research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tetra­kis­[μ2-2-(di­methyl­amino)­ethano­lato-κ3N,O:O]di-μ3-hydroxido-di­thio­cyanato-κ2N-dichromium(III)dilead(II) di­thio­cyanate aceto­nitrile monosolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, Kyiv 01601, Ukraine, and bSSI "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenina ave., Kharkiv 61072, Ukraine
*Correspondence e-mail: rusanova.j@gmail.com

Edited by H. Ishida, Okayama University, Japan (Received 11 January 2016; accepted 9 March 2016; online 11 March 2016)

The tetra­nuclear complex cation of the title compound, [Cr2Pb2(NCS)2(OH)2(C4H10NO)4](SCN)2·CH3CN, lies on an inversion centre. The main structural feature of the cation is a distorted seco-norcubane Pb2Cr2O6 cage with a central four-membered Cr2O2 ring. The CrIII ion is coordinated in a distorted octa­hedron, which involves two N atoms of one bidentate ligand and one thio­cyanate anion, two μ2-O atoms of 2-(di­methyl­amino)­ethano­late ligands and two μ3-O atoms of hydroxide ions. The coordination geometry of the PbII ion is a distorted disphenoid, which involves one N atom, two μ2-O atoms and one μ3-O atom. In addition, weak Pb⋯S inter­actions involving the coordinating and non-coordinating thio­cyanate anions are observed. In the crystal, the complex cations are linked through the thio­cyanate anions via the Pb⋯S inter­actions and O—H⋯N hydrogen bonds into chains along the c axis. The chains are further linked together via S⋯S contacts. The contribution of the disordered solvent aceto­nitrile mol­ecule was removed with the SQUEEZE [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18] procedure in PLATON. The solvent is included in the reported mol­ecular formula, weight and density.

1. Chemical context

There is considerable inter­est in polynuclear heterometallic complexes as a result of their potential for inter­esting physico­chemical properties such as magnetic (Gheorghe et al., 2010[Gheorghe, R., Madalan, A. M., Costes, J.-P., Wernsdorfer, W. & Andruh, M. (2010). Dalton Trans. 39, 4734-4736.]), catalytic (Trettenhahn et al., 2006[Trettenhahn, G., Nagl, M., Neuwirth, N., Arion, V. B., Jary, W., Pöchlauer, P. & Schmid, W. (2006). Angew. Chem. Int. Ed. 45, 2794-2798.]) and useful light- and/or redox-induced functions (Balzani et al., 2009[Balzani, V., Bergamini, G. & Ceroni, P. (2009). Nanoparticles and Nanodevices in Biological Applications, Vol. 4, edited by S. Bellucci, pp. 131-158. Berlin, Heidelberg: Springer.]). The inter­est currently paid to the synthesis of polynuclear trans­ition metal complexes is stimulated, in particular, by attempts to design and construct multicomponent systems. Despite of a lot of work already done in this field, a limited number of synthetic strategies have been developed to date. Spontaneous self-assembly of Schiff base ligands or rigid building blocks appears to be an extremely powerful tool for the construction of novel polynuclear assemblies incorporating metal atoms by utilizing the various coordination modes of small and flexible ligands (Buvaylo et al., 2005[Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Jezierska, J., Brunel, L. C. & Ozarowski, A. (2005). Chem. Commun. pp. 4976-4978.]; Kirillov et al., 2005[Kirillov, A. M., Kopylovich, M. N., Kirillova, M. V., Haukka, M., da Silva, M. F. C. G. & Pombeiro, A. J. L. (2005). Angew. Chem. Int. Ed. 44, 4345-4349.]). Metal powders have been successfully applied in direct synthesis of coordination compounds to yield a number of novel monometallic (Babich et al., 1996[Babich, O. A., Kokozay, V. N. & Pavlenko, V. A. (1996). Polyhedron, 15, 2727-2731.]) and heterometallic complexes (Buvaylo et al., 2005[Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Jezierska, J., Brunel, L. C. & Ozarowski, A. (2005). Chem. Commun. pp. 4976-4978.]) of various composition, nuclearities and dimensionalities. This work is a continuation of our investigations in the field of direct synthesis of heterometallic coord­ination compounds based on spontaneous self-assembly, in which one of the metals is introduced as a powder (zero-valent state) and oxidized during the synthesis (Nesterov et al., 2011[Nesterov, D. S., Kokozay, V. N., Jezierska, J., Pavlyuk, O. V., Boča, R. & Pombeiro, A. J. L. (2011). Inorg. Chem. 50, 4401-4411.]), in particular the application of Reinecke's salt in direct synthesis of heterometallic complexes (Nikitina et al., 2008[Nikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. & Jezierska, J. (2008). Polyhedron, 27, 2426-2430.]).

[Scheme 1]

2. Structural commentary

The complex cation with a distorted seco-norcubane Pb2Cr2O6 framework is centrosymmetric, as shown in Fig. 1[link]. The two crystallographically independent di­methyl­amino­ethanol ligands form five-membered chelate rings with the CrIII and PbII ions. The CrIII ion adopts a distorted octa­hedral coordination environment with one N atom and two μ2-O atoms from the di­methyl­amino­ethanol ligands and one μ3-O atom from the hydroxide ion in the equatorial plane, and one N atom of the thio­cyanate ion and one μ3-O atom of the second hydroxide ion in the axial positions. The Cr—O and Cr—N bond lengths are 1.950 (3)–1.993 (3) Å and 2.008 (4)–2.158 (4) Å, respectively, and the N—Cr—O and O—Cr—O angles are 79.10 (11)–93.48 (12)° for cis-positions and 168.63 (13)–173.46 (12)° for trans-positions. The PbII ion is tetra­coordinated by the one μ3-O atom of the hydroxide ion, one N atom and two μ2-O atoms of the di­methyl­amino­ethanol ligands and adopts a distorted disphenoidal coordination. There are additional weak Pb⋯S inter­actions [Pb1⋯S1 3.2749 (14) Å and Pb1⋯S2 3.4056 (16) Å], and thus the coordination geometry of the PbII ion can be considered as a strongly distorted trigonal prism, if these inter­actions are included. The Pb—O bond lengths [2.308 (3)–2.686 (3) Å] as well as the Pb—N distance [2.547 (4) Å] are in a good agreement with literature values. In general, all geometric parameters of the title complex cation are in good agreement with those in related amino­alcohol complexes (Shahid et al., 2011[Shahid, M., Hamid, M., Mazhar, M., Akhtar, J., Zeller, M. & Hunter, A. D. (2011). Inorg. Chem. Commun. 14, 288-291.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, shown with 30% probability displacement ellipsoids. O—H⋯N hydrogen bonds are shown as dashed lines.

3. Supra­molecular features

In the crystal, the tetra­nuclear complex cations are linked through thio­cyanate anions with the above-mentioned inter­molecular Pb⋯S inter­actions and by an O—H⋯N hydrogen bond (Table 1[link]) into chains along the c axis (Fig. 2[link]). The chains are further linked together by an S⋯S sigma-hole bond [S1⋯S2 3.585 (2) Å], where atom S2 acts as a lone-pair donor.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N2 0.82 1.95 2.757 (6) 169
[Figure 2]
Figure 2
Crystal packing diagram of the title compound, viewed along the b axis. Pb⋯S contacts and O—H⋯N hydrogen bonds are shown as dashed lines.

4. Database survey

A search of the Cambridge Structural Database (Version 5.36; last update February 2015; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for related complexes with 2-di­methyl­amino­ethanol gave 260 hits, including some closely related structures with a distorted seco-norcubane cage with Ti (Hollingsworth et al., 2008[Hollingsworth, N., Kanna, M., Kociok-Köhn, G., Molloy, K. C. & Wongnawa, S. (2008). Dalton Trans. pp. 631-641.]), Ge(Sn)–Li (Khrustalev et al., 2004[Khrustalev, V. N., Antipin, M. Yu., Zemlyansky, N. N., Borisova, I. V., Ustynyuk, Yu. A., Lunin, V. V., Barrau, J. & Rima, G. (2004). J. Organomet. Chem. 689, 478-483.], 2008[Khrustalev, V. N., Chernov, O. V., Aysin, R., Portnyagin, I. A., Nechaev, M. S. & Bukalov, S. S. (2008). Dalton Trans. pp. 1140-1143.]) and Na(Li)–Al (Nöth et al., 2001[Nöth, H., Schlegel, A. & Lima, S. R. (2001). Z. Anorg. Allg. Chem. 627, 1793-1800.]).

5. Synthesis and crystallization

Lead monoxide (0,279 g, 1.25 mmol), NH4[Cr(NCS)4(NH3)2]·H2O (0.443 g, 1.25 mmol), NH4SCN (0.095 g, 1.25 mmol), 2-dimethylaminoethanol (0.5 ml, 5 mmol) and aceto­nitrile (20 ml) were heated in air at 323–333 K and stirred for 110 min until complete PbO dissolution occurred. Dark-grey crystals suitable for the crystallographic study were formed by slow evaporation of the resulting solution in air. The crystals were filtered off, washed with dry isopropyl alcohol and finally dried in vacuo at room temperature. Yield: 0.11 g, 10.3%.

The IR spectrum of the title compound (as KBr pellets) exhibited absorbance at 2250 cm−1 assigned to υ(CN) of the solvent aceto­nitrile mol­ecule, as well two additional bands at 2080 cm−1 and 1610 cm−1, which were assigned, respectively, to stretch and vibrational υ(CN) modes of the SCN anion. Analysis calculated for C22H45Cr2N9S4Pb2: C 22.43, H 3.85, N 10.69, S 10.88%; found: C 22.21, H 3.78, N 10.45, S 10.64%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were placed in idealized positions and refined as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C,O) for methyl and hydroxyl groups.

Table 2
Experimental details

Crystal data
Chemical formula [Cr2Pb2(NCS)2(OH)2(C4H10NO)4](NCS)2·C2H3N
Mr 1178.29
Crystal system, space group Monoclinic, C2/c
Temperature (K) 298
a, b, c (Å) 17.533 (1), 13.8815 (7), 16.6179 (8)
β (°) 104.771 (6)
V3) 3910.9 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 9.39
Crystal size (mm) 0.4 × 0.1 × 0.1
 
Data collection
Diffractometer Agilent Xcalibur Sapphire 3
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.382, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 20193, 5680, 4133
Rint 0.064
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.058, 0.93
No. of reflections 5680
No. of parameters 190
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.00, −0.69
Computer programs: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

During the refinement, several isolated electron density peaks were located, which were assignable to a solvent acetnitrile mol­ecule(s) from the IR data and elementary analysis. Satisfactory results (R1 = 0.045) were obtained modeling the disordered C and N atoms, but very large displacement parameters for them were observed. The SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) procedure in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) indicated solvent cavities of volume 118 Å3 centered at (0.5, 0, 0.25), (0.5, 0, 0.75), (0, 0.5, 0.75) and (0, 0.5, 0.25), each containing approximately 18 electrons. In the final refinement, this contribution was removed from the intensity data, producing better refinement results. We assumed full occupancy of the solvent mol­ecule for each cavity, although the estimated 18 electrons are fewer than the 22 electrons expected for full occupancy. The solvent mol­ecule is included in the reported mol­ecular formula, weight and density.

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 and PLATON (Spek, 2009).

Tetrakis[µ2-2-(dimethylamino)ethanolato-κ3N,O:O]di-µ3-hydroxido-dithiocyanato-κ2N-dichromium(III)dilead(II) dithiocyanate acetonitrile monosolvate top
Crystal data top
[Cr2Pb2(NCS)2(OH)2(C4H10NO)4](NCS)2·C2H3NF(000) = 2256
Mr = 1178.29Dx = 2.001 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 17.533 (1) ÅCell parameters from 4335 reflections
b = 13.8815 (7) Åθ = 2.9–32.5°
c = 16.6179 (8) ŵ = 9.39 mm1
β = 104.771 (6)°T = 298 K
V = 3910.9 (4) Å3Block, metallic dark gray
Z = 40.4 × 0.1 × 0.1 mm
Data collection top
Agilent Xcalibur Sapphire 3
diffractometer
5680 independent reflections
Radiation source: Enhance (Mo) X-ray Source4133 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
Detector resolution: 16.1827 pixels mm-1θmax = 30.0°, θmin = 3.0°
ω scansh = 2424
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1918
Tmin = 0.382, Tmax = 1.000l = 2323
20193 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0118P)2]
where P = (Fo2 + 2Fc2)/3
5680 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 1.00 e Å3
0 restraintsΔρmin = 0.69 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.369714 (9)0.456817 (12)0.330204 (9)0.03296 (5)
Cr10.46177 (4)0.59683 (5)0.51003 (4)0.02815 (15)
S10.33608 (10)0.73222 (11)0.70835 (8)0.0651 (4)
S20.75622 (10)0.58870 (14)0.31923 (11)0.0865 (6)
O10.35991 (16)0.5544 (2)0.44114 (16)0.0327 (7)
O20.56441 (17)0.6487 (2)0.56837 (17)0.0365 (7)
O30.50477 (15)0.52564 (19)0.42849 (15)0.0294 (6)
H30.53140.55540.40270.044*
N10.4136 (2)0.6465 (3)0.5993 (2)0.0412 (9)
N20.6095 (3)0.6076 (4)0.3499 (3)0.0735 (14)
N30.2425 (2)0.4171 (3)0.3704 (2)0.0385 (9)
N40.4503 (2)0.7343 (3)0.4474 (2)0.0410 (9)
C10.3816 (3)0.6803 (3)0.6461 (3)0.0395 (11)
C20.6716 (3)0.6005 (4)0.3384 (3)0.0513 (13)
C30.2214 (3)0.5127 (3)0.3976 (3)0.0441 (12)
H3A0.17460.50670.41810.053*
H3B0.20940.55610.35040.053*
C40.2877 (2)0.5549 (3)0.4655 (3)0.0402 (11)
H4A0.27460.62050.47700.048*
H4B0.29390.51760.51610.048*
C50.2516 (3)0.3465 (4)0.4382 (3)0.0536 (13)
H5A0.20140.33570.44990.080*
H5B0.28820.37080.48710.080*
H5C0.27100.28700.42170.080*
C60.1806 (3)0.3839 (4)0.2987 (3)0.0568 (14)
H6A0.13360.37000.31600.085*
H6B0.19800.32670.27620.085*
H6C0.16970.43320.25680.085*
C70.5302 (3)0.7792 (4)0.4780 (3)0.0604 (15)
H7A0.56370.75910.44290.072*
H7B0.52530.84880.47470.072*
C80.5662 (3)0.7508 (3)0.5642 (3)0.0510 (13)
H8A0.62020.77360.58130.061*
H8B0.53710.77860.60100.061*
C90.4340 (4)0.7257 (4)0.3548 (3)0.0702 (17)
H9A0.42950.78890.33050.105*
H9B0.38550.69130.33380.105*
H9C0.47640.69160.34070.105*
C100.3883 (3)0.7963 (4)0.4640 (4)0.0733 (18)
H10A0.38690.85590.43440.110*
H10B0.39920.80900.52260.110*
H10C0.33820.76450.44590.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.03289 (9)0.03895 (10)0.02546 (8)0.00140 (8)0.00458 (6)0.00003 (8)
Cr10.0277 (4)0.0296 (4)0.0261 (3)0.0001 (3)0.0050 (3)0.0017 (3)
S10.0878 (12)0.0615 (10)0.0580 (8)0.0261 (8)0.0407 (8)0.0061 (7)
S20.0671 (11)0.1125 (15)0.0917 (12)0.0349 (10)0.0421 (10)0.0433 (11)
O10.0271 (15)0.0382 (17)0.0324 (14)0.0022 (12)0.0070 (12)0.0052 (13)
O20.0353 (17)0.0310 (17)0.0376 (15)0.0028 (13)0.0009 (13)0.0001 (13)
O30.0298 (15)0.0320 (17)0.0285 (13)0.0004 (12)0.0111 (12)0.0022 (12)
N10.044 (2)0.044 (2)0.0354 (19)0.0010 (18)0.0085 (18)0.0085 (18)
N20.075 (4)0.085 (4)0.069 (3)0.007 (3)0.033 (3)0.004 (3)
N30.032 (2)0.044 (2)0.0366 (19)0.0103 (17)0.0048 (17)0.0009 (18)
N40.042 (2)0.036 (2)0.040 (2)0.0025 (17)0.0008 (18)0.0030 (18)
C10.044 (3)0.035 (3)0.037 (2)0.004 (2)0.007 (2)0.004 (2)
C20.060 (4)0.059 (4)0.037 (2)0.017 (3)0.015 (3)0.004 (2)
C30.031 (2)0.052 (3)0.047 (3)0.002 (2)0.007 (2)0.002 (2)
C40.026 (2)0.052 (3)0.044 (2)0.002 (2)0.011 (2)0.008 (2)
C50.056 (3)0.049 (3)0.057 (3)0.007 (2)0.018 (3)0.007 (3)
C60.035 (3)0.077 (4)0.052 (3)0.017 (3)0.001 (2)0.006 (3)
C70.061 (4)0.046 (3)0.066 (3)0.015 (3)0.001 (3)0.011 (3)
C80.045 (3)0.034 (3)0.065 (3)0.011 (2)0.002 (3)0.001 (2)
C90.086 (5)0.068 (4)0.048 (3)0.009 (3)0.003 (3)0.019 (3)
C100.081 (4)0.051 (4)0.089 (4)0.025 (3)0.025 (4)0.015 (3)
Geometric parameters (Å, º) top
Pb1—O2i2.308 (3)C3—H3A0.9700
Pb1—O12.329 (3)C3—H3B0.9700
Pb1—N32.547 (4)C4—H4A0.9700
Pb1—O32.686 (3)C4—H4B0.9700
Cr1—O11.950 (3)C5—H5A0.9600
Cr1—O21.951 (3)C5—H5B0.9600
Cr1—O31.975 (3)C5—H5C0.9600
Cr1—O3i1.993 (3)C6—H6A0.9600
Cr1—N12.008 (4)C6—H6B0.9600
Cr1—N42.158 (4)C6—H6C0.9600
S1—C11.627 (5)C7—C81.465 (6)
S2—C21.603 (6)C7—H7A0.9700
O1—C41.424 (5)C7—H7B0.9700
O3—Cr1i1.993 (3)C8—O21.419 (5)
O3—H30.8211C8—H8A0.9700
N1—C11.167 (5)C8—H8B0.9700
N2—C21.157 (6)C9—H9A0.9600
N3—C61.467 (5)C9—H9B0.9600
N3—C51.471 (5)C9—H9C0.9600
N3—C31.479 (6)C10—H10A0.9600
N4—C101.466 (6)C10—H10B0.9600
N4—C91.497 (6)C10—H10C0.9600
N4—C71.498 (6)O2—Pb1i2.308 (3)
C3—C41.515 (6)
O2i—Pb1—O185.15 (10)N3—C3—H3B109.3
O2i—Pb1—N388.84 (11)C4—C3—H3B109.3
O1—Pb1—N370.85 (10)H3A—C3—H3B107.9
O2i—Pb1—O365.32 (9)O1—C4—C3110.8 (3)
O1—Pb1—O362.83 (8)O1—C4—H4A109.5
N3—Pb1—O3127.79 (9)C3—C4—H4A109.5
O1—Cr1—O2173.46 (12)O1—C4—H4B109.5
O1—Cr1—O384.20 (11)C3—C4—H4B109.5
O2—Cr1—O393.48 (12)H4A—C4—H4B108.1
O1—Cr1—O3i98.58 (11)N3—C5—H5A109.5
O2—Cr1—O3i86.94 (11)N3—C5—H5B109.5
O3—Cr1—O3i79.10 (11)H5A—C5—H5B109.5
O1—Cr1—N192.45 (13)N3—C5—H5C109.5
O2—Cr1—N190.82 (14)H5A—C5—H5C109.5
O3—Cr1—N1170.07 (13)H5B—C5—H5C109.5
O3i—Cr1—N192.21 (13)N3—C6—H6A109.5
O1—Cr1—N491.44 (13)N3—C6—H6B109.5
O2—Cr1—N482.75 (13)H6A—C6—H6B109.5
O3—Cr1—N496.70 (13)N3—C6—H6C109.5
O3i—Cr1—N4168.63 (13)H6A—C6—H6C109.5
N1—Cr1—N492.71 (15)H6B—C6—H6C109.5
C4—O1—Cr1125.4 (2)C8—C7—N4110.6 (4)
C4—O1—Pb1118.6 (2)C8—C7—H7A109.5
Cr1—O1—Pb1113.50 (12)N4—C7—H7A109.5
Cr1—O3—Cr1i100.90 (11)C8—C7—H7B109.5
Cr1—O3—Pb199.42 (10)N4—C7—H7B109.5
Cr1i—O3—Pb196.14 (10)H7A—C7—H7B108.1
Cr1—O3—H3118.3O2—C8—C7107.9 (4)
Cr1i—O3—H3124.4O2—C8—H8A110.1
Pb1—O3—H3113.0C7—C8—H8A110.1
C1—N1—Cr1174.3 (4)O2—C8—H8B110.1
C6—N3—C5109.0 (4)C7—C8—H8B110.1
C6—N3—C3109.9 (4)H8A—C8—H8B108.4
C5—N3—C3110.6 (3)N4—C9—H9A109.5
C6—N3—Pb1111.8 (3)N4—C9—H9B109.5
C5—N3—Pb1114.4 (3)H9A—C9—H9B109.5
C3—N3—Pb1100.9 (2)N4—C9—H9C109.5
C10—N4—C9106.5 (4)H9A—C9—H9C109.5
C10—N4—C7111.4 (4)H9B—C9—H9C109.5
C9—N4—C7107.4 (4)N4—C10—H10A109.5
C10—N4—Cr1114.3 (3)N4—C10—H10B109.5
C9—N4—Cr1113.3 (3)H10A—C10—H10B109.5
C7—N4—Cr1103.9 (3)N4—C10—H10C109.5
N1—C1—S1177.1 (4)H10A—C10—H10C109.5
N2—C2—S2177.9 (5)H10B—C10—H10C109.5
N3—C3—C4111.8 (4)C8—O2—Cr1111.9 (3)
N3—C3—H3A109.3C8—O2—Pb1i131.0 (3)
C4—C3—H3A109.3Cr1—O2—Pb1i110.78 (13)
O2—Cr1—O1—C4126.9 (10)O1—Pb1—N3—C333.2 (2)
O3—Cr1—O1—C4163.7 (3)O3—Pb1—N3—C361.4 (3)
O3i—Cr1—O1—C485.6 (3)O1—Cr1—N4—C1068.5 (4)
N1—Cr1—O1—C47.0 (3)O2—Cr1—N4—C10114.5 (4)
N4—Cr1—O1—C499.7 (3)O3—Cr1—N4—C10152.8 (3)
O2—Cr1—O1—Pb171.6 (11)O3i—Cr1—N4—C10139.6 (6)
O3—Cr1—O1—Pb12.16 (13)N1—Cr1—N4—C1024.0 (4)
O3i—Cr1—O1—Pb175.86 (13)O1—Cr1—N4—C953.7 (3)
N1—Cr1—O1—Pb1168.47 (15)O2—Cr1—N4—C9123.3 (4)
N4—Cr1—O1—Pb198.76 (15)O3—Cr1—N4—C930.6 (3)
O2i—Pb1—O1—C4100.0 (3)O3i—Cr1—N4—C998.2 (7)
N3—Pb1—O1—C49.5 (3)N1—Cr1—N4—C9146.2 (3)
O3—Pb1—O1—C4164.7 (3)O1—Cr1—N4—C7169.9 (3)
O2i—Pb1—O1—Cr162.91 (14)O2—Cr1—N4—C77.1 (3)
N3—Pb1—O1—Cr1153.37 (16)O3—Cr1—N4—C785.6 (3)
O3—Pb1—O1—Cr11.78 (10)O3i—Cr1—N4—C718.0 (8)
O1—Cr1—O3—Cr1i99.92 (12)N1—Cr1—N4—C797.6 (3)
O2—Cr1—O3—Cr1i86.21 (12)C6—N3—C3—C4173.7 (4)
O3i—Cr1—O3—Cr1i0.0C5—N3—C3—C465.9 (5)
N1—Cr1—O3—Cr1i29.3 (8)Pb1—N3—C3—C455.6 (4)
N4—Cr1—O3—Cr1i169.31 (13)Cr1—O1—C4—C3177.4 (3)
O1—Cr1—O3—Pb11.74 (10)Pb1—O1—C4—C316.7 (5)
O2—Cr1—O3—Pb1175.61 (11)N3—C3—C4—O152.2 (5)
O3i—Cr1—O3—Pb198.18 (12)C10—N4—C7—C890.1 (5)
N1—Cr1—O3—Pb168.9 (8)C9—N4—C7—C8153.7 (4)
N4—Cr1—O3—Pb192.51 (12)Cr1—N4—C7—C833.4 (5)
O2i—Pb1—O3—Cr195.92 (12)N4—C7—C8—O252.8 (6)
O1—Pb1—O3—Cr11.63 (10)C7—C8—O2—Cr145.9 (5)
N3—Pb1—O3—Cr128.53 (17)C7—C8—O2—Pb1i165.2 (3)
O2i—Pb1—O3—Cr1i6.24 (9)O1—Cr1—O2—C848.5 (12)
O1—Pb1—O3—Cr1i103.79 (11)O3—Cr1—O2—C8117.4 (3)
N3—Pb1—O3—Cr1i73.63 (15)O3i—Cr1—O2—C8163.7 (3)
O2i—Pb1—N3—C6124.8 (3)N1—Cr1—O2—C871.6 (3)
O1—Pb1—N3—C6149.9 (3)N4—Cr1—O2—C821.1 (3)
O3—Pb1—N3—C6178.2 (3)O1—Cr1—O2—Pb1i156.1 (10)
O2i—Pb1—N3—C50.3 (3)O3—Cr1—O2—Pb1i87.20 (13)
O1—Pb1—N3—C585.5 (3)O3i—Cr1—O2—Pb1i8.32 (13)
O3—Pb1—N3—C557.3 (3)N1—Cr1—O2—Pb1i83.85 (15)
O2i—Pb1—N3—C3118.4 (2)N4—Cr1—O2—Pb1i176.47 (16)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N20.821.952.757 (6)169
 

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBabich, O. A., Kokozay, V. N. & Pavlenko, V. A. (1996). Polyhedron, 15, 2727–2731.  CSD CrossRef CAS Web of Science Google Scholar
First citationBalzani, V., Bergamini, G. & Ceroni, P. (2009). Nanoparticles and Nanodevices in Biological Applications, Vol. 4, edited by S. Bellucci, pp. 131–158. Berlin, Heidelberg: Springer.  Google Scholar
First citationBuvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Jezierska, J., Brunel, L. C. & Ozarowski, A. (2005). Chem. Commun. pp. 4976–4978.  Web of Science CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGheorghe, R., Madalan, A. M., Costes, J.-P., Wernsdorfer, W. & Andruh, M. (2010). Dalton Trans. 39, 4734–4736.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHollingsworth, N., Kanna, M., Kociok-Köhn, G., Molloy, K. C. & Wongnawa, S. (2008). Dalton Trans. pp. 631–641.  Web of Science CSD CrossRef Google Scholar
First citationKhrustalev, V. N., Antipin, M. Yu., Zemlyansky, N. N., Borisova, I. V., Ustynyuk, Yu. A., Lunin, V. V., Barrau, J. & Rima, G. (2004). J. Organomet. Chem. 689, 478–483.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhrustalev, V. N., Chernov, O. V., Aysin, R., Portnyagin, I. A., Nechaev, M. S. & Bukalov, S. S. (2008). Dalton Trans. pp. 1140–1143.  Web of Science CSD CrossRef Google Scholar
First citationKirillov, A. M., Kopylovich, M. N., Kirillova, M. V., Haukka, M., da Silva, M. F. C. G. & Pombeiro, A. J. L. (2005). Angew. Chem. Int. Ed. 44, 4345–4349.  Web of Science CSD CrossRef CAS Google Scholar
First citationNesterov, D. S., Kokozay, V. N., Jezierska, J., Pavlyuk, O. V., Boča, R. & Pombeiro, A. J. L. (2011). Inorg. Chem. 50, 4401–4411.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. & Jezierska, J. (2008). Polyhedron, 27, 2426–2430.  Web of Science CSD CrossRef CAS Google Scholar
First citationNöth, H., Schlegel, A. & Lima, S. R. (2001). Z. Anorg. Allg. Chem. 627, 1793–1800.  Google Scholar
First citationShahid, M., Hamid, M., Mazhar, M., Akhtar, J., Zeller, M. & Hunter, A. D. (2011). Inorg. Chem. Commun. 14, 288–291.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTrettenhahn, G., Nagl, M., Neuwirth, N., Arion, V. B., Jary, W., Pöchlauer, P. & Schmid, W. (2006). Angew. Chem. Int. Ed. 45, 2794–2798.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds