research communications
μ2-2-(dimethylamino)ethanolato-κ3N,O:O]di-μ3-hydroxido-dithiocyanato-κ2N-dichromium(III)dilead(II) dithiocyanate acetonitrile monosolvate
of tetrakis[aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, Kyiv 01601, Ukraine, and bSSI "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenina ave., Kharkiv 61072, Ukraine
*Correspondence e-mail: rusanova.j@gmail.com
The tetranuclear complex cation of the title compound, [Cr2Pb2(NCS)2(OH)2(C4H10NO)4](SCN)2·CH3CN, lies on an inversion centre. The main structural feature of the cation is a distorted seco-norcubane Pb2Cr2O6 cage with a central four-membered Cr2O2 ring. The CrIII ion is coordinated in a distorted octahedron, which involves two N atoms of one bidentate ligand and one thiocyanate anion, two μ2-O atoms of 2-(dimethylamino)ethanolate ligands and two μ3-O atoms of hydroxide ions. The coordination geometry of the PbII ion is a distorted disphenoid, which involves one N atom, two μ2-O atoms and one μ3-O atom. In addition, weak Pb⋯S interactions involving the coordinating and non-coordinating thiocyanate anions are observed. In the crystal, the complex cations are linked through the thiocyanate anions via the Pb⋯S interactions and O—H⋯N hydrogen bonds into chains along the c axis. The chains are further linked together via S⋯S contacts. The contribution of the disordered solvent acetonitrile molecule was removed with the SQUEEZE [Spek (2015). Acta Cryst. C71, 9–18] procedure in PLATON. The solvent is included in the reported molecular formula, weight and density.
CCDC reference: 1460850
1. Chemical context
There is considerable interest in polynuclear heterometallic complexes as a result of their potential for interesting physicochemical properties such as magnetic (Gheorghe et al., 2010), catalytic (Trettenhahn et al., 2006) and useful light- and/or redox-induced functions (Balzani et al., 2009). The interest currently paid to the synthesis of polynuclear transition metal complexes is stimulated, in particular, by attempts to design and construct multicomponent systems. Despite of a lot of work already done in this field, a limited number of synthetic strategies have been developed to date. Spontaneous self-assembly of Schiff base ligands or rigid building blocks appears to be an extremely powerful tool for the construction of novel polynuclear assemblies incorporating metal atoms by utilizing the various coordination modes of small and flexible ligands (Buvaylo et al., 2005; Kirillov et al., 2005). Metal powders have been successfully applied in direct synthesis of coordination compounds to yield a number of novel monometallic (Babich et al., 1996) and heterometallic complexes (Buvaylo et al., 2005) of various composition, nuclearities and dimensionalities. This work is a continuation of our investigations in the field of direct synthesis of heterometallic coordination compounds based on spontaneous self-assembly, in which one of the metals is introduced as a powder (zero-valent state) and oxidized during the synthesis (Nesterov et al., 2011), in particular the application of Reinecke's salt in direct synthesis of heterometallic complexes (Nikitina et al., 2008).
2. Structural commentary
The complex cation with a distorted seco-norcubane Pb2Cr2O6 framework is centrosymmetric, as shown in Fig. 1. The two crystallographically independent dimethylaminoethanol ligands form five-membered chelate rings with the CrIII and PbII ions. The CrIII ion adopts a distorted octahedral coordination environment with one N atom and two μ2-O atoms from the dimethylaminoethanol ligands and one μ3-O atom from the hydroxide ion in the equatorial plane, and one N atom of the thiocyanate ion and one μ3-O atom of the second hydroxide ion in the axial positions. The Cr—O and Cr—N bond lengths are 1.950 (3)–1.993 (3) Å and 2.008 (4)–2.158 (4) Å, respectively, and the N—Cr—O and O—Cr—O angles are 79.10 (11)–93.48 (12)° for cis-positions and 168.63 (13)–173.46 (12)° for trans-positions. The PbII ion is tetracoordinated by the one μ3-O atom of the hydroxide ion, one N atom and two μ2-O atoms of the dimethylaminoethanol ligands and adopts a distorted disphenoidal coordination. There are additional weak Pb⋯S interactions [Pb1⋯S1 3.2749 (14) Å and Pb1⋯S2 3.4056 (16) Å], and thus the coordination geometry of the PbII ion can be considered as a strongly distorted trigonal prism, if these interactions are included. The Pb—O bond lengths [2.308 (3)–2.686 (3) Å] as well as the Pb—N distance [2.547 (4) Å] are in a good agreement with literature values. In general, all geometric parameters of the title complex cation are in good agreement with those in related aminoalcohol complexes (Shahid et al., 2011).
3. Supramolecular features
In the crystal, the tetranuclear complex cations are linked through thiocyanate anions with the above-mentioned intermolecular Pb⋯S interactions and by an O—H⋯N hydrogen bond (Table 1) into chains along the c axis (Fig. 2). The chains are further linked together by an S⋯S sigma-hole bond [S1⋯S2 3.585 (2) Å], where atom S2 acts as a lone-pair donor.
|
4. Database survey
A search of the Cambridge Structural Database (Version 5.36; last update February 2015; Groom & Allen, 2014) for related complexes with 2-dimethylaminoethanol gave 260 hits, including some closely related structures with a distorted seco-norcubane cage with Ti (Hollingsworth et al., 2008), Ge(Sn)–Li (Khrustalev et al., 2004, 2008) and Na(Li)–Al (Nöth et al., 2001).
5. Synthesis and crystallization
Lead monoxide (0,279 g, 1.25 mmol), NH4[Cr(NCS)4(NH3)2]·H2O (0.443 g, 1.25 mmol), NH4SCN (0.095 g, 1.25 mmol), 2-dimethylaminoethanol (0.5 ml, 5 mmol) and acetonitrile (20 ml) were heated in air at 323–333 K and stirred for 110 min until complete PbO dissolution occurred. Dark-grey crystals suitable for the crystallographic study were formed by slow evaporation of the resulting solution in air. The crystals were filtered off, washed with dry isopropyl alcohol and finally dried in vacuo at room temperature. Yield: 0.11 g, 10.3%.
The IR spectrum of the title compound (as KBr pellets) exhibited absorbance at 2250 cm−1 assigned to υ(CN) of the solvent acetonitrile molecule, as well two additional bands at 2080 cm−1 and 1610 cm−1, which were assigned, respectively, to stretch and vibrational υ(CN) modes of the SCN anion. Analysis calculated for C22H45Cr2N9S4Pb2: C 22.43, H 3.85, N 10.69, S 10.88%; found: C 22.21, H 3.78, N 10.45, S 10.64%.
6. Refinement
Crystal data, data collection and structure . All hydrogen atoms were placed in idealized positions and refined as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C,O) for methyl and hydroxyl groups.
details are summarized in Table 2During the R1 = 0.045) were obtained modeling the disordered C and N atoms, but very large displacement parameters for them were observed. The SQUEEZE (Spek, 2015) procedure in PLATON (Spek, 2009) indicated solvent cavities of volume 118 Å3 centered at (0.5, 0, 0.25), (0.5, 0, 0.75), (0, 0.5, 0.75) and (0, 0.5, 0.25), each containing approximately 18 electrons. In the final this contribution was removed from the intensity data, producing better results. We assumed full occupancy of the solvent molecule for each cavity, although the estimated 18 electrons are fewer than the 22 electrons expected for full occupancy. The solvent molecule is included in the reported molecular formula, weight and density.
several isolated electron density peaks were located, which were assignable to a solvent acetnitrile molecule(s) from the IR data and elementary analysis. Satisfactory results (Supporting information
CCDC reference: 1460850
https://doi.org/10.1107/S2056989016003996/is5439sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016003996/is5439Isup2.hkl
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 and PLATON (Spek, 2009).[Cr2Pb2(NCS)2(OH)2(C4H10NO)4](NCS)2·C2H3N | F(000) = 2256 |
Mr = 1178.29 | Dx = 2.001 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 17.533 (1) Å | Cell parameters from 4335 reflections |
b = 13.8815 (7) Å | θ = 2.9–32.5° |
c = 16.6179 (8) Å | µ = 9.39 mm−1 |
β = 104.771 (6)° | T = 298 K |
V = 3910.9 (4) Å3 | Block, metallic dark gray |
Z = 4 | 0.4 × 0.1 × 0.1 mm |
Agilent Xcalibur Sapphire 3 diffractometer | 5680 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 4133 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.064 |
Detector resolution: 16.1827 pixels mm-1 | θmax = 30.0°, θmin = 3.0° |
ω scans | h = −24→24 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −19→18 |
Tmin = 0.382, Tmax = 1.000 | l = −23→23 |
20193 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.058 | H-atom parameters constrained |
S = 0.93 | w = 1/[σ2(Fo2) + (0.0118P)2] where P = (Fo2 + 2Fc2)/3 |
5680 reflections | (Δ/σ)max = 0.001 |
190 parameters | Δρmax = 1.00 e Å−3 |
0 restraints | Δρmin = −0.69 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pb1 | 0.369714 (9) | 0.456817 (12) | 0.330204 (9) | 0.03296 (5) | |
Cr1 | 0.46177 (4) | 0.59683 (5) | 0.51003 (4) | 0.02815 (15) | |
S1 | 0.33608 (10) | 0.73222 (11) | 0.70835 (8) | 0.0651 (4) | |
S2 | 0.75622 (10) | 0.58870 (14) | 0.31923 (11) | 0.0865 (6) | |
O1 | 0.35991 (16) | 0.5544 (2) | 0.44114 (16) | 0.0327 (7) | |
O2 | 0.56441 (17) | 0.6487 (2) | 0.56837 (17) | 0.0365 (7) | |
O3 | 0.50477 (15) | 0.52564 (19) | 0.42849 (15) | 0.0294 (6) | |
H3 | 0.5314 | 0.5554 | 0.4027 | 0.044* | |
N1 | 0.4136 (2) | 0.6465 (3) | 0.5993 (2) | 0.0412 (9) | |
N2 | 0.6095 (3) | 0.6076 (4) | 0.3499 (3) | 0.0735 (14) | |
N3 | 0.2425 (2) | 0.4171 (3) | 0.3704 (2) | 0.0385 (9) | |
N4 | 0.4503 (2) | 0.7343 (3) | 0.4474 (2) | 0.0410 (9) | |
C1 | 0.3816 (3) | 0.6803 (3) | 0.6461 (3) | 0.0395 (11) | |
C2 | 0.6716 (3) | 0.6005 (4) | 0.3384 (3) | 0.0513 (13) | |
C3 | 0.2214 (3) | 0.5127 (3) | 0.3976 (3) | 0.0441 (12) | |
H3A | 0.1746 | 0.5067 | 0.4181 | 0.053* | |
H3B | 0.2094 | 0.5561 | 0.3504 | 0.053* | |
C4 | 0.2877 (2) | 0.5549 (3) | 0.4655 (3) | 0.0402 (11) | |
H4A | 0.2746 | 0.6205 | 0.4770 | 0.048* | |
H4B | 0.2939 | 0.5176 | 0.5161 | 0.048* | |
C5 | 0.2516 (3) | 0.3465 (4) | 0.4382 (3) | 0.0536 (13) | |
H5A | 0.2014 | 0.3357 | 0.4499 | 0.080* | |
H5B | 0.2882 | 0.3708 | 0.4871 | 0.080* | |
H5C | 0.2710 | 0.2870 | 0.4217 | 0.080* | |
C6 | 0.1806 (3) | 0.3839 (4) | 0.2987 (3) | 0.0568 (14) | |
H6A | 0.1336 | 0.3700 | 0.3160 | 0.085* | |
H6B | 0.1980 | 0.3267 | 0.2762 | 0.085* | |
H6C | 0.1697 | 0.4332 | 0.2568 | 0.085* | |
C7 | 0.5302 (3) | 0.7792 (4) | 0.4780 (3) | 0.0604 (15) | |
H7A | 0.5637 | 0.7591 | 0.4429 | 0.072* | |
H7B | 0.5253 | 0.8488 | 0.4747 | 0.072* | |
C8 | 0.5662 (3) | 0.7508 (3) | 0.5642 (3) | 0.0510 (13) | |
H8A | 0.6202 | 0.7736 | 0.5813 | 0.061* | |
H8B | 0.5371 | 0.7786 | 0.6010 | 0.061* | |
C9 | 0.4340 (4) | 0.7257 (4) | 0.3548 (3) | 0.0702 (17) | |
H9A | 0.4295 | 0.7889 | 0.3305 | 0.105* | |
H9B | 0.3855 | 0.6913 | 0.3338 | 0.105* | |
H9C | 0.4764 | 0.6916 | 0.3407 | 0.105* | |
C10 | 0.3883 (3) | 0.7963 (4) | 0.4640 (4) | 0.0733 (18) | |
H10A | 0.3869 | 0.8559 | 0.4344 | 0.110* | |
H10B | 0.3992 | 0.8090 | 0.5226 | 0.110* | |
H10C | 0.3382 | 0.7645 | 0.4459 | 0.110* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pb1 | 0.03289 (9) | 0.03895 (10) | 0.02546 (8) | −0.00140 (8) | 0.00458 (6) | −0.00003 (8) |
Cr1 | 0.0277 (4) | 0.0296 (4) | 0.0261 (3) | 0.0001 (3) | 0.0050 (3) | −0.0017 (3) |
S1 | 0.0878 (12) | 0.0615 (10) | 0.0580 (8) | 0.0261 (8) | 0.0407 (8) | 0.0061 (7) |
S2 | 0.0671 (11) | 0.1125 (15) | 0.0917 (12) | −0.0349 (10) | 0.0421 (10) | −0.0433 (11) |
O1 | 0.0271 (15) | 0.0382 (17) | 0.0324 (14) | −0.0022 (12) | 0.0070 (12) | −0.0052 (13) |
O2 | 0.0353 (17) | 0.0310 (17) | 0.0376 (15) | −0.0028 (13) | −0.0009 (13) | 0.0001 (13) |
O3 | 0.0298 (15) | 0.0320 (17) | 0.0285 (13) | −0.0004 (12) | 0.0111 (12) | 0.0022 (12) |
N1 | 0.044 (2) | 0.044 (2) | 0.0354 (19) | 0.0010 (18) | 0.0085 (18) | −0.0085 (18) |
N2 | 0.075 (4) | 0.085 (4) | 0.069 (3) | −0.007 (3) | 0.033 (3) | 0.004 (3) |
N3 | 0.032 (2) | 0.044 (2) | 0.0366 (19) | −0.0103 (17) | 0.0048 (17) | −0.0009 (18) |
N4 | 0.042 (2) | 0.036 (2) | 0.040 (2) | 0.0025 (17) | 0.0008 (18) | 0.0030 (18) |
C1 | 0.044 (3) | 0.035 (3) | 0.037 (2) | 0.004 (2) | 0.007 (2) | −0.004 (2) |
C2 | 0.060 (4) | 0.059 (4) | 0.037 (2) | −0.017 (3) | 0.015 (3) | −0.004 (2) |
C3 | 0.031 (2) | 0.052 (3) | 0.047 (3) | 0.002 (2) | 0.007 (2) | 0.002 (2) |
C4 | 0.026 (2) | 0.052 (3) | 0.044 (2) | 0.002 (2) | 0.011 (2) | −0.008 (2) |
C5 | 0.056 (3) | 0.049 (3) | 0.057 (3) | −0.007 (2) | 0.018 (3) | 0.007 (3) |
C6 | 0.035 (3) | 0.077 (4) | 0.052 (3) | −0.017 (3) | −0.001 (2) | −0.006 (3) |
C7 | 0.061 (4) | 0.046 (3) | 0.066 (3) | −0.015 (3) | 0.001 (3) | 0.011 (3) |
C8 | 0.045 (3) | 0.034 (3) | 0.065 (3) | −0.011 (2) | −0.002 (3) | 0.001 (2) |
C9 | 0.086 (5) | 0.068 (4) | 0.048 (3) | 0.009 (3) | 0.003 (3) | 0.019 (3) |
C10 | 0.081 (4) | 0.051 (4) | 0.089 (4) | 0.025 (3) | 0.025 (4) | 0.015 (3) |
Pb1—O2i | 2.308 (3) | C3—H3A | 0.9700 |
Pb1—O1 | 2.329 (3) | C3—H3B | 0.9700 |
Pb1—N3 | 2.547 (4) | C4—H4A | 0.9700 |
Pb1—O3 | 2.686 (3) | C4—H4B | 0.9700 |
Cr1—O1 | 1.950 (3) | C5—H5A | 0.9600 |
Cr1—O2 | 1.951 (3) | C5—H5B | 0.9600 |
Cr1—O3 | 1.975 (3) | C5—H5C | 0.9600 |
Cr1—O3i | 1.993 (3) | C6—H6A | 0.9600 |
Cr1—N1 | 2.008 (4) | C6—H6B | 0.9600 |
Cr1—N4 | 2.158 (4) | C6—H6C | 0.9600 |
S1—C1 | 1.627 (5) | C7—C8 | 1.465 (6) |
S2—C2 | 1.603 (6) | C7—H7A | 0.9700 |
O1—C4 | 1.424 (5) | C7—H7B | 0.9700 |
O3—Cr1i | 1.993 (3) | C8—O2 | 1.419 (5) |
O3—H3 | 0.8211 | C8—H8A | 0.9700 |
N1—C1 | 1.167 (5) | C8—H8B | 0.9700 |
N2—C2 | 1.157 (6) | C9—H9A | 0.9600 |
N3—C6 | 1.467 (5) | C9—H9B | 0.9600 |
N3—C5 | 1.471 (5) | C9—H9C | 0.9600 |
N3—C3 | 1.479 (6) | C10—H10A | 0.9600 |
N4—C10 | 1.466 (6) | C10—H10B | 0.9600 |
N4—C9 | 1.497 (6) | C10—H10C | 0.9600 |
N4—C7 | 1.498 (6) | O2—Pb1i | 2.308 (3) |
C3—C4 | 1.515 (6) | ||
O2i—Pb1—O1 | 85.15 (10) | N3—C3—H3B | 109.3 |
O2i—Pb1—N3 | 88.84 (11) | C4—C3—H3B | 109.3 |
O1—Pb1—N3 | 70.85 (10) | H3A—C3—H3B | 107.9 |
O2i—Pb1—O3 | 65.32 (9) | O1—C4—C3 | 110.8 (3) |
O1—Pb1—O3 | 62.83 (8) | O1—C4—H4A | 109.5 |
N3—Pb1—O3 | 127.79 (9) | C3—C4—H4A | 109.5 |
O1—Cr1—O2 | 173.46 (12) | O1—C4—H4B | 109.5 |
O1—Cr1—O3 | 84.20 (11) | C3—C4—H4B | 109.5 |
O2—Cr1—O3 | 93.48 (12) | H4A—C4—H4B | 108.1 |
O1—Cr1—O3i | 98.58 (11) | N3—C5—H5A | 109.5 |
O2—Cr1—O3i | 86.94 (11) | N3—C5—H5B | 109.5 |
O3—Cr1—O3i | 79.10 (11) | H5A—C5—H5B | 109.5 |
O1—Cr1—N1 | 92.45 (13) | N3—C5—H5C | 109.5 |
O2—Cr1—N1 | 90.82 (14) | H5A—C5—H5C | 109.5 |
O3—Cr1—N1 | 170.07 (13) | H5B—C5—H5C | 109.5 |
O3i—Cr1—N1 | 92.21 (13) | N3—C6—H6A | 109.5 |
O1—Cr1—N4 | 91.44 (13) | N3—C6—H6B | 109.5 |
O2—Cr1—N4 | 82.75 (13) | H6A—C6—H6B | 109.5 |
O3—Cr1—N4 | 96.70 (13) | N3—C6—H6C | 109.5 |
O3i—Cr1—N4 | 168.63 (13) | H6A—C6—H6C | 109.5 |
N1—Cr1—N4 | 92.71 (15) | H6B—C6—H6C | 109.5 |
C4—O1—Cr1 | 125.4 (2) | C8—C7—N4 | 110.6 (4) |
C4—O1—Pb1 | 118.6 (2) | C8—C7—H7A | 109.5 |
Cr1—O1—Pb1 | 113.50 (12) | N4—C7—H7A | 109.5 |
Cr1—O3—Cr1i | 100.90 (11) | C8—C7—H7B | 109.5 |
Cr1—O3—Pb1 | 99.42 (10) | N4—C7—H7B | 109.5 |
Cr1i—O3—Pb1 | 96.14 (10) | H7A—C7—H7B | 108.1 |
Cr1—O3—H3 | 118.3 | O2—C8—C7 | 107.9 (4) |
Cr1i—O3—H3 | 124.4 | O2—C8—H8A | 110.1 |
Pb1—O3—H3 | 113.0 | C7—C8—H8A | 110.1 |
C1—N1—Cr1 | 174.3 (4) | O2—C8—H8B | 110.1 |
C6—N3—C5 | 109.0 (4) | C7—C8—H8B | 110.1 |
C6—N3—C3 | 109.9 (4) | H8A—C8—H8B | 108.4 |
C5—N3—C3 | 110.6 (3) | N4—C9—H9A | 109.5 |
C6—N3—Pb1 | 111.8 (3) | N4—C9—H9B | 109.5 |
C5—N3—Pb1 | 114.4 (3) | H9A—C9—H9B | 109.5 |
C3—N3—Pb1 | 100.9 (2) | N4—C9—H9C | 109.5 |
C10—N4—C9 | 106.5 (4) | H9A—C9—H9C | 109.5 |
C10—N4—C7 | 111.4 (4) | H9B—C9—H9C | 109.5 |
C9—N4—C7 | 107.4 (4) | N4—C10—H10A | 109.5 |
C10—N4—Cr1 | 114.3 (3) | N4—C10—H10B | 109.5 |
C9—N4—Cr1 | 113.3 (3) | H10A—C10—H10B | 109.5 |
C7—N4—Cr1 | 103.9 (3) | N4—C10—H10C | 109.5 |
N1—C1—S1 | 177.1 (4) | H10A—C10—H10C | 109.5 |
N2—C2—S2 | 177.9 (5) | H10B—C10—H10C | 109.5 |
N3—C3—C4 | 111.8 (4) | C8—O2—Cr1 | 111.9 (3) |
N3—C3—H3A | 109.3 | C8—O2—Pb1i | 131.0 (3) |
C4—C3—H3A | 109.3 | Cr1—O2—Pb1i | 110.78 (13) |
O2—Cr1—O1—C4 | −126.9 (10) | O1—Pb1—N3—C3 | 33.2 (2) |
O3—Cr1—O1—C4 | 163.7 (3) | O3—Pb1—N3—C3 | 61.4 (3) |
O3i—Cr1—O1—C4 | 85.6 (3) | O1—Cr1—N4—C10 | 68.5 (4) |
N1—Cr1—O1—C4 | −7.0 (3) | O2—Cr1—N4—C10 | −114.5 (4) |
N4—Cr1—O1—C4 | −99.7 (3) | O3—Cr1—N4—C10 | 152.8 (3) |
O2—Cr1—O1—Pb1 | 71.6 (11) | O3i—Cr1—N4—C10 | −139.6 (6) |
O3—Cr1—O1—Pb1 | 2.16 (13) | N1—Cr1—N4—C10 | −24.0 (4) |
O3i—Cr1—O1—Pb1 | −75.86 (13) | O1—Cr1—N4—C9 | −53.7 (3) |
N1—Cr1—O1—Pb1 | −168.47 (15) | O2—Cr1—N4—C9 | 123.3 (4) |
N4—Cr1—O1—Pb1 | 98.76 (15) | O3—Cr1—N4—C9 | 30.6 (3) |
O2i—Pb1—O1—C4 | −100.0 (3) | O3i—Cr1—N4—C9 | 98.2 (7) |
N3—Pb1—O1—C4 | −9.5 (3) | N1—Cr1—N4—C9 | −146.2 (3) |
O3—Pb1—O1—C4 | −164.7 (3) | O1—Cr1—N4—C7 | −169.9 (3) |
O2i—Pb1—O1—Cr1 | 62.91 (14) | O2—Cr1—N4—C7 | 7.1 (3) |
N3—Pb1—O1—Cr1 | 153.37 (16) | O3—Cr1—N4—C7 | −85.6 (3) |
O3—Pb1—O1—Cr1 | −1.78 (10) | O3i—Cr1—N4—C7 | −18.0 (8) |
O1—Cr1—O3—Cr1i | −99.92 (12) | N1—Cr1—N4—C7 | 97.6 (3) |
O2—Cr1—O3—Cr1i | 86.21 (12) | C6—N3—C3—C4 | −173.7 (4) |
O3i—Cr1—O3—Cr1i | 0.0 | C5—N3—C3—C4 | 65.9 (5) |
N1—Cr1—O3—Cr1i | −29.3 (8) | Pb1—N3—C3—C4 | −55.6 (4) |
N4—Cr1—O3—Cr1i | 169.31 (13) | Cr1—O1—C4—C3 | −177.4 (3) |
O1—Cr1—O3—Pb1 | −1.74 (10) | Pb1—O1—C4—C3 | −16.7 (5) |
O2—Cr1—O3—Pb1 | −175.61 (11) | N3—C3—C4—O1 | 52.2 (5) |
O3i—Cr1—O3—Pb1 | 98.18 (12) | C10—N4—C7—C8 | 90.1 (5) |
N1—Cr1—O3—Pb1 | 68.9 (8) | C9—N4—C7—C8 | −153.7 (4) |
N4—Cr1—O3—Pb1 | −92.51 (12) | Cr1—N4—C7—C8 | −33.4 (5) |
O2i—Pb1—O3—Cr1 | −95.92 (12) | N4—C7—C8—O2 | 52.8 (6) |
O1—Pb1—O3—Cr1 | 1.63 (10) | C7—C8—O2—Cr1 | −45.9 (5) |
N3—Pb1—O3—Cr1 | −28.53 (17) | C7—C8—O2—Pb1i | 165.2 (3) |
O2i—Pb1—O3—Cr1i | 6.24 (9) | O1—Cr1—O2—C8 | 48.5 (12) |
O1—Pb1—O3—Cr1i | 103.79 (11) | O3—Cr1—O2—C8 | 117.4 (3) |
N3—Pb1—O3—Cr1i | 73.63 (15) | O3i—Cr1—O2—C8 | −163.7 (3) |
O2i—Pb1—N3—C6 | −124.8 (3) | N1—Cr1—O2—C8 | −71.6 (3) |
O1—Pb1—N3—C6 | 149.9 (3) | N4—Cr1—O2—C8 | 21.1 (3) |
O3—Pb1—N3—C6 | 178.2 (3) | O1—Cr1—O2—Pb1i | −156.1 (10) |
O2i—Pb1—N3—C5 | −0.3 (3) | O3—Cr1—O2—Pb1i | −87.20 (13) |
O1—Pb1—N3—C5 | −85.5 (3) | O3i—Cr1—O2—Pb1i | −8.32 (13) |
O3—Pb1—N3—C5 | −57.3 (3) | N1—Cr1—O2—Pb1i | 83.85 (15) |
O2i—Pb1—N3—C3 | 118.4 (2) | N4—Cr1—O2—Pb1i | 176.47 (16) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Babich, O. A., Kokozay, V. N. & Pavlenko, V. A. (1996). Polyhedron, 15, 2727–2731. CSD CrossRef CAS Web of Science Google Scholar
Balzani, V., Bergamini, G. & Ceroni, P. (2009). Nanoparticles and Nanodevices in Biological Applications, Vol. 4, edited by S. Bellucci, pp. 131–158. Berlin, Heidelberg: Springer. Google Scholar
Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Jezierska, J., Brunel, L. C. & Ozarowski, A. (2005). Chem. Commun. pp. 4976–4978. Web of Science CSD CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gheorghe, R., Madalan, A. M., Costes, J.-P., Wernsdorfer, W. & Andruh, M. (2010). Dalton Trans. 39, 4734–4736. Web of Science CSD CrossRef CAS PubMed Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Hollingsworth, N., Kanna, M., Kociok-Köhn, G., Molloy, K. C. & Wongnawa, S. (2008). Dalton Trans. pp. 631–641. Web of Science CSD CrossRef Google Scholar
Khrustalev, V. N., Antipin, M. Yu., Zemlyansky, N. N., Borisova, I. V., Ustynyuk, Yu. A., Lunin, V. V., Barrau, J. & Rima, G. (2004). J. Organomet. Chem. 689, 478–483. Web of Science CSD CrossRef CAS Google Scholar
Khrustalev, V. N., Chernov, O. V., Aysin, R., Portnyagin, I. A., Nechaev, M. S. & Bukalov, S. S. (2008). Dalton Trans. pp. 1140–1143. Web of Science CSD CrossRef Google Scholar
Kirillov, A. M., Kopylovich, M. N., Kirillova, M. V., Haukka, M., da Silva, M. F. C. G. & Pombeiro, A. J. L. (2005). Angew. Chem. Int. Ed. 44, 4345–4349. Web of Science CSD CrossRef CAS Google Scholar
Nesterov, D. S., Kokozay, V. N., Jezierska, J., Pavlyuk, O. V., Boča, R. & Pombeiro, A. J. L. (2011). Inorg. Chem. 50, 4401–4411. Web of Science CSD CrossRef CAS PubMed Google Scholar
Nikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. & Jezierska, J. (2008). Polyhedron, 27, 2426–2430. Web of Science CSD CrossRef CAS Google Scholar
Nöth, H., Schlegel, A. & Lima, S. R. (2001). Z. Anorg. Allg. Chem. 627, 1793–1800. Google Scholar
Shahid, M., Hamid, M., Mazhar, M., Akhtar, J., Zeller, M. & Hunter, A. D. (2011). Inorg. Chem. Commun. 14, 288–291. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Trettenhahn, G., Nagl, M., Neuwirth, N., Arion, V. B., Jary, W., Pöchlauer, P. & Schmid, W. (2006). Angew. Chem. Int. Ed. 45, 2794–2798. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.