research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a tetranuclear CuII complex with an O,N,N′-donor Schiff base ligand: hexa-μ2-acetato-bis­­(2-{[(2,2,6,6-tetra­methyl­piperidin-4-yl)imino]­meth­yl}phenolato-κ3O,N,N′)tetra­copper(II)

CROSSMARK_Color_square_no_text.svg

aSchool of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou, Guangdong 510006, People's Republic of China
*Correspondence e-mail: p-xxliu@gdut.edu.cn

Edited by A. J. Lough, University of Toronto, Canada (Received 9 March 2016; accepted 24 March 2016; online 31 March 2016)

The title compound, [Cu4(CH3COO)6(C16H23N2O)2], lies across a twofold rotation axis. The asymmetric unit contains two independent CuII ions. The symmetry-unique terminal CuII ion is O,N,N′-coordinated by a 2-{[(2,2,6,6-tetra­methyl­piperidin-4-yl)imino]­meth­yl}phenolate ligand and an O atom from an acetate group in a slightly distorted square-planar coordination environment. The symmetry-unique central CuII ion is coordinated by a different O atom from the same acetate group and by four bridging acetate ligands, which connect the asymmetric unit into a dimeric complex and form a distorted square-pyramidal coordination environment. Within the complex there are two symmetry-equivalent intra­molecular N—H⋯O hydrogen bonds. In the crystal, weak C—H⋯O hydrogen bonds link the complex mol­ecules, forming a three-dimensional network.

1. Chemical context

The chemistry of metal complexes with Schiff base ligands and their applications has attracted considerable attention, mainly due to their preparative accessibility, structural variability, magnetic properties and biological properties (Karahan et al., 2015[Karahan, A., Karabulut, S., Dal, H., Kurtaran, R. & Leszczynski, J. (2015). J. Mol. Struct. 1093, 1-7.]). The design of suitable building blocks and the utilization of coordinate bonds and non-covalent inter­actions to generate self-assemblies of various dimensions having aesthetic beauty and properties for possible use as functional materials are the major objectives in supra­molecular chemistry and crystal engineering (Sasmal et al., 2011[Sasmal, S., Sarkar, S., Aliaga-Alcalde, N. & Mohanta, S. (2011). Inorg. Chem. 50, 5687-5695.]). Within this context, we report herein the crystal structure of the title complex.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title complex is shown in Fig. 1[link]. The complex lies across a twofold rotation axis. The asymmetric unit contains two independent CuII ions, Cu1 and Cu2. Cu1 is coordinated by atoms O1, N1 and N2 of a 2-{[(2,2,6,6-tetra­methyl­piperidin-4-yl)imino]­meth­yl}phenolate ligand and by atom O2 from an acetate group in a slightly distorted square-planar coordination environment. Cu2 is coordinated by atom O3 of the same acetate group mentioned above and by four bridging acetate ligands, which connect the asymmetric unit into a dimeric complex. Cu2 is in a distorted square-pyramidal coordination environment. The Cu⋯Cu distance is 2.6225 (9) Å. The piperidine rings are in boat conformations. Within the complex, there are two symmetry-equivalent intra­molecular N—H⋯O hydrogen bonds (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3 0.92 1.96 2.789 (3) 149
C7—H7⋯O1i 0.94 2.27 3.026 (3) 137
C7—H7⋯O2i 0.94 2.59 3.460 (3) 153
C15—H15B⋯O1ii 0.97 2.54 3.490 (4) 165
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x, -y+2, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with 50% probability ellipsoids. For clarity, H atoms bonded to C atoms are not shown. The unlabeled part of the mol­ecule is related by the symmetry code (−x + 1, y, −z + [{1\over 2}]).

3. Supra­molecular features

In the crystal, weak C—H⋯O hydrogen bonds link the complex mol­ecules, forming a three-dimensional network (see Table 1[link] and Figs. 2[link] and 3[link]).

[Figure 2]
Figure 2
Part of the crystal structure, viewed along the b axis, with hydrogen bonds shown as dashed lines. Only H atoms involved in hydrogen bonding are shown.
[Figure 3]
Figure 3
Part of the crystal structure, viewed along the c axis, with hydrogen bonds shown as dashed lines. Only H atoms involved in hydrogen bonding are shown.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, update 1; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for compounds containing the same Schiff base ligand as the title compound found only one hit, namely bis­[N-(2,2,6,6-tetra­methyl­piperidin-4-yl)salicylaldiminato]copper(II) (Golovina et al., 1975[Golovina, N. I., Klitskaya, G. A., Medzhidov, A. A. & Atovmyan, L. O. (1975). Zh. Strukt. Khim. 16, 132-134.]). In this compound, the ligand acts as only an N,O donor with the –N–H group remaining non-coordinating, unlike in the title compound. However, the precision of the determined geometric parameters is not sufficient to make a meaningful comparison with the title compound. Although, in a closely related compound, namely, hexa­kis­(μ2-acetato)­bis­[1-(5-bromo­salicylaldimino)-3-(2-methyl­piperidino)­propane]­tetracopper (Chiari et al., 1993[Chiari, B., Piovesana, O., Tarantelli, T. & Zanazzi, P. F. (1993). Inorg. Chem. 32, 4834-4838.]), the Cu—O and Cu—N distances for each coordination center are in agreement. A comprehensive study of the compound tetra­kis­(μ2-acetato)­bis­(acetic acid)dicopper(II), which is the basic core of the title compound, has been carried out by Vives et al. (2003[Vives, G., Mason, S. A., Prince, P. D., Junk, P. C. & Steed, J. W. (2003). Cryst. Growth Des. 3, 699-704.]).

5. Synthesis and crystallization

All chemicals and solvents used in the synthesis were analytical grade and used without further purification. A mixture of Cu(CH3COO)2·6H2O (12mg, 0.06 mmol) and SL ([2-{[(2,2,6,6-tetramethylpiperidin-4-yl)imino]methyl}phenolate]) (13 mg, 0.05 mmol) was treated in MeOH solvent (4 mL) under ultrasonic irradiation at ambient temperature to give a clear solution. The resultant solution was allowed to evaporate slowly in darkness at ambient temperature for several days to give blue crystals suitable for X-ray diffraction.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were placed in calculated positions with C—H = 0.94–0.99, N—H = 0.92 Å and were included in a riding-motion approximation with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(Cmeth­yl).

Table 2
Experimental details

Crystal data
Chemical formula [Cu4(C2H3O2)6(C16H23N2O)2]
Mr 1127.19
Crystal system, space group Orthorhombic, Pbcn
Temperature (K) 250
a, b, c (Å) 31.2431 (6), 10.7872 (2), 15.2556 (3)
V3) 5141.53 (18)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.40
Crystal size (mm) 0.10 × 0.10 × 0.05
 
Data collection
Diffractometer Agilent Gemini S Ultra CCD
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.718, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12793, 5096, 3794
Rint 0.025
(sin θ/λ)max−1) 0.623
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.109, 1.05
No. of reflections 5096
No. of parameters 305
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.43
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Hexa-µ2-acetato-bis(2-{[(2,2,6,6-tetramethylpiperidin-4-yl)imino]methyl}phenolato-κ3O,N,N')tetracopper(II) top
Crystal data top
[Cu4(C2H3O2)6(C16H23N2O)2]Dx = 1.456 Mg m3
Mr = 1127.19Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, PbcnCell parameters from 4275 reflections
a = 31.2431 (6) Åθ = 5.2–73.9°
b = 10.7872 (2) ŵ = 2.40 mm1
c = 15.2556 (3) ÅT = 250 K
V = 5141.53 (18) Å3Block, blue
Z = 40.1 × 0.1 × 0.05 mm
F(000) = 2336
Data collection top
Agilent Gemini S Ultra CCD
diffractometer
5096 independent reflections
Radiation source: fine-focus sealed tube3794 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 74.0°, θmin = 4.3°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 3738
Tmin = 0.718, Tmax = 1.000k = 1213
12793 measured reflectionsl = 1812
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0512P)2 + 2.024P]
where P = (Fo2 + 2Fc2)/3
5096 reflections(Δ/σ)max = 0.002
305 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.43 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.684926 (12)0.97594 (3)0.05439 (3)0.03840 (12)
Cu20.537735 (15)0.84119 (4)0.21238 (3)0.05264 (14)
O10.71888 (6)0.89442 (17)0.03139 (13)0.0428 (4)
N10.72175 (7)1.1220 (2)0.05451 (16)0.0419 (5)
O20.65473 (7)0.81724 (18)0.06203 (15)0.0551 (6)
O30.59817 (7)0.85329 (19)0.14558 (16)0.0592 (6)
O50.55006 (8)0.9679 (2)0.30302 (16)0.0652 (6)
N20.64737 (7)1.0688 (2)0.13950 (15)0.0410 (5)
H20.62481.01760.15290.049*
O40.51510 (8)0.9730 (2)0.13830 (16)0.0665 (6)
C60.77655 (9)1.0411 (2)0.04343 (18)0.0398 (6)
C70.75839 (9)1.1298 (2)0.0151 (2)0.0444 (6)
H70.77471.20140.02630.053*
O70.50945 (8)0.7157 (2)0.13683 (17)0.0713 (7)
O60.55359 (8)0.7104 (2)0.29423 (17)0.0677 (7)
C20.77766 (9)0.8474 (3)0.12210 (18)0.0447 (6)
H2A0.76540.77000.13550.054*
C120.62916 (10)1.1791 (3)0.0926 (2)0.0487 (7)
C50.81565 (9)1.0710 (3)0.0834 (2)0.0501 (7)
H50.82881.14690.06980.060*
C40.83518 (10)0.9928 (3)0.1415 (2)0.0545 (8)
H40.86111.01520.16860.065*
C190.52267 (12)1.0102 (3)0.3548 (2)0.0578 (8)
C170.62166 (10)0.7826 (3)0.1042 (2)0.0491 (7)
C10.75614 (8)0.9269 (2)0.06385 (17)0.0385 (6)
C210.47211 (12)0.6744 (3)0.1491 (2)0.0622 (9)
C110.67169 (11)1.0900 (3)0.2232 (2)0.0507 (7)
C80.70868 (11)1.2271 (3)0.1102 (2)0.0518 (8)
H80.73001.29450.10420.062*
C200.53536 (14)1.1180 (4)0.4132 (3)0.0764 (11)
H20A0.56591.13300.40780.115*
H20B0.52861.09830.47370.115*
H20C0.51981.19160.39560.115*
C150.64393 (14)1.1303 (4)0.2999 (2)0.0746 (11)
H15A0.63171.21100.28750.112*
H15B0.66131.13520.35250.112*
H15C0.62111.07050.30850.112*
C30.81596 (10)0.8793 (3)0.1599 (2)0.0520 (7)
H30.82940.82390.19870.062*
C130.61459 (16)1.1326 (4)0.0033 (3)0.0863 (14)
H13A0.63901.10040.02870.129*
H13B0.60191.20040.02930.129*
H13C0.59361.06730.01100.129*
C160.69203 (16)0.9646 (3)0.2464 (3)0.0882 (15)
H16A0.66980.90240.25190.132*
H16B0.70740.97180.30140.132*
H16C0.71180.94050.20040.132*
C100.70695 (12)1.1862 (3)0.2050 (2)0.0604 (9)
H10A0.70211.25900.24210.073*
H10B0.73471.15070.22120.073*
C180.61159 (14)0.6453 (3)0.1017 (3)0.0853 (14)
H18A0.59200.62850.05390.128*
H18B0.59850.62070.15670.128*
H18C0.63780.59880.09290.128*
C90.66490 (11)1.2754 (3)0.0824 (2)0.0597 (9)
H9A0.66631.30160.02100.072*
H9B0.65781.34850.11770.072*
C140.59022 (12)1.2356 (3)0.1380 (3)0.0743 (11)
H14A0.57041.17020.15420.111*
H14B0.57621.29300.09840.111*
H14C0.59931.27950.19030.111*
C220.45822 (14)0.5698 (4)0.0893 (3)0.0949 (15)
H22A0.47150.58000.03220.142*
H22B0.42730.57120.08290.142*
H22C0.46700.49110.11440.142*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0381 (2)0.0315 (2)0.0456 (2)0.00219 (16)0.00017 (17)0.00167 (16)
Cu20.0483 (3)0.0563 (3)0.0533 (3)0.0039 (2)0.0161 (2)0.0029 (2)
O10.0406 (10)0.0352 (9)0.0526 (11)0.0049 (8)0.0037 (9)0.0039 (8)
N10.0436 (12)0.0312 (11)0.0509 (13)0.0015 (10)0.0007 (11)0.0017 (10)
O20.0482 (11)0.0408 (11)0.0763 (15)0.0090 (9)0.0235 (11)0.0121 (10)
O30.0553 (13)0.0473 (12)0.0752 (15)0.0109 (10)0.0275 (12)0.0134 (11)
O50.0609 (14)0.0704 (15)0.0645 (14)0.0060 (12)0.0162 (12)0.0173 (12)
N20.0447 (12)0.0349 (11)0.0436 (12)0.0033 (10)0.0003 (10)0.0008 (10)
O40.0607 (15)0.0753 (16)0.0634 (14)0.0009 (12)0.0160 (12)0.0144 (12)
C60.0365 (13)0.0383 (14)0.0444 (14)0.0005 (11)0.0040 (11)0.0067 (11)
C70.0458 (16)0.0327 (13)0.0546 (16)0.0046 (12)0.0058 (13)0.0029 (12)
O70.0599 (14)0.0801 (17)0.0738 (16)0.0107 (13)0.0179 (13)0.0235 (13)
O60.0575 (14)0.0693 (15)0.0763 (16)0.0094 (12)0.0200 (12)0.0133 (13)
C20.0485 (16)0.0435 (15)0.0421 (14)0.0018 (13)0.0002 (13)0.0025 (12)
C120.0517 (17)0.0435 (16)0.0508 (16)0.0091 (13)0.0024 (14)0.0015 (13)
C50.0420 (15)0.0479 (16)0.0604 (17)0.0067 (13)0.0029 (14)0.0053 (14)
C40.0404 (16)0.063 (2)0.0597 (18)0.0049 (15)0.0061 (14)0.0055 (16)
C190.064 (2)0.0598 (19)0.0500 (17)0.0040 (17)0.0046 (16)0.0012 (15)
C170.0456 (16)0.0427 (15)0.0590 (18)0.0077 (13)0.0100 (15)0.0057 (14)
C10.0392 (13)0.0367 (13)0.0397 (13)0.0001 (11)0.0047 (11)0.0062 (11)
C210.058 (2)0.062 (2)0.066 (2)0.0063 (17)0.0101 (17)0.0064 (17)
C110.0637 (19)0.0457 (16)0.0428 (15)0.0044 (15)0.0083 (14)0.0011 (13)
C80.0570 (18)0.0350 (14)0.0635 (19)0.0107 (13)0.0066 (15)0.0096 (13)
C200.082 (3)0.081 (3)0.066 (2)0.001 (2)0.003 (2)0.023 (2)
C150.091 (3)0.085 (3)0.0481 (18)0.024 (2)0.0074 (19)0.0137 (18)
C30.0524 (17)0.0567 (18)0.0470 (16)0.0070 (15)0.0061 (14)0.0001 (14)
C130.121 (4)0.065 (2)0.073 (3)0.029 (2)0.045 (3)0.0074 (19)
C160.136 (4)0.053 (2)0.076 (3)0.007 (2)0.053 (3)0.0001 (19)
C100.064 (2)0.060 (2)0.0573 (19)0.0151 (17)0.0029 (16)0.0133 (16)
C180.081 (3)0.0451 (19)0.130 (4)0.0187 (19)0.047 (3)0.016 (2)
C90.066 (2)0.0383 (16)0.075 (2)0.0073 (15)0.0198 (18)0.0052 (15)
C140.056 (2)0.060 (2)0.106 (3)0.0113 (18)0.015 (2)0.003 (2)
C220.078 (3)0.093 (3)0.114 (4)0.021 (2)0.012 (3)0.041 (3)
Geometric parameters (Å, º) top
Cu1—O11.9004 (19)C19—C201.518 (5)
Cu1—N11.951 (2)C17—C181.515 (4)
Cu1—O21.958 (2)C21—O6i1.242 (4)
Cu1—N22.017 (2)C21—C221.515 (5)
Cu2—Cu2i2.6225 (9)C11—C151.520 (5)
Cu2—O32.150 (2)C11—C161.535 (5)
Cu2—O51.982 (2)C11—C101.539 (4)
Cu2—O41.949 (2)C8—H80.9900
Cu2—O71.986 (2)C8—C101.513 (5)
Cu2—O61.948 (2)C8—C91.524 (5)
O1—C11.313 (3)C20—H20A0.9700
N1—C71.295 (4)C20—H20B0.9700
N1—C81.474 (4)C20—H20C0.9700
O2—C171.273 (3)C15—H15A0.9700
O3—C171.232 (4)C15—H15B0.9700
O5—C191.251 (4)C15—H15C0.9700
N2—H20.9200C3—H30.9400
N2—C121.500 (4)C13—H13A0.9700
N2—C111.503 (4)C13—H13B0.9700
O4—C19i1.251 (4)C13—H13C0.9700
C6—C71.427 (4)C16—H16A0.9700
C6—C51.403 (4)C16—H16B0.9700
C6—C11.421 (4)C16—H16C0.9700
C7—H70.9400C10—H10A0.9800
O7—C211.262 (4)C10—H10B0.9800
O6—C21i1.242 (4)C18—H18A0.9700
C2—H2A0.9400C18—H18B0.9700
C2—C11.406 (4)C18—H18C0.9700
C2—C31.372 (4)C9—H9A0.9800
C12—C131.522 (5)C9—H9B0.9800
C12—C91.533 (5)C14—H14A0.9700
C12—C141.527 (4)C14—H14B0.9700
C5—H50.9400C14—H14C0.9700
C5—C41.368 (5)C22—H22A0.9700
C4—H40.9400C22—H22B0.9700
C4—C31.392 (4)C22—H22C0.9700
C19—O4i1.251 (4)
O1—Cu1—N192.58 (9)N2—C11—C15114.1 (3)
O1—Cu1—O284.57 (8)N2—C11—C16105.7 (2)
O1—Cu1—N2176.50 (9)N2—C11—C10108.1 (2)
N1—Cu1—O2171.93 (10)C15—C11—C16108.1 (3)
N1—Cu1—N286.64 (9)C15—C11—C10110.7 (3)
O2—Cu1—N296.65 (9)C16—C11—C10109.8 (3)
O3—Cu2—Cu2i175.77 (7)N1—C8—H8109.0
O5—Cu2—Cu2i82.49 (7)N1—C8—C10109.7 (3)
O5—Cu2—O396.79 (9)N1—C8—C9110.6 (3)
O5—Cu2—O7164.08 (10)C10—C8—H8109.0
O4—Cu2—Cu2i85.84 (7)C10—C8—C9109.5 (3)
O4—Cu2—O389.98 (10)C9—C8—H8109.0
O4—Cu2—O588.41 (11)C19—C20—H20A109.5
O4—Cu2—O789.96 (12)C19—C20—H20B109.5
O7—Cu2—Cu2i81.60 (7)C19—C20—H20C109.5
O7—Cu2—O399.04 (9)H20A—C20—H20B109.5
O6—Cu2—Cu2i87.02 (7)H20A—C20—H20C109.5
O6—Cu2—O397.15 (10)H20B—C20—H20C109.5
O6—Cu2—O590.16 (11)C11—C15—H15A109.5
O6—Cu2—O4172.85 (10)C11—C15—H15B109.5
O6—Cu2—O789.50 (12)C11—C15—H15C109.5
C1—O1—Cu1129.15 (17)H15A—C15—H15B109.5
C7—N1—Cu1125.01 (19)H15A—C15—H15C109.5
C7—N1—C8117.5 (2)H15B—C15—H15C109.5
C8—N1—Cu1117.26 (19)C2—C3—C4120.8 (3)
C17—O2—Cu1132.64 (19)C2—C3—H3119.6
C17—O3—Cu2136.77 (19)C4—C3—H3119.6
C19—O5—Cu2124.0 (2)C12—C13—H13A109.5
Cu1—N2—H2106.9C12—C13—H13B109.5
C12—N2—Cu1107.93 (17)C12—C13—H13C109.5
C12—N2—H2106.9H13A—C13—H13B109.5
C11—N2—Cu1109.16 (18)H13A—C13—H13C109.5
C11—N2—H2106.9H13B—C13—H13C109.5
C11—N2—C12118.5 (2)C11—C16—H16A109.5
C19i—O4—Cu2121.9 (2)C11—C16—H16B109.5
C5—C6—C7117.6 (3)C11—C16—H16C109.5
C5—C6—C1119.7 (3)H16A—C16—H16B109.5
C1—C6—C7122.7 (3)H16A—C16—H16C109.5
N1—C7—C6126.7 (3)H16B—C16—H16C109.5
N1—C7—H7116.6C11—C10—H10A108.9
C6—C7—H7116.6C11—C10—H10B108.9
C21—O7—Cu2124.5 (2)C8—C10—C11113.2 (3)
C21i—O6—Cu2120.5 (2)C8—C10—H10A108.9
C1—C2—H2A119.0C8—C10—H10B108.9
C3—C2—H2A119.0H10A—C10—H10B107.7
C3—C2—C1122.0 (3)C17—C18—H18A109.5
N2—C12—C13106.2 (2)C17—C18—H18B109.5
N2—C12—C9108.0 (2)C17—C18—H18C109.5
N2—C12—C14113.7 (3)H18A—C18—H18B109.5
C13—C12—C9110.5 (3)H18A—C18—H18C109.5
C13—C12—C14107.4 (3)H18B—C18—H18C109.5
C14—C12—C9110.8 (3)C12—C9—H9A108.9
C6—C5—H5119.1C12—C9—H9B108.9
C4—C5—C6121.9 (3)C8—C9—C12113.2 (3)
C4—C5—H5119.1C8—C9—H9A108.9
C5—C4—H4120.6C8—C9—H9B108.9
C5—C4—C3118.7 (3)H9A—C9—H9B107.8
C3—C4—H4120.6C12—C14—H14A109.5
O5—C19—C20118.1 (3)C12—C14—H14B109.5
O4i—C19—O5125.5 (3)C12—C14—H14C109.5
O4i—C19—C20116.3 (3)H14A—C14—H14B109.5
O2—C17—C18116.3 (3)H14A—C14—H14C109.5
O3—C17—O2124.1 (3)H14B—C14—H14C109.5
O3—C17—C18119.6 (3)C21—C22—H22A109.5
O1—C1—C6123.1 (2)C21—C22—H22B109.5
O1—C1—C2120.0 (2)C21—C22—H22C109.5
C2—C1—C6116.9 (2)H22A—C22—H22B109.5
O7—C21—C22116.0 (3)H22A—C22—H22C109.5
O6i—C21—O7126.2 (3)H22B—C22—H22C109.5
O6i—C21—C22117.8 (3)
Cu1—O1—C1—C65.6 (4)O5—Cu2—O6—C21i80.2 (3)
Cu1—O1—C1—C2174.72 (19)N2—Cu1—O1—C185.2 (15)
Cu1—N1—C7—C67.8 (4)N2—Cu1—N1—C7174.4 (3)
Cu1—N1—C8—C1060.7 (3)N2—Cu1—N1—C80.2 (2)
Cu1—N1—C8—C960.1 (3)N2—Cu1—O2—C171.7 (3)
Cu1—O2—C17—O37.8 (5)N2—C12—C9—C87.7 (4)
Cu1—O2—C17—C18172.3 (3)N2—C11—C10—C82.6 (4)
Cu1—N2—C12—C1344.4 (3)O4—Cu2—O3—C17122.8 (3)
Cu1—N2—C12—C974.1 (3)O4—Cu2—O5—C1980.8 (3)
Cu1—N2—C12—C14162.4 (2)O4—Cu2—O7—C2190.6 (3)
Cu1—N2—C11—C15165.8 (2)O4—Cu2—O6—C21i1.8 (11)
Cu1—N2—C11—C1647.1 (3)C6—C5—C4—C31.3 (5)
Cu1—N2—C11—C1070.5 (3)C7—N1—C8—C10113.9 (3)
Cu2i—Cu2—O3—C17131.2 (8)C7—N1—C8—C9125.2 (3)
Cu2i—Cu2—O5—C195.2 (3)C7—C6—C5—C4178.9 (3)
Cu2i—Cu2—O4—C19i1.9 (3)C7—C6—C1—O10.7 (4)
Cu2i—Cu2—O7—C214.8 (3)C7—C6—C1—C2179.6 (3)
Cu2i—Cu2—O6—C21i2.2 (3)O7—Cu2—O3—C1732.8 (4)
Cu2—O3—C17—O2172.0 (2)O7—Cu2—O5—C193.5 (6)
Cu2—O3—C17—C187.9 (6)O7—Cu2—O4—C19i79.7 (3)
Cu2—O5—C19—O4i5.8 (5)O7—Cu2—O6—C21i83.8 (3)
Cu2—O5—C19—C20172.6 (3)O6—Cu2—O3—C1757.8 (4)
Cu2—O7—C21—O6i4.9 (6)O6—Cu2—O5—C1992.2 (3)
Cu2—O7—C21—C22174.1 (3)O6—Cu2—O4—C19i5.9 (11)
O1—Cu1—N1—C79.0 (2)O6—Cu2—O7—C2182.3 (3)
O1—Cu1—N1—C8176.8 (2)C12—N2—C11—C1570.2 (4)
O1—Cu1—O2—C17175.0 (3)C12—N2—C11—C16171.1 (3)
O1—Cu1—N2—C1211.9 (15)C12—N2—C11—C1053.5 (3)
O1—Cu1—N2—C11141.9 (14)C5—C6—C7—N1176.2 (3)
N1—Cu1—O1—C18.2 (2)C5—C6—C1—O1177.7 (3)
N1—Cu1—O2—C17115.4 (7)C5—C6—C1—C22.0 (4)
N1—Cu1—N2—C1265.23 (18)C5—C4—C3—C21.5 (5)
N1—Cu1—N2—C1164.75 (18)C1—C6—C7—N12.2 (5)
N1—C8—C10—C1166.2 (4)C1—C6—C5—C40.4 (4)
N1—C8—C9—C1262.4 (4)C1—C2—C3—C40.2 (5)
O2—Cu1—O1—C1164.2 (2)C11—N2—C12—C13169.0 (3)
O2—Cu1—N1—C760.1 (8)C11—N2—C12—C950.5 (3)
O2—Cu1—N1—C8114.1 (7)C11—N2—C12—C1473.0 (4)
O2—Cu1—N2—C12122.17 (18)C8—N1—C7—C6178.0 (3)
O2—Cu1—N2—C11107.85 (18)C15—C11—C10—C8128.3 (3)
O3—Cu2—O5—C19170.6 (3)C3—C2—C1—O1177.8 (3)
O3—Cu2—O4—C19i178.8 (3)C3—C2—C1—C62.0 (4)
O3—Cu2—O7—C21179.5 (3)C13—C12—C9—C8108.1 (3)
O3—Cu2—O6—C21i177.1 (3)C16—C11—C10—C8112.3 (3)
O5—Cu2—O3—C17148.8 (3)C10—C8—C9—C1258.6 (4)
O5—Cu2—O4—C19i84.4 (3)C9—C8—C10—C1155.3 (4)
O5—Cu2—O7—C216.5 (6)C14—C12—C9—C8133.0 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O30.921.962.789 (3)149
C7—H7···O1ii0.942.273.026 (3)137
C7—H7···O2ii0.942.593.460 (3)153
C15—H15B···O1iii0.972.543.490 (4)165
Symmetry codes: (ii) x+3/2, y+1/2, z; (iii) x, y+2, z+1/2.
 

Acknowledgements

This work was supported by a grant from the National Natural Science Foundation of China (No. 20874022) and the PhD Programs Foundation of the Ministry of Education of P.R. China (No. 20094420110006).

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationChiari, B., Piovesana, O., Tarantelli, T. & Zanazzi, P. F. (1993). Inorg. Chem. 32, 4834–4838.  CSD CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGolovina, N. I., Klitskaya, G. A., Medzhidov, A. A. & Atovmyan, L. O. (1975). Zh. Strukt. Khim. 16, 132–134.  Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationKarahan, A., Karabulut, S., Dal, H., Kurtaran, R. & Leszczynski, J. (2015). J. Mol. Struct. 1093, 1–7.  Web of Science CSD CrossRef CAS Google Scholar
First citationSasmal, S., Sarkar, S., Aliaga-Alcalde, N. & Mohanta, S. (2011). Inorg. Chem. 50, 5687–5695.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVives, G., Mason, S. A., Prince, P. D., Junk, P. C. & Steed, J. W. (2003). Cryst. Growth Des. 3, 699–704.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds