research communications
II complex with an O,N,N′-donor Schiff base ligand: hexa-μ2-acetato-bis(2-{[(2,2,6,6-tetramethylpiperidin-4-yl)imino]methyl}phenolato-κ3O,N,N′)tetracopper(II)
of a tetranuclear CuaSchool of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou, Guangdong 510006, People's Republic of China
*Correspondence e-mail: p-xxliu@gdut.edu.cn
The title compound, [Cu4(CH3COO)6(C16H23N2O)2], lies across a twofold rotation axis. The contains two independent CuII ions. The symmetry-unique terminal CuII ion is O,N,N′-coordinated by a 2-{[(2,2,6,6-tetramethylpiperidin-4-yl)imino]methyl}phenolate ligand and an O atom from an acetate group in a slightly distorted square-planar coordination environment. The symmetry-unique central CuII ion is coordinated by a different O atom from the same acetate group and by four bridging acetate ligands, which connect the into a dimeric complex and form a distorted square-pyramidal coordination environment. Within the complex there are two symmetry-equivalent intramolecular N—H⋯O hydrogen bonds. In the crystal, weak C—H⋯O hydrogen bonds link the complex molecules, forming a three-dimensional network.
Keywords: crystal structure; Schiff base ligand; boat conformation; piperidines; copper(II) complex.
CCDC reference: 1470356
1. Chemical context
The chemistry of metal complexes with Schiff base ligands and their applications has attracted considerable attention, mainly due to their preparative accessibility, structural variability, magnetic properties and biological properties (Karahan et al., 2015). The design of suitable building blocks and the utilization of coordinate bonds and non-covalent interactions to generate self-assemblies of various dimensions having aesthetic beauty and properties for possible use as functional materials are the major objectives in supramolecular chemistry and crystal engineering (Sasmal et al., 2011). Within this context, we report herein the of the title complex.
2. Structural commentary
The molecular structure of the title complex is shown in Fig. 1. The complex lies across a twofold rotation axis. The contains two independent CuII ions, Cu1 and Cu2. Cu1 is coordinated by atoms O1, N1 and N2 of a 2-{[(2,2,6,6-tetramethylpiperidin-4-yl)imino]methyl}phenolate ligand and by atom O2 from an acetate group in a slightly distorted square-planar coordination environment. Cu2 is coordinated by atom O3 of the same acetate group mentioned above and by four bridging acetate ligands, which connect the into a dimeric complex. Cu2 is in a distorted square-pyramidal coordination environment. The Cu⋯Cu distance is 2.6225 (9) Å. The piperidine rings are in boat conformations. Within the complex, there are two symmetry-equivalent intramolecular N—H⋯O hydrogen bonds (Table 1).
3. Supramolecular features
In the crystal, weak C—H⋯O hydrogen bonds link the complex molecules, forming a three-dimensional network (see Table 1 and Figs. 2 and 3).
4. Database survey
A search of the Cambridge Structural Database (Version 5.37, update 1; Groom & Allen, 2014) for compounds containing the same Schiff base ligand as the title compound found only one hit, namely bis[N-(2,2,6,6-tetramethylpiperidin-4-yl)salicylaldiminato]copper(II) (Golovina et al., 1975). In this compound, the ligand acts as only an N,O donor with the –N–H group remaining non-coordinating, unlike in the title compound. However, the precision of the determined geometric parameters is not sufficient to make a meaningful comparison with the title compound. Although, in a closely related compound, namely, hexakis(μ2-acetato)bis[1-(5-bromosalicylaldimino)-3-(2-methylpiperidino)propane]tetracopper (Chiari et al., 1993), the Cu—O and Cu—N distances for each coordination center are in agreement. A comprehensive study of the compound tetrakis(μ2-acetato)bis(acetic acid)dicopper(II), which is the basic core of the title compound, has been carried out by Vives et al. (2003).
5. Synthesis and crystallization
All chemicals and solvents used in the synthesis were analytical grade and used without further purification. A mixture of Cu(CH3COO)2·6H2O (12mg, 0.06 mmol) and SL ([2-{[(2,2,6,6-tetramethylpiperidin-4-yl)imino]methyl}phenolate]) (13 mg, 0.05 mmol) was treated in MeOH solvent (4 mL) under ultrasonic irradiation at ambient temperature to give a clear solution. The resultant solution was allowed to evaporate slowly in darkness at ambient temperature for several days to give blue crystals suitable for X-ray diffraction.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms were placed in calculated positions with C—H = 0.94–0.99, N—H = 0.92 Å and were included in a riding-motion approximation with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(Cmethyl).
details are summarized in Table 2Supporting information
CCDC reference: 1470356
https://doi.org/10.1107/S2056989016005041/lh5808sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016005041/lh5808Isup2.hkl
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Cu4(C2H3O2)6(C16H23N2O)2] | Dx = 1.456 Mg m−3 |
Mr = 1127.19 | Cu Kα radiation, λ = 1.54178 Å |
Orthorhombic, Pbcn | Cell parameters from 4275 reflections |
a = 31.2431 (6) Å | θ = 5.2–73.9° |
b = 10.7872 (2) Å | µ = 2.40 mm−1 |
c = 15.2556 (3) Å | T = 250 K |
V = 5141.53 (18) Å3 | Block, blue |
Z = 4 | 0.1 × 0.1 × 0.05 mm |
F(000) = 2336 |
Agilent Gemini S Ultra CCD diffractometer | 5096 independent reflections |
Radiation source: fine-focus sealed tube | 3794 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
φ and ω scans | θmax = 74.0°, θmin = 4.3° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | h = −37→38 |
Tmin = 0.718, Tmax = 1.000 | k = −12→13 |
12793 measured reflections | l = −18→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0512P)2 + 2.024P] where P = (Fo2 + 2Fc2)/3 |
5096 reflections | (Δ/σ)max = 0.002 |
305 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.43 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.684926 (12) | 0.97594 (3) | 0.05439 (3) | 0.03840 (12) | |
Cu2 | 0.537735 (15) | 0.84119 (4) | 0.21238 (3) | 0.05264 (14) | |
O1 | 0.71888 (6) | 0.89442 (17) | −0.03139 (13) | 0.0428 (4) | |
N1 | 0.72175 (7) | 1.1220 (2) | 0.05451 (16) | 0.0419 (5) | |
O2 | 0.65473 (7) | 0.81724 (18) | 0.06203 (15) | 0.0551 (6) | |
O3 | 0.59817 (7) | 0.85329 (19) | 0.14558 (16) | 0.0592 (6) | |
O5 | 0.55006 (8) | 0.9679 (2) | 0.30302 (16) | 0.0652 (6) | |
N2 | 0.64737 (7) | 1.0688 (2) | 0.13950 (15) | 0.0410 (5) | |
H2 | 0.6248 | 1.0176 | 0.1529 | 0.049* | |
O4 | 0.51510 (8) | 0.9730 (2) | 0.13830 (16) | 0.0665 (6) | |
C6 | 0.77655 (9) | 1.0411 (2) | −0.04343 (18) | 0.0398 (6) | |
C7 | 0.75839 (9) | 1.1298 (2) | 0.0151 (2) | 0.0444 (6) | |
H7 | 0.7747 | 1.2014 | 0.0263 | 0.053* | |
O7 | 0.50945 (8) | 0.7157 (2) | 0.13683 (17) | 0.0713 (7) | |
O6 | 0.55359 (8) | 0.7104 (2) | 0.29423 (17) | 0.0677 (7) | |
C2 | 0.77766 (9) | 0.8474 (3) | −0.12210 (18) | 0.0447 (6) | |
H2A | 0.7654 | 0.7700 | −0.1355 | 0.054* | |
C12 | 0.62916 (10) | 1.1791 (3) | 0.0926 (2) | 0.0487 (7) | |
C5 | 0.81565 (9) | 1.0710 (3) | −0.0834 (2) | 0.0501 (7) | |
H5 | 0.8288 | 1.1469 | −0.0698 | 0.060* | |
C4 | 0.83518 (10) | 0.9928 (3) | −0.1415 (2) | 0.0545 (8) | |
H4 | 0.8611 | 1.0152 | −0.1686 | 0.065* | |
C19 | 0.52267 (12) | 1.0102 (3) | 0.3548 (2) | 0.0578 (8) | |
C17 | 0.62166 (10) | 0.7826 (3) | 0.1042 (2) | 0.0491 (7) | |
C1 | 0.75614 (8) | 0.9269 (2) | −0.06385 (17) | 0.0385 (6) | |
C21 | 0.47211 (12) | 0.6744 (3) | 0.1491 (2) | 0.0622 (9) | |
C11 | 0.67169 (11) | 1.0900 (3) | 0.2232 (2) | 0.0507 (7) | |
C8 | 0.70868 (11) | 1.2271 (3) | 0.1102 (2) | 0.0518 (8) | |
H8 | 0.7300 | 1.2945 | 0.1042 | 0.062* | |
C20 | 0.53536 (14) | 1.1180 (4) | 0.4132 (3) | 0.0764 (11) | |
H20A | 0.5659 | 1.1330 | 0.4078 | 0.115* | |
H20B | 0.5286 | 1.0983 | 0.4737 | 0.115* | |
H20C | 0.5198 | 1.1916 | 0.3956 | 0.115* | |
C15 | 0.64393 (14) | 1.1303 (4) | 0.2999 (2) | 0.0746 (11) | |
H15A | 0.6317 | 1.2110 | 0.2875 | 0.112* | |
H15B | 0.6613 | 1.1352 | 0.3525 | 0.112* | |
H15C | 0.6211 | 1.0705 | 0.3085 | 0.112* | |
C3 | 0.81596 (10) | 0.8793 (3) | −0.1599 (2) | 0.0520 (7) | |
H3 | 0.8294 | 0.8239 | −0.1987 | 0.062* | |
C13 | 0.61459 (16) | 1.1326 (4) | 0.0033 (3) | 0.0863 (14) | |
H13A | 0.6390 | 1.1004 | −0.0287 | 0.129* | |
H13B | 0.6019 | 1.2004 | −0.0293 | 0.129* | |
H13C | 0.5936 | 1.0673 | 0.0110 | 0.129* | |
C16 | 0.69203 (16) | 0.9646 (3) | 0.2464 (3) | 0.0882 (15) | |
H16A | 0.6698 | 0.9024 | 0.2519 | 0.132* | |
H16B | 0.7074 | 0.9718 | 0.3014 | 0.132* | |
H16C | 0.7118 | 0.9405 | 0.2004 | 0.132* | |
C10 | 0.70695 (12) | 1.1862 (3) | 0.2050 (2) | 0.0604 (9) | |
H10A | 0.7021 | 1.2590 | 0.2421 | 0.073* | |
H10B | 0.7347 | 1.1507 | 0.2212 | 0.073* | |
C18 | 0.61159 (14) | 0.6453 (3) | 0.1017 (3) | 0.0853 (14) | |
H18A | 0.5920 | 0.6285 | 0.0539 | 0.128* | |
H18B | 0.5985 | 0.6207 | 0.1567 | 0.128* | |
H18C | 0.6378 | 0.5988 | 0.0929 | 0.128* | |
C9 | 0.66490 (11) | 1.2754 (3) | 0.0824 (2) | 0.0597 (9) | |
H9A | 0.6663 | 1.3016 | 0.0210 | 0.072* | |
H9B | 0.6578 | 1.3485 | 0.1177 | 0.072* | |
C14 | 0.59022 (12) | 1.2356 (3) | 0.1380 (3) | 0.0743 (11) | |
H14A | 0.5704 | 1.1702 | 0.1542 | 0.111* | |
H14B | 0.5762 | 1.2930 | 0.0984 | 0.111* | |
H14C | 0.5993 | 1.2795 | 0.1903 | 0.111* | |
C22 | 0.45822 (14) | 0.5698 (4) | 0.0893 (3) | 0.0949 (15) | |
H22A | 0.4715 | 0.5800 | 0.0322 | 0.142* | |
H22B | 0.4273 | 0.5712 | 0.0829 | 0.142* | |
H22C | 0.4670 | 0.4911 | 0.1144 | 0.142* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0381 (2) | 0.0315 (2) | 0.0456 (2) | −0.00219 (16) | 0.00017 (17) | −0.00167 (16) |
Cu2 | 0.0483 (3) | 0.0563 (3) | 0.0533 (3) | −0.0039 (2) | 0.0161 (2) | −0.0029 (2) |
O1 | 0.0406 (10) | 0.0352 (9) | 0.0526 (11) | −0.0049 (8) | 0.0037 (9) | −0.0039 (8) |
N1 | 0.0436 (12) | 0.0312 (11) | 0.0509 (13) | −0.0015 (10) | −0.0007 (11) | −0.0017 (10) |
O2 | 0.0482 (11) | 0.0408 (11) | 0.0763 (15) | −0.0090 (9) | 0.0235 (11) | −0.0121 (10) |
O3 | 0.0553 (13) | 0.0473 (12) | 0.0752 (15) | −0.0109 (10) | 0.0275 (12) | −0.0134 (11) |
O5 | 0.0609 (14) | 0.0704 (15) | 0.0645 (14) | −0.0060 (12) | 0.0162 (12) | −0.0173 (12) |
N2 | 0.0447 (12) | 0.0349 (11) | 0.0436 (12) | −0.0033 (10) | −0.0003 (10) | −0.0008 (10) |
O4 | 0.0607 (15) | 0.0753 (16) | 0.0634 (14) | 0.0009 (12) | 0.0160 (12) | 0.0144 (12) |
C6 | 0.0365 (13) | 0.0383 (14) | 0.0444 (14) | 0.0005 (11) | −0.0040 (11) | 0.0067 (11) |
C7 | 0.0458 (16) | 0.0327 (13) | 0.0546 (16) | −0.0046 (12) | −0.0058 (13) | 0.0029 (12) |
O7 | 0.0599 (14) | 0.0801 (17) | 0.0738 (16) | −0.0107 (13) | 0.0179 (13) | −0.0235 (13) |
O6 | 0.0575 (14) | 0.0693 (15) | 0.0763 (16) | 0.0094 (12) | 0.0200 (12) | 0.0133 (13) |
C2 | 0.0485 (16) | 0.0435 (15) | 0.0421 (14) | −0.0018 (13) | −0.0002 (13) | −0.0025 (12) |
C12 | 0.0517 (17) | 0.0435 (16) | 0.0508 (16) | 0.0091 (13) | −0.0024 (14) | −0.0015 (13) |
C5 | 0.0420 (15) | 0.0479 (16) | 0.0604 (17) | −0.0067 (13) | −0.0029 (14) | 0.0053 (14) |
C4 | 0.0404 (16) | 0.063 (2) | 0.0597 (18) | −0.0049 (15) | 0.0061 (14) | 0.0055 (16) |
C19 | 0.064 (2) | 0.0598 (19) | 0.0500 (17) | 0.0040 (17) | 0.0046 (16) | 0.0012 (15) |
C17 | 0.0456 (16) | 0.0427 (15) | 0.0590 (18) | −0.0077 (13) | 0.0100 (15) | −0.0057 (14) |
C1 | 0.0392 (13) | 0.0367 (13) | 0.0397 (13) | 0.0001 (11) | −0.0047 (11) | 0.0062 (11) |
C21 | 0.058 (2) | 0.062 (2) | 0.066 (2) | −0.0063 (17) | 0.0101 (17) | −0.0064 (17) |
C11 | 0.0637 (19) | 0.0457 (16) | 0.0428 (15) | −0.0044 (15) | −0.0083 (14) | −0.0011 (13) |
C8 | 0.0570 (18) | 0.0350 (14) | 0.0635 (19) | −0.0107 (13) | 0.0066 (15) | −0.0096 (13) |
C20 | 0.082 (3) | 0.081 (3) | 0.066 (2) | 0.001 (2) | 0.003 (2) | −0.023 (2) |
C15 | 0.091 (3) | 0.085 (3) | 0.0481 (18) | −0.024 (2) | 0.0074 (19) | −0.0137 (18) |
C3 | 0.0524 (17) | 0.0567 (18) | 0.0470 (16) | 0.0070 (15) | 0.0061 (14) | 0.0001 (14) |
C13 | 0.121 (4) | 0.065 (2) | 0.073 (3) | 0.029 (2) | −0.045 (3) | −0.0074 (19) |
C16 | 0.136 (4) | 0.053 (2) | 0.076 (3) | 0.007 (2) | −0.053 (3) | 0.0001 (19) |
C10 | 0.064 (2) | 0.060 (2) | 0.0573 (19) | −0.0151 (17) | −0.0029 (16) | −0.0133 (16) |
C18 | 0.081 (3) | 0.0451 (19) | 0.130 (4) | −0.0187 (19) | 0.047 (3) | −0.016 (2) |
C9 | 0.066 (2) | 0.0383 (16) | 0.075 (2) | 0.0073 (15) | 0.0198 (18) | 0.0052 (15) |
C14 | 0.056 (2) | 0.060 (2) | 0.106 (3) | 0.0113 (18) | 0.015 (2) | 0.003 (2) |
C22 | 0.078 (3) | 0.093 (3) | 0.114 (4) | −0.021 (2) | 0.012 (3) | −0.041 (3) |
Cu1—O1 | 1.9004 (19) | C19—C20 | 1.518 (5) |
Cu1—N1 | 1.951 (2) | C17—C18 | 1.515 (4) |
Cu1—O2 | 1.958 (2) | C21—O6i | 1.242 (4) |
Cu1—N2 | 2.017 (2) | C21—C22 | 1.515 (5) |
Cu2—Cu2i | 2.6225 (9) | C11—C15 | 1.520 (5) |
Cu2—O3 | 2.150 (2) | C11—C16 | 1.535 (5) |
Cu2—O5 | 1.982 (2) | C11—C10 | 1.539 (4) |
Cu2—O4 | 1.949 (2) | C8—H8 | 0.9900 |
Cu2—O7 | 1.986 (2) | C8—C10 | 1.513 (5) |
Cu2—O6 | 1.948 (2) | C8—C9 | 1.524 (5) |
O1—C1 | 1.313 (3) | C20—H20A | 0.9700 |
N1—C7 | 1.295 (4) | C20—H20B | 0.9700 |
N1—C8 | 1.474 (4) | C20—H20C | 0.9700 |
O2—C17 | 1.273 (3) | C15—H15A | 0.9700 |
O3—C17 | 1.232 (4) | C15—H15B | 0.9700 |
O5—C19 | 1.251 (4) | C15—H15C | 0.9700 |
N2—H2 | 0.9200 | C3—H3 | 0.9400 |
N2—C12 | 1.500 (4) | C13—H13A | 0.9700 |
N2—C11 | 1.503 (4) | C13—H13B | 0.9700 |
O4—C19i | 1.251 (4) | C13—H13C | 0.9700 |
C6—C7 | 1.427 (4) | C16—H16A | 0.9700 |
C6—C5 | 1.403 (4) | C16—H16B | 0.9700 |
C6—C1 | 1.421 (4) | C16—H16C | 0.9700 |
C7—H7 | 0.9400 | C10—H10A | 0.9800 |
O7—C21 | 1.262 (4) | C10—H10B | 0.9800 |
O6—C21i | 1.242 (4) | C18—H18A | 0.9700 |
C2—H2A | 0.9400 | C18—H18B | 0.9700 |
C2—C1 | 1.406 (4) | C18—H18C | 0.9700 |
C2—C3 | 1.372 (4) | C9—H9A | 0.9800 |
C12—C13 | 1.522 (5) | C9—H9B | 0.9800 |
C12—C9 | 1.533 (5) | C14—H14A | 0.9700 |
C12—C14 | 1.527 (4) | C14—H14B | 0.9700 |
C5—H5 | 0.9400 | C14—H14C | 0.9700 |
C5—C4 | 1.368 (5) | C22—H22A | 0.9700 |
C4—H4 | 0.9400 | C22—H22B | 0.9700 |
C4—C3 | 1.392 (4) | C22—H22C | 0.9700 |
C19—O4i | 1.251 (4) | ||
O1—Cu1—N1 | 92.58 (9) | N2—C11—C15 | 114.1 (3) |
O1—Cu1—O2 | 84.57 (8) | N2—C11—C16 | 105.7 (2) |
O1—Cu1—N2 | 176.50 (9) | N2—C11—C10 | 108.1 (2) |
N1—Cu1—O2 | 171.93 (10) | C15—C11—C16 | 108.1 (3) |
N1—Cu1—N2 | 86.64 (9) | C15—C11—C10 | 110.7 (3) |
O2—Cu1—N2 | 96.65 (9) | C16—C11—C10 | 109.8 (3) |
O3—Cu2—Cu2i | 175.77 (7) | N1—C8—H8 | 109.0 |
O5—Cu2—Cu2i | 82.49 (7) | N1—C8—C10 | 109.7 (3) |
O5—Cu2—O3 | 96.79 (9) | N1—C8—C9 | 110.6 (3) |
O5—Cu2—O7 | 164.08 (10) | C10—C8—H8 | 109.0 |
O4—Cu2—Cu2i | 85.84 (7) | C10—C8—C9 | 109.5 (3) |
O4—Cu2—O3 | 89.98 (10) | C9—C8—H8 | 109.0 |
O4—Cu2—O5 | 88.41 (11) | C19—C20—H20A | 109.5 |
O4—Cu2—O7 | 89.96 (12) | C19—C20—H20B | 109.5 |
O7—Cu2—Cu2i | 81.60 (7) | C19—C20—H20C | 109.5 |
O7—Cu2—O3 | 99.04 (9) | H20A—C20—H20B | 109.5 |
O6—Cu2—Cu2i | 87.02 (7) | H20A—C20—H20C | 109.5 |
O6—Cu2—O3 | 97.15 (10) | H20B—C20—H20C | 109.5 |
O6—Cu2—O5 | 90.16 (11) | C11—C15—H15A | 109.5 |
O6—Cu2—O4 | 172.85 (10) | C11—C15—H15B | 109.5 |
O6—Cu2—O7 | 89.50 (12) | C11—C15—H15C | 109.5 |
C1—O1—Cu1 | 129.15 (17) | H15A—C15—H15B | 109.5 |
C7—N1—Cu1 | 125.01 (19) | H15A—C15—H15C | 109.5 |
C7—N1—C8 | 117.5 (2) | H15B—C15—H15C | 109.5 |
C8—N1—Cu1 | 117.26 (19) | C2—C3—C4 | 120.8 (3) |
C17—O2—Cu1 | 132.64 (19) | C2—C3—H3 | 119.6 |
C17—O3—Cu2 | 136.77 (19) | C4—C3—H3 | 119.6 |
C19—O5—Cu2 | 124.0 (2) | C12—C13—H13A | 109.5 |
Cu1—N2—H2 | 106.9 | C12—C13—H13B | 109.5 |
C12—N2—Cu1 | 107.93 (17) | C12—C13—H13C | 109.5 |
C12—N2—H2 | 106.9 | H13A—C13—H13B | 109.5 |
C11—N2—Cu1 | 109.16 (18) | H13A—C13—H13C | 109.5 |
C11—N2—H2 | 106.9 | H13B—C13—H13C | 109.5 |
C11—N2—C12 | 118.5 (2) | C11—C16—H16A | 109.5 |
C19i—O4—Cu2 | 121.9 (2) | C11—C16—H16B | 109.5 |
C5—C6—C7 | 117.6 (3) | C11—C16—H16C | 109.5 |
C5—C6—C1 | 119.7 (3) | H16A—C16—H16B | 109.5 |
C1—C6—C7 | 122.7 (3) | H16A—C16—H16C | 109.5 |
N1—C7—C6 | 126.7 (3) | H16B—C16—H16C | 109.5 |
N1—C7—H7 | 116.6 | C11—C10—H10A | 108.9 |
C6—C7—H7 | 116.6 | C11—C10—H10B | 108.9 |
C21—O7—Cu2 | 124.5 (2) | C8—C10—C11 | 113.2 (3) |
C21i—O6—Cu2 | 120.5 (2) | C8—C10—H10A | 108.9 |
C1—C2—H2A | 119.0 | C8—C10—H10B | 108.9 |
C3—C2—H2A | 119.0 | H10A—C10—H10B | 107.7 |
C3—C2—C1 | 122.0 (3) | C17—C18—H18A | 109.5 |
N2—C12—C13 | 106.2 (2) | C17—C18—H18B | 109.5 |
N2—C12—C9 | 108.0 (2) | C17—C18—H18C | 109.5 |
N2—C12—C14 | 113.7 (3) | H18A—C18—H18B | 109.5 |
C13—C12—C9 | 110.5 (3) | H18A—C18—H18C | 109.5 |
C13—C12—C14 | 107.4 (3) | H18B—C18—H18C | 109.5 |
C14—C12—C9 | 110.8 (3) | C12—C9—H9A | 108.9 |
C6—C5—H5 | 119.1 | C12—C9—H9B | 108.9 |
C4—C5—C6 | 121.9 (3) | C8—C9—C12 | 113.2 (3) |
C4—C5—H5 | 119.1 | C8—C9—H9A | 108.9 |
C5—C4—H4 | 120.6 | C8—C9—H9B | 108.9 |
C5—C4—C3 | 118.7 (3) | H9A—C9—H9B | 107.8 |
C3—C4—H4 | 120.6 | C12—C14—H14A | 109.5 |
O5—C19—C20 | 118.1 (3) | C12—C14—H14B | 109.5 |
O4i—C19—O5 | 125.5 (3) | C12—C14—H14C | 109.5 |
O4i—C19—C20 | 116.3 (3) | H14A—C14—H14B | 109.5 |
O2—C17—C18 | 116.3 (3) | H14A—C14—H14C | 109.5 |
O3—C17—O2 | 124.1 (3) | H14B—C14—H14C | 109.5 |
O3—C17—C18 | 119.6 (3) | C21—C22—H22A | 109.5 |
O1—C1—C6 | 123.1 (2) | C21—C22—H22B | 109.5 |
O1—C1—C2 | 120.0 (2) | C21—C22—H22C | 109.5 |
C2—C1—C6 | 116.9 (2) | H22A—C22—H22B | 109.5 |
O7—C21—C22 | 116.0 (3) | H22A—C22—H22C | 109.5 |
O6i—C21—O7 | 126.2 (3) | H22B—C22—H22C | 109.5 |
O6i—C21—C22 | 117.8 (3) | ||
Cu1—O1—C1—C6 | −5.6 (4) | O5—Cu2—O6—C21i | 80.2 (3) |
Cu1—O1—C1—C2 | 174.72 (19) | N2—Cu1—O1—C1 | 85.2 (15) |
Cu1—N1—C7—C6 | 7.8 (4) | N2—Cu1—N1—C7 | 174.4 (3) |
Cu1—N1—C8—C10 | 60.7 (3) | N2—Cu1—N1—C8 | 0.2 (2) |
Cu1—N1—C8—C9 | −60.1 (3) | N2—Cu1—O2—C17 | 1.7 (3) |
Cu1—O2—C17—O3 | 7.8 (5) | N2—C12—C9—C8 | 7.7 (4) |
Cu1—O2—C17—C18 | −172.3 (3) | N2—C11—C10—C8 | −2.6 (4) |
Cu1—N2—C12—C13 | 44.4 (3) | O4—Cu2—O3—C17 | −122.8 (3) |
Cu1—N2—C12—C9 | −74.1 (3) | O4—Cu2—O5—C19 | 80.8 (3) |
Cu1—N2—C12—C14 | 162.4 (2) | O4—Cu2—O7—C21 | −90.6 (3) |
Cu1—N2—C11—C15 | −165.8 (2) | O4—Cu2—O6—C21i | 1.8 (11) |
Cu1—N2—C11—C16 | −47.1 (3) | C6—C5—C4—C3 | −1.3 (5) |
Cu1—N2—C11—C10 | 70.5 (3) | C7—N1—C8—C10 | −113.9 (3) |
Cu2i—Cu2—O3—C17 | −131.2 (8) | C7—N1—C8—C9 | 125.2 (3) |
Cu2i—Cu2—O5—C19 | −5.2 (3) | C7—C6—C5—C4 | −178.9 (3) |
Cu2i—Cu2—O4—C19i | −1.9 (3) | C7—C6—C1—O1 | 0.7 (4) |
Cu2i—Cu2—O7—C21 | −4.8 (3) | C7—C6—C1—C2 | −179.6 (3) |
Cu2i—Cu2—O6—C21i | −2.2 (3) | O7—Cu2—O3—C17 | −32.8 (4) |
Cu2—O3—C17—O2 | 172.0 (2) | O7—Cu2—O5—C19 | −3.5 (6) |
Cu2—O3—C17—C18 | −7.9 (6) | O7—Cu2—O4—C19i | 79.7 (3) |
Cu2—O5—C19—O4i | 5.8 (5) | O7—Cu2—O6—C21i | −83.8 (3) |
Cu2—O5—C19—C20 | −172.6 (3) | O6—Cu2—O3—C17 | 57.8 (4) |
Cu2—O7—C21—O6i | 4.9 (6) | O6—Cu2—O5—C19 | −92.2 (3) |
Cu2—O7—C21—C22 | −174.1 (3) | O6—Cu2—O4—C19i | −5.9 (11) |
O1—Cu1—N1—C7 | −9.0 (2) | O6—Cu2—O7—C21 | 82.3 (3) |
O1—Cu1—N1—C8 | 176.8 (2) | C12—N2—C11—C15 | 70.2 (4) |
O1—Cu1—O2—C17 | −175.0 (3) | C12—N2—C11—C16 | −171.1 (3) |
O1—Cu1—N2—C12 | −11.9 (15) | C12—N2—C11—C10 | −53.5 (3) |
O1—Cu1—N2—C11 | −141.9 (14) | C5—C6—C7—N1 | 176.2 (3) |
N1—Cu1—O1—C1 | 8.2 (2) | C5—C6—C1—O1 | −177.7 (3) |
N1—Cu1—O2—C17 | 115.4 (7) | C5—C6—C1—C2 | 2.0 (4) |
N1—Cu1—N2—C12 | 65.23 (18) | C5—C4—C3—C2 | 1.5 (5) |
N1—Cu1—N2—C11 | −64.75 (18) | C1—C6—C7—N1 | −2.2 (5) |
N1—C8—C10—C11 | −66.2 (4) | C1—C6—C5—C4 | −0.4 (4) |
N1—C8—C9—C12 | 62.4 (4) | C1—C2—C3—C4 | 0.2 (5) |
O2—Cu1—O1—C1 | −164.2 (2) | C11—N2—C12—C13 | 169.0 (3) |
O2—Cu1—N1—C7 | 60.1 (8) | C11—N2—C12—C9 | 50.5 (3) |
O2—Cu1—N1—C8 | −114.1 (7) | C11—N2—C12—C14 | −73.0 (4) |
O2—Cu1—N2—C12 | −122.17 (18) | C8—N1—C7—C6 | −178.0 (3) |
O2—Cu1—N2—C11 | 107.85 (18) | C15—C11—C10—C8 | −128.3 (3) |
O3—Cu2—O5—C19 | 170.6 (3) | C3—C2—C1—O1 | 177.8 (3) |
O3—Cu2—O4—C19i | 178.8 (3) | C3—C2—C1—C6 | −2.0 (4) |
O3—Cu2—O7—C21 | 179.5 (3) | C13—C12—C9—C8 | −108.1 (3) |
O3—Cu2—O6—C21i | 177.1 (3) | C16—C11—C10—C8 | 112.3 (3) |
O5—Cu2—O3—C17 | 148.8 (3) | C10—C8—C9—C12 | −58.6 (4) |
O5—Cu2—O4—C19i | −84.4 (3) | C9—C8—C10—C11 | 55.3 (4) |
O5—Cu2—O7—C21 | −6.5 (6) | C14—C12—C9—C8 | 133.0 (3) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O3 | 0.92 | 1.96 | 2.789 (3) | 149 |
C7—H7···O1ii | 0.94 | 2.27 | 3.026 (3) | 137 |
C7—H7···O2ii | 0.94 | 2.59 | 3.460 (3) | 153 |
C15—H15B···O1iii | 0.97 | 2.54 | 3.490 (4) | 165 |
Symmetry codes: (ii) −x+3/2, y+1/2, z; (iii) x, −y+2, z+1/2. |
Acknowledgements
This work was supported by a grant from the National Natural Science Foundation of China (No. 20874022) and the PhD Programs Foundation of the Ministry of Education of P.R. China (No. 20094420110006).
References
Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Chiari, B., Piovesana, O., Tarantelli, T. & Zanazzi, P. F. (1993). Inorg. Chem. 32, 4834–4838. CSD CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Golovina, N. I., Klitskaya, G. A., Medzhidov, A. A. & Atovmyan, L. O. (1975). Zh. Strukt. Khim. 16, 132–134. Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Karahan, A., Karabulut, S., Dal, H., Kurtaran, R. & Leszczynski, J. (2015). J. Mol. Struct. 1093, 1–7. Web of Science CSD CrossRef CAS Google Scholar
Sasmal, S., Sarkar, S., Aliaga-Alcalde, N. & Mohanta, S. (2011). Inorg. Chem. 50, 5687–5695. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vives, G., Mason, S. A., Prince, P. D., Junk, P. C. & Steed, J. W. (2003). Cryst. Growth Des. 3, 699–704. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.