research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(1-Benzyl-1H-1,2,3-triazol-4-yl)meth­­oxy]benzene-1,2-dicarbo­nitrile: crystal structure, Hirshfeld surface analysis and energy-minimization calculations

CROSSMARK_Color_square_no_text.svg

aFaculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link BE 1410, Negara Brunei Darussalam, bFaculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia, cDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380 001, India, dNational Institute for Nanotechnology, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada, eDepartment of Chemistry, University of British Columbia, Okanagan, 3247 University Way, Kelowna, British Columbia, V1V 1V7, Canada, and fResearch Centre for Crystalline Materials, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 18 March 2016; accepted 19 March 2016; online 31 March 2016)

In the solid state, the title compound, C18H13N5O, adopts a conformation whereby the phenyl ring and meth­oxy–benzene-1,2-dicarbo­nitrile residue (r.m.s. deviation of the 12 non-H atoms = 0.041 Å) lie to opposite sides of the central triazolyl ring, forming dihedral angles of 79.30 (13) and 64.59 (10)°, respectively; the dihedral angle between the outer rings is 14.88 (9)°. This conformation is nearly 7 kcal mol−1 higher in energy than the energy-minimized structure which has a syn disposition of the outer rings, enabling intra­molecular ππ inter­actions. In the crystal, methyl­ene-C—H⋯N(triazol­yl) and carbo­nitrile-N⋯π(benzene) inter­actions lead to supra­molecular chains along the a axis. Supra­molecular layers in the ab plane arise as the chains are connected by benzene-C—H⋯N(carbo­nitrile) inter­actions; layers stack with no directional inter­actions between them. The specified inter­molecular contacts along with other, weaker contributions to the supra­molecular stabilization are analysed in a Hirshfeld surface analysis.

1. Chemical context

We have previously reported the crystal structure of bis­[(phen­yl­methanamine-κN)-(phthalocyaninato-κ4N)zinc] phenyl­methanamine tris­olvate (Shamsudin et al., 2015[Shamsudin, N., Tan, A. L., Wimmer, F. L., Young, D. J. & Tiekink, E. R. T. (2015). Acta Cryst. E71, 1026-1031.]) for use as a light-harvesting dye in dye-sensitized solar cells (DSSCs) (Kitamura et al., 2004[Kitamura, T., Ikeda, M., Shigaki, K., Inoue, T., Anderson, N. A., Ai, X., Lian, T. Q. & Yanagida, S. (2004). Chem. Mater. 16, 1806-1812.], Nazeeruddin et al., 2001[Nazeeruddin, M. K., Péchy, P., Renouard, T., Zakeeruddin, S. M., Humphry-Baker, R., Comte, P., Liska, P., Cevey, L., Costa, E., Shklover, V., Spiccia, L., Deacon, G. B., Bignozzi, C. A. & Grätzel, M. (2001). J. Am. Chem. Soc. 123, 1613-1624.]). Benzyl­amine was investigated as a solvent to assist coating TiO2 nanoparticles with the highly insoluble zinc phthalocyanine. Another strategy for solubilizing phthalocyanine dyes is to append solubilizing groups to these large, aromatic structures (Mack et al., 2006[Mack, J., Kobayashi, N. & Stillman, M. J. (2006). J. Porphyrins Phthalocyanines, 10, 1219-1237.]). Phthalocyanines are somewhat unreactive and so this is most easily done by modifying the precursor phthalo­nitriles. Unsymmetrical phthalocyanines (e.g. tetra- rather than octa-substituted) can yield constitutional isomers, but are more soluble (Eberhart & Hanack, 1997[Eberhardt, W. & Hanack, M. (1997). Synthesis, pp. 95-100.]) and have a greater dipole moment which can make attractive mol­ecules for non-linear optical applications (Tian et al., 1997[Tian, M., Wada, T., Kimura-Suda, H. & Sasabe, H. (1997). J. Mater. Chem. 7, 861-863.]). A particularly versatile and reliable reaction for the synthesis of analogues is the azide-alkyne Huisgen cyclo­addition – the best known and most widely used reaction in the `click chemistry' stable (Kolb et al., 2001[Kolb, H. C., Finn, M. G. & Sharpless, K. B. (2001). Angew. Chem. Int. Ed. 40, 2004-2021.]). We therefore prepared 3-(prop-2-yn-1-yl­oxy)phthalo­nitrile by the SNAr reaction of propagyl alcohol and 4-nitro­phthalo­nitrile (Jan et al., 2013[Jan, C. Y., Shamsudin, N. B. H., Tan, A. L., Young, D. J. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o1074.]) and used this as a precursor for the synthesis of the title mol­ecule (I)[link], the structure of which is described herein along with a Hirshfeld surface analysis and the results of energy-minimization calculations.

[Scheme 1]

2. Structural commentary

The central five-membered triazolyl ring in (I)[link], Fig. 1[link], is strictly planar with the r.m.s. deviation for the five atoms being 0.003 Å. The phenyl ring of the N-bound benzyl group is almost perpendicular to this plane, forming a dihedral angle of 79.30 (13)°. The 12 atoms comprising the meth­oxy–benzene-1,2-dicarbo­nitrile residue are almost co-planar with a r.m.s. deviation of 0.041 Å; the maximum and minimum deviations are −0.085 (2) and 0.038 (2) Å for atoms C10 and C12, respectively. Within the triazolyl ring, the N2—N3 and C1—C2 bond lengths of 1.322 (3) and 1.367 (3) Å, respectively, are consistent with considerable double-bond character in each of these bonds, i.e. consistent with the electronic structure shown in the Scheme. The meth­oxy–benzene-1,2-dicarbo­nitrile residue lies to the opposite side of the central ring to the benzyl residue and forms a dihedral angle of 64.59 (10)° with the triazolyl ring. The overall shape of the mol­ecule is thus best described as a step with a dihedral angle between the outer rings of 14.62 (12)°, consistent with these groups being approximately parallel.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

3. Supra­molecular features

The mol­ecular packing in the crystal leads to supra­molecular chains along the a axis, formed through the agency of methyl­ene-C10—H⋯N3(triazol­yl) inter­actions involving both methyl­ene-H atoms, which both link to N3 (Table 1[link]). Encompassed within the chains are carbo­nitrile-N5⋯π(benzene) inter­actions, Table 1[link]. The chains are connected into supra­molecular layers in the ab plane by benzene-C12—H⋯N4(carbo­nitrile) inter­actions across a centre of inversion so that ten-membered {⋯HC3N}2 synthons are formed, Fig. 2[link] and Table 1[link]. Layers inter-digitate along the c axis but do not form contacts within the standard distance criteria (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯N3i 0.99 2.50 3.468 (3) 167
C10—H10B⋯N3ii 0.99 2.53 3.477 (3) 161
C12—H12⋯N4iii 0.95 2.47 3.353 (3) 155
C18—N5⋯Cg1iv 1.15 (1) 3.81 (1) 3.853 (2) 83 (1)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) -x+1, -y+2, -z+1; (iv) x+1, y, z.
[Figure 2]
Figure 2
A view of the supra­molecular layer in the ab plane in (I)[link]. The layer is sustained by C—H⋯N and C—H⋯N inter­actions shown as orange and purple dashed lines, respectively.
[Figure 3]
Figure 3
Unit cell contents for (I)[link] shown in projection down the a axis, showing the stacking of layers. The C—H⋯N inter­actions are shown as orange dashed lines.

4. Hirshfeld surface analysis

The program Crystal Explorer 3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia, Australia.]) was used to generate Hirshfeld surfaces mapped over dnorm, de, curvedness and electrostatic potential. The electrostatic potential was calculated with TONTO (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylo, C., Wolff, S. K., Chenai, C. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https:// hirshfeldsurface. net/]), integrated in Crystal Explorer, using the experimental geometry as the input. The electrostatic potentials were mapped on the Hirshfeld surface using the STO-3G basis set at the Hartree–Fock level of theory over a range ±0.075 au. The contact distances di and de from the Hirshfeld surface to the nearest atom inside and outside, respectively, enables the analysis of the inter­molecular inter­actions through the mapping of dnorm. The combination of de and di in the form of a two-dimensional fingerprint plot (Rohl et al., 2008[Rohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517-4525.]) provides a summary of the inter­molecular contacts in the crystal.

The inter­molecular inter­actions of the C—H⋯N type involving triazolyl-N3 and carbo­nitrile-N4 atoms as hydrogen-bond acceptors, and the H10A, H10B and H12 hydrogen atoms as donors dominate the mol­ecular packing. These inter­actions are easily recognized as bright-red spots, and are designated as 1, 2 and 3 in a square box, respectively, on the Hirshfeld surface mapped with dnorm in Fig. 4[link]. The surface mapped with electrostatic potential, Fig. 5[link], highlights these inter­actions as blue and red regions corresponding to positive (donor) and negative (acceptor) electrostatic potentials. The presence of such dominating inter­actions are also evident from the two dimensional fingerprint (FP) plots, Fig. 6[link]; relative contributions to the overall surface are given in Table 2[link].

Table 2
Percentage contribution of the different inter­molecular inter­actions to the Hirshfeld surface of (I)[link]

Contact %
H⋯H 24.7
N⋯H/H⋯N 35.7
C⋯H/H⋯C 25.8
C⋯C 3.7
C⋯N 3.5
O⋯H/H⋯O 3.2
C⋯O 2.7
N⋯N 0.7
[Figure 4]
Figure 4
Two views of the Hirshfeld surfaces for (I)[link] mapped over dnorm.
[Figure 5]
Figure 5
Hirshfeld surface for (I)[link] mapped over the electrostatic potential.
[Figure 6]
Figure 6
The two-dimensional fingerprint plots for (I)[link]: (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, and (d) N⋯H/H⋯N inter­actions.

The prominent pair of sharp spikes of equal lengths (de + di ∼ 2.25 Å) in the FP plot delineated into N⋯H/H⋯N contacts, Fig. 6[link]d, with a significant contribution to the overall Hirshfeld surface, i.e. 35.7% from N⋯H/H⋯N contacts, and the distinct pair of wings corresponding to C⋯H/H⋯C contacts, Fig. 6[link]c, with a 25.8% contribution, combined, have a greater effect on the mol­ecular packing than the dispersive H⋯H contacts, Fig. 6[link]b. The diminutive red spots on the surface mapped with dnorm, designated as 4 in a square box of Fig. 4[link], at the phenyl-C9 and methyl­ene-H3B atoms, reflect the presence of short inter­molecular C⋯H contacts [C9⋯H3Bi = 2.79 Å for symmetry code: (i) −1 + x, y, z]. The short intra­molecular H⋯H contact between the benzene-H16 and O-methyl­ene-H10A atoms (H10A⋯H16 = 2.09 Å) can be recognized from two neighbouring blue regions on the surface mapped with electrostatic potential in Fig. 5[link].

The presence of a comparatively weak C—N⋯π inter­action can be viewed from the negative potential around the carbo­nitrile-N5 atom (red region) and the light-blue region around the phenyl ring in Fig. 5[link]; the strength of this inter­action is qu­anti­fied as 3.7 and 3.5% relative contribution from C⋯C and C⋯N contacts to the surface. The small flat segments delineated by a blue outline in the surface mapped with curvedness, Fig. 7[link], and the small contribution from C⋯C contacts, i.e. 3.5%, to the surface is consistent with the absence of significant ππ stacking inter­actions in the structure.

[Figure 7]
Figure 7
Hirshfeld surface for (I)[link] mapped over curvedness.

5. Database survey

There are four closely related structures to (I)[link] in the crystallographic literature (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]). The chemical structures of (II)–(V) are shown in Scheme 2, salient dihedral angles are given in Table 3[link] and a comparison between mol­ecules is shown in Fig. 8[link]. The similarity in the structures is seen in the relationship between the central triazolyl ring and pendent phenyl rings. By contrast to the conformation observed in (I)[link], which was described above as anti with respect to the relative orientation of the N- and C-bound residues to the central ring, a syn disposition is observed in each of (II) (Rostovtsev et al., 2002[Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. (2002). Angew. Chem. Int. Ed. 41, 2596-2599.]), (III) (Garcia et al., 2011[Garcia, A., Rios, Z. G., Gonzalez, J., Perez, V. M., Lara, N., Fuentes, A., Gonzalez, C., Corona, D. & Cuevas-Yanez, E. (2011). Lett. Org. Chem. 8, 701-706.]) and (IV) (López-Ruiz et al., 2013[López-Ruiz, H., de la Cerda-Pedro, J. E., Rojas-Lima, S., Pérez-Pérez, I., Rodíguez-Sánchez, B. V., Santillan, R. & Coreño, O. (2013). ARKIVOC, (iii), 139-164.]). A similar but somewhat flattened syn relationship is observed in (V) (López-Ruiz et al., 2013[López-Ruiz, H., de la Cerda-Pedro, J. E., Rojas-Lima, S., Pérez-Pérez, I., Rodíguez-Sánchez, B. V., Santillan, R. & Coreño, O. (2013). ARKIVOC, (iii), 139-164.]) for which an intra­molecular O⋯N contact of 2.745 (3) Å is noted between the ether-O and benzoxazole-N atoms. The difference in structures prompted energy-minimization calculations.

[Scheme 2]

Table 3
Dihedral angle (°) data for (I)[link] and related literature structuresa

Structure Triazol­yl/benz­yl-phen­yl Triazol­yl/O-benzene Benzyl-phen­yl/O-benzene CSD refcodeb Reference
(I) 79.30 (13) 64.59 (10) 14.88 (9) This work
(II) 77.89 (6) 56.69 (4) 85.82 (5) CAKSAJ Rostovtsev et al. (2002[Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. (2002). Angew. Chem. Int. Ed. 41, 2596-2599.])
(III) 79.63 (5) 59.36 95) 85.56 (6) BEDREJ Garcia et al. (2011[Garcia, A., Rios, Z. G., Gonzalez, J., Perez, V. M., Lara, N., Fuentes, A., Gonzalez, C., Corona, D. & Cuevas-Yanez, E. (2011). Lett. Org. Chem. 8, 701-706.])
(IV) 79.16 (10) 59.57 (11) 84.25 (10) CIGRUH López-Ruiz et al. (2013[López-Ruiz, H., de la Cerda-Pedro, J. E., Rojas-Lima, S., Pérez-Pérez, I., Rodíguez-Sánchez, B. V., Santillan, R. & Coreño, O. (2013). ARKIVOC, (iii), 139-164.])
(V) 82.03 (9) 26.57 (9) 83.63 (8) CIGRER López-Ruiz et al. (2013[López-Ruiz, H., de la Cerda-Pedro, J. E., Rojas-Lima, S., Pérez-Pérez, I., Rodíguez-Sánchez, B. V., Santillan, R. & Coreño, O. (2013). ARKIVOC, (iii), 139-164.])
Notes: (a) See Scheme 2 for chemical structures; (b) Groom & Allen (2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]).
[Figure 8]
Figure 8
Two views of the different conformations in (I)[link] red image, (II) blue, (III) green, (IV) aqua and (V) pink. The mol­ecules have been overlapped so that the central rings are coincident.

6. Energy-minimization calculations

The structure of (I)[link] was subjected to energy-minimization calculations with Density-Functional Theory (DFT) using the LC-wPBE functional (Vydrov & Scuseria, 2006[Vydrov, O. A. & Scuseria, G. E. (2006). J. Chem. Phys. 125, 234109.]; Vydrov et al., 2006[Vydrov, O. A., Heyd, J., Krukau, A. V. & Scuseria, G. E. (2006). J. Chem. Phys. 125, 074106.]), as implemented in the Gaussian program (Frisch et al., 2009[Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]), and the exchange-hole dipole moment (XDM) dispersion correction (Becke & Johnson, 2007[Becke, A. D. & Johnson, E. R. (2007). J. Chem. Phys. 127, 124108.]; Otero-de-la-Roza & Johnson, 2013[Otero-de-la-Roza, A. & Johnson, E. R. (2013). J. Chem. Phys. 138, 204109.]) with the 6-31+G* basis set. Fig. 9[link] shows an energy profile as the 1,2-dicarbo­nitrile residue is rotated (30° steps) about the O—C bond with respect to the rest of the mol­ecule. The energy profile shown in Fig. 9[link] reveals the observed anti conformation of (I)[link] is in fact a high-energy conformation, being nearly 7 kcal mol−1 higher in energy than the low-energy conformation which, as shown in Fig. 10[link], has a syn conformation of the aromatic rings. In the energy-minimized structure, the dihedral angles between the five-membered ring and the di­nitrile- and benzyl-benzene rings are 73.6 and 85.2°, respectively, i.e. differing by ca 9 and 6°, respectively, from the comparable angles in the experimental structure. The dihedral angles between the aromatic rings is 23.4°. While the dihedral angles do not differ significantly between the experimental and gas-phase, energy-minimized structures, the relative conformations are quite distinct. The syn orientation of the terminal rings is most likely stabilized by intra­molecular ππ inter­actions, the shortest intra­molecular C⋯C contact between rings being 3.62 Å. The adoption of a different conformation in the experimental structure no doubt relates to the dictates of global crystal packing considerations.

[Figure 9]
Figure 9
Energy profile (kcal mol−1) for conformations of (I)[link] differing by a rotation (30° steps) about the O—C bond.
[Figure 10]
Figure 10
Overlay diagram of the experimental (red image) and energy-minimized (blue) structures of (I)[link]. The mol­ecules have been overlapped so that the five-membered rings are coincident.

7. Synthesis and crystallization

3-(Prop-2-yn-1-yl­oxy)phthalo­nitrile (Jan et al., 2013[Jan, C. Y., Shamsudin, N. B. H., Tan, A. L., Young, D. J. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o1074.]; 0.10 g, 0.55 mmol), CuSO4 (0.032 g), sodium ascorbate (0.13 g) and benzyl azide (0.074 g) were dissolved in 75% aqueous acetone (20 ml) and stirred for 48 h at room temperature. The reaction was poured into ice–water and the resulting off-white solid was collected by vacuum filtration and was recrystallized as light-brown prisms from a solvent mixture of di­chloro­methane and hexane (0.082 g, 47.5%). M.p.: 397–399 K. IR (ν) 3200 m (ArH), 3050 m (ArH), 2226 m (C≡N), 1600 s (C=C, Ar). [M+.] m/z 315.

8. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C).

Table 4
Experimental details

Crystal data
Chemical formula C18H13N5O
Mr 315.33
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 5.2454 (5), 15.3860 (14), 19.042 (3)
β (°) 90.927 (10)
V3) 1536.6 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.35 × 0.10 × 0.10
 
Data collection
Diffractometer Agilent Technologies SuperNova Dual diffractometer with an Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.])
Tmin, Tmax 0.588, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15856, 3527, 2099
Rint 0.080
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.136, 1.07
No. of reflections 3527
No. of parameters 217
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.25
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557-559.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

4-[(1-Benzyl-1H-1,2,3-triazol-4-yl)methoxy]benzene-1,2-dicarbonitrile top
Crystal data top
C18H13N5OF(000) = 656
Mr = 315.33Dx = 1.363 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.2454 (5) ÅCell parameters from 1806 reflections
b = 15.3860 (14) Åθ = 2.5–27.5°
c = 19.042 (3) ŵ = 0.09 mm1
β = 90.927 (10)°T = 100 K
V = 1536.6 (3) Å3Prism, light-brown
Z = 40.35 × 0.10 × 0.10 mm
Data collection top
Agilent Technologies SuperNova Dual
diffractometer with an Atlas detector
3527 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2099 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.080
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scanh = 66
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1919
Tmin = 0.588, Tmax = 1.000l = 2421
15856 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0342P)2 + 0.5378P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3527 reflectionsΔρmax = 0.26 e Å3
217 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3153 (3)0.69488 (10)0.54542 (9)0.0262 (4)
N10.5641 (4)0.50248 (12)0.70174 (11)0.0233 (5)
N20.7432 (4)0.49329 (13)0.65250 (12)0.0294 (5)
N30.6509 (4)0.52816 (13)0.59396 (11)0.0279 (5)
N40.7655 (4)1.01212 (13)0.44279 (12)0.0312 (5)
N51.2066 (4)0.86108 (14)0.33358 (13)0.0342 (6)
C10.3561 (4)0.54262 (15)0.67500 (14)0.0251 (6)
H10.20320.55640.69870.030*
C20.4125 (4)0.55919 (14)0.60643 (13)0.0216 (5)
C30.6072 (5)0.46954 (16)0.77327 (14)0.0282 (6)
H3A0.56910.51620.80730.034*
H3B0.78920.45370.77940.034*
C40.4444 (4)0.39128 (15)0.78895 (13)0.0234 (5)
C50.4866 (4)0.31288 (15)0.75402 (14)0.0294 (6)
H50.61860.30870.72060.035*
C60.3363 (5)0.24131 (16)0.76800 (15)0.0330 (7)
H60.36620.18800.74440.040*
C70.1427 (5)0.24702 (17)0.81622 (15)0.0329 (7)
H70.03880.19790.82540.040*
C80.1008 (5)0.32439 (16)0.85111 (14)0.0312 (6)
H80.03130.32820.88450.037*
C90.2511 (4)0.39631 (16)0.83744 (14)0.0273 (6)
H90.22130.44940.86150.033*
C100.2539 (4)0.60336 (14)0.55118 (13)0.0240 (6)
H10A0.28180.57470.50540.029*
H10B0.07140.59700.56260.029*
C110.5055 (4)0.72062 (15)0.50218 (13)0.0224 (5)
C120.5349 (4)0.81069 (15)0.49807 (13)0.0227 (5)
H120.42940.84800.52480.027*
C130.7180 (4)0.84514 (14)0.45502 (13)0.0224 (5)
C140.8748 (4)0.79094 (15)0.41502 (13)0.0227 (5)
C150.8425 (4)0.70107 (15)0.41989 (13)0.0254 (6)
H150.94640.66350.39290.031*
C160.6609 (4)0.66612 (15)0.46354 (13)0.0236 (5)
H160.64250.60490.46710.028*
C170.7433 (4)0.93813 (16)0.44910 (13)0.0240 (6)
C181.0608 (4)0.82840 (15)0.36943 (14)0.0256 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0306 (9)0.0188 (9)0.0296 (11)0.0005 (7)0.0083 (8)0.0045 (8)
N10.0236 (10)0.0228 (11)0.0236 (12)0.0017 (8)0.0033 (9)0.0012 (9)
N20.0230 (10)0.0349 (12)0.0305 (14)0.0018 (9)0.0057 (10)0.0039 (10)
N30.0262 (11)0.0301 (12)0.0276 (13)0.0001 (9)0.0053 (9)0.0031 (10)
N40.0359 (12)0.0237 (12)0.0344 (14)0.0005 (9)0.0068 (10)0.0009 (10)
N50.0384 (12)0.0288 (12)0.0358 (15)0.0041 (10)0.0103 (11)0.0015 (11)
C10.0237 (12)0.0227 (13)0.0291 (16)0.0034 (10)0.0055 (11)0.0006 (11)
C20.0211 (11)0.0152 (12)0.0285 (15)0.0037 (9)0.0044 (10)0.0014 (10)
C30.0300 (13)0.0289 (14)0.0256 (15)0.0009 (10)0.0024 (11)0.0036 (12)
C40.0228 (12)0.0229 (13)0.0245 (15)0.0035 (10)0.0023 (10)0.0018 (11)
C50.0282 (13)0.0287 (14)0.0314 (16)0.0054 (10)0.0033 (11)0.0000 (12)
C60.0425 (15)0.0220 (14)0.0344 (17)0.0023 (11)0.0022 (13)0.0018 (12)
C70.0365 (14)0.0250 (14)0.0371 (18)0.0042 (11)0.0027 (13)0.0105 (12)
C80.0274 (13)0.0352 (16)0.0310 (16)0.0002 (11)0.0017 (11)0.0055 (13)
C90.0268 (12)0.0261 (13)0.0291 (16)0.0032 (10)0.0015 (11)0.0002 (12)
C100.0266 (12)0.0192 (12)0.0265 (15)0.0036 (9)0.0057 (11)0.0030 (11)
C110.0215 (11)0.0247 (13)0.0211 (14)0.0030 (9)0.0007 (10)0.0056 (11)
C120.0239 (12)0.0210 (12)0.0233 (14)0.0024 (9)0.0017 (10)0.0007 (10)
C130.0254 (12)0.0193 (12)0.0224 (14)0.0001 (9)0.0014 (10)0.0007 (10)
C140.0256 (12)0.0215 (13)0.0209 (14)0.0014 (10)0.0019 (10)0.0023 (10)
C150.0279 (12)0.0239 (13)0.0247 (15)0.0021 (10)0.0039 (11)0.0021 (11)
C160.0293 (12)0.0181 (12)0.0237 (15)0.0010 (10)0.0052 (11)0.0002 (11)
C170.0223 (12)0.0279 (14)0.0219 (14)0.0011 (10)0.0040 (10)0.0000 (11)
C180.0279 (13)0.0217 (13)0.0272 (16)0.0014 (10)0.0004 (12)0.0006 (11)
Geometric parameters (Å, º) top
O1—C111.363 (3)C6—H60.9500
O1—C101.449 (3)C7—C81.382 (4)
N1—N21.346 (3)C7—H70.9500
N1—C11.347 (3)C8—C91.386 (3)
N1—C31.467 (3)C8—H80.9500
N2—N31.322 (3)C9—H90.9500
N3—C21.363 (3)C10—H10A0.9900
N4—C171.151 (3)C10—H10B0.9900
N5—C181.149 (3)C11—C161.388 (3)
C1—C21.367 (3)C11—C121.397 (3)
C1—H10.9500C12—C131.379 (3)
C2—C101.494 (3)C12—H120.9500
C3—C41.509 (3)C13—C141.404 (3)
C3—H3A0.9900C13—C171.441 (3)
C3—H3B0.9900C14—C151.396 (3)
C4—C91.385 (3)C14—C181.437 (4)
C4—C51.397 (3)C15—C161.383 (3)
C5—C61.383 (3)C15—H150.9500
C5—H50.9500C16—H160.9500
C6—C71.383 (4)
C11—O1—C10119.61 (18)C7—C8—H8119.9
N2—N1—C1110.8 (2)C9—C8—H8119.9
N2—N1—C3120.75 (19)C4—C9—C8120.4 (2)
C1—N1—C3128.4 (2)C4—C9—H9119.8
N3—N2—N1107.14 (18)C8—C9—H9119.8
N2—N3—C2108.6 (2)O1—C10—C2111.92 (17)
N1—C1—C2105.1 (2)O1—C10—H10A109.2
N1—C1—H1127.5C2—C10—H10A109.2
C2—C1—H1127.5O1—C10—H10B109.2
N3—C2—C1108.3 (2)C2—C10—H10B109.2
N3—C2—C10122.6 (2)H10A—C10—H10B107.9
C1—C2—C10129.1 (2)O1—C11—C16125.9 (2)
N1—C3—C4112.33 (19)O1—C11—C12113.9 (2)
N1—C3—H3A109.1C16—C11—C12120.2 (2)
C4—C3—H3A109.1C13—C12—C11119.6 (2)
N1—C3—H3B109.1C13—C12—H12120.2
C4—C3—H3B109.1C11—C12—H12120.2
H3A—C3—H3B107.9C12—C13—C14120.9 (2)
C9—C4—C5119.3 (2)C12—C13—C17119.6 (2)
C9—C4—C3120.7 (2)C14—C13—C17119.4 (2)
C5—C4—C3120.0 (2)C15—C14—C13118.6 (2)
C6—C5—C4120.1 (3)C15—C14—C18121.4 (2)
C6—C5—H5120.0C13—C14—C18119.9 (2)
C4—C5—H5120.0C16—C15—C14120.7 (2)
C5—C6—C7120.3 (3)C16—C15—H15119.7
C5—C6—H6119.9C14—C15—H15119.7
C7—C6—H6119.9C15—C16—C11120.0 (2)
C8—C7—C6119.9 (2)C15—C16—H16120.0
C8—C7—H7120.1C11—C16—H16120.0
C6—C7—H7120.1N4—C17—C13178.4 (3)
C7—C8—C9120.1 (3)N5—C18—C14177.7 (3)
C1—N1—N2—N30.4 (2)C7—C8—C9—C40.1 (4)
C3—N1—N2—N3179.53 (19)C11—O1—C10—C287.8 (2)
N1—N2—N3—C20.2 (2)N3—C2—C10—O184.1 (3)
N2—N1—C1—C20.5 (3)C1—C2—C10—O195.6 (3)
C3—N1—C1—C2179.5 (2)C10—O1—C11—C163.0 (3)
N2—N3—C2—C10.1 (3)C10—O1—C11—C12176.24 (18)
N2—N3—C2—C10179.62 (19)O1—C11—C12—C13178.81 (19)
N1—C1—C2—N30.4 (3)C16—C11—C12—C130.5 (3)
N1—C1—C2—C10179.4 (2)C11—C12—C13—C140.2 (3)
N2—N1—C3—C4109.4 (2)C11—C12—C13—C17178.1 (2)
C1—N1—C3—C469.6 (3)C12—C13—C14—C150.3 (3)
N1—C3—C4—C9112.3 (3)C17—C13—C14—C15178.2 (2)
N1—C3—C4—C567.2 (3)C12—C13—C14—C18178.7 (2)
C9—C4—C5—C60.0 (3)C17—C13—C14—C180.8 (3)
C3—C4—C5—C6179.5 (2)C13—C14—C15—C160.4 (3)
C4—C5—C6—C70.4 (4)C18—C14—C15—C16179.4 (2)
C5—C6—C7—C80.6 (4)C14—C15—C16—C111.1 (3)
C6—C7—C8—C90.5 (4)O1—C11—C16—C15178.1 (2)
C5—C4—C9—C80.1 (3)C12—C11—C16—C151.1 (3)
C3—C4—C9—C8179.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10A···N3i0.992.503.468 (3)167
C10—H10B···N3ii0.992.533.477 (3)161
C12—H12···N4iii0.952.473.353 (3)155
C18—N5···Cg1iv1.15 (1)3.81 (1)3.853 (2)83 (1)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+2, z+1; (iv) x+1, y, z.
Percentage contribution of the different intermolecular interactions to the Hirshfeld surface of (I). top
Contact%
H···H24.7
N···H/H···N35.7
C···H/H···C25.8
C···C3.7
C···N3.5
O···H/H···O3.2
C···O2.7
N···N0.7
Dihedral angle (°) data for (I) and related literature structuresa top
StructureTriazolyl/benzyl–phenylTriazolyl/O-benzeneBenzyl-phenyl/O-benzeneCSD refcodebReference
(I)79.30 (13)64.59 (10)14.88 (9)This work
(II)77.89 (6)56.69 (4)85.82 (5)CAKSAJRostovtsev et al. (2002)
(III)79.63 (5)59.36 95)85.56 (6)BEDREJGarcia et al. (2011)
(IV)79.16 (10)59.57 (11)84.25 (10)CIGRUHLópez-Ruiz et al. (2013)
(V)82.03 (9)26.57 (9)83.63 (8)CIGRERLópez-Ruiz et al. (2013)
Notes: (a) See Scheme 2 for chemical structures; (b) Groom & Allen (2014).
 

Footnotes

Additional correspondence author, e-mail: dyoung1@usc.edu.au.

Acknowledgements

We acknowledge the financial support from the Brunei Research Council (BRC) Science and Technology grant (S&T17). AOR thanks the Spanish Malta/Consolider initiative (No. CSD2007-00045) and Alberta Innovates Technology Futures (AITF) for funding. Intensity data were provided by the University of Malaya Crystallographic Laboratory.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationBecke, A. D. & Johnson, E. R. (2007). J. Chem. Phys. 127, 124108.  Web of Science CrossRef PubMed Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEberhardt, W. & Hanack, M. (1997). Synthesis, pp. 95–100.  CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557–559.  Web of Science CrossRef CAS Google Scholar
First citationGarcia, A., Rios, Z. G., Gonzalez, J., Perez, V. M., Lara, N., Fuentes, A., Gonzalez, C., Corona, D. & Cuevas-Yanez, E. (2011). Lett. Org. Chem. 8, 701–706.  CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationJan, C. Y., Shamsudin, N. B. H., Tan, A. L., Young, D. J. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o1074.  CrossRef IUCr Journals Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylo, C., Wolff, S. K., Chenai, C. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: https:// hirshfeldsurface. net/  Google Scholar
First citationKitamura, T., Ikeda, M., Shigaki, K., Inoue, T., Anderson, N. A., Ai, X., Lian, T. Q. & Yanagida, S. (2004). Chem. Mater. 16, 1806–1812.  CrossRef CAS Google Scholar
First citationKolb, H. C., Finn, M. G. & Sharpless, K. B. (2001). Angew. Chem. Int. Ed. 40, 2004–2021.  Web of Science CrossRef CAS Google Scholar
First citationLópez-Ruiz, H., de la Cerda-Pedro, J. E., Rojas-Lima, S., Pérez-Pérez, I., Rodíguez-Sánchez, B. V., Santillan, R. & Coreño, O. (2013). ARKIVOC, (iii), 139–164.  Google Scholar
First citationMack, J., Kobayashi, N. & Stillman, M. J. (2006). J. Porphyrins Phthalocyanines, 10, 1219–1237.  CrossRef CAS Google Scholar
First citationNazeeruddin, M. K., Péchy, P., Renouard, T., Zakeeruddin, S. M., Humphry-Baker, R., Comte, P., Liska, P., Cevey, L., Costa, E., Shklover, V., Spiccia, L., Deacon, G. B., Bignozzi, C. A. & Grätzel, M. (2001). J. Am. Chem. Soc. 123, 1613–1624.  CrossRef PubMed CAS Google Scholar
First citationOtero-de-la-Roza, A. & Johnson, E. R. (2013). J. Chem. Phys. 138, 204109.  PubMed Google Scholar
First citationRohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517–4525.  Web of Science CSD CrossRef CAS Google Scholar
First citationRostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. (2002). Angew. Chem. Int. Ed. 41, 2596–2599.  CrossRef CAS Google Scholar
First citationShamsudin, N., Tan, A. L., Wimmer, F. L., Young, D. J. & Tiekink, E. R. T. (2015). Acta Cryst. E71, 1026–1031.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, M., Wada, T., Kimura-Suda, H. & Sasabe, H. (1997). J. Mater. Chem. 7, 861–863.  CrossRef CAS Google Scholar
First citationVydrov, O. A., Heyd, J., Krukau, A. V. & Scuseria, G. E. (2006). J. Chem. Phys. 125, 074106.  CrossRef PubMed Google Scholar
First citationVydrov, O. A. & Scuseria, G. E. (2006). J. Chem. Phys. 125, 234109.  CrossRef PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia, Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds