research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (±)-[trans-cyclo­hexane-1,2-diylbis(aza­nedi­yl)]di­phospho­nium dibromide di­chloro­methane disolvate

CROSSMARK_Color_square_no_text.svg

aCentro de Investigaciónes Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, CP 62209, Cuernavaca Mor., Mexico
*Correspondence e-mail: jeanmichelg@gmail.com

Edited by H. Ishida, Okayama University, Japan (Received 20 January 2016; accepted 16 March 2016; online 31 March 2016)

The cation of the title solvated salt, C42H42N2P22+·2Br·2CH2Cl2, lies on a crystallographic twofold rotation axis. The 1,2-di­amino­cyclo­hexane fragment has a chair conformation with two N atoms in a transoid conformation [N—C—C—N = 163.4 (2)°]. In the crystal, the cations are linked to the anions by N—H⋯Br and C—H⋯Br hydrogen bonds, forming a chain structure along the c axis. The di­chloro­methane mol­ecule takes part in the hydrogen-bond network through C—H⋯π and C—H⋯Br inter­actions.

1. Chemical context

Quaternary phospho­nium salts are very attractive compounds possessing widespread applications in synthetic organic chemistry and have played various important roles as stoichiometric reagents, phase-transfer reagents, reactive inter­mediates, ionic liquids, building blocks for supra­molecular assemblies and catalysts (Werner, 2009[Werner, T. (2009). Adv. Synth. Catal. 351, 1469-1481.]). In particular, P,P,P-triaryl-P-amino­phospho­nium salts bearing a primary amino group are isolable inter­mediates in the Horner & Oediger (1959[Horner, L. & Oediger, H. (1959). Justus Liebigs Ann. Chem. 627, 142-162.]) synthesis of imino­phospho­ranes. The title phospho­nium compound was used to synthesize new chiral imino­phospho­rane complexes in view of its catalytic application for organic transformations including olefin-CO copolymerization (Tardif et al., 1998[Tardif, O., Donnadieu, B. & Reau, R. (1998). C. R. Acad. Sci. Ser. IIc Chim. 1, 661-666.]) and enanti­oselective copper-catalysed cyclo­propanation (Reetz & Bohres, 1998[Reetz, M. T. & Bohres, E. (1998). Chem. Commun. pp. 935-936.]), but its crystal structure had not been determined.

[Scheme 1]

2. Structural commentary

The cation is situated on a crystallographic twofold rotation axis (Fig. 1[link]). The 1,2-di­amino­cyclo­hexane fragment has a chair conformation with N atoms in a transoid conformation [N1—C19—C19i—N1i = 163.4 (2)°; symmetry code: (i) −x + 1, y, −z + [{3\over 2}]]. The phospho­rus atom has a tetra­hedral geometry; the C—P—C angles are in the range 108.61 (12)–108.89 (12)° and the N—P—C angles in the range 109.47 (12)–111.00 (12)°. The N—P distance is 1.623 (2) Å.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labelling scheme. Atoms with the suffix A are at the symmetry position (−x + 1, y, −z + [{3\over 2}]).

3. Supra­molecular features

The Br anion is an acceptor of four hydrogen bonds, three of which are donated by phenyl and amine groups of the trans-1,2-di­amino­(N,N′-ditri­phenyl­phospho­nio)cyclo­hexane mol­ecule and the last is donated by the solvent di­chloro­methane mol­ecule (Table 1[link]). In the hydrogen-bond pattern, the graph-set motif R42(22) involving atoms (–C19—N1—H1⋯Br1⋯H5—C5—C6—C1—P1—N1—C19–)2 can be distinguished (Fig. 2[link]). The R42(22) pattern generates a supra­molecular chain running along the c axis. The di­chloro­methane mol­ecule is also linked to the chain via C—H⋯π and C—H⋯Br inter­actions (Fig. 3[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Br1 0.86 (3) 2.43 (3) 3.285 (2) 172 (3)
C6—H6⋯Br1i 0.93 2.80 3.670 (3) 157
C15—H15⋯Br1ii 0.93 2.84 3.718 (3) 158
C22—H22A⋯Br1ii 0.97 2.80 3.562 (3) 136
C22—H22BCgii 0.97 2.54 3.479 163
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A cation dimer of the title compound formed by N—H⋯Br and C—H⋯Br hydrogen bonds (dashed lines) with a centrosymmetric R42(22) motif.
[Figure 3]
Figure 3
A view of the supra­molecular chain, generated by the N—H⋯Br and C—H⋯Br inter­actions, running along the c axis. The solvent di­chloro­methane mol­ecule also makes C—H⋯π and C—H⋯Br inter­actions to the chain. The N—H⋯Br and C—H⋯Br hydrogen bonds are indicated by dashed lines. Hydrogen atoms not involved in the hydrogen bonds are omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) revealed the existence of 33 deposited phospho­nium structures of general formula [R3PNHR′]+, where R and R′ are either aryl or alkyl groups. Amongst those, only two structures are polycationic: MELCIQ (Alajarín et al., 2006[Alajarín, M., López-Leonardo, C., Berná, J. & Steed, J. W. (2006). Tetrahedron Lett. 47, 5405-5408.]) is tricationic with a tricyclic structure and tri­fluoro­acetate counter-ions, and WERROB (Demange et al., 2006[Demange, M., Boubekeur, L., Auffrant, A., Mézailles, N., Ricard, L., Le Goff, X. & Le Floch, P. (2006). New J. Chem. 30, 1745-1754.]) is dicationic and contains bromide counter-ions. All the remaining structures are monocationic and only four of them contain a bromide counter-ion: ECUJOC (Boubekeur et al., 2006[Boubekeur, L., Ulmer, S., Ricard, L., Mézailles, N. & Le Floch, P. (2006). Organometallics, 25, 315-317.]), NEPZUF (Martínez de León et al., 2013[Martínez de León, C., Tlahuext, H., Flores-Parra, A., Duarte-Hernández, A. M. & Grévy, J.-M. (2013). Acta Cryst. E69, o118.]), ZOFYAU and ZOFYEY (Imrie et al., 1995[Imrie, C., Modro, T. A., Van Rooyen, P. H., Wagener, C. C. P., Wallace, K., Hudson, H. R., McPartlin, M., Nasirun, J. B. & Powroznyk, L. (1995). J. Phys. Org. Chem. 8, 41-46.]). For all the reported compounds, the P—N bond distances assume a partial double-bond character with values falling within the narrow range of 1.60–1.66 Å, regardless of the counter-ion and substituents on both N and P. The N—P distance of the title compound [1.623 (2) Å] agrees with these values. In addition, the P—N—C angle in the present compound [126.9 (2)°] indicates a planar sp2 geometry for the N atom, and falls within the range of 120–133° reported for all related phospho­nium structures.

5. Synthesis and crystallization

Under an N2 atmosphere, a solution of 3.07 g of Br2 in 5 ml of CH2Cl2 was added dropwise under stirring at 273 K, to a solution of Ph3P (5.04 g, 19.24 mmol) in 100 ml of the same solvent. After four h of stirring at room temperature and the formation of white precipitate, a mixture of half an equivalent of (±)-trans-1,2-di­amino­cyclo­hexane (1.09 g, 9.62 mmol) and one equivalent of tri­ethyl­amine (2.68 ml, 19.24 mmol) in 10 ml of CH2Cl2 was added dropwise under stirring at 273 K. The suspension was left under continuous stirring for 12 h at room temperature. Then the reactant was extracted twice with 25 ml of distilled water, and the organic phase was dried over MgSO4. All volatiles were eliminated under vacuum, and the resulting light-yellow solid was stirred with Et2O overnight. After filtration, 6.0 g of the title compound was obtained as a white powder (yield 93%, m.p. 563 K). Single crystals suitable for X-ray diffraction were grown by slow evaporation of a di­chloro­methane solution at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The N-bound H atom was located in a difference Fourier map and its coordinates were refined with a distance restraint of N—H = 0.86 (1) Å with Uiso(H) = 1.2Ueq(N). Other H atoms were positioned geometrically (C—H = 0.93 or 0.97 Å) and constrained using the riding-model approximation with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C42H42N2P22+·2Br·2CH2Cl2
Mr 966.39
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 17.1911 (2), 14.9027 (2), 18.4492 (2)
β (°) 114.2547 (15)
V3) 4309.34 (10)
Z 4
Radiation type Cu Kα
μ (mm−1) 5.63
Crystal size (mm) 0.17 × 0.12 × 0.09
 
Data collection
Diffractometer Agilent SuperNova Dual Source diffractometer with an EosS2 detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Begbroke, England.])
Tmin, Tmax 0.145, 0.602
No. of measured, independent and observed [I > 2σ(I)] reflections 16763, 4256, 4203
Rint 0.021
(sin θ/λ)max−1) 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.098, 1.04
No. of reflections 4256
No. of parameters 248
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.54, −1.50
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Begbroke, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(±)-[trans-Cyclohexane-1,2-diylbis(azanediyl)]diphosphonium dibromide dichloromethane disolvate top
Crystal data top
C42H42N2P22+·2Br·2CH2Cl2F(000) = 1968
Mr = 966.39Dx = 1.490 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 17.1911 (2) ÅCell parameters from 13228 reflections
b = 14.9027 (2) Åθ = 2.6–72.5°
c = 18.4492 (2) ŵ = 5.63 mm1
β = 114.2547 (15)°T = 100 K
V = 4309.34 (10) Å3Plate, colourless
Z = 40.17 × 0.12 × 0.09 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an EosS2 detector
4256 independent reflections
Radiation source: sealed X-ray tube, SuperNova (Cu) X-ray Source4203 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 8.0769 pixels mm-1θmax = 72.7°, θmin = 4.1°
ω scansh = 2021
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1818
Tmin = 0.145, Tmax = 0.602l = 2222
16763 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.041P)2 + 29.4173P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098(Δ/σ)max = 0.001
S = 1.04Δρmax = 1.54 e Å3
4256 reflectionsΔρmin = 1.50 e Å3
248 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.00026 (3)
Special details top

Experimental. MS (FAB+) 716 m/z (M-Br)+ 12%; 31P NMR (CDCl3, 80 MHz, 20°C) 37.05 p.p.m; 1H NMR (400 MHz, CDCl3, 20°C): δ = 0.909-0.859 (m, 2H, CH2), 1.349-1.493 (m, 2H, CH2) 1.525-1.493(m, 2H, CH2), 1.928-1.902(m, 2H, CH2), 3.626-3.615 (m, 2H, CH-N), 7.918-7.864 (m, 12H, o-C6H5), 7.677-7.635 (m, 12H, m-C6H5), 7.553-7.505(m, 6H, p-C6H5), δ 8.59 (s, 2H, NH); 13C NMR (100 MHz, CDCl3, 20°C): 24.34 (s, 2C, CH2), 36.10 (s, 2C, CH2), 57.949 (dd, 2JCP = 2.9 Hz, 3JCP = 10.3 Hz, 2C, CH-N), 121.372 (d, 1JCP=102.5 Hz, 6 Cipso, C6H5), 129.599 (d, 3JCP = 13.2 Hz, 12 Cmeta, C6H5), 134.307 (d, 4JCP = 2.9 Hz, 6 Cpara, C6H5,), 134.505 (d, 2JCP = 7.9 Hz, 12 Corto, C6H5).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.64866 (2)0.38834 (2)0.63298 (2)0.02162 (12)
P10.67384 (4)0.61073 (4)0.77021 (4)0.00659 (15)
Cl10.80208 (4)0.46666 (4)1.00873 (4)0.01662 (16)
Cl20.88621 (4)0.41641 (5)1.17643 (4)0.02132 (17)
N10.61012 (14)0.52543 (15)0.75374 (13)0.0112 (4)
H10.619 (2)0.4854 (17)0.7247 (17)0.013*
C10.78312 (15)0.57703 (17)0.82238 (14)0.0077 (5)
C20.80581 (16)0.48708 (17)0.82314 (15)0.0107 (5)
H20.76430.44410.79770.013*
C30.89130 (17)0.46215 (19)0.86238 (16)0.0146 (5)
H30.90680.40220.86390.017*
C40.95309 (17)0.5265 (2)0.89913 (16)0.0151 (5)
H41.01000.50960.92480.018*
C50.93061 (17)0.61616 (19)0.89792 (16)0.0143 (5)
H50.97260.65900.92240.017*
C60.84553 (16)0.64224 (18)0.86028 (15)0.0105 (5)
H60.83030.70210.86020.013*
C70.66066 (16)0.66197 (17)0.67754 (15)0.0097 (5)
C80.58964 (17)0.6405 (2)0.60814 (16)0.0154 (5)
H80.54940.59990.61000.018*
C90.57900 (18)0.6797 (2)0.53601 (16)0.0190 (6)
H90.53170.66550.48980.023*
C100.63935 (19)0.7401 (2)0.53352 (16)0.0178 (6)
H100.63260.76590.48540.021*
C110.71012 (18)0.76242 (19)0.60279 (17)0.0158 (6)
H110.75010.80310.60070.019*
C120.72098 (17)0.72393 (18)0.67497 (16)0.0123 (5)
H120.76790.73910.72120.015*
C130.64931 (15)0.69184 (17)0.82921 (15)0.0084 (5)
C140.66580 (16)0.67095 (18)0.90835 (15)0.0115 (5)
H140.69240.61720.93050.014*
C150.64235 (18)0.73048 (19)0.95346 (16)0.0143 (5)
H150.65190.71621.00550.017*
C160.60443 (17)0.81180 (18)0.92062 (16)0.0148 (5)
H160.58900.85190.95100.018*
C170.58951 (18)0.83340 (19)0.84306 (17)0.0163 (6)
H170.56470.88820.82180.020*
C180.61150 (17)0.77332 (18)0.79696 (16)0.0134 (5)
H180.60090.78760.74470.016*
C190.54401 (15)0.51184 (17)0.78478 (14)0.0089 (5)
H190.54650.56270.81940.011*
C200.55975 (19)0.4261 (2)0.83400 (18)0.0231 (7)
H20A0.61810.42610.87390.028*
H20B0.52220.42530.86140.028*
C210.5447 (2)0.3415 (2)0.7836 (3)0.0352 (9)
H21A0.55150.28910.81680.042*
H21B0.58680.33820.76120.042*
C220.79291 (18)0.4616 (2)1.10118 (17)0.0178 (6)
H22A0.78310.52151.11640.021*
H22B0.74430.42471.09550.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02498 (19)0.01596 (17)0.0295 (2)0.00524 (11)0.01685 (14)0.00967 (12)
P10.0049 (3)0.0080 (3)0.0064 (3)0.0004 (2)0.0019 (2)0.0009 (2)
Cl10.0175 (3)0.0173 (3)0.0136 (3)0.0011 (2)0.0049 (2)0.0002 (2)
Cl20.0207 (3)0.0256 (4)0.0166 (3)0.0007 (3)0.0065 (3)0.0065 (3)
N10.0089 (10)0.0127 (11)0.0148 (11)0.0054 (8)0.0075 (9)0.0065 (9)
C10.0056 (11)0.0111 (12)0.0059 (11)0.0000 (9)0.0018 (9)0.0011 (9)
C20.0104 (12)0.0108 (12)0.0103 (12)0.0009 (10)0.0038 (10)0.0004 (9)
C30.0146 (13)0.0147 (13)0.0142 (13)0.0049 (10)0.0058 (11)0.0021 (10)
C40.0094 (12)0.0252 (15)0.0102 (12)0.0029 (11)0.0036 (10)0.0026 (11)
C50.0087 (12)0.0212 (14)0.0106 (12)0.0057 (10)0.0014 (10)0.0026 (10)
C60.0111 (12)0.0101 (12)0.0095 (11)0.0016 (10)0.0033 (10)0.0013 (9)
C70.0111 (12)0.0117 (12)0.0071 (11)0.0043 (10)0.0046 (10)0.0010 (9)
C80.0086 (12)0.0236 (14)0.0127 (13)0.0004 (11)0.0032 (10)0.0002 (11)
C90.0149 (13)0.0284 (16)0.0094 (12)0.0038 (12)0.0006 (11)0.0017 (11)
C100.0229 (15)0.0201 (14)0.0100 (12)0.0072 (11)0.0064 (11)0.0052 (11)
C110.0198 (14)0.0129 (13)0.0160 (13)0.0015 (11)0.0087 (11)0.0031 (10)
C120.0132 (12)0.0114 (12)0.0111 (12)0.0011 (10)0.0037 (10)0.0007 (10)
C130.0063 (11)0.0092 (11)0.0103 (11)0.0017 (9)0.0038 (9)0.0027 (9)
C140.0122 (12)0.0108 (12)0.0096 (12)0.0003 (10)0.0024 (10)0.0000 (10)
C150.0173 (13)0.0165 (13)0.0089 (12)0.0029 (11)0.0051 (10)0.0027 (10)
C160.0161 (13)0.0132 (13)0.0162 (13)0.0019 (10)0.0078 (11)0.0073 (10)
C170.0193 (14)0.0101 (12)0.0200 (14)0.0037 (10)0.0084 (11)0.0001 (11)
C180.0152 (13)0.0138 (13)0.0119 (12)0.0028 (10)0.0062 (10)0.0028 (10)
C190.0068 (12)0.0125 (12)0.0085 (11)0.0028 (9)0.0042 (10)0.0022 (9)
C200.0123 (13)0.0358 (18)0.0209 (14)0.0096 (12)0.0067 (11)0.0199 (13)
C210.043 (2)0.0136 (15)0.070 (3)0.0149 (14)0.043 (2)0.0217 (16)
C220.0172 (14)0.0196 (14)0.0205 (14)0.0039 (11)0.0118 (12)0.0039 (11)
Geometric parameters (Å, º) top
P1—C131.789 (3)C11—C101.395 (4)
P1—N11.623 (2)C12—H120.9300
P1—C71.800 (3)C12—C111.390 (4)
P1—C11.795 (2)C12—C71.404 (4)
Cl1—C221.778 (3)C13—C141.403 (4)
Cl2—C221.767 (3)C13—C181.390 (4)
N1—H10.856 (10)C14—H140.9300
N1—C191.482 (3)C14—C151.385 (4)
C2—H20.9300C15—H150.9300
C2—C11.395 (4)C16—H160.9300
C3—H30.9300C16—C171.384 (4)
C3—C21.396 (4)C16—C151.392 (4)
C4—H40.9300C17—H170.9300
C4—C31.385 (4)C18—H180.9300
C5—H50.9300C18—C171.390 (4)
C5—C41.388 (4)C19—C19i1.530 (5)
C5—C61.392 (4)C19—H190.9800
C6—H60.9300C19—C201.526 (4)
C6—C11.403 (3)C20—H20A0.9700
C8—H80.9300C20—H20B0.9700
C8—C71.396 (4)C21—C21i1.527 (8)
C8—C91.395 (4)C21—H21A0.9700
C9—H90.9300C21—H21B0.9700
C10—H100.9300C21—C201.524 (5)
C10—C91.389 (4)C22—H22A0.9700
C11—H110.9300C22—H22B0.9700
C13—P1—C7108.80 (12)C7—C12—H12120.2
C13—P1—C1108.61 (12)C14—C13—P1119.1 (2)
N1—P1—C13109.47 (12)C18—C13—P1121.0 (2)
N1—P1—C7110.03 (12)C18—C13—C14119.9 (2)
N1—P1—C1111.00 (12)C13—C14—H14120.0
C1—P1—C7108.89 (12)C15—C14—C13119.9 (2)
P1—N1—H1113 (2)C15—C14—H14120.0
C19—N1—P1126.91 (18)C14—C15—C16119.7 (2)
C19—N1—H1121 (2)C14—C15—H15120.1
C6—C1—P1119.42 (19)C16—C15—H15120.1
C2—C1—P1120.07 (19)C17—C16—H16119.8
C2—C1—C6120.5 (2)C17—C16—C15120.5 (2)
C3—C2—H2120.3C15—C16—H16119.8
C1—C2—C3119.5 (2)C16—C17—C18120.1 (3)
C1—C2—H2120.3C16—C17—H17120.0
C4—C3—H3119.9C18—C17—H17120.0
C4—C3—C2120.1 (3)C13—C18—H18120.1
C2—C3—H3119.9C17—C18—C13119.8 (2)
C5—C4—H4119.8C17—C18—H18120.1
C3—C4—C5120.4 (2)N1—C19—C19i109.1 (2)
C3—C4—H4119.8N1—C19—H19108.1
C6—C5—H5119.8N1—C19—C20111.6 (2)
C4—C5—H5119.8C19i—C19—H19108.1
C4—C5—C6120.3 (2)C20—C19—C19i111.81 (18)
C5—C6—H6120.4C20—C19—H19108.1
C5—C6—C1119.1 (2)C19—C20—H20A109.1
C1—C6—H6120.4C19—C20—H20B109.1
C12—C7—P1120.3 (2)C21—C20—C19112.6 (3)
C8—C7—P1119.7 (2)C21—C20—H20A109.1
C8—C7—C12120.0 (2)C21—C20—H20B109.1
C7—C8—H8120.0H20A—C20—H20B107.8
C9—C8—H8120.0C21i—C21—H21A109.5
C9—C8—C7120.1 (3)C21i—C21—H21B109.5
C8—C9—H9120.1H21A—C21—H21B108.0
C10—C9—C8119.8 (3)C20—C21—C21i110.9 (2)
C10—C9—H9120.1C20—C21—H21A109.5
C11—C10—H10119.8C20—C21—H21B109.5
C9—C10—C11120.4 (3)Cl1—C22—H22A109.4
C9—C10—H10119.8Cl1—C22—H22B109.4
C12—C11—H11119.9Cl2—C22—Cl1111.12 (15)
C12—C11—C10120.2 (3)Cl2—C22—H22A109.4
C10—C11—H11119.9Cl2—C22—H22B109.4
C11—C12—H12120.2H22A—C22—H22B108.0
C11—C12—C7119.6 (2)
P1—C13—C14—C15176.0 (2)C7—P1—C13—C1810.7 (2)
P1—C13—C18—C17177.0 (2)C7—P1—N1—C19122.4 (2)
P1—N1—C19—C19i115.00 (18)C7—P1—C1—C675.4 (2)
P1—N1—C19—C20121.0 (2)C7—P1—C1—C2102.7 (2)
N1—P1—C13—C1468.0 (2)C7—C12—C11—C100.5 (4)
N1—P1—C13—C18109.6 (2)C7—C8—C9—C100.1 (4)
N1—P1—C7—C12166.0 (2)C9—C8—C7—P1179.9 (2)
N1—P1—C7—C814.6 (3)C9—C8—C7—C120.7 (4)
N1—P1—C1—C6163.30 (19)C11—C12—C7—P1179.6 (2)
N1—P1—C1—C218.5 (2)C11—C12—C7—C81.0 (4)
N1—C19—C20—C2169.6 (3)C11—C10—C9—C80.6 (4)
C1—P1—C13—C1453.3 (2)C12—C11—C10—C90.3 (4)
C1—P1—C13—C18129.0 (2)C13—P1—N1—C192.9 (3)
C1—P1—N1—C19117.0 (2)C13—P1—C7—C1274.1 (2)
C1—P1—C7—C1244.1 (2)C13—P1—C7—C8105.4 (2)
C1—P1—C7—C8136.4 (2)C13—P1—C1—C642.9 (2)
C3—C2—C1—P1178.5 (2)C13—P1—C1—C2138.9 (2)
C3—C2—C1—C60.4 (4)C13—C14—C15—C161.6 (4)
C4—C5—C6—C11.2 (4)C13—C18—C17—C160.6 (4)
C4—C3—C2—C11.0 (4)C14—C13—C18—C170.6 (4)
C5—C6—C1—P1177.4 (2)C15—C16—C17—C180.7 (4)
C5—C6—C1—C20.7 (4)C17—C16—C15—C140.4 (4)
C5—C4—C3—C20.6 (4)C18—C13—C14—C151.7 (4)
C6—C5—C4—C30.5 (4)C19i—C19—C20—C2152.9 (3)
C7—P1—C13—C14171.7 (2)C21i—C21—C20—C1955.1 (4)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···Br10.86 (3)2.43 (3)3.285 (2)172 (3)
C6—H6···Br1ii0.932.803.670 (3)157
C15—H15···Br1iii0.932.843.718 (3)158
C22—H22A···Br1iii0.972.803.562 (3)136
C22—H22B···Cgiii0.972.543.479163
Symmetry codes: (ii) x+3/2, y+1/2, z+3/2; (iii) x, y+1, z+1/2.
 

Acknowledgements

This work was supported by CONACyT (project CB2009–134528). ARA is grateful for a scholarship (No. 292979) provided by this project.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Begbroke, England.  Google Scholar
First citationAlajarín, M., López-Leonardo, C., Berná, J. & Steed, J. W. (2006). Tetrahedron Lett. 47, 5405–5408.  Google Scholar
First citationBoubekeur, L., Ulmer, S., Ricard, L., Mézailles, N. & Le Floch, P. (2006). Organometallics, 25, 315–317.  Web of Science CSD CrossRef CAS Google Scholar
First citationDemange, M., Boubekeur, L., Auffrant, A., Mézailles, N., Ricard, L., Le Goff, X. & Le Floch, P. (2006). New J. Chem. 30, 1745–1754.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHorner, L. & Oediger, H. (1959). Justus Liebigs Ann. Chem. 627, 142–162.  CrossRef Google Scholar
First citationImrie, C., Modro, T. A., Van Rooyen, P. H., Wagener, C. C. P., Wallace, K., Hudson, H. R., McPartlin, M., Nasirun, J. B. & Powroznyk, L. (1995). J. Phys. Org. Chem. 8, 41–46.  CrossRef CAS Google Scholar
First citationMartínez de León, C., Tlahuext, H., Flores-Parra, A., Duarte-Hernández, A. M. & Grévy, J.-M. (2013). Acta Cryst. E69, o118.  CrossRef IUCr Journals Google Scholar
First citationReetz, M. T. & Bohres, E. (1998). Chem. Commun. pp. 935–936.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTardif, O., Donnadieu, B. & Reau, R. (1998). C. R. Acad. Sci. Ser. IIc Chim. 1, 661–666.  CAS Google Scholar
First citationWerner, T. (2009). Adv. Synth. Catal. 351, 1469–1481.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds