.47050.053*
C61.0549 (8)0.2615 (4)0.5715 (3)0.0495 (14)
H61.07610.30940.60210.059*
C71.0594 (7)0.2047 (3)0.3605 (3)0.0337 (11)
C81.1510 (7)0.1402 (3)0.3218 (3)0.0357 (11)
C91.1333 (8)0.2196 (3)0.2030 (3)0.0421 (13)
C101.0069 (7)0.2807 (3)0.3207 (3)0.0388 (12)
C110.9855 (12)0.3574 (4)0.1982 (4)0.072 (2)
H11A0.92410.39630.23170.108*
H11B1.08720.38560.17660.108*
H11C0.90740.33960.15760.108*
C121.2891 (9)0.0820 (4)0.2065 (3)0.0569 (16)
H12A1.31420.03690.24260.085*
H12B1.22360.05900.16390.085*
H12C1.39850.10620.18840.085*
C131.4554 (8)0.0032 (4)0.5236 (3)0.0486 (14)
H131.41140.04990.55110.058*
C141.5694 (7)0.0536 (3)0.5585 (3)0.0404 (12)
C151.6326 (7)0.1244 (4)0.5152 (3)0.0449 (13)
C161.5786 (8)0.1322 (4)0.4383 (3)0.0522 (15)
H161.61950.17760.40840.063*
C171.4675 (8)0.0738 (4)0.4083 (3)0.0546 (15)
H171.43130.07880.35730.065*
C181.6259 (8)0.0443 (4)0.6357 (3)0.0554 (15)
H181.58880.00260.66470.066*
C191.7348 (9)0.1043 (6)0.6669 (4)0.069 (2)
H191.76890.09910.71810.083*
C201.7960 (10)0.1728 (5)0.6242 (4)0.074 (2)
H201.87160.21260.64710.088*
C211.7487 (9)0.1835 (4)0.5502 (4)0.0642 (18)
H211.79260.22980.52230.077*
N11.0035 (8)0.1760 (4)0.6875 (3)0.0628 (15)
N20.9243 (7)0.0456 (3)0.4385 (3)0.0496 (12)
N31.0427 (7)0.2826 (3)0.2415 (2)0.0435 (11)
N41.1845 (6)0.1485 (3)0.2441 (2)0.0389 (10)
N51.4081 (7)0.0079 (3)0.4514 (3)0.0508 (13)
O11.0316 (9)0.2406 (4)0.7261 (3)0.0887 (18)
O20.9721 (10)0.1063 (4)0.7153 (3)0.099 (2)
O30.8197 (6)0.0553 (3)0.3865 (3)0.0632 (12)
O40.9781 (7)0.0246 (3)0.4618 (3)0.0690 (14)
O50.9298 (6)0.3428 (3)0.3499 (2)0.0578 (11)
O61.1665 (7)0.2254 (3)0.1336 (2)0.0643 (12)
O71.2084 (6)0.0724 (2)0.3535 (2)0.0534 (11)
H5A1.330 (8)0.032 (4)0.431 (3)0.043 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.050 (3)0.052 (3)0.025 (2)0.002 (3)0.002 (2)0.005 (2)
C20.053 (3)0.039 (3)0.037 (3)0.001 (3)0.001 (3)0.005 (2)
C30.042 (3)0.037 (3)0.035 (3)0.002 (2)0.000 (2)0.002 (2)
C40.036 (3)0.039 (3)0.034 (3)0.002 (2)0.005 (2)0.003 (2)
C50.050 (3)0.040 (3)0.044 (3)0.000 (3)0.004 (3)0.002 (2)
C60.054 (3)0.051 (3)0.043 (3)0.002 (3)0.010 (3)0.018 (3)
C70.041 (3)0.030 (2)0.030 (3)0.002 (2)0.004 (2)0.000 (2)
C80.035 (3)0.039 (3)0.033 (3)0.000 (2)0.004 (2)0.002 (2)
C90.047 (3)0.042 (3)0.038 (3)0.013 (3)0.001 (2)0.006 (2)
C100.042 (3)0.032 (3)0.043 (3)0.004 (2)0.001 (2)0.002 (2)
C110.108 (6)0.053 (4)0.054 (4)0.004 (4)0.006 (4)0.015 (3)
C120.059 (4)0.065 (4)0.047 (3)0.008 (3)0.012 (3)0.000 (3)
C130.048 (3)0.042 (3)0.055 (4)0.004 (3)0.003 (3)0.004 (3)
C140.037 (3)0.039 (3)0.045 (3)0.002 (2)0.002 (2)0.004 (2)
C150.039 (3)0.046 (3)0.049 (3)0.005 (3)0.002 (3)0.008 (3)
C160.051 (3)0.052 (3)0.054 (4)0.007 (3)0.002 (3)0.011 (3)
C170.055 (4)0.064 (4)0.045 (3)0.002 (3)0.006 (3)0.004 (3)
C180.054 (4)0.063 (4)0.049 (4)0.006 (3)0.001 (3)0.004 (3)
C190.053 (4)0.105 (6)0.049 (4)0.014 (4)0.013 (3)0.012 (4)
C200.066 (4)0.082 (5)0.073 (5)0.019 (4)0.013 (4)0.021 (4)
C210.062 (4)0.057 (4)0.074 (5)0.020 (3)0.007 (4)0.008 (3)
N10.070 (4)0.081 (4)0.037 (3)0.018 (3)0.002 (3)0.004 (3)
N20.057 (3)0.041 (3)0.051 (3)0.010 (2)0.009 (3)0.007 (2)
N30.062 (3)0.033 (2)0.036 (2)0.002 (2)0.002 (2)0.0105 (19)
N40.040 (2)0.042 (2)0.035 (2)0.003 (2)0.0034 (19)0.0010 (19)
N50.051 (3)0.048 (3)0.054 (3)0.008 (2)0.008 (2)0.008 (3)
O10.122 (5)0.099 (4)0.045 (3)0.009 (4)0.011 (3)0.026 (3)
O20.158 (6)0.094 (4)0.046 (3)0.004 (4)0.003 (4)0.015 (3)
O30.066 (3)0.065 (3)0.058 (3)0.014 (2)0.012 (2)0.016 (2)
O40.099 (4)0.040 (2)0.068 (3)0.005 (2)0.012 (3)0.001 (2)
O50.076 (3)0.044 (2)0.054 (2)0.010 (2)0.002 (2)0.006 (2)
O60.086 (3)0.063 (3)0.044 (3)0.011 (3)0.009 (2)0.013 (2)
O70.060 (3)0.055 (3)0.045 (2)0.017 (2)0.003 (2)0.007 (2)
Geometric parameters (Å, º) top
C1—C61.362 (8)C12—H12A0.9600
C1—C21.372 (7)C12—H12B0.9600
C1—N11.448 (7)C12—H12C0.9600
C2—C31.372 (7)C13—N51.316 (7)
C2—H20.9300C13—C141.374 (8)
C3—C41.406 (7)C13—H130.9300
C3—N21.476 (7)C14—C181.415 (8)
C4—C51.404 (7)C14—C151.418 (7)
C4—C71.460 (7)C15—C161.402 (8)
C5—C61.385 (8)C15—C211.408 (8)
C5—H50.9300C16—C171.342 (8)
C6—H60.9300C16—H160.9300
C7—C81.391 (7)C17—N51.346 (8)
C7—C101.425 (7)C17—H170.9300
C8—O71.267 (6)C18—C191.357 (10)
C8—N41.381 (6)C18—H180.9300
C9—O61.235 (6)C19—C201.379 (10)
C9—N31.369 (7)C19—H190.9300
C9—N41.373 (7)C20—C211.346 (10)
C10—O51.236 (6)C20—H200.9300
C10—N31.404 (7)C21—H210.9300
C11—N31.452 (7)N1—O21.211 (7)
C11—H11A0.9600N1—O11.228 (8)
C11—H11B0.9600N2—O31.209 (6)
C11—H11C0.9600N2—O41.234 (6)
C12—N41.455 (7)N5—H5A0.93 (6)
C6—C1—C2120.6 (5)N5—C13—C14120.4 (5)
C6—C1—N1121.1 (5)N5—C13—H13119.8
C2—C1—N1118.3 (5)C14—C13—H13119.8
C3—C2—C1118.9 (5)C13—C14—C18122.8 (6)
C3—C2—H2120.6C13—C14—C15118.3 (5)
C1—C2—H2120.6C18—C14—C15118.9 (5)
C2—C3—C4123.8 (5)C16—C15—C21122.4 (6)
C2—C3—N2115.1 (5)C16—C15—C14118.5 (5)
C4—C3—N2120.9 (5)C21—C15—C14119.1 (6)
C5—C4—C3114.5 (5)C17—C16—C15119.5 (6)
C5—C4—C7121.0 (5)C17—C16—H16120.2
C3—C4—C7124.4 (4)C15—C16—H16120.2
C6—C5—C4122.3 (5)C16—C17—N5120.5 (6)
C6—C5—H5118.9C16—C17—H17119.8
C4—C5—H5118.9N5—C17—H17119.8
C1—C6—C5120.0 (5)C19—C18—C14119.5 (6)
C1—C6—H6120.0C19—C18—H18120.3
C5—C6—H6120.0C14—C18—H18120.3
C8—C7—C10120.1 (4)C18—C19—C20121.2 (6)
C8—C7—C4119.6 (4)C18—C19—H19119.4
C10—C7—C4120.0 (4)C20—C19—H19119.4
O7—C8—N4116.1 (4)C21—C20—C19121.5 (7)
O7—C8—C7124.1 (4)C21—C20—H20119.3
N4—C8—C7119.8 (4)C19—C20—H20119.3
O6—C9—N3121.8 (5)C20—C21—C15119.9 (7)
O6—C9—N4120.8 (5)C20—C21—H21120.1
N3—C9—N4117.5 (4)C15—C21—H21120.1
O5—C10—N3118.4 (5)O2—N1—O1123.3 (6)
O5—C10—C7125.4 (5)O2—N1—C1119.5 (6)
N3—C10—C7116.1 (5)O1—N1—C1117.2 (6)
N3—C11—H11A109.5O3—N2—O4124.8 (5)
N3—C11—H11B109.5O3—N2—C3118.9 (5)
H11A—C11—H11B109.5O4—N2—C3116.2 (5)
N3—C11—H11C109.5C9—N3—C10124.1 (4)
H11A—C11—H11C109.5C9—N3—C11117.9 (5)
H11B—C11—H11C109.5C10—N3—C11118.0 (5)
N4—C12—H12A109.5C9—N4—C8122.3 (4)
N4—C12—H12B109.5C9—N4—C12119.4 (4)
H12A—C12—H12B109.5C8—N4—C12118.2 (4)
N4—C12—H12C109.5C13—N5—C17122.8 (5)
H12A—C12—H12C109.5C13—N5—H5A117 (3)
H12B—C12—H12C109.5C17—N5—H5A121 (3)
C6—C1—C2—C30.1 (9)C13—C14—C18—C19178.2 (6)
N1—C1—C2—C3179.7 (5)C15—C14—C18—C191.8 (9)
C1—C2—C3—C41.9 (9)C14—C18—C19—C202.1 (10)
C1—C2—C3—N2172.9 (5)C18—C19—C20—C210.8 (12)
C2—C3—C4—C52.1 (8)C19—C20—C21—C150.8 (11)
N2—C3—C4—C5172.5 (5)C16—C15—C21—C20180.0 (7)
C2—C3—C4—C7173.1 (5)C14—C15—C21—C200.9 (9)
N2—C3—C4—C712.4 (8)C6—C1—N1—O2177.3 (7)
C3—C4—C5—C60.5 (8)C2—C1—N1—O22.9 (10)
C7—C4—C5—C6174.8 (6)C6—C1—N1—O11.3 (9)
C2—C1—C6—C51.4 (9)C2—C1—N1—O1178.4 (6)
N1—C1—C6—C5178.9 (5)C2—C3—N2—O3131.3 (5)
C4—C5—C6—C11.2 (9)C4—C3—N2—O343.7 (8)
C5—C4—C7—C8132.9 (5)C2—C3—N2—O444.6 (7)
C3—C4—C7—C841.9 (8)C4—C3—N2—O4140.4 (5)
C5—C4—C7—C1041.3 (7)O6—C9—N3—C10177.7 (5)
C3—C4—C7—C10143.8 (5)N4—C9—N3—C103.2 (8)
C10—C7—C8—O7177.1 (5)O6—C9—N3—C110.2 (9)
C4—C7—C8—O72.9 (8)N4—C9—N3—C11179.0 (6)
C10—C7—C8—N42.6 (7)O5—C10—N3—C9177.3 (5)
C4—C7—C8—N4176.8 (5)C7—C10—N3—C94.4 (8)
C8—C7—C10—O5177.8 (5)O5—C10—N3—C110.5 (8)
C4—C7—C10—O53.6 (8)C7—C10—N3—C11177.7 (5)
C8—C7—C10—N34.0 (7)O6—C9—N4—C8179.4 (5)
C4—C7—C10—N3178.2 (5)N3—C9—N4—C81.4 (8)
N5—C13—C14—C18179.4 (6)O6—C9—N4—C124.0 (8)
N5—C13—C14—C150.6 (8)N3—C9—N4—C12176.8 (5)
C13—C14—C15—C161.2 (8)O7—C8—N4—C9178.5 (5)
C18—C14—C15—C16178.8 (5)C7—C8—N4—C91.2 (7)
C13—C14—C15—C21179.7 (5)O7—C8—N4—C123.1 (7)
C18—C14—C15—C210.4 (8)C7—C8—N4—C12176.7 (5)
C21—C15—C16—C17179.9 (6)C14—C13—N5—C170.3 (9)
C14—C15—C16—C170.9 (9)C16—C17—N5—C130.6 (9)
C15—C16—C17—N50.1 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O70.93 (6)1.74 (6)2.592 (6)150 (5)
C13—H13···O5i0.932.403.260 (7)153
C16—H16···O6ii0.932.333.187 (7)154
C17—H17···O2iii0.932.613.424 (8)146
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+3, y1/2, z+1/2; (iii) x+5/2, y, z1/2.
 

Acknowledgements

The authors are thankful to the DST for financial support, the SAIF, IIT Madras, Chennai − 36, for the single crystal XRD data collection and KMCH College of Pharmacy, Coimbatore, for the anti­convulsant activity results.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBabykala, R. & Kalaivani, D. (2012). Acta Cryst. E68, o541.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuvaneswari, M. & Kalaivani, D. (2013). J. Chem. Crystallogr. 43, 561–567.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGomathi, J. & Kalaivani, D. (2015). Acta Cryst. E71, 723–725.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGunaseelan, S. & Doraisamyraja, K. (2014). Acta Cryst. E70, o1102–o1103.  CSD CrossRef IUCr Journals Google Scholar
First citationHueso-Ureña, F., Illán-Cabeza, N. A., Moreno-Carretero, M. N., Martínez-Martos, J. M. & Ramírez-Expósito, M. J. (2003). J. Inorg. Biochem. 94, 326–334.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKalaivani, D. & Buvaneswari, M. (2010). Recent Advances in Clinical Medicine, pp. 255–260. Cambridge, UK: WSEAS Publications.  Google Scholar
First citationKalaivani, D. & Malarvizhi, R. (2009). Acta Cryst. E65, o2548.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKalaivani, D., Malarvizhi, R. & Subbalakshmi, R. (2008). Med. Chem. Res. 17, 369–373.  Web of Science CrossRef CAS Google Scholar
First citationKulkarni, S.K. (1999). Handbook of Experimental Pharamacology, p. 131. Mumbai: Vallabh Prakashan.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationManickkam, V. & Kalaivani, D. (2011). Acta Cryst. E67, o3475.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMisra, A. K., Dandiya, P. C. & Kulkarni, S. K. (1973). Indian J. Pharmacol. 5, 449–450.  Google Scholar
First citationMontalban, A. G. (2011). Heterocycles in Natural Product Synthesis, pp. 299–339.  Google Scholar
First citationNadkarni, S., LaJoie, J. & Devinsky, O. (2005). Neurology, 64, S2–11.  CrossRef PubMed CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShorvon, S. D. (2004). The Treatment of Epilepsy. Oxford: Blackwell Publishers.  Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSridevi, G. & Kalaivani, D. (2012). Acta Cryst. E68, o1044.  CSD CrossRef IUCr Journals Google Scholar
First citationVaduganathan, M. & Doraisamyraja, K. (2014). Acta Cryst. E70, 256–258.  CSD CrossRef IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2013). Crystal Explorer. University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds