research communications
trans-cyclohexane-1,2-diylbis(azanediyl)]diphosphonium dibromide dichloromethane disolvate
of (±)-[aCentro de Investigaciónes Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, CP 62209, Cuernavaca Mor., Mexico
*Correspondence e-mail: jeanmichelg@gmail.com
The cation of the title solvated salt, C42H42N2P22+·2Br−·2CH2Cl2, lies on a crystallographic twofold rotation axis. The 1,2-diaminocyclohexane fragment has a chair conformation with two N atoms in a transoid conformation [N—C—C—N = 163.4 (2)°]. In the crystal, the cations are linked to the anions by N—H⋯Br and C—H⋯Br hydrogen bonds, forming a chain structure along the c axis. The dichloromethane molecule takes part in the hydrogen-bond network through C—H⋯π and C—H⋯Br interactions.
Keywords: crystal structure; trans-diaminocyclohexane; diphosphonium ligands; C—H⋯Br and C—H⋯π interactions.
CCDC reference: 1469040
1. Chemical context
Quaternary phosphonium salts are very attractive compounds possessing widespread applications in synthetic organic chemistry and have played various important roles as stoichiometric reagents, phase-transfer reagents, reactive intermediates, ionic liquids, building blocks for supramolecular assemblies and catalysts (Werner, 2009). In particular, P,P,P-triaryl-P-aminophosphonium salts bearing a primary amino group are isolable intermediates in the Horner & Oediger (1959) synthesis of iminophosphoranes. The title phosphonium compound was used to synthesize new chiral iminophosphorane complexes in view of its catalytic application for organic transformations including olefin-CO (Tardif et al., 1998) and enantioselective copper-catalysed cyclopropanation (Reetz & Bohres, 1998), but its had not been determined.
2. Structural commentary
The cation is situated on a crystallographic twofold rotation axis (Fig. 1). The 1,2-diaminocyclohexane fragment has a chair conformation with N atoms in a transoid conformation [N1—C19—C19i—N1i = 163.4 (2)°; symmetry code: (i) −x + 1, y, −z + ]. The phosphorus atom has a tetrahedral geometry; the C—P—C angles are in the range 108.61 (12)–108.89 (12)° and the N—P—C angles in the range 109.47 (12)–111.00 (12)°. The N—P distance is 1.623 (2) Å.
3. Supramolecular features
The Br anion is an acceptor of four hydrogen bonds, three of which are donated by phenyl and amine groups of the trans-1,2-diamino(N,N′-ditriphenylphosphonio)cyclohexane molecule and the last is donated by the solvent dichloromethane molecule (Table 1). In the hydrogen-bond pattern, the graph-set motif R42(22) involving atoms (–C19—N1—H1⋯Br1⋯H5—C5—C6—C1—P1—N1—C19–)2 can be distinguished (Fig. 2). The R42(22) pattern generates a supramolecular chain running along the c axis. The dichloromethane molecule is also linked to the chain via C—H⋯π and C—H⋯Br interactions (Fig. 3 and Table 1).
4. Database survey
A search of the Cambridge Structural Database (Version 5.37; Groom & Allen, 2014) revealed the existence of 33 deposited phosphonium structures of general formula [R3PNHR′]+, where R and R′ are either aryl or Amongst those, only two structures are polycationic: MELCIQ (Alajarín et al., 2006) is tricationic with a tricyclic structure and trifluoroacetate counter-ions, and WERROB (Demange et al., 2006) is dicationic and contains bromide counter-ions. All the remaining structures are monocationic and only four of them contain a bromide counter-ion: ECUJOC (Boubekeur et al., 2006), NEPZUF (Martínez de León et al., 2013), ZOFYAU and ZOFYEY (Imrie et al., 1995). For all the reported compounds, the P—N bond distances assume a partial double-bond character with values falling within the narrow range of 1.60–1.66 Å, regardless of the counter-ion and substituents on both N and P. The N—P distance of the title compound [1.623 (2) Å] agrees with these values. In addition, the P—N—C angle in the present compound [126.9 (2)°] indicates a planar sp2 geometry for the N atom, and falls within the range of 120–133° reported for all related phosphonium structures.
5. Synthesis and crystallization
Under an N2 atmosphere, a solution of 3.07 g of Br2 in 5 ml of CH2Cl2 was added dropwise under stirring at 273 K, to a solution of Ph3P (5.04 g, 19.24 mmol) in 100 ml of the same solvent. After four h of stirring at room temperature and the formation of white precipitate, a mixture of half an equivalent of (±)-trans-1,2-diaminocyclohexane (1.09 g, 9.62 mmol) and one equivalent of triethylamine (2.68 ml, 19.24 mmol) in 10 ml of CH2Cl2 was added dropwise under stirring at 273 K. The suspension was left under continuous stirring for 12 h at room temperature. Then the reactant was extracted twice with 25 ml of distilled water, and the organic phase was dried over MgSO4. All volatiles were eliminated under vacuum, and the resulting light-yellow solid was stirred with Et2O overnight. After filtration, 6.0 g of the title compound was obtained as a white powder (yield 93%, m.p. 563 K). Single crystals suitable for X-ray diffraction were grown by slow evaporation of a dichloromethane solution at room temperature.
6. Refinement
Crystal data, data collection and structure . The N-bound H atom was located in a difference Fourier map and its coordinates were refined with a distance restraint of N—H = 0.86 (1) Å with Uiso(H) = 1.2Ueq(N). Other H atoms were positioned geometrically (C—H = 0.93 or 0.97 Å) and constrained using the riding-model approximation with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1469040
https://doi.org/10.1107/S2056989016004576/is5441sup1.cif
contains datablocks Global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016004576/is5441Isup2.hkl
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).C42H42N2P22+·2Br−·2CH2Cl2 | F(000) = 1968 |
Mr = 966.39 | Dx = 1.490 Mg m−3 |
Monoclinic, C2/c | Cu Kα radiation, λ = 1.54184 Å |
a = 17.1911 (2) Å | Cell parameters from 13228 reflections |
b = 14.9027 (2) Å | θ = 2.6–72.5° |
c = 18.4492 (2) Å | µ = 5.63 mm−1 |
β = 114.2547 (15)° | T = 100 K |
V = 4309.34 (10) Å3 | Plate, colourless |
Z = 4 | 0.17 × 0.12 × 0.09 mm |
Agilent SuperNova Dual Source diffractometer with an EosS2 detector | 4256 independent reflections |
Radiation source: sealed X-ray tube, SuperNova (Cu) X-ray Source | 4203 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.021 |
Detector resolution: 8.0769 pixels mm-1 | θmax = 72.7°, θmin = 4.1° |
ω scans | h = −20→21 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | k = −18→18 |
Tmin = 0.145, Tmax = 0.602 | l = −22→22 |
16763 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.038 | w = 1/[σ2(Fo2) + (0.041P)2 + 29.4173P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.098 | (Δ/σ)max = 0.001 |
S = 1.04 | Δρmax = 1.54 e Å−3 |
4256 reflections | Δρmin = −1.50 e Å−3 |
248 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.00026 (3) |
Experimental. MS (FAB+) 716 m/z (M-Br)+ 12%; 31P NMR (CDCl3, 80 MHz, 20°C) 37.05 p.p.m; 1H NMR (400 MHz, CDCl3, 20°C): δ = 0.909-0.859 (m, 2H, CH2), 1.349-1.493 (m, 2H, CH2) 1.525-1.493(m, 2H, CH2), 1.928-1.902(m, 2H, CH2), 3.626-3.615 (m, 2H, CH-N), 7.918-7.864 (m, 12H, o-C6H5), 7.677-7.635 (m, 12H, m-C6H5), 7.553-7.505(m, 6H, p-C6H5), δ 8.59 (s, 2H, NH); 13C NMR (100 MHz, CDCl3, 20°C): 24.34 (s, 2C, CH2), 36.10 (s, 2C, CH2), 57.949 (dd, 2JCP = 2.9 Hz, 3JCP = 10.3 Hz, 2C, CH-N), 121.372 (d, 1JCP=102.5 Hz, 6 Cipso, C6H5), 129.599 (d, 3JCP = 13.2 Hz, 12 Cmeta, C6H5), 134.307 (d, 4JCP = 2.9 Hz, 6 Cpara, C6H5,), 134.505 (d, 2JCP = 7.9 Hz, 12 Corto, C6H5). |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.64866 (2) | 0.38834 (2) | 0.63298 (2) | 0.02162 (12) | |
P1 | 0.67384 (4) | 0.61073 (4) | 0.77021 (4) | 0.00659 (15) | |
Cl1 | 0.80208 (4) | 0.46666 (4) | 1.00873 (4) | 0.01662 (16) | |
Cl2 | 0.88621 (4) | 0.41641 (5) | 1.17643 (4) | 0.02132 (17) | |
N1 | 0.61012 (14) | 0.52543 (15) | 0.75374 (13) | 0.0112 (4) | |
H1 | 0.619 (2) | 0.4854 (17) | 0.7247 (17) | 0.013* | |
C1 | 0.78312 (15) | 0.57703 (17) | 0.82238 (14) | 0.0077 (5) | |
C2 | 0.80581 (16) | 0.48708 (17) | 0.82314 (15) | 0.0107 (5) | |
H2 | 0.7643 | 0.4441 | 0.7977 | 0.013* | |
C3 | 0.89130 (17) | 0.46215 (19) | 0.86238 (16) | 0.0146 (5) | |
H3 | 0.9068 | 0.4022 | 0.8639 | 0.017* | |
C4 | 0.95309 (17) | 0.5265 (2) | 0.89913 (16) | 0.0151 (5) | |
H4 | 1.0100 | 0.5096 | 0.9248 | 0.018* | |
C5 | 0.93061 (17) | 0.61616 (19) | 0.89792 (16) | 0.0143 (5) | |
H5 | 0.9726 | 0.6590 | 0.9224 | 0.017* | |
C6 | 0.84553 (16) | 0.64224 (18) | 0.86028 (15) | 0.0105 (5) | |
H6 | 0.8303 | 0.7021 | 0.8602 | 0.013* | |
C7 | 0.66066 (16) | 0.66197 (17) | 0.67754 (15) | 0.0097 (5) | |
C8 | 0.58964 (17) | 0.6405 (2) | 0.60814 (16) | 0.0154 (5) | |
H8 | 0.5494 | 0.5999 | 0.6100 | 0.018* | |
C9 | 0.57900 (18) | 0.6797 (2) | 0.53601 (16) | 0.0190 (6) | |
H9 | 0.5317 | 0.6655 | 0.4898 | 0.023* | |
C10 | 0.63935 (19) | 0.7401 (2) | 0.53352 (16) | 0.0178 (6) | |
H10 | 0.6326 | 0.7659 | 0.4854 | 0.021* | |
C11 | 0.71012 (18) | 0.76242 (19) | 0.60279 (17) | 0.0158 (6) | |
H11 | 0.7501 | 0.8031 | 0.6007 | 0.019* | |
C12 | 0.72098 (17) | 0.72393 (18) | 0.67497 (16) | 0.0123 (5) | |
H12 | 0.7679 | 0.7391 | 0.7212 | 0.015* | |
C13 | 0.64931 (15) | 0.69184 (17) | 0.82921 (15) | 0.0084 (5) | |
C14 | 0.66580 (16) | 0.67095 (18) | 0.90835 (15) | 0.0115 (5) | |
H14 | 0.6924 | 0.6172 | 0.9305 | 0.014* | |
C15 | 0.64235 (18) | 0.73048 (19) | 0.95346 (16) | 0.0143 (5) | |
H15 | 0.6519 | 0.7162 | 1.0055 | 0.017* | |
C16 | 0.60443 (17) | 0.81180 (18) | 0.92062 (16) | 0.0148 (5) | |
H16 | 0.5890 | 0.8519 | 0.9510 | 0.018* | |
C17 | 0.58951 (18) | 0.83340 (19) | 0.84306 (17) | 0.0163 (6) | |
H17 | 0.5647 | 0.8882 | 0.8218 | 0.020* | |
C18 | 0.61150 (17) | 0.77332 (18) | 0.79696 (16) | 0.0134 (5) | |
H18 | 0.6009 | 0.7876 | 0.7447 | 0.016* | |
C19 | 0.54401 (15) | 0.51184 (17) | 0.78478 (14) | 0.0089 (5) | |
H19 | 0.5465 | 0.5627 | 0.8194 | 0.011* | |
C20 | 0.55975 (19) | 0.4261 (2) | 0.83400 (18) | 0.0231 (7) | |
H20A | 0.6181 | 0.4261 | 0.8739 | 0.028* | |
H20B | 0.5222 | 0.4253 | 0.8614 | 0.028* | |
C21 | 0.5447 (2) | 0.3415 (2) | 0.7836 (3) | 0.0352 (9) | |
H21A | 0.5515 | 0.2891 | 0.8168 | 0.042* | |
H21B | 0.5868 | 0.3382 | 0.7612 | 0.042* | |
C22 | 0.79291 (18) | 0.4616 (2) | 1.10118 (17) | 0.0178 (6) | |
H22A | 0.7831 | 0.5215 | 1.1164 | 0.021* | |
H22B | 0.7443 | 0.4247 | 1.0955 | 0.021* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02498 (19) | 0.01596 (17) | 0.0295 (2) | −0.00524 (11) | 0.01685 (14) | −0.00967 (12) |
P1 | 0.0049 (3) | 0.0080 (3) | 0.0064 (3) | −0.0004 (2) | 0.0019 (2) | −0.0009 (2) |
Cl1 | 0.0175 (3) | 0.0173 (3) | 0.0136 (3) | 0.0011 (2) | 0.0049 (2) | 0.0002 (2) |
Cl2 | 0.0207 (3) | 0.0256 (4) | 0.0166 (3) | 0.0007 (3) | 0.0065 (3) | 0.0065 (3) |
N1 | 0.0089 (10) | 0.0127 (11) | 0.0148 (11) | −0.0054 (8) | 0.0075 (9) | −0.0065 (9) |
C1 | 0.0056 (11) | 0.0111 (12) | 0.0059 (11) | 0.0000 (9) | 0.0018 (9) | 0.0011 (9) |
C2 | 0.0104 (12) | 0.0108 (12) | 0.0103 (12) | −0.0009 (10) | 0.0038 (10) | −0.0004 (9) |
C3 | 0.0146 (13) | 0.0147 (13) | 0.0142 (13) | 0.0049 (10) | 0.0058 (11) | 0.0021 (10) |
C4 | 0.0094 (12) | 0.0252 (15) | 0.0102 (12) | 0.0029 (11) | 0.0036 (10) | 0.0026 (11) |
C5 | 0.0087 (12) | 0.0212 (14) | 0.0106 (12) | −0.0057 (10) | 0.0014 (10) | −0.0026 (10) |
C6 | 0.0111 (12) | 0.0101 (12) | 0.0095 (11) | −0.0016 (10) | 0.0033 (10) | −0.0013 (9) |
C7 | 0.0111 (12) | 0.0117 (12) | 0.0071 (11) | 0.0043 (10) | 0.0046 (10) | 0.0010 (9) |
C8 | 0.0086 (12) | 0.0236 (14) | 0.0127 (13) | −0.0004 (11) | 0.0032 (10) | 0.0002 (11) |
C9 | 0.0149 (13) | 0.0284 (16) | 0.0094 (12) | 0.0038 (12) | 0.0006 (11) | 0.0017 (11) |
C10 | 0.0229 (15) | 0.0201 (14) | 0.0100 (12) | 0.0072 (11) | 0.0064 (11) | 0.0052 (11) |
C11 | 0.0198 (14) | 0.0129 (13) | 0.0160 (13) | 0.0015 (11) | 0.0087 (11) | 0.0031 (10) |
C12 | 0.0132 (12) | 0.0114 (12) | 0.0111 (12) | 0.0011 (10) | 0.0037 (10) | 0.0007 (10) |
C13 | 0.0063 (11) | 0.0092 (11) | 0.0103 (11) | −0.0017 (9) | 0.0038 (9) | −0.0027 (9) |
C14 | 0.0122 (12) | 0.0108 (12) | 0.0096 (12) | −0.0003 (10) | 0.0024 (10) | 0.0000 (10) |
C15 | 0.0173 (13) | 0.0165 (13) | 0.0089 (12) | −0.0029 (11) | 0.0051 (10) | −0.0027 (10) |
C16 | 0.0161 (13) | 0.0132 (13) | 0.0162 (13) | −0.0019 (10) | 0.0078 (11) | −0.0073 (10) |
C17 | 0.0193 (14) | 0.0101 (12) | 0.0200 (14) | 0.0037 (10) | 0.0084 (11) | 0.0001 (11) |
C18 | 0.0152 (13) | 0.0138 (13) | 0.0119 (12) | 0.0028 (10) | 0.0062 (10) | 0.0028 (10) |
C19 | 0.0068 (12) | 0.0125 (12) | 0.0085 (11) | −0.0028 (9) | 0.0042 (10) | −0.0022 (9) |
C20 | 0.0123 (13) | 0.0358 (18) | 0.0209 (14) | 0.0096 (12) | 0.0067 (11) | 0.0199 (13) |
C21 | 0.043 (2) | 0.0136 (15) | 0.070 (3) | 0.0149 (14) | 0.043 (2) | 0.0217 (16) |
C22 | 0.0172 (14) | 0.0196 (14) | 0.0205 (14) | 0.0039 (11) | 0.0118 (12) | 0.0039 (11) |
P1—C13 | 1.789 (3) | C11—C10 | 1.395 (4) |
P1—N1 | 1.623 (2) | C12—H12 | 0.9300 |
P1—C7 | 1.800 (3) | C12—C11 | 1.390 (4) |
P1—C1 | 1.795 (2) | C12—C7 | 1.404 (4) |
Cl1—C22 | 1.778 (3) | C13—C14 | 1.403 (4) |
Cl2—C22 | 1.767 (3) | C13—C18 | 1.390 (4) |
N1—H1 | 0.856 (10) | C14—H14 | 0.9300 |
N1—C19 | 1.482 (3) | C14—C15 | 1.385 (4) |
C2—H2 | 0.9300 | C15—H15 | 0.9300 |
C2—C1 | 1.395 (4) | C16—H16 | 0.9300 |
C3—H3 | 0.9300 | C16—C17 | 1.384 (4) |
C3—C2 | 1.396 (4) | C16—C15 | 1.392 (4) |
C4—H4 | 0.9300 | C17—H17 | 0.9300 |
C4—C3 | 1.385 (4) | C18—H18 | 0.9300 |
C5—H5 | 0.9300 | C18—C17 | 1.390 (4) |
C5—C4 | 1.388 (4) | C19—C19i | 1.530 (5) |
C5—C6 | 1.392 (4) | C19—H19 | 0.9800 |
C6—H6 | 0.9300 | C19—C20 | 1.526 (4) |
C6—C1 | 1.403 (3) | C20—H20A | 0.9700 |
C8—H8 | 0.9300 | C20—H20B | 0.9700 |
C8—C7 | 1.396 (4) | C21—C21i | 1.527 (8) |
C8—C9 | 1.395 (4) | C21—H21A | 0.9700 |
C9—H9 | 0.9300 | C21—H21B | 0.9700 |
C10—H10 | 0.9300 | C21—C20 | 1.524 (5) |
C10—C9 | 1.389 (4) | C22—H22A | 0.9700 |
C11—H11 | 0.9300 | C22—H22B | 0.9700 |
C13—P1—C7 | 108.80 (12) | C7—C12—H12 | 120.2 |
C13—P1—C1 | 108.61 (12) | C14—C13—P1 | 119.1 (2) |
N1—P1—C13 | 109.47 (12) | C18—C13—P1 | 121.0 (2) |
N1—P1—C7 | 110.03 (12) | C18—C13—C14 | 119.9 (2) |
N1—P1—C1 | 111.00 (12) | C13—C14—H14 | 120.0 |
C1—P1—C7 | 108.89 (12) | C15—C14—C13 | 119.9 (2) |
P1—N1—H1 | 113 (2) | C15—C14—H14 | 120.0 |
C19—N1—P1 | 126.91 (18) | C14—C15—C16 | 119.7 (2) |
C19—N1—H1 | 121 (2) | C14—C15—H15 | 120.1 |
C6—C1—P1 | 119.42 (19) | C16—C15—H15 | 120.1 |
C2—C1—P1 | 120.07 (19) | C17—C16—H16 | 119.8 |
C2—C1—C6 | 120.5 (2) | C17—C16—C15 | 120.5 (2) |
C3—C2—H2 | 120.3 | C15—C16—H16 | 119.8 |
C1—C2—C3 | 119.5 (2) | C16—C17—C18 | 120.1 (3) |
C1—C2—H2 | 120.3 | C16—C17—H17 | 120.0 |
C4—C3—H3 | 119.9 | C18—C17—H17 | 120.0 |
C4—C3—C2 | 120.1 (3) | C13—C18—H18 | 120.1 |
C2—C3—H3 | 119.9 | C17—C18—C13 | 119.8 (2) |
C5—C4—H4 | 119.8 | C17—C18—H18 | 120.1 |
C3—C4—C5 | 120.4 (2) | N1—C19—C19i | 109.1 (2) |
C3—C4—H4 | 119.8 | N1—C19—H19 | 108.1 |
C6—C5—H5 | 119.8 | N1—C19—C20 | 111.6 (2) |
C4—C5—H5 | 119.8 | C19i—C19—H19 | 108.1 |
C4—C5—C6 | 120.3 (2) | C20—C19—C19i | 111.81 (18) |
C5—C6—H6 | 120.4 | C20—C19—H19 | 108.1 |
C5—C6—C1 | 119.1 (2) | C19—C20—H20A | 109.1 |
C1—C6—H6 | 120.4 | C19—C20—H20B | 109.1 |
C12—C7—P1 | 120.3 (2) | C21—C20—C19 | 112.6 (3) |
C8—C7—P1 | 119.7 (2) | C21—C20—H20A | 109.1 |
C8—C7—C12 | 120.0 (2) | C21—C20—H20B | 109.1 |
C7—C8—H8 | 120.0 | H20A—C20—H20B | 107.8 |
C9—C8—H8 | 120.0 | C21i—C21—H21A | 109.5 |
C9—C8—C7 | 120.1 (3) | C21i—C21—H21B | 109.5 |
C8—C9—H9 | 120.1 | H21A—C21—H21B | 108.0 |
C10—C9—C8 | 119.8 (3) | C20—C21—C21i | 110.9 (2) |
C10—C9—H9 | 120.1 | C20—C21—H21A | 109.5 |
C11—C10—H10 | 119.8 | C20—C21—H21B | 109.5 |
C9—C10—C11 | 120.4 (3) | Cl1—C22—H22A | 109.4 |
C9—C10—H10 | 119.8 | Cl1—C22—H22B | 109.4 |
C12—C11—H11 | 119.9 | Cl2—C22—Cl1 | 111.12 (15) |
C12—C11—C10 | 120.2 (3) | Cl2—C22—H22A | 109.4 |
C10—C11—H11 | 119.9 | Cl2—C22—H22B | 109.4 |
C11—C12—H12 | 120.2 | H22A—C22—H22B | 108.0 |
C11—C12—C7 | 119.6 (2) | ||
P1—C13—C14—C15 | −176.0 (2) | C7—P1—C13—C18 | 10.7 (2) |
P1—C13—C18—C17 | 177.0 (2) | C7—P1—N1—C19 | −122.4 (2) |
P1—N1—C19—C19i | 115.00 (18) | C7—P1—C1—C6 | 75.4 (2) |
P1—N1—C19—C20 | −121.0 (2) | C7—P1—C1—C2 | −102.7 (2) |
N1—P1—C13—C14 | 68.0 (2) | C7—C12—C11—C10 | 0.5 (4) |
N1—P1—C13—C18 | −109.6 (2) | C7—C8—C9—C10 | 0.1 (4) |
N1—P1—C7—C12 | −166.0 (2) | C9—C8—C7—P1 | −179.9 (2) |
N1—P1—C7—C8 | 14.6 (3) | C9—C8—C7—C12 | 0.7 (4) |
N1—P1—C1—C6 | −163.30 (19) | C11—C12—C7—P1 | 179.6 (2) |
N1—P1—C1—C2 | 18.5 (2) | C11—C12—C7—C8 | −1.0 (4) |
N1—C19—C20—C21 | −69.6 (3) | C11—C10—C9—C8 | −0.6 (4) |
C1—P1—C13—C14 | −53.3 (2) | C12—C11—C10—C9 | 0.3 (4) |
C1—P1—C13—C18 | 129.0 (2) | C13—P1—N1—C19 | −2.9 (3) |
C1—P1—N1—C19 | 117.0 (2) | C13—P1—C7—C12 | 74.1 (2) |
C1—P1—C7—C12 | −44.1 (2) | C13—P1—C7—C8 | −105.4 (2) |
C1—P1—C7—C8 | 136.4 (2) | C13—P1—C1—C6 | −42.9 (2) |
C3—C2—C1—P1 | 178.5 (2) | C13—P1—C1—C2 | 138.9 (2) |
C3—C2—C1—C6 | 0.4 (4) | C13—C14—C15—C16 | −1.6 (4) |
C4—C5—C6—C1 | −1.2 (4) | C13—C18—C17—C16 | −0.6 (4) |
C4—C3—C2—C1 | −1.0 (4) | C14—C13—C18—C17 | −0.6 (4) |
C5—C6—C1—P1 | −177.4 (2) | C15—C16—C17—C18 | 0.7 (4) |
C5—C6—C1—C2 | 0.7 (4) | C17—C16—C15—C14 | 0.4 (4) |
C5—C4—C3—C2 | 0.6 (4) | C18—C13—C14—C15 | 1.7 (4) |
C6—C5—C4—C3 | 0.5 (4) | C19i—C19—C20—C21 | 52.9 (3) |
C7—P1—C13—C14 | −171.7 (2) | C21i—C21—C20—C19 | −55.1 (4) |
Symmetry code: (i) −x+1, y, −z+3/2. |
Cg is the centroid of the C7–C12 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Br1 | 0.86 (3) | 2.43 (3) | 3.285 (2) | 172 (3) |
C6—H6···Br1ii | 0.93 | 2.80 | 3.670 (3) | 157 |
C15—H15···Br1iii | 0.93 | 2.84 | 3.718 (3) | 158 |
C22—H22A···Br1iii | 0.97 | 2.80 | 3.562 (3) | 136 |
C22—H22B···Cgiii | 0.97 | 2.54 | 3.479 | 163 |
Symmetry codes: (ii) −x+3/2, y+1/2, −z+3/2; (iii) x, −y+1, z+1/2. |
Acknowledgements
This work was supported by CONACyT (project CB2009–134528). ARA is grateful for a scholarship (No. 292979) provided by this project.
References
Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Begbroke, England. Google Scholar
Alajarín, M., López-Leonardo, C., Berná, J. & Steed, J. W. (2006). Tetrahedron Lett. 47, 5405–5408. Google Scholar
Boubekeur, L., Ulmer, S., Ricard, L., Mézailles, N. & Le Floch, P. (2006). Organometallics, 25, 315–317. Web of Science CSD CrossRef CAS Google Scholar
Demange, M., Boubekeur, L., Auffrant, A., Mézailles, N., Ricard, L., Le Goff, X. & Le Floch, P. (2006). New J. Chem. 30, 1745–1754. CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Horner, L. & Oediger, H. (1959). Justus Liebigs Ann. Chem. 627, 142–162. CrossRef Google Scholar
Imrie, C., Modro, T. A., Van Rooyen, P. H., Wagener, C. C. P., Wallace, K., Hudson, H. R., McPartlin, M., Nasirun, J. B. & Powroznyk, L. (1995). J. Phys. Org. Chem. 8, 41–46. CrossRef CAS Google Scholar
Martínez de León, C., Tlahuext, H., Flores-Parra, A., Duarte-Hernández, A. M. & Grévy, J.-M. (2013). Acta Cryst. E69, o118. CrossRef IUCr Journals Google Scholar
Reetz, M. T. & Bohres, E. (1998). Chem. Commun. pp. 935–936. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tardif, O., Donnadieu, B. & Reau, R. (1998). C. R. Acad. Sci. Ser. IIc Chim. 1, 661–666. CAS Google Scholar
Werner, T. (2009). Adv. Synth. Catal. 351, 1469–1481. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.