research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of trans-di­chlorido[3-methyl-1-(4-vinyl­benz­yl)-1H-imidazol-3-ium-2-yl-κC2](4-phenyl­pyridine-κN)palladium(II)

CROSSMARK_Color_square_no_text.svg

aCentre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124 221 00, Lund, Sweden
*Correspondence e-mail: ola.wendt@chem.lu.se

Edited by H. Ishida, Okayama University, Japan (Received 1 March 2016; accepted 15 March 2016; online 22 March 2016)

The title compound, [PdCl2(C11H9N)(C13H14N2)], represents a new class of palladium-based polymerizable monomer which could give a potentially catalytically active polymer. It was synthesized via transmetallation from the corresponding silver complex. The PdII ion coordinates two Cl anions, one C atom from the N-heterocyclic carbene (NHC) ligand and one N atom from the 4-phenyl­pyridine ligand, displaying a slightly distorted square-planar geometry. The dihedral angle between the imidazole ring and the pyridine ring is 34.53 (8)°. The Pd—C bond length between the NHC ligand and the PdII ion is 1.9532 (16) Å. In the crystal, weak non-classical C—H⋯Cl hydrogen bonds link the mol­ecules into a tape structure along [101]. A weak ππ inter­action is also observed [centroid–centroid distance = 3.9117 (11) Å].

1. Chemical context

In the last few years, palladium complexes with N-heterocyclic carbene ligands (Pd-NHCs) have received attention, inter alia as catalysts for cross-coupling in organic synthesis (Hadei et al., 2005[Hadei, N., Kantchev, E. A. B., O'Brien, C. J. & Organ, M. G. (2005). Org. Lett. 7, 3805-3807.]; Nasielski et al., 2010[Nasielski, J., Hadei, N., Achonduh, G., Kantchev, E. A. B., O'Brien, C. J., Lough, A. & Organ, M. G. (2010). Chem. Eur. J. 16, 10844-10853.]; Valente et al., 2010[Valente, C., Belowich, M. E., Hadei, N. & Organ, M. G. (2010). Eur. J. Org. Chem. pp. 4343-4354.], 2012[Valente, C., Çalimsiz, S., Hoi, K. H., Mallik, D., Sayah, M. & Organ, M. G. (2012). Angew. Chem. Int. Ed. 51, 3314-3332.]). NHC complexes derived from vinyl imidazolium salts are of growing significance in organometallic transformations because of their potential as precursors in heterogeneous catalysis, biocompatibility, anti-microbial activity and fuel cell applications (Dani et al., 2015[Dani, A., Groppo, E., Barolo, C., Vitillo, J. G. & Bordiga, S. (2015). J. Mater. Chem. A, 3, 8508-8518.]; Ghazali-Esfahani et al., 2013[Ghazali-Esfahani, S., Song, H. B., Păunescu, E., Bobbink, F. D., Liu, H. Z., Fei, Z. F., Laurenczy, G., Bagherzadeh, M., Yan, N. & Dyson, P. J. (2013). Green Chem. 15, 1584-1589.]; Anderson & Long, 2010[Anderson, E. B. & Long, T. E. (2010). Polymer, 51, 2447-2454.]; Kim et al., 2005[Kim, J. H., Kim, J. W., Shokouhimehr, M. & Lee, Y. S. (2005). J. Org. Chem. 70, 6714-6720.]; Kuzmicz et al., 2014[Kuzmicz, D., Coupillaud, P., Men, Y., Vignolle, J., Vendraminetto, G., Ambrogi, M., Taton, D. & Yuan, J. Y. (2014). Polymer, 55, 3423-3430.]; Seo & Chung, 2014[Seo, U. R. & Chung, Y. K. (2014). RSC Adv. 4, 32371-32374.]; Li et al., 2011[Li, W., Fang, J., Lv, M., Chen, C., Chi, X., Yang, Y. & Zhang, Y. (2011). J. Mater. Chem. 21, 11340-11346.]). The crystal structures of 1-methyl-3-(4-vinyl­benz­yl) imidazolium hexa­fluorido­phosphate and silver complexes with 1-methyl-3-(4-vinyl­benz­yl) imidazole as a carbene ligand have been reported previously (Lu et al., 2009[Lu, X. Y., Chen, F., Xu, W. F. & Chen, X. T. (2009). Inorg. Chim. Acta, 362, 5113-5116.], 2010[Lu, X.-Y., Sun, J.-F., Zhang, L. & Chen, X.-T. (2010). Acta Cryst. E66, o378.]). Here we report on the crystal structure of a new type of Pd-NHC complex belonging to the group of PEPPSI (pyridine-enhanced precatalyst preparation stabilization and initiation) catalysts, which are stable towards air and moisture, and have the advantage of being easy to synthesize and handle (Hadei et al., 2005[Hadei, N., Kantchev, E. A. B., O'Brien, C. J. & Organ, M. G. (2005). Org. Lett. 7, 3805-3807.]).

2. Structural commentary

In the title compound, the PdII ion coordinates the five-membered NHC ligand with a Pd1—C4 bond length of 1.9532 (16) Å and the 4-phenyl­pyridine ligand with a Pd1—N3 bond length of 2.0938 (14) Å. The two mutually trans Cl ions fulfil the coordination sphere (Fig. 1[link]). Bond angles in the so-formed distorted square-plane are all close to 90° with the C4—Pd1—Cl angles slightly less than 90° and the others slightly more. The C4—Pd1—N3 angle shows an expected value 179.52 (6)°, while Cl1—Pd1—Cl2 exhibits a slightly distorted angle of 176.789 (17)°, probably due to the steric influence of the aromatic rings (Sevinçek et al., 2007[Sevinçek, R., Türkmen, H., Aygün, M., Çetinkaya, B. & García-Granda, S. (2007). Acta Cryst. C63, m277-m279.]). The dihedral angle between the N1/C4/N2/C3/C2 and C6–C11 rings in the NHC ligand is 77.90 (5)°.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the title compound (4). All non-H atoms are represented as displacement ellipsoids drawn at the 50% probability level and H atoms as small spheres with arbitrary radii.

The dihedral angles between the N1/C4/N2/C3/C2 ring on one hand and the N3/C14–C18 and C19–C24 rings on the other are 34.53 (8) and 65.78 (7)°, respectively. The C12—C13 bond length of the vinyl group is 1.299 (3) Å, corroborating the double-bond character. The same goes for the C2—C3 distance which is 1.330 (3) Å. The N2—C4—Pd1—N3, N1—C4—Pd1—Cl2, C18—N3—Pd1—Cl2 and C17—C16—C19—C24 torsion angles are −30 (7), 81.15 (15), −49.40 (15) and 32.42 (3)°, respectively. A Cambridge Structural Database (CSD) search to validate the Pd—Cl and Pd—N bonding was performed over 47 entries. The Cl—Pd—Cl and N—C—N angles range from 170 to 180° and from 104.8 to 106.2°, respectively; the Pd—Cl bond lengths are in the range 2.286–2.318 Å. The bond lengths and angles of the title compound 4 are comparable to the literature values.

3. Supra­molecular features

In addition to dispersion inter­actions, the crystal of title compound 4 shows a ππ inter­action between the C19–C24 phenyl rings of neighbouring mol­ecules with a centroid–centroid distance of 3.9117 (11) Å (Fig. 2[link]). Two weak non-classical C—H⋯Cl hydrogen bonds are detected (Table 1[link]). No C—H⋯π contacts are present in the crystal packing diagram of compound 4 (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯Cl1i 0.95 2.81 3.6021 (18) 142
C23—H23⋯Cl2ii 0.95 2.74 3.6537 (19) 162
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x, -y, -z+1.
[Figure 2]
Figure 2
The dimer of the title compound (4) linked through the ππ inter­action.
[Figure 3]
Figure 3
A crystal packing diagram of the title compound (4). The non-classical C—H⋯Cl hydrogen bonds are shown by dotted lines.

4. Synthesis and crystallization

General: Solvents and chemicals were purchased from commercial suppliers and used as received. The imidazolium salts 1 and 2 were prepared according to previously reported procedures (Kim et al., 2005[Kim, J. H., Kim, J. W., Shokouhimehr, M. & Lee, Y. S. (2005). J. Org. Chem. 70, 6714-6720.]; Lu et al., 2009[Lu, X. Y., Chen, F., Xu, W. F. & Chen, X. T. (2009). Inorg. Chim. Acta, 362, 5113-5116.]). The title compound 4 was synthesized according to the carbene silver(I) route, as shown in Fig. 4[link]. Transmetallation of the ligand from the tetra­meric silver complex 2 gave the chlorido-bridged palladium dimer 3. Cleavage of the dimer with phenyl­pyridine afforded complex 4 in excellent yield. With its vinyl groups it can serve as a precursor in co-polymerization reactions with e.g. styrene to form polymeric materials with catalytic properties.

[Figure 4]
Figure 4
Synthesis pathway of the title compound (4).

[PdCl2(bmim)]2 (3). A 100 ml Schlenk flask was charged with 2 (7.0 g, 20.5 mmol), 50 ml of dry CH2Cl2 and Pd(PhCN)2Cl2 (7.8 g, 20.5 mmol). The mixture was stirred for 48 h at room temperature, during which time the solution changed colour to cloudy light brown. It was filtered through Celite and the filtrate was reduced to ca 10 ml. Upon addition of n-hexane, a light-brown solid was formed, which was collected on a frit and dried under vacuum to give 5.97 g (yield 78%).

[PdCl2(bmbim)(4-Phenyl­pyridine)] (4). 4-Phenyl­pyridine (0.085 g, 0.55 mmol) was added to a 40 ml solution of 3 (0.25 g, 0.26 mmol) in dry CH3CN and stirred at ambient temperature for 24 h, during which time the solution changed colour to clear yellow. The mixture was filtered through Celite and all solvents were evaporated. The solids were dissolved in CH2Cl2 and, upon addition of n-hexane, a yellow solid was formed, which was collected on a frit and dried under vacuum to give 0.153 g (93%) of 4.

Single crystals of 4 suitable for X-ray diffraction were obtained by slow diffusion of n-hexane into a saturated CH2Cl2 solution of the compound.

5. Refinement details

Crystal data and structure refinement details are summarized in Table 2[link]. H atoms were treated as riding, with C—H = 0.95–0.99 Å, and with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [PdCl2(C11H9N)(C13H14N2)]
Mr 530.75
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 183
a, b, c (Å) 7.8768 (3), 12.2939 (5), 12.6120 (4)
α, β, γ (°) 95.692 (3), 97.267 (3), 103.574 (3)
V3) 1167.09 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.04
Crystal size (mm) 0.39 × 0.27 × 0.1
 
Data collection
Diffractometer Agilent Xcalibur Ruby
Absorption correction Analytical (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.727, 0.916
No. of measured, independent and observed [I > 2σ(I)] reflections 28730, 7116, 6179
Rint 0.037
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.068, 1.04
No. of reflections 7116
No. of parameters 272
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.42
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

trans-Dichlorido[3-methyl-1-(4-vinylbenzyl)-1H-imidazol-3-ium-2-yl-κC2](4-phenylpyridine-κN)palladium(II) top
Crystal data top
[PdCl2(C11H9N)(C13H14N2)]Z = 2
Mr = 530.75F(000) = 536
Triclinic, P1Dx = 1.510 Mg m3
a = 7.8768 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.2939 (5) ÅCell parameters from 11991 reflections
c = 12.6120 (4) Åθ = 2.5–32.8°
α = 95.692 (3)°µ = 1.04 mm1
β = 97.267 (3)°T = 183 K
γ = 103.574 (3)°Plate, clear light yellow
V = 1167.09 (8) Å30.39 × 0.27 × 0.1 mm
Data collection top
Agilent Xcalibur Ruby
diffractometer
7116 independent reflections
Radiation source: Enhance (Mo) X-ray Source6179 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 10.4498 pixels mm-1θmax = 30.5°, θmin = 2.5°
ω scansh = 1111
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2012)
k = 1717
Tmin = 0.727, Tmax = 0.916l = 1818
28730 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0295P)2 + 0.2776P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
7116 reflectionsΔρmax = 0.45 e Å3
272 parametersΔρmin = 0.42 e Å3
0 restraints
Special details top

Experimental. NMR spectra were acquired on a Bruker Avance 400 FT–NMR spectrometer (1H: 400.1 MHz). Residual solvent peaks were used as an internal reference. Elemental analyses were performed by H. Kolbe Microanalytisches Laboratorium, Mülheim an der Ruhr, Germany.

The atomic numbering refers to Figure S1.

(3): 1H NMR (400 MHz, CDCl3): δ 7.42 (s, 8H, H-4, H5, H7 and H8), 6.87 (d, J = 1.9 Hz, 2H, H11), 6.75-6.65 (m, overlapping, 2H, H2), 6.70 (d, J = 1.8 Hz, 2H, H10), 5.82 (s, 4H, H9), 5.76 (d, J = 17.6 Hz, 2H, H1B), (5.28 (d, J = 10.9 Hz, 2H, H1A), 4.21 (s, 6H, H12). 13C NMR (400 MHz, CDCl3): δ 141.7 (C13), 138.2 (C6), 136.3 (C2), 134.2 (C3), 129.3 (C4 and C8), 127.0 (C5 and C7), 121.9 and 124.0 (C10 and C11 of imidazolyl), 114.9 (C1), 54.6 (C9), 38.4 (C12). Anal. Calcd for C26H28Cl4N4Pd2: C, 41.57; H, 3.76; N, 7.46. Found: C, 41.93; H, 4.21; N, 7.22.

(4): 1H NMR (400 MHz, CDCl3): δ 9.02 (dd, J=5.2, 1.5 Hz, 2H, H14 and H18), 7.65 – 7.4 (m, 9H, H4, H5, H7, H8, H19, H20, H21, H22 and H23), 7.56 (dd, J=5.2, J=1.6 Hz, H15 and H17), 6.89 (d, J=2.0 Hz, 1H, H11), 6.75 – 6.65 (m, overlapping, 1H, H2), 6.72 (d, J = 1.8 Hz, 1H, H10), 5.84 (s, 2H, H9), 5.76 (d, J=17.6 Hz, 1H, H1B), 5.27 (d, J=10.9 Hz, 1H, H1A), 4.21 (s, 3H, H12). 13C NMR (400 MHz, CDCl3): δ 151.4 (C14, C18), 150.6 (C16), 150.0 (C13), 137.9 (C24), 137.0 (C6), 136.4 (C2), 135.0 (C3), 130.0 (C21), 129.4 (C20 and C22), 129.3 (C4 and C8), 127.3 (C5 and C7), 126.9 (C19 and C23), 123.6 (C11 of imidazolyl), 122.4 (C15 and C17), 121.4 (C10 of imidazolyl), 114.6 (C1), 54.5 (C9), 38.2 (C12). Anal. Calcd for C32H29Cl2N3Pd: C, 60.73; H, 4.62; N, 6.64. Found: C, 60.52; H, 4.48; N, 6.52.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.07483 (2)0.20492 (2)0.94817 (2)0.02792 (4)
Cl10.25183 (7)0.15753 (5)1.08527 (4)0.05106 (13)
Cl20.11307 (6)0.25396 (4)0.81746 (3)0.03823 (10)
N30.17729 (19)0.11549 (12)0.83251 (11)0.0321 (3)
N20.0464 (2)0.39712 (13)1.10216 (12)0.0370 (3)
N10.17080 (19)0.25232 (13)1.09351 (11)0.0334 (3)
C50.2103 (3)0.47133 (16)1.08373 (16)0.0429 (4)
H5A0.18810.54521.07050.051*
H5B0.24600.43861.01770.051*
C240.3205 (2)0.12292 (16)0.51023 (13)0.0363 (4)
H240.21300.10600.48290.044*
C150.4285 (2)0.07047 (14)0.76901 (13)0.0309 (3)
H150.55360.08520.77590.037*
C80.4998 (3)0.45500 (17)1.34428 (16)0.0457 (5)
H80.49360.41331.40380.055*
C190.4004 (2)0.08203 (14)0.61662 (13)0.0305 (3)
C30.0648 (3)0.42689 (18)1.17048 (17)0.0487 (5)
H30.04770.49791.21320.058*
C200.5571 (2)0.10877 (15)0.65431 (14)0.0353 (4)
H200.61250.08240.72670.042*
C210.6333 (3)0.17316 (16)0.58797 (16)0.0424 (4)
H210.74080.19050.61470.051*
C120.7988 (3)0.56108 (19)1.43218 (19)0.0500 (5)
H120.78570.51281.48660.060*
C170.1405 (2)0.02490 (17)0.68094 (15)0.0405 (4)
H170.06230.07840.62610.049*
C230.3973 (3)0.18787 (16)0.44476 (14)0.0419 (4)
H230.34150.21580.37270.050*
C20.2001 (3)0.33722 (19)1.16486 (16)0.0464 (5)
H20.29820.33221.20250.056*
C140.3524 (2)0.13006 (14)0.83849 (13)0.0313 (3)
H140.42770.18450.89380.038*
C40.0199 (2)0.28953 (14)1.05559 (12)0.0293 (3)
C160.3223 (2)0.01184 (14)0.68806 (13)0.0307 (3)
C90.6520 (2)0.53798 (15)1.34155 (15)0.0381 (4)
C180.0733 (2)0.03931 (17)0.75286 (15)0.0414 (4)
H180.05110.02930.74580.050*
C100.6572 (3)0.59587 (16)1.25243 (18)0.0442 (5)
H100.76050.65221.24750.053*
C130.9444 (3)0.6404 (2)1.4456 (2)0.0688 (7)
H13A0.96430.69101.39360.083*
H13B1.03090.64781.50740.083*
C70.3571 (3)0.43155 (17)1.26257 (16)0.0458 (5)
H70.25480.37401.26660.055*
C10.2837 (2)0.13842 (17)1.06416 (16)0.0420 (4)
H1A0.22450.08471.09570.050*
H1B0.30690.11980.98550.050*
H1C0.39580.13401.09160.050*
C110.5146 (3)0.57258 (16)1.17113 (17)0.0420 (4)
H110.52120.61331.11100.050*
C60.3612 (2)0.49074 (14)1.17516 (15)0.0364 (4)
C220.5534 (3)0.21261 (16)0.48248 (16)0.0445 (5)
H220.60620.25640.43660.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02640 (7)0.03243 (7)0.02598 (7)0.00963 (5)0.00443 (4)0.00293 (5)
Cl10.0572 (3)0.0779 (4)0.0306 (2)0.0436 (3)0.0032 (2)0.0073 (2)
Cl20.0344 (2)0.0448 (2)0.0344 (2)0.01076 (18)0.00241 (16)0.00783 (17)
N30.0300 (7)0.0359 (7)0.0292 (7)0.0078 (6)0.0048 (5)0.0002 (6)
N20.0376 (8)0.0355 (8)0.0384 (8)0.0100 (6)0.0104 (6)0.0001 (6)
N10.0301 (7)0.0385 (8)0.0347 (7)0.0119 (6)0.0097 (6)0.0055 (6)
C50.0469 (11)0.0357 (9)0.0435 (10)0.0038 (8)0.0093 (8)0.0057 (8)
C240.0365 (9)0.0418 (9)0.0276 (8)0.0062 (7)0.0030 (7)0.0018 (7)
C150.0274 (8)0.0335 (8)0.0288 (7)0.0026 (6)0.0052 (6)0.0003 (6)
C80.0509 (12)0.0423 (10)0.0433 (10)0.0062 (9)0.0134 (9)0.0084 (8)
C190.0313 (8)0.0314 (8)0.0265 (7)0.0036 (6)0.0063 (6)0.0014 (6)
C30.0529 (12)0.0475 (11)0.0493 (11)0.0202 (10)0.0173 (9)0.0060 (9)
C200.0399 (9)0.0368 (9)0.0283 (8)0.0094 (7)0.0039 (7)0.0027 (7)
C210.0424 (10)0.0402 (10)0.0480 (10)0.0160 (8)0.0084 (8)0.0062 (8)
C120.0462 (11)0.0481 (11)0.0577 (12)0.0158 (9)0.0108 (10)0.0030 (10)
C170.0305 (9)0.0487 (11)0.0350 (9)0.0044 (8)0.0003 (7)0.0104 (8)
C230.0528 (12)0.0415 (10)0.0270 (8)0.0041 (9)0.0086 (8)0.0019 (7)
C20.0428 (11)0.0583 (12)0.0437 (10)0.0205 (9)0.0169 (9)0.0014 (9)
C140.0297 (8)0.0329 (8)0.0283 (7)0.0041 (6)0.0032 (6)0.0002 (6)
C40.0269 (7)0.0341 (8)0.0288 (7)0.0111 (6)0.0047 (6)0.0045 (6)
C160.0307 (8)0.0336 (8)0.0260 (7)0.0048 (6)0.0051 (6)0.0020 (6)
C90.0361 (9)0.0329 (9)0.0465 (10)0.0110 (7)0.0126 (8)0.0019 (8)
C180.0271 (8)0.0521 (11)0.0400 (9)0.0069 (8)0.0025 (7)0.0067 (8)
C100.0361 (10)0.0341 (9)0.0621 (12)0.0044 (8)0.0162 (9)0.0051 (9)
C130.0519 (14)0.0694 (16)0.0778 (17)0.0064 (12)0.0015 (13)0.0109 (14)
C70.0427 (11)0.0412 (10)0.0475 (11)0.0039 (8)0.0107 (9)0.0073 (8)
C10.0322 (9)0.0443 (10)0.0498 (11)0.0056 (8)0.0108 (8)0.0115 (8)
C110.0445 (11)0.0327 (9)0.0510 (11)0.0075 (8)0.0167 (9)0.0100 (8)
C60.0396 (9)0.0281 (8)0.0423 (9)0.0085 (7)0.0133 (8)0.0000 (7)
C220.0563 (12)0.0360 (9)0.0436 (10)0.0128 (9)0.0178 (9)0.0002 (8)
Geometric parameters (Å, º) top
Pd1—Cl12.2901 (5)C20—H200.9500
Pd1—Cl22.2957 (4)C20—C211.381 (3)
Pd1—N32.0938 (14)C21—H210.9500
Pd1—C41.9532 (16)C21—C221.385 (3)
N3—C141.340 (2)C12—H120.9500
N3—C181.342 (2)C12—C91.474 (3)
N2—C51.456 (2)C12—C131.299 (3)
N2—C31.387 (2)C17—H170.9500
N2—C41.346 (2)C17—C161.393 (2)
N1—C21.390 (2)C17—C181.379 (3)
N1—C41.335 (2)C23—H230.9500
N1—C11.455 (2)C23—C221.374 (3)
C5—H5A0.9900C2—H20.9500
C5—H5B0.9900C14—H140.9500
C5—C61.505 (3)C9—C101.389 (3)
C24—H240.9500C18—H180.9500
C24—C191.398 (2)C10—H100.9500
C24—C231.381 (3)C10—C111.377 (3)
C15—H150.9500C13—H13A0.9500
C15—C141.370 (2)C13—H13B0.9500
C15—C161.396 (2)C7—H70.9500
C8—H80.9500C7—C61.379 (3)
C8—C91.386 (3)C1—H1A0.9800
C8—C71.380 (3)C1—H1B0.9800
C19—C201.389 (3)C1—H1C0.9800
C19—C161.473 (2)C11—H110.9500
C3—H30.9500C11—C61.389 (3)
C3—C21.330 (3)C22—H220.9500
Cl1—Pd1—Cl2176.789 (17)C18—C17—C16120.49 (15)
N3—Pd1—Cl191.21 (4)C24—C23—H23119.6
N3—Pd1—Cl291.74 (4)C22—C23—C24120.84 (17)
C4—Pd1—Cl189.00 (5)C22—C23—H23119.6
C4—Pd1—Cl288.05 (5)N1—C2—H2126.5
C4—Pd1—N3179.52 (6)C3—C2—N1107.06 (17)
C14—N3—Pd1120.15 (10)C3—C2—H2126.5
C14—N3—C18117.38 (15)N3—C14—C15123.39 (14)
C18—N3—Pd1122.42 (12)N3—C14—H14118.3
C3—N2—C5124.98 (16)C15—C14—H14118.3
C4—N2—C5125.18 (15)N2—C4—Pd1127.87 (12)
C4—N2—C3109.84 (16)N1—C4—Pd1125.92 (12)
C2—N1—C1126.16 (16)N1—C4—N2106.14 (14)
C4—N1—C2109.98 (15)C15—C16—C19121.06 (15)
C4—N1—C1123.85 (14)C17—C16—C15116.29 (15)
N2—C5—H5A108.7C17—C16—C19122.64 (14)
N2—C5—H5B108.7C8—C9—C12119.2 (2)
N2—C5—C6114.40 (16)C8—C9—C10117.57 (19)
H5A—C5—H5B107.6C10—C9—C12123.22 (18)
C6—C5—H5A108.7N3—C18—C17122.41 (17)
C6—C5—H5B108.7N3—C18—H18118.8
C19—C24—H24119.9C17—C18—H18118.8
C23—C24—H24119.9C9—C10—H10119.6
C23—C24—C19120.21 (18)C11—C10—C9120.80 (18)
C14—C15—H15120.0C11—C10—H10119.6
C14—C15—C16119.97 (15)C12—C13—H13A120.0
C16—C15—H15120.0C12—C13—H13B120.0
C9—C8—H8119.2H13A—C13—H13B120.0
C7—C8—H8119.2C8—C7—H7119.6
C7—C8—C9121.6 (2)C6—C7—C8120.78 (18)
C24—C19—C16121.42 (16)C6—C7—H7119.6
C20—C19—C24118.45 (16)N1—C1—H1A109.5
C20—C19—C16120.13 (14)N1—C1—H1B109.5
N2—C3—H3126.5N1—C1—H1C109.5
C2—C3—N2106.98 (17)H1A—C1—H1B109.5
C2—C3—H3126.5H1A—C1—H1C109.5
C19—C20—H20119.6H1B—C1—H1C109.5
C21—C20—C19120.86 (16)C10—C11—H11119.3
C21—C20—H20119.6C10—C11—C6121.41 (19)
C20—C21—H21119.9C6—C11—H11119.3
C20—C21—C22120.15 (19)C7—C6—C5123.98 (17)
C22—C21—H21119.9C7—C6—C11117.86 (19)
C9—C12—H12116.5C11—C6—C5118.16 (18)
C13—C12—H12116.5C21—C22—H22120.3
C13—C12—C9126.9 (2)C23—C22—C21119.49 (18)
C16—C17—H17119.8C23—C22—H22120.3
C18—C17—H17119.8
Pd1—N3—C14—C15176.64 (14)C2—N1—C4—Pd1177.10 (14)
Pd1—N3—C18—C17175.65 (16)C2—N1—C4—N20.1 (2)
N2—C5—C6—C79.5 (3)C14—N3—C18—C171.9 (3)
N2—C5—C6—C11171.03 (16)C14—C15—C16—C19176.13 (16)
N2—C3—C2—N10.4 (2)C14—C15—C16—C172.4 (3)
C5—N2—C3—C2179.58 (19)C4—N2—C5—C6105.5 (2)
C5—N2—C4—Pd12.7 (3)C4—N2—C3—C20.4 (2)
C5—N2—C4—N1179.71 (17)C4—N1—C2—C30.2 (2)
C24—C19—C20—C210.7 (3)C16—C15—C14—N31.3 (3)
C24—C19—C16—C15149.10 (17)C16—C19—C20—C21179.11 (16)
C24—C19—C16—C1732.4 (3)C16—C17—C18—N30.6 (3)
C24—C23—C22—C210.9 (3)C9—C8—C7—C60.3 (3)
C8—C9—C10—C111.2 (3)C9—C10—C11—C60.1 (3)
C8—C7—C6—C5179.13 (19)C18—N3—C14—C151.0 (3)
C8—C7—C6—C111.4 (3)C18—C17—C16—C151.6 (3)
C19—C24—C23—C220.5 (3)C18—C17—C16—C19176.99 (19)
C19—C20—C21—C220.3 (3)C10—C11—C6—C5179.26 (18)
C3—N2—C5—C674.5 (3)C10—C11—C6—C71.2 (3)
C3—N2—C4—Pd1177.26 (14)C13—C12—C9—C8175.0 (2)
C3—N2—C4—N10.3 (2)C13—C12—C9—C104.7 (3)
C20—C19—C16—C1530.7 (2)C7—C8—C9—C12178.69 (19)
C20—C19—C16—C17147.77 (19)C7—C8—C9—C101.0 (3)
C20—C21—C22—C230.5 (3)C1—N1—C2—C3178.86 (19)
C12—C9—C10—C11178.52 (18)C1—N1—C4—Pd13.8 (2)
C23—C24—C19—C200.3 (3)C1—N1—C4—N2179.15 (16)
C23—C24—C19—C16179.52 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···Cl1i0.952.813.6021 (18)142
C23—H23···Cl2ii0.952.743.6537 (19)162
Symmetry codes: (i) x+1, y, z+2; (ii) x, y, z+1.
 

Acknowledgements

The Swedish Research Council and Kungl. Vetenskapsakademien are gratefully acknowledged for financial support. We are grateful to the tutors of the Zurich School of Crystallography 2015 for their assistance with the data collection and guidance during the structure determination of the reported compound.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAnderson, E. B. & Long, T. E. (2010). Polymer, 51, 2447–2454.  CrossRef CAS Google Scholar
First citationDani, A., Groppo, E., Barolo, C., Vitillo, J. G. & Bordiga, S. (2015). J. Mater. Chem. A, 3, 8508–8518.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhazali-Esfahani, S., Song, H. B., Păunescu, E., Bobbink, F. D., Liu, H. Z., Fei, Z. F., Laurenczy, G., Bagherzadeh, M., Yan, N. & Dyson, P. J. (2013). Green Chem. 15, 1584–1589.  CAS Google Scholar
First citationHadei, N., Kantchev, E. A. B., O'Brien, C. J. & Organ, M. G. (2005). Org. Lett. 7, 3805–3807.  CrossRef PubMed CAS Google Scholar
First citationKim, J. H., Kim, J. W., Shokouhimehr, M. & Lee, Y. S. (2005). J. Org. Chem. 70, 6714–6720.  CrossRef PubMed CAS Google Scholar
First citationKuzmicz, D., Coupillaud, P., Men, Y., Vignolle, J., Vendraminetto, G., Ambrogi, M., Taton, D. & Yuan, J. Y. (2014). Polymer, 55, 3423–3430.  CrossRef CAS Google Scholar
First citationLi, W., Fang, J., Lv, M., Chen, C., Chi, X., Yang, Y. & Zhang, Y. (2011). J. Mater. Chem. 21, 11340–11346.  CrossRef CAS Google Scholar
First citationLu, X. Y., Chen, F., Xu, W. F. & Chen, X. T. (2009). Inorg. Chim. Acta, 362, 5113–5116.  CSD CrossRef CAS Google Scholar
First citationLu, X.-Y., Sun, J.-F., Zhang, L. & Chen, X.-T. (2010). Acta Cryst. E66, o378.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNasielski, J., Hadei, N., Achonduh, G., Kantchev, E. A. B., O'Brien, C. J., Lough, A. & Organ, M. G. (2010). Chem. Eur. J. 16, 10844–10853.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSeo, U. R. & Chung, Y. K. (2014). RSC Adv. 4, 32371–32374.  CrossRef CAS Google Scholar
First citationSevinçek, R., Türkmen, H., Aygün, M., Çetinkaya, B. & García-Granda, S. (2007). Acta Cryst. C63, m277–m279.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationValente, C., Belowich, M. E., Hadei, N. & Organ, M. G. (2010). Eur. J. Org. Chem. pp. 4343–4354.  Google Scholar
First citationValente, C., Çalimsiz, S., Hoi, K. H., Mallik, D., Sayah, M. & Organ, M. G. (2012). Angew. Chem. Int. Ed. 51, 3314–3332.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds