research communications
Synthesis and trans-dichlorido[3-methyl-1-(4-vinylbenzyl)-1H-imidazol-3-ium-2-yl-κC2](4-phenylpyridine-κN)palladium(II)
ofaCentre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124 221 00, Lund, Sweden
*Correspondence e-mail: ola.wendt@chem.lu.se
The title compound, [PdCl2(C11H9N)(C13H14N2)], represents a new class of palladium-based polymerizable monomer which could give a potentially catalytically active polymer. It was synthesized via transmetallation from the corresponding silver complex. The PdII ion coordinates two Cl anions, one C atom from the N-heterocyclic carbene (NHC) ligand and one N atom from the 4-phenylpyridine ligand, displaying a slightly distorted square-planar geometry. The dihedral angle between the imidazole ring and the pyridine ring is 34.53 (8)°. The Pd—C bond length between the NHC ligand and the PdII ion is 1.9532 (16) Å. In the crystal, weak non-classical C—H⋯Cl hydrogen bonds link the molecules into a tape structure along [101]. A weak π–π interaction is also observed [centroid–centroid distance = 3.9117 (11) Å].
Keywords: crystal structure; palladium; N-heterocyclic carbenes; monomers for polymerization; 1-methyl-3-(4-vinylbenzyl)imidazole.
CCDC reference: 1468135
1. Chemical context
In the last few years, palladium complexes with N-heterocyclic carbene ligands (Pd-NHCs) have received attention, inter alia as catalysts for cross-coupling in organic synthesis (Hadei et al., 2005; Nasielski et al., 2010; Valente et al., 2010, 2012). NHC complexes derived from vinyl imidazolium salts are of growing significance in organometallic transformations because of their potential as precursors in biocompatibility, anti-microbial activity and fuel cell applications (Dani et al., 2015; Ghazali-Esfahani et al., 2013; Anderson & Long, 2010; Kim et al., 2005; Kuzmicz et al., 2014; Seo & Chung, 2014; Li et al., 2011). The crystal structures of 1-methyl-3-(4-vinylbenzyl) imidazolium hexafluoridophosphate and silver complexes with 1-methyl-3-(4-vinylbenzyl) imidazole as a carbene ligand have been reported previously (Lu et al., 2009, 2010). Here we report on the of a new type of Pd-NHC complex belonging to the group of PEPPSI (pyridine-enhanced precatalyst preparation stabilization and initiation) catalysts, which are stable towards air and moisture, and have the advantage of being easy to synthesize and handle (Hadei et al., 2005).
2. Structural commentary
In the title compound, the PdII ion coordinates the five-membered NHC ligand with a Pd1—C4 bond length of 1.9532 (16) Å and the 4-phenylpyridine ligand with a Pd1—N3 bond length of 2.0938 (14) Å. The two mutually trans Cl ions fulfil the coordination sphere (Fig. 1). Bond angles in the so-formed distorted square-plane are all close to 90° with the C4—Pd1—Cl angles slightly less than 90° and the others slightly more. The C4—Pd1—N3 angle shows an expected value 179.52 (6)°, while Cl1—Pd1—Cl2 exhibits a slightly distorted angle of 176.789 (17)°, probably due to the steric influence of the aromatic rings (Sevinçek et al., 2007). The dihedral angle between the N1/C4/N2/C3/C2 and C6–C11 rings in the NHC ligand is 77.90 (5)°.
The dihedral angles between the N1/C4/N2/C3/C2 ring on one hand and the N3/C14–C18 and C19–C24 rings on the other are 34.53 (8) and 65.78 (7)°, respectively. The C12—C13 bond length of the vinyl group is 1.299 (3) Å, corroborating the double-bond character. The same goes for the C2—C3 distance which is 1.330 (3) Å. The N2—C4—Pd1—N3, N1—C4—Pd1—Cl2, C18—N3—Pd1—Cl2 and C17—C16—C19—C24 torsion angles are −30 (7), 81.15 (15), −49.40 (15) and 32.42 (3)°, respectively. A Cambridge Structural Database (CSD) search to validate the Pd—Cl and Pd—N bonding was performed over 47 entries. The Cl—Pd—Cl and N—C—N angles range from 170 to 180° and from 104.8 to 106.2°, respectively; the Pd—Cl bond lengths are in the range 2.286–2.318 Å. The bond lengths and angles of the title compound 4 are comparable to the literature values.
3. Supramolecular features
In addition to dispersion interactions, the crystal of title compound 4 shows a π–π interaction between the C19–C24 phenyl rings of neighbouring molecules with a centroid–centroid distance of 3.9117 (11) Å (Fig. 2). Two weak non-classical C—H⋯Cl hydrogen bonds are detected (Table 1). No C—H⋯π contacts are present in the crystal packing diagram of compound 4 (Fig. 3).
4. Synthesis and crystallization
General: Solvents and chemicals were purchased from commercial suppliers and used as received. The imidazolium salts 1 and 2 were prepared according to previously reported procedures (Kim et al., 2005; Lu et al., 2009). The title compound 4 was synthesized according to the carbene silver(I) route, as shown in Fig. 4. Transmetallation of the ligand from the tetrameric silver complex 2 gave the chlorido-bridged palladium dimer 3. Cleavage of the dimer with phenylpyridine afforded complex 4 in excellent yield. With its vinyl groups it can serve as a precursor in co-polymerization reactions with e.g. styrene to form polymeric materials with catalytic properties.
[PdCl2(bmim)]2 (3). A 100 ml Schlenk flask was charged with 2 (7.0 g, 20.5 mmol), 50 ml of dry CH2Cl2 and Pd(PhCN)2Cl2 (7.8 g, 20.5 mmol). The mixture was stirred for 48 h at room temperature, during which time the solution changed colour to cloudy light brown. It was filtered through Celite and the filtrate was reduced to ca 10 ml. Upon addition of n-hexane, a light-brown solid was formed, which was collected on a frit and dried under vacuum to give 5.97 g (yield 78%).
[PdCl2(bmbim)(4-Phenylpyridine)] (4). 4-Phenylpyridine (0.085 g, 0.55 mmol) was added to a 40 ml solution of 3 (0.25 g, 0.26 mmol) in dry CH3CN and stirred at ambient temperature for 24 h, during which time the solution changed colour to clear yellow. The mixture was filtered through Celite and all solvents were evaporated. The solids were dissolved in CH2Cl2 and, upon addition of n-hexane, a yellow solid was formed, which was collected on a frit and dried under vacuum to give 0.153 g (93%) of 4.
Single crystals of 4 suitable for X-ray diffraction were obtained by slow diffusion of n-hexane into a saturated CH2Cl2 solution of the compound.
5. details
Crystal data and structure . H atoms were treated as riding, with C—H = 0.95–0.99 Å, and with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1468135
https://doi.org/10.1107/S2056989016004394/is5447sup1.cif
contains datablocks Global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016004394/is5447Isup2.hkl
Numbering for the assignment of NMR spectra. DOI: https://doi.org/10.1107/S2056989016004394/is5447sup3.tif
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[PdCl2(C11H9N)(C13H14N2)] | Z = 2 |
Mr = 530.75 | F(000) = 536 |
Triclinic, P1 | Dx = 1.510 Mg m−3 |
a = 7.8768 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 12.2939 (5) Å | Cell parameters from 11991 reflections |
c = 12.6120 (4) Å | θ = 2.5–32.8° |
α = 95.692 (3)° | µ = 1.04 mm−1 |
β = 97.267 (3)° | T = 183 K |
γ = 103.574 (3)° | Plate, clear light yellow |
V = 1167.09 (8) Å3 | 0.39 × 0.27 × 0.1 mm |
Agilent Xcalibur Ruby diffractometer | 7116 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 6179 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
Detector resolution: 10.4498 pixels mm-1 | θmax = 30.5°, θmin = 2.5° |
ω scans | h = −11→11 |
Absorption correction: analytical (CrysAlis PRO; Agilent, 2012) | k = −17→17 |
Tmin = 0.727, Tmax = 0.916 | l = −18→18 |
28730 measured reflections |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.068 | w = 1/[σ2(Fo2) + (0.0295P)2 + 0.2776P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
7116 reflections | Δρmax = 0.45 e Å−3 |
272 parameters | Δρmin = −0.42 e Å−3 |
0 restraints |
Experimental. NMR spectra were acquired on a Bruker Avance 400 FT–NMR spectrometer (1H: 400.1 MHz). Residual solvent peaks were used as an internal reference. Elemental analyses were performed by H. Kolbe Microanalytisches Laboratorium, Mülheim an der Ruhr, Germany. The atomic numbering refers to Figure S1. (3): 1H NMR (400 MHz, CDCl3): δ 7.42 (s, 8H, H-4, H5, H7 and H8), 6.87 (d, J = 1.9 Hz, 2H, H11), 6.75-6.65 (m, overlapping, 2H, H2), 6.70 (d, J = 1.8 Hz, 2H, H10), 5.82 (s, 4H, H9), 5.76 (d, J = 17.6 Hz, 2H, H1B), (5.28 (d, J = 10.9 Hz, 2H, H1A), 4.21 (s, 6H, H12). 13C NMR (400 MHz, CDCl3): δ 141.7 (C13), 138.2 (C6), 136.3 (C2), 134.2 (C3), 129.3 (C4 and C8), 127.0 (C5 and C7), 121.9 and 124.0 (C10 and C11 of imidazolyl), 114.9 (C1), 54.6 (C9), 38.4 (C12). Anal. Calcd for C26H28Cl4N4Pd2: C, 41.57; H, 3.76; N, 7.46. Found: C, 41.93; H, 4.21; N, 7.22. (4): 1H NMR (400 MHz, CDCl3): δ 9.02 (dd, J=5.2, 1.5 Hz, 2H, H14 and H18), 7.65 – 7.4 (m, 9H, H4, H5, H7, H8, H19, H20, H21, H22 and H23), 7.56 (dd, J=5.2, J=1.6 Hz, H15 and H17), 6.89 (d, J=2.0 Hz, 1H, H11), 6.75 – 6.65 (m, overlapping, 1H, H2), 6.72 (d, J = 1.8 Hz, 1H, H10), 5.84 (s, 2H, H9), 5.76 (d, J=17.6 Hz, 1H, H1B), 5.27 (d, J=10.9 Hz, 1H, H1A), 4.21 (s, 3H, H12). 13C NMR (400 MHz, CDCl3): δ 151.4 (C14, C18), 150.6 (C16), 150.0 (C13), 137.9 (C24), 137.0 (C6), 136.4 (C2), 135.0 (C3), 130.0 (C21), 129.4 (C20 and C22), 129.3 (C4 and C8), 127.3 (C5 and C7), 126.9 (C19 and C23), 123.6 (C11 of imidazolyl), 122.4 (C15 and C17), 121.4 (C10 of imidazolyl), 114.6 (C1), 54.5 (C9), 38.2 (C12). Anal. Calcd for C32H29Cl2N3Pd: C, 60.73; H, 4.62; N, 6.64. Found: C, 60.52; H, 4.48; N, 6.52. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Pd1 | 0.07483 (2) | 0.20492 (2) | 0.94817 (2) | 0.02792 (4) | |
Cl1 | 0.25183 (7) | 0.15753 (5) | 1.08527 (4) | 0.05106 (13) | |
Cl2 | −0.11307 (6) | 0.25396 (4) | 0.81746 (3) | 0.03823 (10) | |
N3 | 0.17729 (19) | 0.11549 (12) | 0.83251 (11) | 0.0321 (3) | |
N2 | 0.0464 (2) | 0.39712 (13) | 1.10216 (12) | 0.0370 (3) | |
N1 | −0.17080 (19) | 0.25232 (13) | 1.09351 (11) | 0.0334 (3) | |
C5 | 0.2103 (3) | 0.47133 (16) | 1.08373 (16) | 0.0429 (4) | |
H5A | 0.1881 | 0.5452 | 1.0705 | 0.051* | |
H5B | 0.2460 | 0.4386 | 1.0177 | 0.051* | |
C24 | 0.3205 (2) | −0.12292 (16) | 0.51023 (13) | 0.0363 (4) | |
H24 | 0.2130 | −0.1060 | 0.4829 | 0.044* | |
C15 | 0.4285 (2) | 0.07047 (14) | 0.76901 (13) | 0.0309 (3) | |
H15 | 0.5536 | 0.0852 | 0.7759 | 0.037* | |
C8 | 0.4998 (3) | 0.45500 (17) | 1.34428 (16) | 0.0457 (5) | |
H8 | 0.4936 | 0.4133 | 1.4038 | 0.055* | |
C19 | 0.4004 (2) | −0.08203 (14) | 0.61662 (13) | 0.0305 (3) | |
C3 | −0.0648 (3) | 0.42689 (18) | 1.17048 (17) | 0.0487 (5) | |
H3 | −0.0477 | 0.4979 | 1.2132 | 0.058* | |
C20 | 0.5571 (2) | −0.10877 (15) | 0.65431 (14) | 0.0353 (4) | |
H20 | 0.6125 | −0.0824 | 0.7267 | 0.042* | |
C21 | 0.6333 (3) | −0.17316 (16) | 0.58797 (16) | 0.0424 (4) | |
H21 | 0.7408 | −0.1905 | 0.6147 | 0.051* | |
C12 | 0.7988 (3) | 0.56108 (19) | 1.43218 (19) | 0.0500 (5) | |
H12 | 0.7857 | 0.5128 | 1.4866 | 0.060* | |
C17 | 0.1405 (2) | −0.02490 (17) | 0.68094 (15) | 0.0405 (4) | |
H17 | 0.0623 | −0.0784 | 0.6261 | 0.049* | |
C23 | 0.3973 (3) | −0.18787 (16) | 0.44476 (14) | 0.0419 (4) | |
H23 | 0.3415 | −0.2158 | 0.3727 | 0.050* | |
C2 | −0.2001 (3) | 0.33722 (19) | 1.16486 (16) | 0.0464 (5) | |
H2 | −0.2982 | 0.3322 | 1.2025 | 0.056* | |
C14 | 0.3524 (2) | 0.13006 (14) | 0.83849 (13) | 0.0313 (3) | |
H14 | 0.4277 | 0.1845 | 0.8938 | 0.038* | |
C4 | −0.0199 (2) | 0.28953 (14) | 1.05559 (12) | 0.0293 (3) | |
C16 | 0.3223 (2) | −0.01184 (14) | 0.68806 (13) | 0.0307 (3) | |
C9 | 0.6520 (2) | 0.53798 (15) | 1.34155 (15) | 0.0381 (4) | |
C18 | 0.0733 (2) | 0.03931 (17) | 0.75286 (15) | 0.0414 (4) | |
H18 | −0.0511 | 0.0293 | 0.7458 | 0.050* | |
C10 | 0.6572 (3) | 0.59587 (16) | 1.25243 (18) | 0.0442 (5) | |
H10 | 0.7605 | 0.6522 | 1.2475 | 0.053* | |
C13 | 0.9444 (3) | 0.6404 (2) | 1.4456 (2) | 0.0688 (7) | |
H13A | 0.9643 | 0.6910 | 1.3936 | 0.083* | |
H13B | 1.0309 | 0.6478 | 1.5074 | 0.083* | |
C7 | 0.3571 (3) | 0.43155 (17) | 1.26257 (16) | 0.0458 (5) | |
H7 | 0.2548 | 0.3740 | 1.2666 | 0.055* | |
C1 | −0.2837 (2) | 0.13842 (17) | 1.06416 (16) | 0.0420 (4) | |
H1A | −0.2245 | 0.0847 | 1.0957 | 0.050* | |
H1B | −0.3069 | 0.1198 | 0.9855 | 0.050* | |
H1C | −0.3958 | 0.1340 | 1.0916 | 0.050* | |
C11 | 0.5146 (3) | 0.57258 (16) | 1.17113 (17) | 0.0420 (4) | |
H11 | 0.5212 | 0.6133 | 1.1110 | 0.050* | |
C6 | 0.3612 (2) | 0.49074 (14) | 1.17516 (15) | 0.0364 (4) | |
C22 | 0.5534 (3) | −0.21261 (16) | 0.48248 (16) | 0.0445 (5) | |
H22 | 0.6062 | −0.2564 | 0.4366 | 0.053* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd1 | 0.02640 (7) | 0.03243 (7) | 0.02598 (7) | 0.00963 (5) | 0.00443 (4) | 0.00293 (5) |
Cl1 | 0.0572 (3) | 0.0779 (4) | 0.0306 (2) | 0.0436 (3) | 0.0032 (2) | 0.0073 (2) |
Cl2 | 0.0344 (2) | 0.0448 (2) | 0.0344 (2) | 0.01076 (18) | −0.00241 (16) | 0.00783 (17) |
N3 | 0.0300 (7) | 0.0359 (7) | 0.0292 (7) | 0.0078 (6) | 0.0048 (5) | −0.0002 (6) |
N2 | 0.0376 (8) | 0.0355 (8) | 0.0384 (8) | 0.0100 (6) | 0.0104 (6) | 0.0001 (6) |
N1 | 0.0301 (7) | 0.0385 (8) | 0.0347 (7) | 0.0119 (6) | 0.0097 (6) | 0.0055 (6) |
C5 | 0.0469 (11) | 0.0357 (9) | 0.0435 (10) | 0.0038 (8) | 0.0093 (8) | 0.0057 (8) |
C24 | 0.0365 (9) | 0.0418 (9) | 0.0276 (8) | 0.0062 (7) | 0.0030 (7) | 0.0018 (7) |
C15 | 0.0274 (8) | 0.0335 (8) | 0.0288 (7) | 0.0026 (6) | 0.0052 (6) | 0.0003 (6) |
C8 | 0.0509 (12) | 0.0423 (10) | 0.0433 (10) | 0.0062 (9) | 0.0134 (9) | 0.0084 (8) |
C19 | 0.0313 (8) | 0.0314 (8) | 0.0265 (7) | 0.0036 (6) | 0.0063 (6) | 0.0014 (6) |
C3 | 0.0529 (12) | 0.0475 (11) | 0.0493 (11) | 0.0202 (10) | 0.0173 (9) | −0.0060 (9) |
C20 | 0.0399 (9) | 0.0368 (9) | 0.0283 (8) | 0.0094 (7) | 0.0039 (7) | 0.0027 (7) |
C21 | 0.0424 (10) | 0.0402 (10) | 0.0480 (10) | 0.0160 (8) | 0.0084 (8) | 0.0062 (8) |
C12 | 0.0462 (11) | 0.0481 (11) | 0.0577 (12) | 0.0158 (9) | 0.0108 (10) | 0.0030 (10) |
C17 | 0.0305 (9) | 0.0487 (11) | 0.0350 (9) | 0.0044 (8) | 0.0003 (7) | −0.0104 (8) |
C23 | 0.0528 (12) | 0.0415 (10) | 0.0270 (8) | 0.0041 (9) | 0.0086 (8) | −0.0019 (7) |
C2 | 0.0428 (11) | 0.0583 (12) | 0.0437 (10) | 0.0205 (9) | 0.0169 (9) | 0.0014 (9) |
C14 | 0.0297 (8) | 0.0329 (8) | 0.0283 (7) | 0.0041 (6) | 0.0032 (6) | 0.0002 (6) |
C4 | 0.0269 (7) | 0.0341 (8) | 0.0288 (7) | 0.0111 (6) | 0.0047 (6) | 0.0045 (6) |
C16 | 0.0307 (8) | 0.0336 (8) | 0.0260 (7) | 0.0048 (6) | 0.0051 (6) | 0.0020 (6) |
C9 | 0.0361 (9) | 0.0329 (9) | 0.0465 (10) | 0.0110 (7) | 0.0126 (8) | −0.0019 (8) |
C18 | 0.0271 (8) | 0.0521 (11) | 0.0400 (9) | 0.0069 (8) | 0.0025 (7) | −0.0067 (8) |
C10 | 0.0361 (10) | 0.0341 (9) | 0.0621 (12) | 0.0044 (8) | 0.0162 (9) | 0.0051 (9) |
C13 | 0.0519 (14) | 0.0694 (16) | 0.0778 (17) | 0.0064 (12) | −0.0015 (13) | 0.0109 (14) |
C7 | 0.0427 (11) | 0.0412 (10) | 0.0475 (11) | −0.0039 (8) | 0.0107 (9) | 0.0073 (8) |
C1 | 0.0322 (9) | 0.0443 (10) | 0.0498 (11) | 0.0056 (8) | 0.0108 (8) | 0.0115 (8) |
C11 | 0.0445 (11) | 0.0327 (9) | 0.0510 (11) | 0.0075 (8) | 0.0167 (9) | 0.0100 (8) |
C6 | 0.0396 (9) | 0.0281 (8) | 0.0423 (9) | 0.0085 (7) | 0.0133 (8) | 0.0000 (7) |
C22 | 0.0563 (12) | 0.0360 (9) | 0.0436 (10) | 0.0128 (9) | 0.0178 (9) | 0.0002 (8) |
Pd1—Cl1 | 2.2901 (5) | C20—H20 | 0.9500 |
Pd1—Cl2 | 2.2957 (4) | C20—C21 | 1.381 (3) |
Pd1—N3 | 2.0938 (14) | C21—H21 | 0.9500 |
Pd1—C4 | 1.9532 (16) | C21—C22 | 1.385 (3) |
N3—C14 | 1.340 (2) | C12—H12 | 0.9500 |
N3—C18 | 1.342 (2) | C12—C9 | 1.474 (3) |
N2—C5 | 1.456 (2) | C12—C13 | 1.299 (3) |
N2—C3 | 1.387 (2) | C17—H17 | 0.9500 |
N2—C4 | 1.346 (2) | C17—C16 | 1.393 (2) |
N1—C2 | 1.390 (2) | C17—C18 | 1.379 (3) |
N1—C4 | 1.335 (2) | C23—H23 | 0.9500 |
N1—C1 | 1.455 (2) | C23—C22 | 1.374 (3) |
C5—H5A | 0.9900 | C2—H2 | 0.9500 |
C5—H5B | 0.9900 | C14—H14 | 0.9500 |
C5—C6 | 1.505 (3) | C9—C10 | 1.389 (3) |
C24—H24 | 0.9500 | C18—H18 | 0.9500 |
C24—C19 | 1.398 (2) | C10—H10 | 0.9500 |
C24—C23 | 1.381 (3) | C10—C11 | 1.377 (3) |
C15—H15 | 0.9500 | C13—H13A | 0.9500 |
C15—C14 | 1.370 (2) | C13—H13B | 0.9500 |
C15—C16 | 1.396 (2) | C7—H7 | 0.9500 |
C8—H8 | 0.9500 | C7—C6 | 1.379 (3) |
C8—C9 | 1.386 (3) | C1—H1A | 0.9800 |
C8—C7 | 1.380 (3) | C1—H1B | 0.9800 |
C19—C20 | 1.389 (3) | C1—H1C | 0.9800 |
C19—C16 | 1.473 (2) | C11—H11 | 0.9500 |
C3—H3 | 0.9500 | C11—C6 | 1.389 (3) |
C3—C2 | 1.330 (3) | C22—H22 | 0.9500 |
Cl1—Pd1—Cl2 | 176.789 (17) | C18—C17—C16 | 120.49 (15) |
N3—Pd1—Cl1 | 91.21 (4) | C24—C23—H23 | 119.6 |
N3—Pd1—Cl2 | 91.74 (4) | C22—C23—C24 | 120.84 (17) |
C4—Pd1—Cl1 | 89.00 (5) | C22—C23—H23 | 119.6 |
C4—Pd1—Cl2 | 88.05 (5) | N1—C2—H2 | 126.5 |
C4—Pd1—N3 | 179.52 (6) | C3—C2—N1 | 107.06 (17) |
C14—N3—Pd1 | 120.15 (10) | C3—C2—H2 | 126.5 |
C14—N3—C18 | 117.38 (15) | N3—C14—C15 | 123.39 (14) |
C18—N3—Pd1 | 122.42 (12) | N3—C14—H14 | 118.3 |
C3—N2—C5 | 124.98 (16) | C15—C14—H14 | 118.3 |
C4—N2—C5 | 125.18 (15) | N2—C4—Pd1 | 127.87 (12) |
C4—N2—C3 | 109.84 (16) | N1—C4—Pd1 | 125.92 (12) |
C2—N1—C1 | 126.16 (16) | N1—C4—N2 | 106.14 (14) |
C4—N1—C2 | 109.98 (15) | C15—C16—C19 | 121.06 (15) |
C4—N1—C1 | 123.85 (14) | C17—C16—C15 | 116.29 (15) |
N2—C5—H5A | 108.7 | C17—C16—C19 | 122.64 (14) |
N2—C5—H5B | 108.7 | C8—C9—C12 | 119.2 (2) |
N2—C5—C6 | 114.40 (16) | C8—C9—C10 | 117.57 (19) |
H5A—C5—H5B | 107.6 | C10—C9—C12 | 123.22 (18) |
C6—C5—H5A | 108.7 | N3—C18—C17 | 122.41 (17) |
C6—C5—H5B | 108.7 | N3—C18—H18 | 118.8 |
C19—C24—H24 | 119.9 | C17—C18—H18 | 118.8 |
C23—C24—H24 | 119.9 | C9—C10—H10 | 119.6 |
C23—C24—C19 | 120.21 (18) | C11—C10—C9 | 120.80 (18) |
C14—C15—H15 | 120.0 | C11—C10—H10 | 119.6 |
C14—C15—C16 | 119.97 (15) | C12—C13—H13A | 120.0 |
C16—C15—H15 | 120.0 | C12—C13—H13B | 120.0 |
C9—C8—H8 | 119.2 | H13A—C13—H13B | 120.0 |
C7—C8—H8 | 119.2 | C8—C7—H7 | 119.6 |
C7—C8—C9 | 121.6 (2) | C6—C7—C8 | 120.78 (18) |
C24—C19—C16 | 121.42 (16) | C6—C7—H7 | 119.6 |
C20—C19—C24 | 118.45 (16) | N1—C1—H1A | 109.5 |
C20—C19—C16 | 120.13 (14) | N1—C1—H1B | 109.5 |
N2—C3—H3 | 126.5 | N1—C1—H1C | 109.5 |
C2—C3—N2 | 106.98 (17) | H1A—C1—H1B | 109.5 |
C2—C3—H3 | 126.5 | H1A—C1—H1C | 109.5 |
C19—C20—H20 | 119.6 | H1B—C1—H1C | 109.5 |
C21—C20—C19 | 120.86 (16) | C10—C11—H11 | 119.3 |
C21—C20—H20 | 119.6 | C10—C11—C6 | 121.41 (19) |
C20—C21—H21 | 119.9 | C6—C11—H11 | 119.3 |
C20—C21—C22 | 120.15 (19) | C7—C6—C5 | 123.98 (17) |
C22—C21—H21 | 119.9 | C7—C6—C11 | 117.86 (19) |
C9—C12—H12 | 116.5 | C11—C6—C5 | 118.16 (18) |
C13—C12—H12 | 116.5 | C21—C22—H22 | 120.3 |
C13—C12—C9 | 126.9 (2) | C23—C22—C21 | 119.49 (18) |
C16—C17—H17 | 119.8 | C23—C22—H22 | 120.3 |
C18—C17—H17 | 119.8 | ||
Pd1—N3—C14—C15 | 176.64 (14) | C2—N1—C4—Pd1 | −177.10 (14) |
Pd1—N3—C18—C17 | −175.65 (16) | C2—N1—C4—N2 | −0.1 (2) |
N2—C5—C6—C7 | 9.5 (3) | C14—N3—C18—C17 | 1.9 (3) |
N2—C5—C6—C11 | −171.03 (16) | C14—C15—C16—C19 | −176.13 (16) |
N2—C3—C2—N1 | 0.4 (2) | C14—C15—C16—C17 | 2.4 (3) |
C5—N2—C3—C2 | 179.58 (19) | C4—N2—C5—C6 | −105.5 (2) |
C5—N2—C4—Pd1 | −2.7 (3) | C4—N2—C3—C2 | −0.4 (2) |
C5—N2—C4—N1 | −179.71 (17) | C4—N1—C2—C3 | −0.2 (2) |
C24—C19—C20—C21 | 0.7 (3) | C16—C15—C14—N3 | −1.3 (3) |
C24—C19—C16—C15 | −149.10 (17) | C16—C19—C20—C21 | −179.11 (16) |
C24—C19—C16—C17 | 32.4 (3) | C16—C17—C18—N3 | −0.6 (3) |
C24—C23—C22—C21 | 0.9 (3) | C9—C8—C7—C6 | −0.3 (3) |
C8—C9—C10—C11 | 1.2 (3) | C9—C10—C11—C6 | −0.1 (3) |
C8—C7—C6—C5 | −179.13 (19) | C18—N3—C14—C15 | −1.0 (3) |
C8—C7—C6—C11 | 1.4 (3) | C18—C17—C16—C15 | −1.6 (3) |
C19—C24—C23—C22 | −0.5 (3) | C18—C17—C16—C19 | 176.99 (19) |
C19—C20—C21—C22 | −0.3 (3) | C10—C11—C6—C5 | 179.26 (18) |
C3—N2—C5—C6 | 74.5 (3) | C10—C11—C6—C7 | −1.2 (3) |
C3—N2—C4—Pd1 | 177.26 (14) | C13—C12—C9—C8 | −175.0 (2) |
C3—N2—C4—N1 | 0.3 (2) | C13—C12—C9—C10 | 4.7 (3) |
C20—C19—C16—C15 | 30.7 (2) | C7—C8—C9—C12 | 178.69 (19) |
C20—C19—C16—C17 | −147.77 (19) | C7—C8—C9—C10 | −1.0 (3) |
C20—C21—C22—C23 | −0.5 (3) | C1—N1—C2—C3 | 178.86 (19) |
C12—C9—C10—C11 | −178.52 (18) | C1—N1—C4—Pd1 | 3.8 (2) |
C23—C24—C19—C20 | −0.3 (3) | C1—N1—C4—N2 | −179.15 (16) |
C23—C24—C19—C16 | 179.52 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
C20—H20···Cl1i | 0.95 | 2.81 | 3.6021 (18) | 142 |
C23—H23···Cl2ii | 0.95 | 2.74 | 3.6537 (19) | 162 |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x, −y, −z+1. |
Acknowledgements
The Swedish Research Council and Kungl. Vetenskapsakademien are gratefully acknowledged for financial support. We are grateful to the tutors of the Zurich School of Crystallography 2015 for their assistance with the data collection and guidance during the
of the reported compound.References
Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Anderson, E. B. & Long, T. E. (2010). Polymer, 51, 2447–2454. CrossRef CAS Google Scholar
Dani, A., Groppo, E., Barolo, C., Vitillo, J. G. & Bordiga, S. (2015). J. Mater. Chem. A, 3, 8508–8518. CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ghazali-Esfahani, S., Song, H. B., Păunescu, E., Bobbink, F. D., Liu, H. Z., Fei, Z. F., Laurenczy, G., Bagherzadeh, M., Yan, N. & Dyson, P. J. (2013). Green Chem. 15, 1584–1589. CAS Google Scholar
Hadei, N., Kantchev, E. A. B., O'Brien, C. J. & Organ, M. G. (2005). Org. Lett. 7, 3805–3807. CrossRef PubMed CAS Google Scholar
Kim, J. H., Kim, J. W., Shokouhimehr, M. & Lee, Y. S. (2005). J. Org. Chem. 70, 6714–6720. CrossRef PubMed CAS Google Scholar
Kuzmicz, D., Coupillaud, P., Men, Y., Vignolle, J., Vendraminetto, G., Ambrogi, M., Taton, D. & Yuan, J. Y. (2014). Polymer, 55, 3423–3430. CrossRef CAS Google Scholar
Li, W., Fang, J., Lv, M., Chen, C., Chi, X., Yang, Y. & Zhang, Y. (2011). J. Mater. Chem. 21, 11340–11346. CrossRef CAS Google Scholar
Lu, X. Y., Chen, F., Xu, W. F. & Chen, X. T. (2009). Inorg. Chim. Acta, 362, 5113–5116. CSD CrossRef CAS Google Scholar
Lu, X.-Y., Sun, J.-F., Zhang, L. & Chen, X.-T. (2010). Acta Cryst. E66, o378. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nasielski, J., Hadei, N., Achonduh, G., Kantchev, E. A. B., O'Brien, C. J., Lough, A. & Organ, M. G. (2010). Chem. Eur. J. 16, 10844–10853. Web of Science CSD CrossRef CAS PubMed Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Seo, U. R. & Chung, Y. K. (2014). RSC Adv. 4, 32371–32374. CrossRef CAS Google Scholar
Sevinçek, R., Türkmen, H., Aygün, M., Çetinkaya, B. & García-Granda, S. (2007). Acta Cryst. C63, m277–m279. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Valente, C., Belowich, M. E., Hadei, N. & Organ, M. G. (2010). Eur. J. Org. Chem. pp. 4343–4354. Google Scholar
Valente, C., Çalimsiz, S., Hoi, K. H., Mallik, D., Sayah, M. & Organ, M. G. (2012). Angew. Chem. Int. Ed. 51, 3314–3332. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.