research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of poly[(4-amino­pyridine-κN)(N,N-di­methyl­formamide-κO)(μ3-pyridine-3,5-di­carboxyl­ato-κ3N:O3:O5)copper(II)]

CROSSMARK_Color_square_no_text.svg

aInstitute of Inorganic Materials, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: hanlei@nbu.edu.cn

Edited by A. J. Lough, University of Toronto, Canada (Received 19 February 2016; accepted 27 February 2016; online 4 March 2016)

The title compound, [Cu(C7H3NO4)(C5H6N2)(C3H7NO]n, is an amino-function­alized chiral metal–organic framework with (10,3)-a topology. It has been constructed via the assembly of the achiral triconnected pyridine-3,5-di­carboxyl­ate (3,5-PDC) building block and a triconnected CuII atom. Each CuII ion is coordinated by two O atoms and one N atom, respectively, of three crystallographically independent 3,5-PDC ligands. The square-pyramidal (CuN2O3) coordination geometry of the CuII ion is completed by an N atom of a terminal 4-amino­pyridine (4-APY) ligand and the O atom of a terminal N,N-di­methyl­formamide (DMF) ligand to give a triconnected `T'-shaped secondary building unit, which becomes trigonal in the resulting (10,3)-a topology. In the three-dimensional structure, weak N—H⋯O hydrogen bonds are observed in which the donor N—H groups are provided by the 4-APY ligands and the acceptor O atoms are provided by the non-coordinating carboxylate O atoms of the 3,5-PDC ligands.

1. Chemical context

Research on metal–organic frameworks (MOFs) has attracted much attention in recent years not only for their great potential applications, such as in gas storage, separation, fluorescence and magnetism, but also for their intriguing topologies and structural diversity (Allendorf et al., 2009[Allendorf, M. D., Bauer, C. A., Bhakta, R. K. & Houk, R. J. (2009). Chem. Soc. Rev. 38, 1330-1352.]). Of special inter­est is the rational design and synthesis of chiral networks, which offer great potential in non-linear optics, asymmetric catalysis, and chiral separation (Evans & Lin, 2002[Evans, O. R. & Lin, W. B. (2002). Acc. Chem. Res. 35, 511-522.]; Zhang & Xiong, 2012[Zhang, W. & Xiong, R.-G. (2012). Chem. Rev. 112, 1163-1195.]). Therefore, a logical target for synthesis would be a default structure that possesses chirality. The (10,3)-a network meets these requirements since it is mutually chiral and regarded as the default three-dimensional structure for the assembly of triconnected building blocks (Eubank et al., 2005[Eubank, J. F., Walsh, R. D. & Eddaoudi, M. (2005). Chem. Commun. pp. 2095-2097.]; Han et al., 2013a[Han, L., Qin, L., Xu, L.-P. & Zhao, W.-N. (2013a). Inorg. Chem. 52, 1667-1669.]).

On the other hand, amino-functionalized porous metal-organic frameworks have also attracted much attention. Recent research on amino-functionalized MOFs revealed that they have high CO2 adsorption capacity at lower pressure due to the potential inter­action between amino groups and CO2 (Couck et al., 2009[Couck, S., Denayer, J. F. M., Baron, G. V., Rémy, T., Gascon, J. & Kapteijn, F. (2009). J. Am. Chem. Soc. 131, 6326-6327.]). Amino-functionalized MOFs can also act as reaction active sites for the post-synthesis modification of metal-organic frameworks (Shultz et al., 2011[Shultz, A. M., Sarjeant, A. A., Farha, O. K., Hupp, J. T. & Nguyen, S. T. (2011). J. Am. Chem. Soc. 133, 13252-13255.]).

As a continuation of our group research on the assembly of amino-functionalized chiral metal–organic frameworks (Han et al., 2011[Han, L., Xu, L.-P. & Zhao, W.-N. (2011). Acta Cryst. C67, m227-m229.], 2013b[Han, L., Qin, L., Yan, X.-Z., Xu, L.-P., Sun, J.-L., Yu, L., Chen, H.-B. & Zou, X.-D. (2013b). Cryst. Growth Des. 13, 1807-1811.]; Pan et al., 2014[Pan, L., Liu, G., Li, H., Meng, S., Han, L., Shang, J., Chen, B., Platero-Prats, A. E., Lu, W., Zou, X. & Li, R. W. (2014). J. Am. Chem. Soc. 136, 17477-17483.]), we herein report the preparation and crystal structure of Cu(3,5-PDC)(4-APY)(DMF), (3,5-PDC = pyridine-3,5-di­carboxyl­ate, 4-APY = 4-amino­pyridine, DMF = N,N-di­methyl­formamide), which was constructed via the assembly of the achiral triconnected building block pyridine-3,5-di­carboxyl­ate (3,5- PDC) and a triconnected CuII atom, CuN(CO2)2, synthesized in situ. The title compound is an inter­esting example of an amino-functionalized chiral metal-organic framework with (10,3)-a topology assembled from achiral ligands. This amino-functionalized chiral framework can be used for depositing small gold nanoparticles using a solution-based adsorption/reduction preparation method, and offer myriad opportunities for chiral catalysis.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound, Cu(3,5-PDC)(4-APY)(DMF), contains one CuII ion, one 3,5-PDC anion, one 4-apy mol­ecule and one DMF mol­ecule. As shown in Fig. 1[link], each CuII ion adopts a square-pyramidal (CuN2O3) coordin­ation geometry. In the equatorial plane, the CuII ion is coord­inated by two oxygen atoms and one nitro­gen atom, respectively, of three crystallographically independent 3,5-PDC ligands, and one nitro­gen atom of a terminal 4-APY ligand. The oxygen atom of a terminal DMF mol­ecule is bonded to the CuII ion in the axial position to complete the square-pyramidal coordination geometry. The bond lengths and bond angles around the CuII ion are in good agreement with similar structures (Eubank et al., 2005[Eubank, J. F., Walsh, R. D. & Eddaoudi, M. (2005). Chem. Commun. pp. 2095-2097.]; Lu et al., 2006[Lu, Y.-L., Wu, J.-Y., Chan, M.-C., Huang, S.-M., Lin, C.-S., Chiu, T.-W., Liu, Y.-H., Wen, Y.-S., Ueng, C.-H., Chin, T.-M., Hung, C.-H. & Lu, K.-L. (2006). Inorg. Chem. 45, 2430-2437.]). The axial Cu—ODMF bond length [2.396 (4) Å] is longer than the equatorial Cu—Ocarboxyl­ate and Cu—N4-APY bonds due to the Jahn–Teller effect of the Cu2+ atom.

[Figure 1]
Figure 1
The asymmetric unit of title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) x − [{1\over 2}], −y + [{1\over 2}], −z + 1; (ii) −x, y − [{1\over 2}], −z + [{3\over 2}]; (iii) −x, y + [{1\over 2}], −z + [{3\over 2}]; (iv) x + [{1\over 2}], −y + [{1\over 2}], −z + 1.]

The three-dimensional structure of the title compound viewed along the a axis is shown in Fig. 2[link]. To analyse the topology, the square-pyramidal coordination geometry of copper can act as a `T'-shaped triconnected secondary building unit (Fig. 2[link]), which becomes trigonal in the resulting topology. At the same time, 3,5-PDC acts as another triconnected node since it possesses two deprotonated carb­oxy­lic acid coordin­ating sites, and a third, neutral aromatic nitro­gen coordinating site. As a result, the desired triconnected (10,3)-a network is obtained, as shown in Fig. 3[link]. The terminally coordinated 4-APY and DMF ligands are oriented to the inter­ior of the channels and thus prevent self-inter­penetration. The (10,3)-a topology leads to an enanti­opure network of the title compound (Eubank et al., 2005[Eubank, J. F., Walsh, R. D. & Eddaoudi, M. (2005). Chem. Commun. pp. 2095-2097.]; Han et al., 2013a[Han, L., Qin, L., Xu, L.-P. & Zhao, W.-N. (2013a). Inorg. Chem. 52, 1667-1669.]), despite being formed solely from achiral mol­ecular units.

[Figure 2]
Figure 2
Crystal packing of the title compound viewed along the a axis, showing hydrogen bonds as dashed lines.
[Figure 3]
Figure 3
A representation of the (10,3)-a topology.

3. Supra­molecular features

By introducing 4-amino­pyridine as co-ligand, the amino-functionalized chiral metal-organic framework was successfully designed and synthesized. Additionally, the –NH2 group of the 4-APY ligand can act as the donor N—H groups to form hydrogen bonds (Han et al., 2011[Han, L., Xu, L.-P. & Zhao, W.-N. (2011). Acta Cryst. C67, m227-m229.]). In the three-dimensional structure of the title compound, weak N—H⋯O hydrogen bonds are observed (Table 1[link]) in which the acceptors are provided by the non-coordinating oxygen atoms of the carboxyl­ate groups of the 3,5-PDC ligands.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O3i 0.86 2.28 3.101 (7) 159
N3—H3B⋯O1ii 0.86 2.23 2.933 (7) 139
Symmetry codes: (i) x-1, y-1, z; (ii) [-x-1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

4. Synthesis and crystallization

The title compound was prepared by a solvothermal method. A mixture of pyridine-3,5-di­carb­oxy­lic acid (0.0339 g, 0.2 mmol), 4-amino­pyridine (0.0098 g, 0.10 mmol) and Cu(NO3)2·3H2O (0.0484 g, 0.20 mmol) in 6 ml DMF solution was stirred at room temperature for 30 minutes, and subsequently sealed in a 25 ml Teflon-lined stainless steel reactor. The reactor was heated at 363 K for 3 d. A crop of blue, block-shaped single crystals of the title compound was obtained after cooling the solution to room temperature. The yield was approximately 70% based on Cu salt.

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed in geometrically idealized positions and refined in a riding-model approximation on their parent atoms, with Uiso(H) = 1.2Ueq(C) (aromatic) and 1.5Ueq(C) (meth­yl) with C—H = 0.93 Å (aromatic) and 0.96 Å (meth­yl), and Uiso(H) = 1.2Ueq(N) with N—H = 0.86 Å.

Table 2
Experimental details

Crystal data
Chemical formula [Cu(C7H3NO4)(C5H6N2)(C3H7NO)]
Mr 395.86
Crystal system, space group Orthorhombic, P212121
Temperature (K) 293
a, b, c (Å) 8.3365 (17), 10.453 (2), 19.030 (4)
V3) 1658.2 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.35
Crystal size (mm) 0.24 × 0.20 × 0.19
 
Data collection
Diffractometer Bruker APEXII DUO CCD
Absorption correction Analytical [based on measured indexed crystal faces using SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.])]
Tmin, Tmax 0.716, 0.773
No. of measured, independent and observed [I > 2σ(I)] reflections 16376, 3799, 2926
Rint 0.051
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.132, 1.15
No. of reflections 3799
No. of parameters 226
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.79, −1.17
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1619 Friedel pairs
Absolute structure parameter 0.00 (2)
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Poly[(4-aminopyridine-κN)(N,N-dimethylformamide-κO)(µ3-pyridine-3,5-dicarboxylato-κ3N:O3:O5)copper(II)] top
Crystal data top
[Cu(C7H3NO4)(C5H6N2)(C3H7NO)]Dx = 1.586 Mg m3
Mr = 395.86Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2974 reflections
a = 8.3365 (17) Åθ = 3.1–27.5°
b = 10.453 (2) ŵ = 1.35 mm1
c = 19.030 (4) ÅT = 293 K
V = 1658.2 (6) Å3Block, blue
Z = 40.24 × 0.20 × 0.19 mm
F(000) = 812
Data collection top
Bruker APEXII DUO CCD
diffractometer
3799 independent reflections
Radiation source: fine-focus sealed tube2926 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω–scansθmax = 27.5°, θmin = 3.1°
Absorption correction: analytical
[based on measured indexed crystal faces using SHELXL2014 (Sheldrick, 2015b)]
h = 1010
Tmin = 0.716, Tmax = 0.773k = 1313
16376 measured reflectionsl = 2422
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0573P)2 + 1.9518P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.013
3799 reflectionsΔρmax = 0.79 e Å3
226 parametersΔρmin = 1.17 e Å3
0 restraintsAbsolute structure: Flack (1983), 1619 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.23946 (7)0.10503 (5)0.62338 (2)0.02797 (16)
O10.0648 (5)0.3766 (4)0.83488 (17)0.0497 (10)
O20.2102 (4)0.5278 (3)0.78331 (16)0.0348 (8)
O30.3228 (5)0.4977 (4)0.5253 (2)0.0498 (11)
O40.2342 (5)0.3222 (3)0.47057 (14)0.0337 (7)
O50.4048 (6)0.2700 (4)0.6723 (3)0.0605 (12)
N10.0413 (5)0.2178 (4)0.63928 (18)0.0284 (8)
N20.4300 (5)0.0057 (4)0.6043 (2)0.0347 (10)
N30.8209 (6)0.2450 (6)0.5764 (3)0.0705 (18)
H3A0.80500.32390.56570.085*
H3B0.91700.21700.58220.085*
N40.3401 (8)0.4804 (5)0.6705 (3)0.0625 (17)
C10.2489 (6)0.3962 (4)0.5239 (2)0.0315 (9)
C20.0476 (6)0.2565 (4)0.5840 (2)0.0291 (10)
H2A0.03010.21800.54060.035*
C30.1883 (6)0.4086 (5)0.6536 (2)0.0297 (10)
H3C0.26240.47450.65820.036*
C40.1634 (6)0.3505 (4)0.5889 (2)0.0267 (9)
C50.0125 (6)0.2721 (5)0.7013 (2)0.0310 (10)
H5A0.07160.24500.74000.037*
C60.1011 (6)0.3670 (4)0.7112 (2)0.0278 (10)
C70.1250 (6)0.4263 (5)0.7828 (2)0.0316 (11)
C80.5796 (7)0.0376 (5)0.6086 (3)0.0448 (13)
H8A0.59450.12400.61830.054*
C90.7126 (7)0.0366 (5)0.5999 (3)0.0502 (15)
H9A0.81410.00080.60450.060*
C100.6962 (7)0.1657 (6)0.5839 (3)0.0458 (14)
C110.5405 (7)0.2092 (5)0.5747 (3)0.0521 (15)
H11A0.52250.29330.56080.062*
C120.4130 (7)0.1294 (5)0.5860 (3)0.0454 (13)
H12A0.31000.16210.58080.055*
C130.3972 (9)0.3755 (6)0.7001 (4)0.0610 (17)
H13A0.43480.38240.74600.073*
C140.330 (2)0.5962 (7)0.7100 (5)0.164 (7)
H14A0.37150.58210.75640.246*
H14B0.39200.66160.68720.246*
H14C0.22010.62290.71300.246*
C150.2832 (11)0.4792 (7)0.5991 (4)0.076 (2)
H15A0.29890.39570.57930.114*
H15B0.17110.50010.59830.114*
H15C0.34180.54110.57200.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0355 (3)0.0291 (3)0.0193 (2)0.0032 (3)0.0035 (2)0.0024 (2)
O10.054 (2)0.074 (3)0.0212 (16)0.017 (2)0.0063 (16)0.0070 (18)
O20.044 (2)0.0349 (16)0.0254 (15)0.0002 (16)0.0046 (15)0.0092 (14)
O30.064 (3)0.049 (2)0.0366 (19)0.0273 (19)0.0124 (19)0.0012 (17)
O40.051 (2)0.0313 (15)0.0188 (12)0.0015 (17)0.0056 (16)0.0016 (12)
O50.058 (3)0.047 (2)0.077 (3)0.005 (2)0.005 (2)0.022 (2)
N10.033 (2)0.034 (2)0.0183 (17)0.0005 (17)0.0000 (15)0.0018 (16)
N20.033 (2)0.038 (2)0.033 (2)0.0032 (17)0.0033 (18)0.0002 (17)
N30.038 (3)0.061 (3)0.113 (5)0.018 (3)0.012 (3)0.036 (3)
N40.101 (5)0.037 (3)0.050 (3)0.003 (3)0.014 (3)0.001 (2)
C10.035 (2)0.036 (2)0.0233 (17)0.001 (3)0.001 (2)0.0029 (18)
C20.036 (3)0.034 (2)0.0174 (19)0.002 (2)0.0006 (18)0.0017 (19)
C30.031 (2)0.032 (2)0.026 (2)0.001 (2)0.0001 (17)0.002 (2)
C40.031 (2)0.027 (2)0.022 (2)0.0041 (18)0.0027 (18)0.0020 (18)
C50.038 (3)0.038 (3)0.0168 (19)0.002 (2)0.0006 (19)0.0007 (19)
C60.031 (2)0.033 (2)0.0201 (19)0.0017 (19)0.0031 (17)0.0007 (18)
C70.025 (2)0.046 (3)0.024 (2)0.001 (2)0.0020 (18)0.006 (2)
C80.047 (3)0.032 (3)0.056 (4)0.002 (2)0.003 (3)0.007 (3)
C90.036 (3)0.044 (3)0.070 (4)0.004 (3)0.000 (3)0.014 (3)
C100.036 (3)0.046 (3)0.056 (3)0.005 (2)0.004 (2)0.015 (3)
C110.047 (3)0.038 (3)0.071 (4)0.001 (3)0.003 (3)0.016 (3)
C120.038 (3)0.033 (3)0.065 (4)0.004 (2)0.002 (3)0.016 (3)
C130.069 (4)0.057 (4)0.057 (4)0.004 (3)0.005 (3)0.011 (3)
C140.37 (2)0.047 (4)0.079 (6)0.036 (8)0.019 (9)0.014 (4)
C150.096 (7)0.053 (4)0.079 (5)0.029 (4)0.008 (4)0.011 (3)
Geometric parameters (Å, º) top
Cu1—O4i1.955 (3)C2—C41.381 (7)
Cu1—O2ii1.966 (3)C2—H2A0.9300
Cu1—N21.999 (4)C3—C61.384 (6)
Cu1—N12.052 (4)C3—C41.388 (6)
Cu1—O52.396 (4)C3—H3C0.9300
O1—C71.226 (6)C5—C61.384 (7)
O2—C71.277 (6)C5—H5A0.9300
O2—Cu1iii1.966 (3)C6—C71.511 (6)
O3—C11.228 (6)C8—C91.362 (8)
O4—C11.281 (5)C8—H8A0.9300
O4—Cu1iv1.955 (3)C9—C101.390 (8)
O5—C131.225 (7)C9—H9A0.9300
N1—C51.332 (6)C10—C111.387 (8)
N1—C21.349 (6)C11—C121.368 (8)
N2—C81.330 (7)C11—H11A0.9300
N2—C121.346 (6)C12—H12A0.9300
N3—C101.337 (7)C13—H13A0.9300
N3—H3A0.8600C14—H14A0.9600
N3—H3B0.8600C14—H14B0.9600
N4—C131.322 (8)C14—H14C0.9600
N4—C141.428 (9)C15—H15A0.9600
N4—C151.440 (9)C15—H15B0.9600
C1—C41.506 (6)C15—H15C0.9600
O4i—Cu1—O2ii178.46 (14)N1—C5—H5A118.4
O4i—Cu1—N288.29 (16)C6—C5—H5A118.4
O2ii—Cu1—N291.42 (16)C3—C6—C5118.5 (4)
O4i—Cu1—N190.10 (14)C3—C6—C7121.1 (4)
O2ii—Cu1—N190.16 (14)C5—C6—C7120.4 (4)
N2—Cu1—N1177.93 (16)O1—C7—O2125.0 (5)
O4i—Cu1—O590.59 (16)O1—C7—C6120.1 (4)
O2ii—Cu1—O590.93 (16)O2—C7—C6114.9 (4)
N2—Cu1—O591.74 (16)N2—C8—C9124.2 (5)
N1—Cu1—O589.57 (16)N2—C8—H8A117.9
C7—O2—Cu1iii114.6 (3)C9—C8—H8A117.9
C1—O4—Cu1iv118.5 (3)C8—C9—C10119.9 (5)
C13—O5—Cu1141.8 (5)C8—C9—H9A120.0
C5—N1—C2117.7 (4)C10—C9—H9A120.0
C5—N1—Cu1121.4 (3)N3—C10—C11120.7 (5)
C2—N1—Cu1120.0 (3)N3—C10—C9123.3 (5)
C8—N2—C12116.2 (5)C11—C10—C9116.0 (5)
C8—N2—Cu1122.5 (3)C12—C11—C10120.5 (5)
C12—N2—Cu1121.3 (4)C12—C11—H11A119.8
C10—N3—H3A120.0C10—C11—H11A119.8
C10—N3—H3B120.0N2—C12—C11123.0 (5)
H3A—N3—H3B120.0N2—C12—H12A118.5
C13—N4—C14120.0 (7)C11—C12—H12A118.5
C13—N4—C15121.0 (6)O5—C13—N4125.5 (6)
C14—N4—C15119.0 (7)O5—C13—H13A117.3
O3—C1—O4126.0 (4)N4—C13—H13A117.3
O3—C1—C4119.6 (4)N4—C14—H14A109.5
O4—C1—C4114.4 (4)N4—C14—H14B109.5
N1—C2—C4123.0 (4)H14A—C14—H14B109.5
N1—C2—H2A118.5N4—C14—H14C109.5
C4—C2—H2A118.5H14A—C14—H14C109.5
C6—C3—C4119.1 (4)H14B—C14—H14C109.5
C6—C3—H3C120.5N4—C15—H15A109.5
C4—C3—H3C120.5N4—C15—H15B109.5
C2—C4—C3118.4 (4)H15A—C15—H15B109.5
C2—C4—C1120.1 (4)N4—C15—H15C109.5
C3—C4—C1121.3 (4)H15A—C15—H15C109.5
N1—C5—C6123.3 (4)H15B—C15—H15C109.5
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x, y1/2, z+3/2; (iii) x, y+1/2, z+3/2; (iv) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O3v0.862.283.101 (7)159
N3—H3B···O1vi0.862.232.933 (7)139
Symmetry codes: (v) x1, y1, z; (vi) x1, y1/2, z+3/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21471086), the Social Development Foundation of Ningbo (No. 2014C50013) and the K. C. Wong MagnaFund in Ningbo University.

References

First citationAllendorf, M. D., Bauer, C. A., Bhakta, R. K. & Houk, R. J. (2009). Chem. Soc. Rev. 38, 1330–1352.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCouck, S., Denayer, J. F. M., Baron, G. V., Rémy, T., Gascon, J. & Kapteijn, F. (2009). J. Am. Chem. Soc. 131, 6326–6327.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEubank, J. F., Walsh, R. D. & Eddaoudi, M. (2005). Chem. Commun. pp. 2095–2097.  Web of Science CSD CrossRef Google Scholar
First citationEvans, O. R. & Lin, W. B. (2002). Acc. Chem. Res. 35, 511–522.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHan, L., Qin, L., Xu, L.-P. & Zhao, W.-N. (2013a). Inorg. Chem. 52, 1667–1669.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHan, L., Qin, L., Yan, X.-Z., Xu, L.-P., Sun, J.-L., Yu, L., Chen, H.-B. & Zou, X.-D. (2013b). Cryst. Growth Des. 13, 1807–1811.  Web of Science CSD CrossRef CAS Google Scholar
First citationHan, L., Xu, L.-P. & Zhao, W.-N. (2011). Acta Cryst. C67, m227–m229.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, Y.-L., Wu, J.-Y., Chan, M.-C., Huang, S.-M., Lin, C.-S., Chiu, T.-W., Liu, Y.-H., Wen, Y.-S., Ueng, C.-H., Chin, T.-M., Hung, C.-H. & Lu, K.-L. (2006). Inorg. Chem. 45, 2430–2437.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPan, L., Liu, G., Li, H., Meng, S., Han, L., Shang, J., Chen, B., Platero-Prats, A. E., Lu, W., Zou, X. & Li, R. W. (2014). J. Am. Chem. Soc. 136, 17477–17483.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShultz, A. M., Sarjeant, A. A., Farha, O. K., Hupp, J. T. & Nguyen, S. T. (2011). J. Am. Chem. Soc. 133, 13252–13255.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W. & Xiong, R.-G. (2012). Chem. Rev. 112, 1163–1195.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds