research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of bis­­[2-(pyridin-2-yl)phenyl-κ2N,C1]rhodium(III) complexes containing an aceto­nitrile or monodentate thyminate(1−) ligand

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: suzuki@okayama-u.ac.jp

Edited by H. Ishida, Okayama University, Japan (Received 5 March 2016; accepted 22 March 2016; online 24 March 2016)

The crystal structures of bis­[2-(pyridin-2-yl)phen­yl]rhodium(III) complexes with the metal in an octahedral coordination containing chloride and aceto­nitrile ligands, namely (OC-6-42)-aceto­nitrile­chlorido­bis­[2-(pyridin-2-yl)phenyl-κ2N,C1]rhodium(III), [RhCl(C11H8N)2(CH3CN)] (1), thyminate(1−) and methanol, namely (OC-6-42)-methanol(5-methyl-2,4-dioxo-1,2,3,4-tetrahydro­pyrimidin-1-ido-κN1)bis­[2-(pyridin-2-yl)phenyl-κ2N,C1]rhodium(III), [Rh(C11H8N)2(C5H5N2O2)(CH3OH)]·CH3OH·0.5H2O (2), and thy­min­ate(1−) and ethanol, namely (OC-6-42)-ethanol(5-methyl-2,4-dioxo-1,2,3,4-tetra­hydro­pyrimidin-1-ido-κN1)bis[2-(pyridin-2-yl)phenyl-κ2N,C1]rhodium(III), [Rh(C11H8N)2(C5H5N2O2)(C2H5OH)]·C2H5OH (3), are reported. The aceto­nitrile complex, 1, is isostructural with the IrIII analog. In complexes 2 and 3, the monodeprotonated thyminate (Hthym) ligand coordinates to the RhIII atom through the N atom, and the resulting Rh—N(Hthym) bond lengths are relatively long [2.261 (2) and 2.252 (2) Å for 2 and 3, respectively] as compared to the Rh—N bonds in the related thyminate complexes. In each of the crystals of 2 and 3, the complexes are linked via a pair of inter­molecular N—H⋯O hydrogen bonds between neighbouring Hthym ligands, forming an inversion dimer. A strong intra­molecular O—H⋯O hydrogen bond between the thyminate(1−) and alcohol ligands in mutually cis positions to each other is also observed.

1. Chemical context

Thymine (= H2thym) is one of the nucleobases, which are biologically important and fundamental organic mol­ecules, and can release one or two protons, giving a thyminate(1−) (= Hthym) or thyminate(2−) (= thym2–) anion. These anions can act as suitable bridging ligands for the construction of functional polymetallic coordination compounds because they provide multiple donor atoms to metal atoms in a configurationally fixed fashion. For example, some tetra- and penta­nuclear PtII complexes bridged by thym2– have been described (Khutia et al., 2011[Khutia, A., Sanz Miguel, P. J. & Lippert, B. (2011). Chem. Eur. J. 17, 4195-4204.]; Rauterkus & Krebs, 2004[Rauterkus, M. J. & Krebs, B. (2004). Angew. Chem. Int. Ed. 43, 1300-1303.]). We have also reported some cyclic tetra­nuclear Cp*RhIII (Cp* = penta­methyl­cyclo­penta­dien­yl) complexes bridged by thym2– and incorporating an another metal cation in the central hydro­philic cavity of their metallacalix[4]arene motifs (Kashima et al., 2015[Kashima, A., Sakate, M., Ota, H., Fuyuhiro, A., Sunatsuki, Y. & Suzuki, T. (2015). Chem. Commun. 51, 1889-1892.]; Sakate et al., 2016[Sakate, M., Kashima, A., Hosoda, H., Ota, H., Sunatsuki, Y., Fuyuhiro, A. & Suzuki, T. (2016). Inorg. Chim. Acta. In the press. doi: 10.1016/j.ica.2016.01.023.]). In contrast, monoanionic thyminate (Hthym) often acts as an N1-coordinating monodentate ligand, for example, in [{Cp*Rh(Hthym)}2(μ-OH)2] (Sakate et al., 2016[Sakate, M., Kashima, A., Hosoda, H., Ota, H., Sunatsuki, Y., Fuyuhiro, A. & Suzuki, T. (2016). Inorg. Chim. Acta. In the press. doi: 10.1016/j.ica.2016.01.023.]), [Cp*IrCl(Hthym)(dmso)] (dmso = di­methyl­sulfoxide; Krämer et al., 1991[Krämer, R., Polborn, K. & Beck, W. (1991). J. Organomet. Chem. 410, 110-116.]), [Pt(NH3)2(Hthym)(Mecyto)]ClO4 (Mecyto = 1-meth­yl­cyto­sine; Faggiani et al., 1981[Faggiani, R., Lippert, B., Lock, C. J. L. & Pfab, R. (1981). Inorg. Chem. 20, 2381-2386.]) and [(TpCum,Me)Zn(Hthym)]·EtAde {TpCum,Me = hydrido­tris[2-methyl-4-(cumen-4-yl)-1-pyrazor­yl]borate, EtAde = 9-ethyl­adenine; Badura & Vahrenkamp, 2002[Badura, D. & Vahrenkamp, H. (2002). Inorg. Chem. 41, 6020-6027.]}. The ZnII complex is an inter­esting example, because the coordinating thyminato ligand forms multiple hydrogen bonds with the co-crystallized 9-ethyl­adenine mol­ecule.

Our next targets are cyclic polymetallic compounds built up with inter­molecular double hydrogen bonds between the coordinating thyminato(1−) and adeninato ligands. One of the complexes in this strategy is [Rh(ppy)2(Hthym)(ade)] [ppy = 2-(pyridin-2-yl)phenyl, ade = adeninato]. For this purpose, we have prepared stepwise from [Rh(ppy)2Cl(CH3CN)] (1), [Rh(ppy)2(Hthym)(CH3OH)]·CH3OH·0.5H2O (2) to [Rh(ppy)2(Hthym)(C2H5OH)]·C2H5OH (3), and have characterized their crystal structures. Attempts to react 2 or 3 with adenine or other monodentate ligands were also examined.

[Scheme 1]

2. Structural commentary

Complexes 13 all have an octa­hedral coordination geometry with a trans(N,N)cis(C,C) configuration of the RhIII(ppy)2 fragment. The aceto­nitrile complex 1 (Fig. 1[link]) is isostructural with the IrIII analog, [Ir(ppy)2Cl(CH3CN)] (Blasberg et al., 2011[Blasberg, F., Bats, J. W., Wagner, M. & Lerner, H.-W. (2011). Acta Cryst. E67, m1837-m1838.]). The mutually trans Rh—N(ppy) bonds are 2.030 (1) and 2.051 (1) Å, and the cis Rh—C(ppy) bonds are almost the same as each other [1.990 (2) and 1.993 (2) Å]. The Rh—Cl and Rh—N(CH3CN) bonds in 1 are 2.4862 (4) and 2.162 (1) Å, respectively, which are almost at the longest end in the ranges of these bond lengths for the related RhIII chlorido and aceto­nitrile complexes. These elongations are caused by the strong trans influence of the phenyl donor group. The aceto­nitrile mol­ecule is almost linearly coordin­ated, as evidenced by the bond angles Rh1—N3—C23 = 175.44 (14)° and N3—C23—C24 = 178.48 (19)°.

[Figure 1]
Figure 1
An ORTEP drawing of the mol­ecular structure of [Rh(ppy)2Cl(CH3CN)] (1), showing the atom-numbering scheme, with ellipsoids drawn at the 50% probability level.

Crystals of 2 and 3 are solvatomorphs crystallizing in the space group Pbca, although the lengths of their a axes differ by more than 0.4 Å. In these complexes, the Hthym anion coordinates to the RhIII atom as a monodentate ligand through the N1 atom (Figs. 2[link] and 3[link]). There is a coordinating solvent (methanol or ethanol) mol­ecule in the cis position to the Hthym anion. The mutually trans Rh—N(ppy) bond lengths in 2 and 3 are in the range 2.023 (2)–2.038 (2) Å. On the other hand, the mutually cis Rh—C(ppy) bonds show explicit deviation; the Rh—C bonds trans to Hthym are 1.994 (2) and 1.989 (2) Å for 2 and 3, respectively, while those trans to MeOH/EtOH in 2 and 3 are slightly shorter at 1.972 (2) and 1.976 (2) Å, respectively. The Rh—N(Hhtym) bonds in 2 and 3 are 2.261 (2) and 2.252 (2) Å, respectively, which are remarkably long as compared to those in the other RhIII–Hthym complexes. For example, the Rh—N(Hthym) bond in [{Cp*Rh(Hthym)}2(μ-OH)2] is 2.126 (3) Å (Sakate et al., 2016[Sakate, M., Kashima, A., Hosoda, H., Ota, H., Sunatsuki, Y., Fuyuhiro, A. & Suzuki, T. (2016). Inorg. Chim. Acta. In the press. doi: 10.1016/j.ica.2016.01.023.]). In the cyclic tetra­nuclear complexes bridged by thym2–, the Rh—N(thym2–) bonds are even shorter at 2.07 (1)–2.13 (1) Å. The Rh—O bonds in 2 and 3 are 2.233 (2) and 2.207 (1) Å, respectively, considerably longer than that [2.103 (3) Å] in [RhCl3(bpy)(CH3OH)] (Bieda et al., 2009[Bieda, R., Ott, I., Dobroschke, M., Prokop, A., Gust, R. & Sheldrick, W. S. (2009). J. Inorg. Biochem. 103, 698-708.]). However, much longer Rh—O(MeOH or EtOH) bonds (2.240 and 2.264 Å) are observed in trans(C,O)-[(PCP)RhCl2(MeOH or EtOH)] [PCP = 2,6-bis­(di­cyclo­hexyl­phosphinometh­yl)phenyl; Cross et al., 1995[Cross, R. J., Kennedy, A. R., Manojlović-Muir, L. & Muir, K. W. (1995). J. Organomet. Chem. 493, 243-249.]]. These examples also indicate the strong trans influence of the phenyl-C donor in the trans position.

[Figure 2]
Figure 2
An ORTEP drawing of the mol­ecular structure of [Rh(ppy)(Hthym)(MeOH)]·MeOH·0.5H2O (2), showing the atom-numbering scheme, with ellipsoids drawn at the 30% probability level.
[Figure 3]
Figure 3
An ORTEP drawing of the mol­ecular structure of [Rh(ppy)(Hthym)(EtOH)]·EtOH (3), showing the atom-numbering scheme, with ellipsoids drawn at the 30% probability level.

In both 2 and 3, there is an intra­molecular hydrogen bond between atom O2 of the Hthym and O51—H1 of MeOH or EtOH in the mutually cis-position (Tables 2 and 3). These hydrogen bonds may stabilize the coordination of solvent MeOH and EtOH mol­ecules in 2 and 3, even though the Rh—O bonds for these ligands are relatively long. In fact, a reaction of complex 2 or 3 with an equivalent amount of PPh3, P(OMe)3, imidazole or a mixture of adenine and tri­ethyl­amine (L) gave a complicated mixture of products, from which no desirable ligand-substituted complexes of the formula, [Rh(ppy)2(Hthym)(L)] could be isolated.

3. Supra­molecular features

In the crystal of the aceto­nitrile complex 1, there are no remarkable inter­molecular hydrogen bonds. As similar to the IrIII analog (Blasberg et al., 2011[Blasberg, F., Bats, J. W., Wagner, M. & Lerner, H.-W. (2011). Acta Cryst. E67, m1837-m1838.]), there are weak C—H⋯Cl hydrogen bonds (Table 1[link]), which link the complexes into a layer parallel to the bc plane. In addition, C—H⋯π(ppy) [C8—H8⋯C16iii: H8⋯C16iii = 2.81, C8⋯C16iii = 3.620 (3) Å, C8—H8⋯C16iii = 144°; symmetry code: (iii) x + [{1\over 2}], y, −z + [{1\over 2}]] and C—H⋯π(nitrile) [C14—H14⋯C23iv: H14⋯C23iv = 2.69, C14⋯C23iv = 3.427 (2) Å, C14—H14⋯C23iv = 135°; symmetry code: (iv) −x, y + [{1\over 2}], −z + [{1\over 2}]] inter­actions are observed.

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl1i 0.95 2.79 3.613 (2) 145
C14—H14⋯Cl1ii 0.95 2.78 3.452 (2) 128
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

In each crystal of the thyminato(1−) complexes of 2 and 3, together with an intra­molecular hydrogen bond mentioned above, there is a pair of inter­molecular N—H⋯O hydrogen bonds (Tables 2[link] and 3[link]) with an R22(8) ring motif between the neighboring Hthym ligands, forming an inversion dimer (Figs. 4[link] and 5[link]). The methanol and ethanol mol­ecules of crystallization in 2 and 3 are each linked to the Hthym ligand via an inter­molecular O—H⋯O hydrogen bond.

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O51—H1⋯O2 0.84 (2) 1.69 (2) 2.527 (3) 170 (3)
N3—H3⋯O2i 0.88 1.97 2.844 (3) 173
O61—H2⋯O4ii 0.84 2.01 2.802 (5) 157
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Table 3
Hydrogen-bond geometry (Å, °) for 3[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O51—H1⋯O2 0.83 (1) 1.72 (2) 2.527 (2) 164 (2)
N3—H3⋯O2i 0.88 1.99 2.854 (2) 165
O61—H2⋯O4ii 0.84 (1) 2.01 (4) 2.792 (3) 156 (4)
Symmetry codes: (i) -x, -y, -z+1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].
[Figure 4]
Figure 4
A perspective view of 2, showing the intra- and inter­molecular O—H⋯O hydrogen bonds (dotted lines) between the Hthym and MeOH ligands.
[Figure 5]
Figure 5
A perspective view of 3, showing the intra- and inter­molecular O—H⋯O hydrogen-bonds (dotted lines) between the Hthym and EtOH ligands.

4. Synthesis and crystallization

The starting rhodium(III) complex, [Rh(ppy)2Cl]2, was prepared by a literature method (Sprouse et al., 1984[Sprouse, S., King, K. A., Spellane, P. J. & Watts, R. J. (1984). J. Am. Chem. Soc. 106, 6647-6653.]). [Rh(ppy)2Cl]2 (0.050 g, 0.060 mmol) was dissolved in di­chloro­methane (5 mL) and aceto­nitrile (5 mL) was added to the solution. The mixture was allowed to stand in an open air to evaporate the solvent slowly, giving yellow crystals of 1. Yield: 0.047 g (80%). Analysis found: C 58.64, H 3.65, N 8.49%. Calculated for C24H19ClN3Rh: C 59.09, H 3.93, N 8.61%.

To a methanol suspension (10 mL) of [Rh(ppy)2Cl]2 (0.090 g, 0.10 mmol) was added Ag(CF3SO3) (0.051 g, 0.20 mmol). The mixture was stirred at room temperature in the dark overnight, and the resulting white precipitate of AgCl was filtered off. A methanol solution (10 mL) containing thymine (0.025 g, 0.20 mmol) and tri­ethyl­amine (28 µL, 0.20 mmol) was carefully layered on the filtrate, and the mixture was allowed to stand overnight to give yellow crystals of 2. Yield: 0.082 g (68%). Analysis found: C 58.05, H 4.62, N 9.30%. Calculated for C29H30N4O4.5Rh {= [Rh(ppy)2(Hthym)(CH3OH)]·CH3OH·0.5H2O}: C 57.15, H 4.96, N 9.19%. Complex 3 was prepared by a similar method to the above using ethanol as a solvent, instead of methanol. Yield: 64%. Analysis found: C 59.03, H 4.82, N 8.82%. Calculated for C31H33N4O4Rh: C 59.24, H 5.29, N 8.91%.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All H atoms bonded to C and N atoms in 13 were refined using a riding model, with C—H = 0.95 or 0.98 Å and N—H = 0.88 Å, and with Uiso(H) = 1.2Ueq(C, N). The positions of the O-bound H atoms of the coordinating methanol mol­ecule in 2 and the coordinating and solvated ethanol mol­ecules in 3 were refined with the restraints O—H = 0.84 (1) Å, and with Uiso(H) = 1.2Ueq(O), while the H atom of the solvated methanol in 2 was refined using a riding model with O—H = 0.84 Å and Uiso(H) = 1.2Ueq(O). In the crystal of 2, other than the complex and methanol mol­ecules, there is a small electron density remaining in the void, and this was assumed to be a water mol­ecule of crystallization. The H atoms of this water mol­ecule were not introduced in the calculation because of the highly disordered state of the water mol­ecule, which resulted in large thermal displacement parameters for the O atom.

Table 4
Experimental details

  1 2 3
Crystal data
Chemical formula [RhCl(C11H8N)2(C2H3N)] [Rh(C11H8N)2(C5H5N2O2)(CH4O)]·CH4O·0.5H2O [Rh(C11H8N)2(C5H5N2O2)(C2H6O)]·C2H6O
Mr 487.78 609.48 628.52
Crystal system, space group Orthorhombic, Pbca Orthorhombic, Pbca Orthorhombic, Pbca
Temperature (K) 193 192 192
a, b, c (Å) 16.5415 (9), 14.6600 (11), 17.0026 (12) 10.6964 (7), 15.5329 (9), 32.6325 (15) 11.1082 (5), 15.5556 (6), 32.6747 (15)
V3) 4123.1 (5) 5421.8 (5) 5646.0 (4)
Z 8 8 8
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.97 0.67 0.65
Crystal size (mm) 0.40 × 0.30 × 0.20 0.30 × 0.20 × 0.10 0.30 × 0.20 × 0.20
 
Data collection
Diffractometer Rigaku R-AXIS RAPID Rigaku R-AXIS RAPID Rigaku R-AXIS RAPID
Absorption correction Numerical (NUMABS; Rigaku, 1999[Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Numerical (NUMABS; Rigaku, 1999[Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Numerical (NUMABS; Rigaku, 1999[Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.697, 0.829 0.824, 0.936 0.829, 0.881
No. of measured, independent and observed [I > 2σ(I)] reflections 38163, 4709, 4327 47794, 6196, 5307 52659, 6470, 5886
Rint 0.042 0.046 0.030
(sin θ/λ)max−1) 0.649 0.649 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.060, 1.07 0.034, 0.096, 1.04 0.029, 0.076, 1.07
No. of reflections 4709 6196 6470
No. of parameters 263 356 370
No. of restraints 0 1 2
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.67, −0.35 1.29, −0.61 1.08, −0.40
Computer programs: RAPID AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), Il Milione (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

For all compounds, data collection: RAPID AUTO (Rigaku, 2006); cell refinement: RAPID AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2010). Program(s) used to solve structure: Il Milione (Burla et al., 2007) for (1); SHELXS2013 (Sheldrick, 2008) for (2), (3). Program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015) for (1), (3); SHELXL2013 (Sheldrick, 2008) for (2). For all compounds, molecular graphics: ORTEP-3 for Windows (Farrugia, 2012). Software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015) for (1), (3); SHELXS2013 (Sheldrick, 2008) for (2).

(1) (OC-6-42)-Acetonitrilechloridobis[2-(pyridin-2-yl)phenyl-κ2N,C1]rhodium(III) top
Crystal data top
[RhCl(C11H8N)2(C2H3N)]Dx = 1.572 Mg m3
Mr = 487.78Mo Kα radiation, λ = 0.71075 Å
Orthorhombic, PbcaCell parameters from 31949 reflections
a = 16.5415 (9) Åθ = 3.0–27.6°
b = 14.6600 (11) ŵ = 0.97 mm1
c = 17.0026 (12) ÅT = 193 K
V = 4123.1 (5) Å3Block, yellow
Z = 80.40 × 0.30 × 0.20 mm
F(000) = 1968
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4709 independent reflections
Radiation source: fine-focus sealed tube4327 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 10.000 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 2021
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
k = 1818
Tmin = 0.697, Tmax = 0.829l = 2222
38163 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0309P)2 + 1.6125P]
where P = (Fo2 + 2Fc2)/3
4709 reflections(Δ/σ)max = 0.001
263 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.35 e Å3
Special details top

Experimental. The 1H NMR spectrum of 1 in CD2Cl2 at 22 °C: δ 1.97 (s, 3H, MeCN), 5.90 (d, J = 7.8 Hz, 2H, ppy), 6.70 (td, J = 7.6 and 1.4 Hz, 2H, ppy), 6.77–6.96 (m, 4H, ppy), 7.62 (dd, J = 7.7 and 1.4 Hz, 2H, ppy), 7.81–7.98 (m, 4H, ppy) and 9.22 (d, J = 5.7 Hz, 2H, ppy).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10.12078 (2)0.55701 (2)0.36161 (2)0.01986 (5)
Cl10.10904 (2)0.64708 (3)0.48498 (2)0.02906 (9)
N10.15175 (8)0.44472 (8)0.42460 (8)0.0238 (3)
N20.09842 (8)0.66466 (9)0.28773 (8)0.0235 (3)
N30.00853 (9)0.53554 (10)0.36314 (8)0.0265 (3)
C10.09933 (10)0.38632 (11)0.45823 (9)0.0272 (3)
H10.04330.40060.45790.033*
C20.12459 (10)0.30643 (13)0.49304 (11)0.0339 (4)
H20.08650.26620.51650.041*
C30.20657 (11)0.28542 (12)0.49338 (11)0.0358 (4)
H30.22510.22980.51570.043*
C40.26051 (10)0.34604 (12)0.46102 (10)0.0309 (3)
H40.31670.33290.46170.037*
C50.23289 (9)0.42661 (11)0.42724 (9)0.0247 (3)
C60.28290 (9)0.49821 (11)0.39221 (9)0.0252 (3)
C70.36733 (10)0.49704 (13)0.39354 (10)0.0326 (4)
H70.39540.44720.41660.039*
C80.40989 (12)0.56954 (14)0.36084 (11)0.0381 (4)
H80.46730.56930.36140.046*
C90.36859 (10)0.64198 (13)0.32751 (12)0.0370 (4)
H90.39790.69150.30540.044*
C100.28439 (10)0.64280 (12)0.32621 (10)0.0305 (3)
H100.25680.69290.30310.037*
C110.24040 (10)0.57124 (11)0.35831 (8)0.0234 (3)
C120.07628 (10)0.74823 (11)0.31092 (10)0.0302 (3)
H120.07150.76040.36560.036*
C130.06014 (12)0.81726 (12)0.25807 (11)0.0373 (4)
H130.04350.87580.27580.045*
C140.06879 (12)0.79919 (12)0.17872 (11)0.0381 (4)
H140.05910.84590.14110.046*
C150.09143 (11)0.71342 (12)0.15440 (10)0.0322 (4)
H150.09780.70070.10000.039*
C160.10502 (9)0.64548 (11)0.20997 (9)0.0243 (3)
C170.12356 (8)0.54991 (11)0.19292 (10)0.0238 (3)
C180.12867 (10)0.51469 (13)0.11672 (10)0.0301 (4)
H180.12220.55400.07280.036*
C190.14314 (12)0.42299 (13)0.10501 (11)0.0363 (4)
H190.14620.39900.05320.044*
C200.15317 (12)0.36630 (13)0.16931 (11)0.0383 (4)
H200.16360.30330.16140.046*
C210.14813 (11)0.40060 (12)0.24553 (10)0.0315 (3)
H210.15550.36070.28900.038*
C220.13243 (8)0.49280 (11)0.25894 (9)0.0233 (3)
C230.07658 (11)0.52843 (12)0.36004 (9)0.0285 (3)
C240.16431 (11)0.51736 (16)0.35764 (12)0.0425 (5)
H24A0.19030.57680.36530.051*
H24B0.18130.47560.39950.051*
H24C0.18020.49230.30650.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.01770 (8)0.02111 (8)0.02077 (8)0.00061 (4)0.00062 (4)0.00068 (4)
Cl10.03143 (19)0.0321 (2)0.02369 (18)0.00410 (15)0.00318 (15)0.00310 (15)
N10.0238 (7)0.0248 (7)0.0228 (6)0.0004 (5)0.0003 (5)0.0010 (5)
N20.0213 (6)0.0243 (7)0.0249 (6)0.0005 (5)0.0002 (5)0.0017 (5)
N30.0238 (7)0.0272 (7)0.0286 (7)0.0010 (5)0.0007 (5)0.0000 (5)
C10.0245 (7)0.0302 (8)0.0268 (8)0.0028 (6)0.0017 (6)0.0020 (6)
C20.0350 (9)0.0313 (9)0.0355 (9)0.0043 (7)0.0047 (7)0.0069 (7)
C30.0401 (10)0.0285 (9)0.0386 (9)0.0051 (7)0.0012 (8)0.0085 (7)
C40.0276 (8)0.0321 (9)0.0329 (8)0.0057 (6)0.0000 (7)0.0029 (7)
C50.0231 (8)0.0277 (8)0.0233 (7)0.0014 (6)0.0011 (6)0.0003 (6)
C60.0220 (7)0.0296 (8)0.0241 (7)0.0004 (6)0.0009 (6)0.0008 (6)
C70.0225 (8)0.0409 (10)0.0345 (9)0.0027 (7)0.0017 (7)0.0017 (8)
C80.0189 (9)0.0473 (12)0.0480 (12)0.0035 (7)0.0055 (7)0.0016 (8)
C90.0274 (8)0.0365 (10)0.0470 (11)0.0098 (7)0.0076 (8)0.0027 (8)
C100.0266 (8)0.0292 (8)0.0356 (9)0.0032 (6)0.0024 (7)0.0010 (7)
C110.0195 (7)0.0275 (8)0.0232 (7)0.0026 (6)0.0028 (6)0.0028 (6)
C120.0353 (8)0.0276 (8)0.0275 (8)0.0017 (7)0.0012 (7)0.0011 (6)
C130.0496 (11)0.0245 (8)0.0377 (9)0.0061 (7)0.0038 (8)0.0000 (7)
C140.0524 (11)0.0283 (9)0.0336 (9)0.0017 (8)0.0068 (8)0.0070 (7)
C150.0389 (10)0.0328 (9)0.0248 (8)0.0019 (7)0.0012 (7)0.0041 (7)
C160.0200 (7)0.0274 (8)0.0254 (7)0.0016 (6)0.0008 (6)0.0011 (6)
C170.0184 (7)0.0268 (8)0.0261 (8)0.0007 (5)0.0003 (6)0.0006 (6)
C180.0299 (8)0.0361 (10)0.0243 (8)0.0018 (7)0.0008 (6)0.0006 (7)
C190.0409 (10)0.0388 (10)0.0291 (9)0.0022 (8)0.0017 (8)0.0089 (7)
C200.0463 (11)0.0282 (9)0.0403 (10)0.0030 (8)0.0018 (9)0.0077 (7)
C210.0360 (9)0.0275 (9)0.0308 (8)0.0009 (7)0.0012 (7)0.0005 (7)
C220.0194 (7)0.0260 (8)0.0244 (7)0.0020 (5)0.0010 (6)0.0015 (6)
C230.0276 (9)0.0283 (9)0.0296 (8)0.0005 (7)0.0000 (6)0.0006 (6)
C240.0220 (9)0.0547 (13)0.0507 (12)0.0032 (8)0.0031 (8)0.0034 (9)
Geometric parameters (Å, º) top
Rh1—C111.9904 (16)C9—H90.9500
Rh1—C221.9926 (15)C10—C111.388 (2)
Rh1—N12.0296 (13)C10—H100.9500
Rh1—N22.0507 (13)C12—C131.379 (2)
Rh1—N32.1621 (14)C12—H120.9500
Rh1—Cl12.4862 (4)C13—C141.382 (3)
N1—C11.346 (2)C13—H130.9500
N1—C51.369 (2)C14—C151.376 (3)
N2—C121.338 (2)C14—H140.9500
N2—C161.356 (2)C15—C161.391 (2)
N3—C231.132 (2)C15—H150.9500
C1—C21.377 (2)C16—C171.463 (2)
C1—H10.9500C17—C181.397 (2)
C2—C31.391 (2)C17—C221.408 (2)
C2—H20.9500C18—C191.380 (3)
C3—C41.374 (2)C18—H180.9500
C3—H30.9500C19—C201.383 (3)
C4—C51.391 (2)C19—H190.9500
C4—H40.9500C20—C211.393 (2)
C5—C61.463 (2)C20—H200.9500
C6—C71.397 (2)C21—C221.395 (2)
C6—C111.405 (2)C21—H210.9500
C7—C81.391 (3)C23—C241.461 (3)
C7—H70.9500C24—H24A0.9800
C8—C91.384 (3)C24—H24B0.9800
C8—H80.9500C24—H24C0.9800
C9—C101.393 (2)
C11—Rh1—C2285.91 (6)C10—C9—H9119.8
C11—Rh1—N181.31 (6)C11—C10—C9120.75 (17)
C22—Rh1—N193.13 (6)C11—C10—H10119.6
C11—Rh1—N294.67 (6)C9—C10—H10119.6
C22—Rh1—N281.05 (6)C10—C11—C6118.35 (15)
N1—Rh1—N2173.19 (5)C10—C11—Rh1127.68 (13)
C11—Rh1—N3177.47 (6)C6—C11—Rh1113.96 (11)
C22—Rh1—N392.15 (5)N2—C12—C13122.19 (16)
N1—Rh1—N397.20 (5)N2—C12—H12118.9
N2—Rh1—N386.62 (5)C13—C12—H12118.9
C11—Rh1—Cl192.62 (4)C12—C13—C14118.37 (16)
C22—Rh1—Cl1176.01 (5)C12—C13—H13120.8
N1—Rh1—Cl190.30 (4)C14—C13—H13120.8
N2—Rh1—Cl195.40 (4)C15—C14—C13119.78 (16)
N3—Rh1—Cl189.42 (4)C15—C14—H14120.1
C1—N1—C5119.62 (14)C13—C14—H14120.1
C1—N1—Rh1125.26 (11)C14—C15—C16119.62 (16)
C5—N1—Rh1114.97 (10)C14—C15—H15120.2
C12—N2—C16119.94 (14)C16—C15—H15120.2
C12—N2—Rh1124.99 (11)N2—C16—C15120.05 (15)
C16—N2—Rh1115.03 (11)N2—C16—C17114.12 (14)
C23—N3—Rh1175.44 (14)C15—C16—C17125.79 (15)
N1—C1—C2121.87 (15)C18—C17—C22120.88 (15)
N1—C1—H1119.1C18—C17—C16123.39 (15)
C2—C1—H1119.1C22—C17—C16115.67 (15)
C1—C2—C3119.09 (16)C19—C18—C17120.29 (17)
C1—C2—H2120.5C19—C18—H18119.9
C3—C2—H2120.5C17—C18—H18119.9
C4—C3—C2119.22 (16)C18—C19—C20119.47 (17)
C4—C3—H3120.4C18—C19—H19120.3
C2—C3—H3120.4C20—C19—H19120.3
C3—C4—C5120.08 (15)C19—C20—C21120.76 (17)
C3—C4—H4120.0C19—C20—H20119.6
C5—C4—H4120.0C21—C20—H20119.6
N1—C5—C4120.04 (15)C20—C21—C22120.86 (16)
N1—C5—C6113.69 (14)C20—C21—H21119.6
C4—C5—C6126.28 (15)C22—C21—H21119.6
C7—C6—C11121.09 (15)C21—C22—C17117.72 (14)
C7—C6—C5123.36 (15)C21—C22—Rh1128.23 (12)
C11—C6—C5115.52 (14)C17—C22—Rh1114.05 (12)
C8—C7—C6119.36 (17)N3—C23—C24178.48 (19)
C8—C7—H7120.3C23—C24—H24A109.5
C6—C7—H7120.3C23—C24—H24B109.5
C9—C8—C7120.01 (17)H24A—C24—H24B109.5
C9—C8—H8120.0C23—C24—H24C109.5
C7—C8—H8120.0H24A—C24—H24C109.5
C8—C9—C10120.43 (17)H24B—C24—H24C109.5
C8—C9—H9119.8
C5—N1—C1—C22.5 (2)C16—N2—C12—C130.5 (2)
Rh1—N1—C1—C2173.05 (13)Rh1—N2—C12—C13178.34 (13)
N1—C1—C2—C30.1 (3)N2—C12—C13—C141.2 (3)
C1—C2—C3—C41.9 (3)C12—C13—C14—C151.3 (3)
C2—C3—C4—C51.1 (3)C13—C14—C15—C160.3 (3)
C1—N1—C5—C43.2 (2)C12—N2—C16—C152.2 (2)
Rh1—N1—C5—C4172.74 (12)Rh1—N2—C16—C15179.80 (12)
C1—N1—C5—C6176.83 (14)C12—N2—C16—C17175.52 (14)
Rh1—N1—C5—C67.22 (17)Rh1—N2—C16—C172.54 (16)
C3—C4—C5—N11.5 (2)C14—C15—C16—N22.1 (3)
C3—C4—C5—C6178.60 (16)C14—C15—C16—C17175.30 (16)
N1—C5—C6—C7175.24 (15)N2—C16—C17—C18176.48 (14)
C4—C5—C6—C74.8 (3)C15—C16—C17—C181.0 (2)
N1—C5—C6—C113.0 (2)N2—C16—C17—C220.54 (19)
C4—C5—C6—C11176.96 (16)C15—C16—C17—C22178.06 (15)
C11—C6—C7—C80.1 (3)C22—C17—C18—C190.5 (2)
C5—C6—C7—C8178.03 (16)C16—C17—C18—C19177.33 (15)
C6—C7—C8—C90.1 (3)C17—C18—C19—C200.5 (3)
C7—C8—C9—C100.2 (3)C18—C19—C20—C210.6 (3)
C8—C9—C10—C110.1 (3)C19—C20—C21—C220.3 (3)
C9—C10—C11—C60.1 (2)C20—C21—C22—C171.3 (2)
C9—C10—C11—Rh1178.98 (14)C20—C21—C22—Rh1178.95 (14)
C7—C6—C11—C100.2 (2)C18—C17—C22—C211.3 (2)
C5—C6—C11—C10178.05 (14)C16—C17—C22—C21178.43 (14)
C7—C6—C11—Rh1179.01 (13)C18—C17—C22—Rh1178.86 (11)
C5—C6—C11—Rh12.72 (17)C16—C17—C22—Rh11.75 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl1i0.952.793.613 (2)145
C14—H14···Cl1ii0.952.783.452 (2)128
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+3/2, z1/2.
(2) (OC-6-42)-Methanol(5-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-ido-κN1)bis[2-(pyridin-2-yl)phenyl-κ2N,C1]rhodium(III) top
Crystal data top
[Rh(C11H8N)2(C5H5N2O2)(CH4O)]·CH4O·0.5H2ODx = 1.493 Mg m3
Mr = 609.48Mo Kα radiation, λ = 0.71075 Å
Orthorhombic, PbcaCell parameters from 34894 reflections
a = 10.6964 (7) Åθ = 3.1–27.5°
b = 15.5329 (9) ŵ = 0.67 mm1
c = 32.6325 (15) ÅT = 192 K
V = 5421.8 (5) Å3Block, yellow
Z = 80.30 × 0.20 × 0.10 mm
F(000) = 2504
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6196 independent reflections
Radiation source: fine-focus sealed tube5307 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 10.000 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1313
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
k = 2020
Tmin = 0.824, Tmax = 0.936l = 4240
47794 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0469P)2 + 5.8148P]
where P = (Fo2 + 2Fc2)/3
6196 reflections(Δ/σ)max = 0.001
356 parametersΔρmax = 1.29 e Å3
1 restraintΔρmin = 0.61 e Å3
Special details top

Experimental. The 1H NMR spectrum of 2 in CDCl3 at 22 °C: δ 1.50 (s, 3H, Hthym CH3), 6.17 (d, J = 7.7 Hz, 2H, ppy), 6.40 (s, 1H, Hthym C6-H), 6.81 (t, J = 7.3 Hz, 2H ppy), 6.94 (t, J = 7.6 Hz, 2H, ppy), 7.28–7.31 (m, 2H, ppy), 7.58–7.60 (m, 2H, ppy), 7.87–7.91 (m, 4H, ppy), 8.35 (s, 1H, Hthym N3-H), 8.59 (d, J = 5.3 Hz, 1H ppy) and 8.99 (d, J = 5.3 Hz, 1H, ppy).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10.21119 (2)0.49429 (2)0.36187 (2)0.02250 (7)
O20.0485 (2)0.47720 (13)0.45127 (6)0.0465 (5)
O40.18704 (18)0.69252 (12)0.53187 (5)0.0375 (4)
O610.2102 (6)0.3378 (3)0.57003 (13)0.1420 (19)
H20.25870.29840.56240.170*
O710.50000.50000.50000.523 (18)
O510.07868 (16)0.39468 (11)0.38528 (5)0.0320 (4)
H10.067 (3)0.4167 (17)0.4086 (5)0.038*
N10.19674 (18)0.56450 (13)0.42240 (6)0.0267 (4)
N30.12027 (19)0.58796 (14)0.48895 (6)0.0321 (4)
H30.06590.57250.50780.039*
N110.36388 (18)0.43094 (12)0.38330 (6)0.0272 (4)
N220.06810 (18)0.55596 (13)0.33315 (6)0.0275 (4)
C10.3749 (3)0.74950 (19)0.47238 (8)0.0464 (7)
H1A0.42540.75690.44760.056*
H1B0.42950.73490.49550.056*
H1C0.33030.80320.47840.056*
C20.1210 (2)0.54094 (16)0.45317 (7)0.0301 (5)
C40.1962 (2)0.65651 (15)0.49803 (7)0.0286 (5)
C50.2822 (2)0.67846 (16)0.46584 (7)0.0301 (5)
C60.2756 (2)0.63197 (16)0.43056 (7)0.0306 (5)
H60.33160.64800.40930.037*
C120.3605 (3)0.35579 (16)0.40370 (8)0.0339 (5)
H120.28190.33080.41020.041*
C130.4688 (3)0.31390 (18)0.41551 (9)0.0432 (6)
H130.46470.26090.43000.052*
C140.5827 (3)0.3501 (2)0.40600 (10)0.0485 (7)
H140.65810.32240.41390.058*
C150.5860 (3)0.42733 (18)0.38490 (9)0.0417 (6)
H150.66400.45260.37790.050*
C160.4754 (2)0.46771 (16)0.37397 (7)0.0292 (5)
C170.4635 (2)0.54941 (15)0.35162 (7)0.0275 (5)
C180.5653 (2)0.60157 (17)0.34154 (8)0.0367 (6)
H180.64780.58390.34830.044*
C190.5459 (3)0.67878 (18)0.32166 (9)0.0410 (6)
H190.61500.71440.31480.049*
C200.4252 (2)0.70452 (17)0.31173 (8)0.0368 (6)
H200.41190.75780.29810.044*
C210.3236 (2)0.65245 (16)0.32164 (7)0.0299 (5)
H210.24160.67050.31450.036*
C220.3404 (2)0.57451 (15)0.34184 (6)0.0254 (4)
C230.0065 (2)0.61523 (17)0.35045 (8)0.0354 (5)
H230.00840.63140.37810.042*
C240.1031 (3)0.65325 (19)0.32980 (9)0.0440 (7)
H240.15350.69560.34280.053*
C250.1262 (3)0.6288 (2)0.28947 (9)0.0465 (7)
H250.19270.65420.27450.056*
C260.0512 (2)0.56704 (18)0.27151 (8)0.0383 (6)
H260.06670.54910.24420.046*
C270.0469 (2)0.53132 (16)0.29358 (7)0.0288 (5)
C280.1342 (2)0.46567 (16)0.27854 (7)0.0282 (5)
C290.1326 (3)0.43303 (17)0.23851 (7)0.0359 (5)
H290.07190.45270.21950.043*
C300.2196 (3)0.37214 (19)0.22686 (8)0.0401 (6)
H300.21880.34980.19980.048*
C310.3081 (3)0.34358 (17)0.25468 (8)0.0381 (6)
H310.36800.30180.24650.046*
C320.3101 (2)0.37542 (16)0.29443 (8)0.0321 (5)
H320.37100.35480.31320.039*
C330.2237 (2)0.43744 (15)0.30723 (7)0.0263 (5)
C510.0423 (3)0.3826 (2)0.36788 (9)0.0435 (7)
H51A0.08360.33380.38130.052*
H51B0.03410.37090.33850.052*
H51C0.09230.43480.37190.052*
C610.2442 (8)0.4080 (4)0.55466 (19)0.136 (3)
H61A0.33400.40590.54880.164*
H61B0.22710.45480.57400.164*
H61C0.19810.41810.52920.164*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.02134 (11)0.02767 (11)0.01849 (11)0.00008 (6)0.00094 (6)0.00116 (6)
O20.0542 (13)0.0539 (11)0.0314 (10)0.0286 (10)0.0183 (9)0.0145 (9)
O40.0430 (10)0.0444 (10)0.0252 (8)0.0030 (8)0.0005 (7)0.0095 (7)
O610.255 (6)0.082 (2)0.089 (3)0.020 (3)0.047 (3)0.015 (2)
O710.76 (5)0.48 (3)0.33 (2)0.23 (3)0.14 (3)0.003 (18)
O510.0315 (9)0.0361 (9)0.0283 (8)0.0060 (7)0.0054 (7)0.0050 (7)
N10.0281 (10)0.0318 (10)0.0200 (9)0.0024 (8)0.0025 (7)0.0021 (8)
N30.0340 (11)0.0420 (11)0.0203 (9)0.0089 (9)0.0083 (8)0.0063 (8)
N110.0283 (10)0.0317 (10)0.0215 (9)0.0022 (8)0.0007 (7)0.0006 (8)
N220.0238 (10)0.0340 (10)0.0247 (9)0.0013 (8)0.0003 (7)0.0008 (8)
C10.0575 (18)0.0505 (16)0.0314 (13)0.0242 (15)0.0039 (12)0.0054 (12)
C20.0311 (12)0.0364 (12)0.0227 (11)0.0044 (10)0.0033 (9)0.0043 (9)
C40.0305 (12)0.0333 (12)0.0219 (11)0.0024 (9)0.0027 (9)0.0008 (9)
C50.0341 (13)0.0331 (12)0.0231 (11)0.0045 (10)0.0006 (9)0.0001 (9)
C60.0343 (13)0.0352 (12)0.0222 (11)0.0048 (10)0.0027 (9)0.0004 (9)
C120.0377 (14)0.0323 (12)0.0318 (12)0.0002 (10)0.0025 (10)0.0038 (10)
C130.0503 (17)0.0382 (14)0.0412 (15)0.0050 (12)0.0116 (12)0.0081 (12)
C140.0406 (16)0.0465 (16)0.0583 (18)0.0106 (13)0.0144 (13)0.0058 (14)
C150.0286 (13)0.0460 (15)0.0503 (16)0.0023 (11)0.0068 (11)0.0039 (13)
C160.0275 (12)0.0352 (12)0.0250 (11)0.0010 (10)0.0013 (9)0.0008 (10)
C170.0256 (11)0.0324 (12)0.0244 (11)0.0005 (9)0.0014 (9)0.0004 (9)
C180.0255 (12)0.0438 (14)0.0408 (14)0.0017 (10)0.0021 (10)0.0027 (11)
C190.0325 (14)0.0440 (15)0.0464 (15)0.0086 (11)0.0056 (11)0.0062 (12)
C200.0405 (15)0.0347 (13)0.0354 (13)0.0019 (11)0.0028 (11)0.0070 (10)
C210.0286 (12)0.0344 (12)0.0265 (11)0.0027 (9)0.0013 (9)0.0002 (9)
C220.0248 (11)0.0315 (11)0.0200 (10)0.0009 (9)0.0034 (8)0.0039 (9)
C230.0319 (13)0.0420 (14)0.0323 (12)0.0057 (11)0.0005 (10)0.0068 (11)
C240.0374 (15)0.0517 (16)0.0429 (15)0.0159 (12)0.0012 (12)0.0071 (13)
C250.0372 (15)0.0627 (18)0.0395 (15)0.0171 (13)0.0062 (12)0.0025 (13)
C260.0359 (14)0.0506 (15)0.0284 (12)0.0075 (12)0.0061 (10)0.0017 (11)
C270.0263 (12)0.0368 (12)0.0233 (11)0.0005 (10)0.0002 (9)0.0014 (9)
C280.0280 (12)0.0346 (12)0.0219 (10)0.0010 (9)0.0002 (9)0.0015 (9)
C290.0371 (14)0.0451 (14)0.0255 (12)0.0014 (11)0.0029 (10)0.0048 (10)
C300.0437 (16)0.0508 (16)0.0257 (12)0.0038 (12)0.0023 (10)0.0116 (11)
C310.0372 (14)0.0406 (13)0.0366 (14)0.0035 (11)0.0067 (11)0.0123 (11)
C320.0289 (12)0.0368 (13)0.0306 (12)0.0020 (10)0.0005 (9)0.0048 (10)
C330.0258 (12)0.0307 (11)0.0223 (10)0.0036 (9)0.0019 (8)0.0020 (9)
C510.0346 (15)0.0534 (17)0.0424 (15)0.0136 (13)0.0015 (11)0.0088 (13)
C610.243 (8)0.070 (3)0.095 (4)0.039 (4)0.041 (5)0.015 (3)
Geometric parameters (Å, º) top
Rh1—C221.972 (2)C16—C171.469 (3)
Rh1—C331.994 (2)C17—C181.397 (3)
Rh1—N112.0309 (19)C17—C221.410 (3)
Rh1—N222.0344 (19)C18—C191.379 (4)
Rh1—O512.2331 (17)C18—H180.9500
Rh1—N12.2614 (19)C19—C201.390 (4)
O2—C21.259 (3)C19—H190.9500
O4—C41.242 (3)C20—C211.393 (3)
O61—C611.255 (6)C20—H200.9500
O61—H20.8400C21—C221.390 (3)
O51—C511.425 (3)C21—H210.9500
O51—H10.844 (10)C23—C241.368 (4)
N1—C21.341 (3)C23—H230.9500
N1—C61.371 (3)C24—C251.392 (4)
N3—C41.372 (3)C24—H240.9500
N3—C21.377 (3)C25—C261.380 (4)
N3—H30.8800C25—H250.9500
N11—C121.344 (3)C26—C271.388 (3)
N11—C161.357 (3)C26—H260.9500
N22—C231.343 (3)C27—C281.467 (3)
N22—C271.366 (3)C28—C291.401 (3)
C1—C51.499 (3)C28—C331.409 (3)
C1—H1A0.9800C29—C301.380 (4)
C1—H1B0.9800C29—H290.9500
C1—H1C0.9800C30—C311.384 (4)
C4—C51.437 (3)C30—H300.9500
C5—C61.361 (3)C31—C321.389 (4)
C6—H60.9500C31—H310.9500
C12—C131.383 (4)C32—C331.398 (3)
C12—H120.9500C32—H320.9500
C13—C141.377 (4)C51—H51A0.9800
C13—H130.9500C51—H51B0.9800
C14—C151.383 (4)C51—H51C0.9800
C14—H140.9500C61—H61A0.9800
C15—C161.386 (4)C61—H61B0.9800
C15—H150.9500C61—H61C0.9800
C22—Rh1—C3386.35 (9)C18—C17—C22121.0 (2)
C22—Rh1—N1181.77 (9)C18—C17—C16123.4 (2)
C33—Rh1—N1192.25 (8)C22—C17—C16115.6 (2)
C22—Rh1—N2294.40 (9)C19—C18—C17119.8 (2)
C33—Rh1—N2281.20 (9)C19—C18—H18120.1
N11—Rh1—N22172.65 (7)C17—C18—H18120.1
C22—Rh1—O51174.82 (8)C18—C19—C20120.0 (2)
C33—Rh1—O5192.39 (8)C18—C19—H19120.0
N11—Rh1—O5193.27 (7)C20—C19—H19120.0
N22—Rh1—O5190.36 (7)C19—C20—C21120.2 (2)
C22—Rh1—N191.88 (8)C19—C20—H20119.9
C33—Rh1—N1177.45 (8)C21—C20—H20119.9
N11—Rh1—N189.31 (7)C22—C21—C20121.0 (2)
N22—Rh1—N197.12 (7)C22—C21—H21119.5
O51—Rh1—N189.54 (6)C20—C21—H21119.5
C61—O61—H2109.5C21—C22—C17117.9 (2)
C51—O51—Rh1122.08 (16)C21—C22—Rh1128.13 (18)
C51—O51—H1106 (2)C17—C22—Rh1113.87 (17)
Rh1—O51—H197 (2)N22—C23—C24122.5 (2)
C2—N1—C6115.77 (19)N22—C23—H23118.7
C2—N1—Rh1124.30 (15)C24—C23—H23118.7
C6—N1—Rh1119.75 (15)C23—C24—C25118.8 (3)
C4—N3—C2126.3 (2)C23—C24—H24120.6
C4—N3—H3116.9C25—C24—H24120.6
C2—N3—H3116.9C26—C25—C24119.2 (2)
C12—N11—C16120.0 (2)C26—C25—H25120.4
C12—N11—Rh1124.73 (17)C24—C25—H25120.4
C16—N11—Rh1115.20 (15)C25—C26—C27119.8 (2)
C23—N22—C27119.4 (2)C25—C26—H26120.1
C23—N22—Rh1125.19 (16)C27—C26—H26120.1
C27—N22—Rh1115.39 (15)N22—C27—C26120.3 (2)
C5—C1—H1A109.5N22—C27—C28113.9 (2)
C5—C1—H1B109.5C26—C27—C28125.8 (2)
H1A—C1—H1B109.5C29—C28—C33121.0 (2)
C5—C1—H1C109.5C29—C28—C27123.8 (2)
H1A—C1—H1C109.5C33—C28—C27115.3 (2)
H1B—C1—H1C109.5C30—C29—C28119.8 (2)
O2—C2—N1123.4 (2)C30—C29—H29120.1
O2—C2—N3117.1 (2)C28—C29—H29120.1
N1—C2—N3119.6 (2)C29—C30—C31120.0 (2)
O4—C4—N3119.6 (2)C29—C30—H30120.0
O4—C4—C5126.4 (2)C31—C30—H30120.0
N3—C4—C5113.9 (2)C30—C31—C32120.6 (2)
C6—C5—C4117.4 (2)C30—C31—H31119.7
C6—C5—C1123.0 (2)C32—C31—H31119.7
C4—C5—C1119.6 (2)C31—C32—C33120.9 (2)
C5—C6—N1127.0 (2)C31—C32—H32119.5
C5—C6—H6116.5C33—C32—H32119.5
N1—C6—H6116.5C32—C33—C28117.7 (2)
N11—C12—C13121.6 (2)C32—C33—Rh1128.05 (18)
N11—C12—H12119.2C28—C33—Rh1114.24 (16)
C13—C12—H12119.2O51—C51—H51A109.5
C14—C13—C12119.0 (3)O51—C51—H51B109.5
C14—C13—H13120.5H51A—C51—H51B109.5
C12—C13—H13120.5O51—C51—H51C109.5
C13—C14—C15119.3 (3)H51A—C51—H51C109.5
C13—C14—H14120.4H51B—C51—H51C109.5
C15—C14—H14120.4O61—C61—H61A109.5
C14—C15—C16119.9 (3)O61—C61—H61B109.5
C14—C15—H15120.0H61A—C61—H61B109.5
C16—C15—H15120.0O61—C61—H61C109.5
N11—C16—C15120.1 (2)H61A—C61—H61C109.5
N11—C16—C17113.5 (2)H61B—C61—H61C109.5
C15—C16—C17126.4 (2)
C6—N1—C2—O2175.8 (3)C18—C19—C20—C210.2 (4)
Rh1—N1—C2—O20.7 (4)C19—C20—C21—C220.5 (4)
C6—N1—C2—N34.4 (3)C20—C21—C22—C170.6 (3)
Rh1—N1—C2—N3179.45 (17)C20—C21—C22—Rh1175.86 (18)
C4—N3—C2—O2176.3 (2)C18—C17—C22—C210.4 (3)
C4—N3—C2—N13.8 (4)C16—C17—C22—C21178.3 (2)
C2—N3—C4—O4178.9 (2)C18—C17—C22—Rh1176.57 (19)
C2—N3—C4—C50.3 (4)C16—C17—C22—Rh11.4 (3)
O4—C4—C5—C6178.7 (2)C27—N22—C23—C240.8 (4)
N3—C4—C5—C62.1 (3)Rh1—N22—C23—C24178.6 (2)
O4—C4—C5—C12.1 (4)N22—C23—C24—C250.9 (5)
N3—C4—C5—C1177.2 (2)C23—C24—C25—C260.0 (5)
C4—C5—C6—N11.4 (4)C24—C25—C26—C271.0 (5)
C1—C5—C6—N1177.9 (3)C23—N22—C27—C260.2 (4)
C2—N1—C6—C52.0 (4)Rh1—N22—C27—C26177.76 (19)
Rh1—N1—C6—C5177.3 (2)C23—N22—C27—C28179.4 (2)
C16—N11—C12—C130.3 (4)Rh1—N22—C27—C281.5 (3)
Rh1—N11—C12—C13176.5 (2)C25—C26—C27—N221.1 (4)
N11—C12—C13—C140.2 (4)C25—C26—C27—C28179.8 (3)
C12—C13—C14—C150.0 (4)N22—C27—C28—C29177.8 (2)
C13—C14—C15—C160.7 (5)C26—C27—C28—C293.0 (4)
C12—N11—C16—C151.0 (3)N22—C27—C28—C331.2 (3)
Rh1—N11—C16—C15176.1 (2)C26—C27—C28—C33178.0 (2)
C12—N11—C16—C17179.9 (2)C33—C28—C29—C300.2 (4)
Rh1—N11—C16—C172.8 (3)C27—C28—C29—C30179.1 (2)
C14—C15—C16—N111.2 (4)C28—C29—C30—C310.1 (4)
C14—C15—C16—C17180.0 (3)C29—C30—C31—C320.2 (4)
N11—C16—C17—C18175.1 (2)C30—C31—C32—C330.5 (4)
C15—C16—C17—C186.0 (4)C31—C32—C33—C280.6 (4)
N11—C16—C17—C222.8 (3)C31—C32—C33—Rh1178.35 (19)
C15—C16—C17—C22176.1 (2)C29—C28—C33—C320.5 (3)
C22—C17—C18—C190.1 (4)C27—C28—C33—C32179.4 (2)
C16—C17—C18—C19177.9 (2)C29—C28—C33—Rh1178.66 (19)
C17—C18—C19—C200.0 (4)C27—C28—C33—Rh10.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O51—H1···O20.84 (2)1.69 (2)2.527 (3)170 (3)
N3—H3···O2i0.881.972.844 (3)173
O61—H2···O4ii0.842.012.802 (5)157
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y1/2, z.
(3) (OC-6-42)-Ethanol(5-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-ido-κN1)bis[2-(pyridin-2-yl)phenyl-κ2N,C1]rhodium(III) top
Crystal data top
[Rh(C11H8N)2(C5H5N2O2)(C2H6O)]·C2H6ODx = 1.479 Mg m3
Mr = 628.52Mo Kα radiation, λ = 0.71075 Å
Orthorhombic, PbcaCell parameters from 41739 reflections
a = 11.1082 (5) Åθ = 3.1–27.6°
b = 15.5556 (6) ŵ = 0.65 mm1
c = 32.6747 (15) ÅT = 192 K
V = 5646.0 (4) Å3Block, yellow
Z = 80.30 × 0.20 × 0.20 mm
F(000) = 2592
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6470 independent reflections
Radiation source: fine-focus sealed tube5886 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 10.000 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1414
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
k = 2020
Tmin = 0.829, Tmax = 0.881l = 4240
52659 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0365P)2 + 4.0646P]
where P = (Fo2 + 2Fc2)/3
6470 reflections(Δ/σ)max = 0.002
370 parametersΔρmax = 1.08 e Å3
2 restraintsΔρmin = 0.40 e Å3
Special details top

Experimental. The 1H NMR spectrum of 3 in CDCl3 at 22 °C: δ 1.53 (s, 3H, Hthym CH3), 6.17 (d, J = 7.7 Hz, 2H, ppy), 6.42 (s, 1H, Hthym C6-H), 6.81 (t, J = 7.4 Hz, 2H, ppy), 6.95 (t, J = 7.40 Hz, 2H, ppy), 7.28–7.30 (m, 2H, ppy), 7.58–7.61 (m, 2H, ppy), 7.88–7.92 (m, 4H, ppy), 8.10 (s, 1H, Hthym N3-H), 8.59 (d, J = 5.5 Hz, 1H, ppy) and 9.01 (d, J = 5.8 Hz, 1H, ppy).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10.21339 (2)0.02045 (2)0.63615 (2)0.02373 (6)
O20.04210 (14)0.02427 (10)0.54944 (5)0.0446 (4)
O40.18318 (15)0.19254 (10)0.47134 (4)0.0420 (3)
O510.09395 (13)0.11923 (9)0.60966 (4)0.0350 (3)
H10.065 (2)0.0932 (14)0.5896 (5)0.042*
O610.2437 (4)0.16196 (16)0.42791 (10)0.1286 (13)
H20.286 (4)0.200 (3)0.4388 (16)0.154*
N10.20026 (14)0.05157 (11)0.57654 (5)0.0281 (3)
N30.11666 (15)0.08594 (11)0.51266 (5)0.0332 (4)
H30.05990.07520.49460.040*
N110.36121 (14)0.08209 (10)0.61499 (5)0.0284 (3)
N220.06964 (15)0.03762 (10)0.66331 (5)0.0303 (3)
C10.3788 (2)0.23404 (14)0.52698 (7)0.0427 (5)
H1A0.43690.23360.54960.051*
H1B0.42070.22230.50120.051*
H1C0.34000.29050.52550.051*
C20.11859 (17)0.03524 (13)0.54715 (6)0.0308 (4)
C40.19492 (17)0.15193 (13)0.50373 (6)0.0313 (4)
C50.28503 (17)0.16615 (12)0.53424 (6)0.0305 (4)
C60.28117 (16)0.11607 (13)0.56826 (6)0.0300 (4)
H60.34070.12680.58850.036*
C120.35950 (19)0.15538 (13)0.59301 (6)0.0368 (4)
H120.28410.17970.58560.044*
C130.4633 (2)0.19605 (15)0.58094 (7)0.0445 (5)
H130.45980.24780.56550.053*
C140.5724 (2)0.16073 (16)0.59152 (8)0.0490 (6)
H140.64540.18770.58340.059*
C150.57473 (19)0.08549 (15)0.61410 (7)0.0430 (5)
H150.64960.06050.62160.052*
C160.46783 (17)0.04653 (13)0.62583 (6)0.0310 (4)
C170.45550 (17)0.03176 (12)0.65058 (6)0.0298 (4)
C180.55323 (19)0.07910 (14)0.66478 (7)0.0390 (5)
H180.63290.06180.65820.047*
C190.5340 (2)0.15135 (14)0.68842 (7)0.0421 (5)
H190.60060.18350.69840.050*
C200.4182 (2)0.17709 (13)0.69765 (6)0.0376 (4)
H200.40550.22670.71400.045*
C210.32003 (18)0.13088 (12)0.68316 (6)0.0317 (4)
H210.24080.14950.68950.038*
C220.33663 (16)0.05717 (12)0.65930 (5)0.0263 (3)
C230.00383 (19)0.09457 (14)0.64515 (6)0.0373 (4)
H230.01480.11360.61830.045*
C240.1053 (2)0.12629 (16)0.66412 (7)0.0475 (5)
H240.15580.16660.65070.057*
C250.1317 (2)0.09808 (18)0.70328 (7)0.0500 (6)
H250.20110.11900.71710.060*
C260.0573 (2)0.03967 (16)0.72216 (7)0.0428 (5)
H260.07520.01990.74900.051*
C270.04446 (18)0.00956 (13)0.70185 (6)0.0319 (4)
C280.13082 (18)0.05356 (13)0.71778 (6)0.0315 (4)
C290.1252 (2)0.08784 (14)0.75730 (6)0.0410 (5)
H290.06290.07060.77550.049*
C300.2101 (2)0.14662 (17)0.76979 (7)0.0471 (6)
H300.20670.16980.79670.057*
C310.3000 (2)0.17192 (15)0.74343 (7)0.0455 (5)
H310.35870.21230.75230.055*
C320.30553 (18)0.13867 (13)0.70386 (6)0.0357 (4)
H320.36740.15730.68590.043*
C330.22157 (16)0.07850 (12)0.69031 (6)0.0284 (4)
C510.0044 (2)0.16798 (18)0.62979 (8)0.0531 (6)
H51A0.00370.22670.61810.064*
H51B0.02610.17300.65910.064*
C520.1159 (2)0.1322 (2)0.62678 (9)0.0660 (8)
H52A0.11960.07820.64220.079*
H52B0.13510.12120.59800.079*
H52C0.17410.17310.63810.079*
C610.2473 (4)0.0866 (2)0.44860 (13)0.0826 (10)
H61A0.23550.03960.42860.099*
H61B0.17760.08540.46750.099*
C620.3536 (3)0.0669 (2)0.47211 (13)0.0849 (10)
H62A0.36770.11270.49220.102*
H62B0.42310.06260.45370.102*
H62C0.34230.01210.48640.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.02103 (8)0.02848 (9)0.02167 (8)0.00084 (5)0.00246 (5)0.00128 (5)
O20.0414 (8)0.0577 (10)0.0347 (8)0.0210 (7)0.0152 (7)0.0141 (7)
O40.0502 (9)0.0446 (8)0.0313 (7)0.0013 (7)0.0040 (6)0.0118 (6)
O510.0326 (7)0.0364 (7)0.0359 (7)0.0067 (6)0.0090 (6)0.0056 (6)
O610.227 (4)0.0573 (14)0.101 (2)0.0135 (19)0.095 (2)0.0207 (14)
N10.0277 (8)0.0331 (8)0.0236 (7)0.0015 (6)0.0042 (6)0.0021 (6)
N30.0317 (8)0.0428 (9)0.0251 (7)0.0027 (7)0.0081 (6)0.0056 (7)
N110.0260 (7)0.0333 (8)0.0260 (7)0.0025 (6)0.0026 (6)0.0011 (6)
N220.0264 (8)0.0360 (8)0.0285 (8)0.0027 (7)0.0026 (6)0.0006 (6)
C10.0490 (13)0.0445 (12)0.0346 (10)0.0128 (10)0.0014 (9)0.0023 (9)
C20.0287 (9)0.0379 (10)0.0258 (9)0.0011 (8)0.0031 (7)0.0039 (7)
C40.0338 (10)0.0332 (9)0.0269 (9)0.0039 (8)0.0016 (7)0.0011 (7)
C50.0338 (10)0.0308 (9)0.0269 (9)0.0012 (8)0.0018 (7)0.0015 (7)
C60.0302 (10)0.0352 (9)0.0247 (8)0.0015 (8)0.0028 (7)0.0006 (7)
C120.0361 (10)0.0391 (10)0.0351 (10)0.0013 (9)0.0034 (8)0.0078 (8)
C130.0453 (13)0.0424 (11)0.0458 (12)0.0057 (10)0.0020 (10)0.0147 (10)
C140.0367 (12)0.0525 (13)0.0579 (14)0.0114 (10)0.0062 (10)0.0125 (11)
C150.0275 (10)0.0492 (12)0.0521 (13)0.0019 (9)0.0012 (9)0.0080 (10)
C160.0269 (9)0.0353 (9)0.0308 (9)0.0014 (8)0.0013 (7)0.0008 (8)
C170.0266 (9)0.0325 (9)0.0304 (9)0.0005 (7)0.0041 (7)0.0015 (7)
C180.0274 (10)0.0408 (11)0.0487 (12)0.0020 (9)0.0060 (9)0.0024 (9)
C190.0381 (11)0.0394 (11)0.0487 (12)0.0062 (9)0.0111 (9)0.0050 (9)
C200.0487 (12)0.0306 (9)0.0335 (10)0.0024 (9)0.0035 (9)0.0030 (8)
C210.0348 (10)0.0331 (9)0.0271 (9)0.0017 (8)0.0004 (8)0.0006 (7)
C220.0275 (9)0.0298 (8)0.0217 (8)0.0003 (7)0.0044 (7)0.0033 (7)
C230.0329 (10)0.0448 (11)0.0343 (10)0.0078 (9)0.0016 (8)0.0031 (9)
C240.0382 (12)0.0567 (14)0.0475 (12)0.0181 (11)0.0037 (10)0.0005 (11)
C250.0351 (11)0.0698 (16)0.0450 (12)0.0142 (11)0.0028 (10)0.0105 (11)
C260.0367 (11)0.0573 (13)0.0344 (10)0.0038 (10)0.0049 (9)0.0038 (9)
C270.0290 (9)0.0395 (10)0.0272 (9)0.0011 (8)0.0001 (7)0.0024 (8)
C280.0319 (10)0.0365 (9)0.0262 (9)0.0039 (8)0.0026 (7)0.0002 (8)
C290.0464 (12)0.0499 (12)0.0266 (9)0.0052 (10)0.0011 (9)0.0032 (8)
C300.0555 (14)0.0558 (14)0.0300 (10)0.0076 (11)0.0072 (9)0.0123 (10)
C310.0458 (13)0.0454 (12)0.0455 (13)0.0004 (10)0.0135 (10)0.0160 (10)
C320.0325 (10)0.0374 (10)0.0373 (11)0.0006 (8)0.0039 (8)0.0061 (8)
C330.0271 (9)0.0311 (9)0.0269 (8)0.0035 (7)0.0050 (7)0.0034 (7)
C510.0538 (15)0.0620 (15)0.0435 (12)0.0242 (13)0.0116 (11)0.0180 (11)
C520.0464 (15)0.099 (2)0.0528 (15)0.0173 (15)0.0058 (12)0.0035 (15)
C610.086 (2)0.0521 (17)0.110 (3)0.0008 (17)0.019 (2)0.0211 (18)
C620.090 (3)0.0581 (18)0.106 (3)0.0073 (18)0.012 (2)0.0058 (18)
Geometric parameters (Å, º) top
Rh1—C221.9760 (18)C18—C191.380 (3)
Rh1—C331.9890 (18)C18—H180.9500
Rh1—N112.0232 (15)C19—C201.381 (3)
Rh1—N222.0381 (16)C19—H190.9500
Rh1—O512.2068 (14)C20—C211.389 (3)
Rh1—N12.2516 (15)C20—H200.9500
O2—C21.259 (2)C21—C221.399 (3)
O4—C41.240 (2)C21—H210.9500
O51—C511.414 (3)C23—C241.377 (3)
O51—H10.833 (10)C23—H230.9500
O61—C611.354 (4)C24—C251.384 (3)
O61—H20.836 (10)C24—H240.9500
N1—C21.345 (2)C25—C261.375 (3)
N1—C61.374 (2)C25—H250.9500
N3—C21.376 (2)C26—C271.392 (3)
N3—C41.376 (3)C26—H260.9500
N3—H30.8800C27—C281.468 (3)
N11—C121.347 (2)C28—C291.399 (3)
N11—C161.354 (2)C28—C331.404 (3)
N22—C231.343 (3)C29—C301.376 (3)
N22—C271.362 (3)C29—H290.9500
C1—C51.502 (3)C30—C311.377 (4)
C1—H1A0.9800C30—H300.9500
C1—H1B0.9800C31—C321.394 (3)
C1—H1C0.9800C31—H310.9500
C4—C51.430 (3)C32—C331.393 (3)
C5—C61.358 (3)C32—H320.9500
C6—H60.9500C51—C521.450 (4)
C12—C131.373 (3)C51—H51A0.9900
C12—H120.9500C51—H51B0.9900
C13—C141.375 (3)C52—H52A0.9800
C13—H130.9500C52—H52B0.9800
C14—C151.384 (3)C52—H52C0.9800
C14—H140.9500C61—C621.442 (5)
C15—C161.387 (3)C61—H61A0.9900
C15—H150.9500C61—H61B0.9900
C16—C171.468 (3)C62—H62A0.9800
C17—C181.391 (3)C62—H62B0.9800
C17—C221.407 (3)C62—H62C0.9800
C22—Rh1—C3384.55 (7)C18—C19—C20120.18 (19)
C22—Rh1—N1181.84 (7)C18—C19—H19119.9
C33—Rh1—N1192.97 (7)C20—C19—H19119.9
C22—Rh1—N2296.04 (7)C19—C20—C21120.44 (19)
C33—Rh1—N2281.34 (7)C19—C20—H20119.8
N11—Rh1—N22174.11 (6)C21—C20—H20119.8
C22—Rh1—O51172.81 (7)C20—C21—C22120.71 (19)
C33—Rh1—O5193.46 (6)C20—C21—H21119.6
N11—Rh1—O5191.38 (6)C22—C21—H21119.6
N22—Rh1—O5190.48 (6)C21—C22—C17117.82 (17)
C22—Rh1—N194.13 (6)C21—C22—Rh1128.53 (14)
C33—Rh1—N1176.92 (7)C17—C22—Rh1113.63 (13)
N11—Rh1—N189.59 (6)N22—C23—C24122.3 (2)
N22—Rh1—N196.06 (6)N22—C23—H23118.8
O51—Rh1—N188.18 (5)C24—C23—H23118.8
C51—O51—Rh1127.90 (14)C23—C24—C25118.4 (2)
C51—O51—H1110.9 (17)C23—C24—H24120.8
Rh1—O51—H1101.5 (17)C25—C24—H24120.8
C61—O61—H2113 (4)C26—C25—C24119.8 (2)
C2—N1—C6116.01 (16)C26—C25—H25120.1
C2—N1—Rh1124.55 (13)C24—C25—H25120.1
C6—N1—Rh1119.42 (12)C25—C26—C27119.8 (2)
C2—N3—C4126.26 (16)C25—C26—H26120.1
C2—N3—H3116.9C27—C26—H26120.1
C4—N3—H3116.9N22—C27—C26119.99 (19)
C12—N11—C16119.82 (17)N22—C27—C28114.08 (17)
C12—N11—Rh1124.86 (13)C26—C27—C28125.92 (19)
C16—N11—Rh1115.27 (12)C29—C28—C33121.12 (19)
C23—N22—C27119.70 (17)C29—C28—C27123.58 (19)
C23—N22—Rh1125.17 (14)C33—C28—C27115.30 (16)
C27—N22—Rh1114.94 (13)C30—C29—C28119.8 (2)
C5—C1—H1A109.5C30—C29—H29120.1
C5—C1—H1B109.5C28—C29—H29120.1
H1A—C1—H1B109.5C29—C30—C31120.1 (2)
C5—C1—H1C109.5C29—C30—H30119.9
H1A—C1—H1C109.5C31—C30—H30119.9
H1B—C1—H1C109.5C30—C31—C32120.4 (2)
O2—C2—N1123.48 (17)C30—C31—H31119.8
O2—C2—N3117.38 (17)C32—C31—H31119.8
N1—C2—N3119.14 (17)C33—C32—C31121.0 (2)
O4—C4—N3119.64 (18)C33—C32—H32119.5
O4—C4—C5126.16 (19)C31—C32—H32119.5
N3—C4—C5114.19 (17)C32—C33—C28117.59 (18)
C6—C5—C4117.37 (17)C32—C33—Rh1128.18 (15)
C6—C5—C1123.66 (18)C28—C33—Rh1114.23 (13)
C4—C5—C1118.96 (18)O51—C51—C52114.3 (2)
C5—C6—N1126.91 (17)O51—C51—H51A108.7
C5—C6—H6116.5C52—C51—H51A108.7
N1—C6—H6116.5O51—C51—H51B108.7
N11—C12—C13122.1 (2)C52—C51—H51B108.7
N11—C12—H12119.0H51A—C51—H51B107.6
C13—C12—H12119.0C51—C52—H52A109.5
C12—C13—C14118.9 (2)C51—C52—H52B109.5
C12—C13—H13120.5H52A—C52—H52B109.5
C14—C13—H13120.5C51—C52—H52C109.5
C13—C14—C15119.3 (2)H52A—C52—H52C109.5
C13—C14—H14120.4H52B—C52—H52C109.5
C15—C14—H14120.4O61—C61—C62118.3 (3)
C14—C15—C16120.0 (2)O61—C61—H61A107.7
C14—C15—H15120.0C62—C61—H61A107.7
C16—C15—H15120.0O61—C61—H61B107.7
N11—C16—C15119.87 (18)C62—C61—H61B107.7
N11—C16—C17113.66 (16)H61A—C61—H61B107.1
C15—C16—C17126.47 (18)C61—C62—H62A109.5
C18—C17—C22121.06 (18)C61—C62—H62B109.5
C18—C17—C16123.36 (18)H62A—C62—H62B109.5
C22—C17—C16115.59 (16)C61—C62—H62C109.5
C19—C18—C17119.8 (2)H62A—C62—H62C109.5
C19—C18—H18120.1H62B—C62—H62C109.5
C17—C18—H18120.1
C6—N1—C2—O2176.78 (19)C19—C20—C21—C220.6 (3)
Rh1—N1—C2—O22.0 (3)C20—C21—C22—C170.0 (3)
C6—N1—C2—N33.7 (3)C20—C21—C22—Rh1178.63 (14)
Rh1—N1—C2—N3177.51 (13)C18—C17—C22—C210.9 (3)
C4—N3—C2—O2177.57 (19)C16—C17—C22—C21179.34 (16)
C4—N3—C2—N12.9 (3)C18—C17—C22—Rh1179.69 (16)
C2—N3—C4—O4179.81 (19)C16—C17—C22—Rh10.5 (2)
C2—N3—C4—C50.1 (3)C27—N22—C23—C240.0 (3)
O4—C4—C5—C6178.4 (2)Rh1—N22—C23—C24174.60 (17)
N3—C4—C5—C61.9 (3)N22—C23—C24—C250.1 (4)
O4—C4—C5—C12.3 (3)C23—C24—C25—C260.1 (4)
N3—C4—C5—C1177.40 (18)C24—C25—C26—C270.2 (4)
C4—C5—C6—N11.0 (3)C23—N22—C27—C260.2 (3)
C1—C5—C6—N1178.31 (19)Rh1—N22—C27—C26174.94 (16)
C2—N1—C6—C51.9 (3)C23—N22—C27—C28179.02 (18)
Rh1—N1—C6—C5179.19 (16)Rh1—N22—C27—C283.9 (2)
C16—N11—C12—C130.1 (3)C25—C26—C27—N220.3 (3)
Rh1—N11—C12—C13177.28 (17)C25—C26—C27—C28179.0 (2)
N11—C12—C13—C140.2 (4)N22—C27—C28—C29177.02 (19)
C12—C13—C14—C150.2 (4)C26—C27—C28—C294.3 (3)
C13—C14—C15—C160.0 (4)N22—C27—C28—C333.2 (3)
C12—N11—C16—C150.3 (3)C26—C27—C28—C33175.5 (2)
Rh1—N11—C16—C15177.76 (16)C33—C28—C29—C300.4 (3)
C12—N11—C16—C17178.46 (17)C27—C28—C29—C30179.8 (2)
Rh1—N11—C16—C171.0 (2)C28—C29—C30—C310.3 (3)
C14—C15—C16—N110.3 (3)C29—C30—C31—C320.3 (4)
C14—C15—C16—C17178.3 (2)C30—C31—C32—C330.9 (3)
N11—C16—C17—C18179.47 (18)C31—C32—C33—C280.7 (3)
C15—C16—C17—C181.9 (3)C31—C32—C33—Rh1178.48 (16)
N11—C16—C17—C220.3 (3)C29—C28—C33—C320.1 (3)
C15—C16—C17—C22178.3 (2)C27—C28—C33—C32179.67 (18)
C22—C17—C18—C191.2 (3)C29—C28—C33—Rh1179.23 (16)
C16—C17—C18—C19179.0 (2)C27—C28—C33—Rh11.0 (2)
C17—C18—C19—C200.6 (3)Rh1—O51—C51—C5294.8 (2)
C18—C19—C20—C210.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O51—H1···O20.83 (1)1.72 (2)2.527 (2)164 (2)
N3—H3···O2i0.881.992.854 (2)165
O61—H2···O4ii0.84 (1)2.01 (4)2.792 (3)156 (4)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+1/2, z.
 

Acknowledgements

This work was partly supported by a Grant-in-Aid for Scientific Research No. 25410070 from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

First citationBadura, D. & Vahrenkamp, H. (2002). Inorg. Chem. 41, 6020–6027.  CSD CrossRef PubMed CAS Google Scholar
First citationBieda, R., Ott, I., Dobroschke, M., Prokop, A., Gust, R. & Sheldrick, W. S. (2009). J. Inorg. Biochem. 103, 698–708.  CSD CrossRef PubMed CAS Google Scholar
First citationBlasberg, F., Bats, J. W., Wagner, M. & Lerner, H.-W. (2011). Acta Cryst. E67, m1837–m1838.  CSD CrossRef IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCross, R. J., Kennedy, A. R., Manojlović-Muir, L. & Muir, K. W. (1995). J. Organomet. Chem. 493, 243–249.  CSD CrossRef CAS Google Scholar
First citationFaggiani, R., Lippert, B., Lock, C. J. L. & Pfab, R. (1981). Inorg. Chem. 20, 2381–2386.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKashima, A., Sakate, M., Ota, H., Fuyuhiro, A., Sunatsuki, Y. & Suzuki, T. (2015). Chem. Commun. 51, 1889–1892.  CSD CrossRef CAS Google Scholar
First citationKhutia, A., Sanz Miguel, P. J. & Lippert, B. (2011). Chem. Eur. J. 17, 4195–4204.  CSD CrossRef CAS PubMed Google Scholar
First citationKrämer, R., Polborn, K. & Beck, W. (1991). J. Organomet. Chem. 410, 110–116.  Google Scholar
First citationRauterkus, M. J. & Krebs, B. (2004). Angew. Chem. Int. Ed. 43, 1300–1303.  CSD CrossRef CAS Google Scholar
First citationRigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSakate, M., Kashima, A., Hosoda, H., Ota, H., Sunatsuki, Y., Fuyuhiro, A. & Suzuki, T. (2016). Inorg. Chim. Acta. In the press. doi: 10.1016/j.ica.2016.01.023.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSprouse, S., King, K. A., Spellane, P. J. & Watts, R. J. (1984). J. Am. Chem. Soc. 106, 6647–6653.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds