research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a photobiologically active furan­ocoumarin from Artemisia reticulata

CROSSMARK_Color_square_no_text.svg

aBioorganic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India, bClemens Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Petersenstrasse 22, D-64287 Darmstadt, Germany, and cAccident & Emergency Department, Franco, Vietnamese Hospital, 7-Nguyen, Luong Bang Street, HoChiMinh City, Vietnam
*Correspondence e-mail: nguyendonhuquynh@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 9 February 2016; accepted 26 February 2016; online 4 March 2016)

The title furan­ocoumarin, C14H12O4 [systematic name: 9-hy­droxy-2-(prop-1-en-2-yl)-2,3-di­hydro-7H-furo[3,2-g]chromen-7-one], crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. The two mol­ecules differ essentially in the orientation of the propenyl group with respect to the mean plane of the furan­ocoumarin moiety; the O—C(H)—C=C torsion angle is 122.2 (7)° in mol­ecule A and −10.8 (11)° in mol­ecule B. In the crystal, the A and B mol­ecules are linked via O—H⋯O hydrogen bonds, forming zigzag –ABAB– chains propagating along [001]. The chains are reinforced by bifurcated C—H⋯(O,O) hydrogen bonds, forming ribbons which are linked via C—H⋯π and ππ inter­actions [inter­centroid distance = 3.602 (2) Å], forming a three-dimensional structure.

1. Chemical context

The title furan­ocoumarin was isolated from the Indian herb A. reticulata, by column chromatography over silica gel with a mixture of binary solvent hexane and ethyl acetate by gradient elution. Furan­ocoumarins, such as oroselone [systematic name: 8-(prop-1-en-2-yl)-2H-furo[2,3-h]chromen-2-one], whose atomic connectivity has been established by spectrometric and spectroscopic analyses (Schroeder et al., 1959[Schroeder, H. D., Bencze, W., Halpern, O. & Schmid, H. (1959). Chem. Ber. 92, 2338-2363.]; Dorofeenko et al., 1973[Dorofeenko, G. N., Tkachenko, V. V. & Mezheritskii, V. V. (1973). Chem. Heterocycl. Compd. 9, 948-950.]) but not yet by single crystal X-ray diffraction, exhibit photobiological activity. For example such compounds are employed as photoprotective agents to prevent absorption of harmful UV radiation (Chen et al., 2007[Chen, Y., Fan, G., Zhang, Q., Wu, H. & Wu, Y. (2007). J. Pharm. Biomed. Anal. 43, 926-936.], 2009[Chen, D., Wang, J., Jiang, Y., Zhou, T., Fan, G. & Wu, Y. (2009). J. Pharm. Biomed. Anal. 50, 695-702.]). Anti-oxidant and anti-inflammatory activities have also been reported for furano as well as pyrano coumarins and their derivatives (Appendino et al., 2004[Appendino, G., Bianchi, F., Bader, A., Campagnuolo, C., Fattorusso, E., Taglialatela-Scafati, O., Blanco-Molina, M., Macho, A., Fiebich, B. L., Bremner, P., Heinrich, M., Ballero, M. & Muñoz, E. (2004). J. Nat. Prod. 67, 532-536.]; Scott et al., 1976[Scott, B. R., Pathak, M. A. & Mohn, G. R. (1976). Mutat. Res. 39, 29-74.]).

[Scheme 1]

2. Structural commentary

The title compound, Fig. 1[link], crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. The compound is composed of three fused rings (furan, benzene and pyrone) with hydroxyl and propenyl substituents at positions 9 and 2, respectively. The furan­ocoumarin moieties are essentially planar with r.m.s. deviations of 0.05 Å for mol­ecule A (O1/O2/C1–C11) and 0.079 Å for mol­ecule B (O5/O6/C16–C25). The furan ring in mol­ecule A has an envelope conformation with atom C2 as the flap, deviating by 0.120 (4) Å from the mean plane of the furan­ocoumarin moiety. In mol­ecule B, the furan ring has a twisted conformation on bond C17–C16 with atoms C16 and C17 deviating by −0.232 (6) and 0.076 (6) Å, respectively, from the other atoms of the twisted five-membered ring. The two mol­ecules differ essentially in the orientation of the propenyl group with respect to the mean plane of the furan­ocoumarin moiety, as shown by AutoMolFit analysis (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); see Fig. 2[link]. The O1—C2—C12=C14 torsion angle is 122.2 (7)° in mol­ecule A, while the O5—C16—C26=C28 torsion angle is −10.8 (11) ° in mol­ecule B. The bond distances and bond angles in the propenyl side chains (C2,C12–C14 in mol­ecule A and C16,C26–C28 in mol­ecule B) also differ in the two mol­ecules (Table 1[link]), probably due to libration and bond rotation. Overall the bond distances and bond angles in the furan­ocoumarin moieties are in good agreement with the corresponding values reported for related structures (Stemple & Watson, 1972[Stemple, N. R. & Watson, W. H. (1972). Acta Cryst. B28, 2485-2489.]; Gupta et al., 1993[Gupta, V. K., Rajnikant, Goswami, K. N., Mazumdar, S. K., Gupta, B. D. & Banerjee, S. K. (1993). Cryst. Res. Technol. 28, 187-191.]; Singh et al. 1995[Singh, A., Gupta, V. K., Kant, R. & Goswami, K. N. (1995). Mol. Mater. 5, 289-297.]; Magotra et al., 1995[Magotra, D. K., Gupta, V. K., Rajnikant, Goswami, K. N. & Gupta, B. D. (1995). Acta Cryst. C51, 2637-2639.]; Thailambal et al., 1986[Thailambal, V. G., Pattabhi, V. & Gabe, E. J. (1986). Acta Cryst. C42, 1017-1019.]; Thailambal & Pattabhi, 1987[Thailambal, V. G. & Pattabhi, V. (1987). Acta Cryst. C43, 2369-2372.], 1985[Thailambal, V. G. & Pattabhi, V. (1985). Acta Cryst. C41, 802-804.]).

Table 1
Selected geometric parameters (Å, °)

C2—C12 1.500 (8) C16—C26 1.489 (8)
C12—C14 1.313 (10) C26—C28 1.363 (13)
C12—C13 1.461 (10) C26—C27 1.422 (10)
       
C14—C12—C13 122.7 (7) C28—C26—C27 123.5 (7)
C14—C12—C2 118.9 (7) C28—C26—C16 121.9 (6)
C13—C12—C2 118.4 (5) C27—C26—C16 114.7 (6)
[Figure 1]
Figure 1
The mol­ecular structure of the two independent mol­ecules (A and B) of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular fit (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) of mol­ecules A (black) and B (red) of the title compound.

The absolute structure of the mol­ecule in the crystal could not be determined by resonant scattering. In order to determine the chirality at atom C2 (in mol­ecule A; C16 in mol­ecule B), the circular dichroism (CD) spectrum was measured in a solution of chloro­form at concentration of 1 mg/ml using a cell with path length 1 cm. This CD measurement revealed that the absolute configuration of atom C2 (in mol­ecule A; C16 in mol­ecule B) is S.

3. Supra­molecular features

In the crystal, the A and B mol­ecules are linked via O—H⋯O hydrogen bonds, forming zigzag –ABAB– chains propagating along the c-axis direction; see Table 2[link] and Fig. 3[link]. The chains are reinforced by bifurcated C—H⋯(O,O) hydrogen bonds, forming ribbons (Table 2[link] and Fig. 3[link]). The ribbons are arranged in a herringbone fashion, and are linked via C—H⋯π and slipped parallel ππ inter­actions, forming a three-dimensional network; see Fig. 4[link] and Table 2[link] [Cg2⋯Cg9i = 3.602 (2) Å, inter­planar distance = 3.4168 (2) Å, slippage 1.284 Å, where Cg2 and Cg9 are the centroids of rings C1/C4–C8 and C15/C18–C22, respectively; symmetry code: (i) − x + 1, y + [{1\over 2}], − z].

Table 2
Hydrogen-bond geometry (Å, °)

Cg2 and Cg9 are the centroids of rings O2/C6/C7/C9–C11 and C15–C22, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O8i 0.83 1.85 2.676 (5) 174
O7—H7O⋯O4ii 0.84 1.85 2.671 (5) 168
C10—H10⋯O3iii 0.93 2.53 3.199 (5) 129
C10—H10⋯O8iv 0.93 2.50 3.415 (6) 166
C24—H24⋯O7v 0.93 2.58 3.229 (5) 128
C24—H24⋯O4vi 0.93 2.53 3.434 (5) 164
C3—H3BCg2vii 0.97 2.95 3.871 (5) 160
C13—H13BCg9 0.96 2.92 3.680 (9) 137
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+1]; (ii) [-x+2, y-{\script{1\over 2}}, -z]; (iii) x, y, z-1; (iv) [-x+2, y+{\script{1\over 2}}, -z]; (v) x, y, z+1; (vi) [-x+2, y-{\script{1\over 2}}, -z+1]; (vii) x-1, y, z.
[Figure 3]
Figure 3
A view along the a axis of the crystal packing of the title compound (A mol­ecules are blue; B mol­ecules are red). The hydrogen bonds are shown as dashed lines (see Table 2[link]), and C-bound H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 4]
Figure 4
A view along the c axis of the crystal packing of the title compound. Hydrogen bonds and C—H⋯π inter­actions are shown as dashed lines (see Table 2[link]), and C-bound H atoms not involved in hydrogen bonding have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, update November 2015; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) gave 21 hits for the furan­ocoumarin substructure, but only one hit for a 9-hy­droxy furan­ocoumarin, viz. 2,3-di­hydro-9-hy­droxy-2-(1-hy­droxy-1-methyl­eth­yl)-7H-furo(3,2-g)(1) benzo­pyran-7-one monohydrate (refcode FUGVOS; Thailambal & Pattabhi, 1987[Thailambal, V. G. & Pattabhi, V. (1987). Acta Cryst. C43, 2369-2372.]).

5. Synthesis and crystallization

The title compound was isolated as a colourless solid from the methanol extract of A. reticulata by means of column chromatography over silica gel by gradient elution with a mixture of binary solvents system hexane and ethyl acetate. It was purified by reverse-phase high-pressure liquid chromatography. Colourless rod-like crystals suitable for X ray diffraction analysis were obtained after the title compound was recrystallized three times from ethyl acetate:hexane (1:4) at room temperature by slow evaporation of the solvents (m.p. 498 K). 1H NMR data (CHCl3, 200 MHz) 7.60 (d, 1H, J = 9.6 Hz, H-9), 6.85 (s, 1H, H-5), 6.20 (d, 1H, J = 9.6 Hz, H-10), 5.35 (dd, 1H, J = 8.8 and 8.8 Hz, H-7), 5.11 (s, 1H, Ha-14), 4.94 (s, 1H, Hb-14), 3.47–3.34 (dd, 1H, J = 9.0 and 1.2 Hz, Ha-3),3.16–3.04 (dd, 1H, J = 9.0 and 1.2 Hz, Hb-3), 1.78 (s, 3H, –CH3). EIMS (70 ev) data: m/z (%) 244(15.9) [M+], 226 (68.6) [M+ − H2O), 198 (100) [base peak], 185 (30),171 (16.8), 155 (30.1), 140 (16.4), 127 (13.5), 115 (25.10,85 (11.1), 75 (22.3), 63 (26.5), 41 (16.0).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydroxyl H atoms were located in a difference Fourier map and refined as riding with Uiso(H) = 1.2Ueq(O). The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93–0.98 Å with Uiso(H) = 1.2Ueq(C). The limited number of Friedel pairs measured were merged for refinement.

Table 3
Experimental details

Crystal data
Chemical formula C14H12O4
Mr 244.24
Crystal system, space group Monoclinic, P21
Temperature (K) 299
a, b, c (Å) 7.2738 (9), 21.426 (2), 8.0152 (9)
β (°) 100.88 (1)
V3) 1226.7 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.81
Crystal size (mm) 0.50 × 0.18 × 0.15
 
Data collection
Diffractometer Enraf–Nonius CAD-4
Absorption correction ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])
Tmin, Tmax 0.688, 0.888
No. of measured, independent and observed [I > 2σ(I)] reflections 2692, 2133, 1808
Rint 0.111
(sin θ/λ)max−1) 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.148, 1.08
No. of reflections 2133
No. of parameters 328
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.34
Computer programs: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]), REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

9-Hydroxy-2-(prop-1-en-2-yl)-2,3-dihydro-7H-furo[3,2-g]chromen-7-one top
Crystal data top
C14H12O4F(000) = 512
Mr = 244.24Dx = 1.322 Mg m3
Monoclinic, P21Melting point: 498 K
Hall symbol: P 2y1Cu Kα radiation, λ = 1.54180 Å
a = 7.2738 (9) ÅCell parameters from 25 reflections
b = 21.426 (2) Åθ = 6.0–19.8°
c = 8.0152 (9) ŵ = 0.81 mm1
β = 100.88 (1)°T = 299 K
V = 1226.7 (2) Å3Rod, colourless
Z = 40.50 × 0.18 × 0.15 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1808 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.111
Graphite monochromatorθmax = 66.9°, θmin = 4.1°
ω/2θ scansh = 88
Absorption correction: ψ scan
(North et al., 1968)
k = 250
Tmin = 0.688, Tmax = 0.888l = 92
2692 measured reflections3 standard reflections every 120 min
2133 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0983P)2 + 0.0698P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.045
2133 reflectionsΔρmax = 0.28 e Å3
328 parametersΔρmin = 0.34 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0058 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5538 (5)0.26546 (17)0.2707 (4)0.0718 (9)
O21.0199 (4)0.35147 (14)0.0003 (3)0.0584 (7)
O30.8972 (4)0.32756 (18)0.2942 (3)0.0716 (9)
H3O0.99620.34670.32830.086*
O41.2459 (5)0.3904 (2)0.1133 (4)0.0760 (9)
C10.6289 (6)0.2805 (2)0.1313 (5)0.0593 (10)
C20.3653 (7)0.2416 (2)0.2102 (6)0.0677 (11)
H20.27480.27410.22410.081*
C30.3504 (7)0.2283 (2)0.0208 (6)0.0717 (12)
H3A0.35500.18380.00070.086*
H3B0.23540.24520.04470.086*
C40.5186 (6)0.2609 (2)0.0213 (5)0.0615 (10)
C50.5778 (7)0.2722 (2)0.1707 (5)0.0646 (11)
H50.50450.25980.27320.078*
C60.7474 (6)0.30226 (19)0.1693 (5)0.0574 (10)
C70.8535 (6)0.32065 (19)0.0126 (4)0.0510 (9)
C80.7961 (6)0.3100 (2)0.1404 (5)0.0559 (10)
C90.8303 (7)0.3148 (2)0.3149 (5)0.0643 (11)
H90.76720.30250.42170.077*
C100.9934 (7)0.3435 (2)0.3019 (5)0.0650 (11)
H101.04120.35100.39970.078*
C111.0988 (7)0.3634 (2)0.1407 (5)0.0608 (10)
C120.3366 (8)0.1867 (3)0.3189 (7)0.0784 (14)
C130.4654 (13)0.1340 (4)0.3277 (12)0.120 (2)
H13A0.46770.11930.21500.144*
H13B0.42430.10100.39290.144*
H13C0.58880.14710.38100.144*
C140.1973 (13)0.1879 (5)0.4018 (13)0.131 (3)
H14A0.17750.15430.46970.157*
H14B0.11840.22240.39280.157*
O50.0856 (5)0.01320 (19)0.0052 (4)0.0800 (10)
O60.5536 (4)0.07278 (16)0.4256 (3)0.0632 (8)
O70.4356 (5)0.04541 (19)0.0908 (3)0.0761 (10)
H7O0.52640.06890.08730.091*
O80.7736 (5)0.1141 (3)0.6163 (4)0.0985 (14)
C150.1590 (6)0.0022 (2)0.1597 (5)0.0605 (10)
C160.1072 (8)0.0320 (3)0.0122 (7)0.0768 (13)
H160.18870.00350.05220.092*
C170.1231 (8)0.0464 (3)0.1738 (7)0.0804 (14)
H17A0.11720.09090.19600.097*
H17B0.23820.02980.20050.097*
C180.0452 (6)0.0134 (2)0.2722 (6)0.0648 (11)
C190.1022 (6)0.0007 (2)0.4429 (6)0.0646 (11)
H190.02710.01170.52000.077*
C200.2723 (6)0.0287 (2)0.4982 (5)0.0555 (9)
C210.3829 (6)0.04370 (19)0.3800 (5)0.0536 (9)
C220.3273 (6)0.0310 (2)0.2071 (5)0.0564 (10)
C230.3455 (6)0.0475 (2)0.6713 (5)0.0617 (10)
H230.27510.03970.75470.074*
C240.5094 (7)0.0754 (2)0.7141 (5)0.0670 (12)
H240.55200.08650.82700.080*
C250.6234 (7)0.0890 (2)0.5911 (5)0.0658 (11)
C260.1586 (9)0.0850 (3)0.1320 (8)0.0882 (16)
C270.3538 (11)0.0976 (4)0.1745 (13)0.132 (3)
H27A0.40640.07620.27780.159*
H27B0.37320.14170.19000.159*
H27C0.41360.08340.08450.159*
C280.0275 (15)0.1170 (6)0.1987 (19)0.181 (5)
H28A0.06410.14900.27640.217*
H28B0.09860.10690.16660.217*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0756 (18)0.094 (2)0.0482 (16)0.0229 (17)0.0165 (13)0.0004 (15)
O20.0673 (16)0.0776 (19)0.0310 (12)0.0106 (14)0.0109 (11)0.0007 (12)
O30.0767 (18)0.107 (2)0.0293 (13)0.0232 (17)0.0062 (12)0.0107 (14)
O40.079 (2)0.104 (2)0.0474 (16)0.0193 (19)0.0178 (14)0.0041 (16)
C10.074 (2)0.066 (2)0.0362 (19)0.007 (2)0.0076 (17)0.0017 (18)
C20.072 (3)0.073 (3)0.059 (3)0.017 (2)0.014 (2)0.003 (2)
C30.077 (3)0.074 (3)0.059 (2)0.016 (2)0.000 (2)0.001 (2)
C40.070 (2)0.058 (2)0.052 (2)0.0097 (19)0.0007 (18)0.0027 (17)
C50.087 (3)0.066 (3)0.0349 (19)0.006 (2)0.0039 (18)0.0053 (18)
C60.075 (3)0.059 (2)0.0347 (19)0.0034 (19)0.0009 (16)0.0010 (16)
C70.067 (2)0.057 (2)0.0281 (17)0.0028 (18)0.0071 (14)0.0035 (14)
C80.065 (2)0.067 (2)0.0328 (17)0.0066 (19)0.0005 (16)0.0047 (17)
C90.092 (3)0.069 (3)0.0301 (17)0.002 (2)0.0067 (17)0.0000 (18)
C100.087 (3)0.074 (3)0.0349 (19)0.007 (2)0.0131 (19)0.0024 (18)
C110.075 (3)0.073 (3)0.0370 (19)0.001 (2)0.0156 (18)0.0007 (17)
C120.089 (3)0.081 (3)0.067 (3)0.022 (3)0.021 (3)0.003 (2)
C130.146 (6)0.094 (5)0.120 (6)0.009 (5)0.023 (5)0.028 (4)
C140.140 (6)0.125 (6)0.144 (8)0.029 (5)0.066 (6)0.018 (5)
O50.087 (2)0.104 (3)0.0412 (15)0.024 (2)0.0062 (14)0.0061 (15)
O60.0667 (16)0.092 (2)0.0293 (13)0.0173 (15)0.0059 (11)0.0098 (13)
O70.085 (2)0.111 (3)0.0339 (14)0.0274 (19)0.0166 (13)0.0096 (15)
O80.091 (2)0.156 (4)0.0462 (18)0.048 (3)0.0075 (16)0.026 (2)
C150.069 (2)0.069 (2)0.039 (2)0.004 (2)0.0011 (17)0.0035 (18)
C160.080 (3)0.079 (3)0.063 (3)0.008 (3)0.009 (2)0.001 (2)
C170.073 (3)0.092 (3)0.074 (3)0.019 (3)0.006 (2)0.003 (3)
C180.065 (2)0.069 (3)0.057 (3)0.006 (2)0.0030 (19)0.003 (2)
C190.069 (2)0.074 (3)0.052 (2)0.005 (2)0.0156 (19)0.006 (2)
C200.066 (2)0.063 (2)0.0377 (19)0.0015 (19)0.0103 (16)0.0041 (16)
C210.065 (2)0.062 (2)0.0330 (18)0.0021 (18)0.0053 (15)0.0023 (15)
C220.067 (2)0.067 (2)0.0334 (18)0.0069 (19)0.0049 (16)0.0051 (16)
C230.081 (3)0.075 (3)0.0317 (18)0.000 (2)0.0183 (17)0.0042 (17)
C240.082 (3)0.085 (3)0.0320 (19)0.002 (2)0.0072 (18)0.0045 (19)
C250.076 (3)0.088 (3)0.0319 (18)0.012 (2)0.0070 (18)0.0117 (18)
C260.096 (4)0.068 (3)0.087 (3)0.010 (3)0.016 (3)0.000 (3)
C270.111 (5)0.114 (6)0.152 (7)0.017 (4)0.025 (5)0.034 (5)
C280.136 (7)0.150 (8)0.241 (13)0.008 (7)0.003 (8)0.106 (9)
Geometric parameters (Å, º) top
O1—C11.371 (5)O5—C151.369 (5)
O1—C21.459 (5)O5—C161.449 (6)
O2—C71.366 (5)O6—C251.373 (5)
O2—C111.384 (5)O6—C211.375 (5)
O3—C81.363 (5)O7—C221.365 (5)
O3—H3O0.8294O7—H7O0.8354
O4—C111.199 (5)O8—C251.200 (6)
C1—C81.361 (6)C15—C221.360 (6)
C1—C41.395 (6)C15—C181.376 (7)
C2—C121.500 (8)C16—C261.489 (8)
C2—C31.529 (7)C16—C171.549 (8)
C2—H20.9800C16—H160.9800
C3—C41.501 (7)C17—C181.502 (7)
C3—H3A0.9700C17—H17A0.9700
C3—H3B0.9700C17—H17B0.9700
C4—C51.369 (7)C18—C191.379 (6)
C5—C61.389 (7)C19—C201.384 (6)
C5—H50.9300C19—H190.9300
C6—C71.400 (5)C20—C211.391 (6)
C6—C91.437 (7)C20—C231.447 (5)
C7—C81.387 (6)C21—C221.395 (5)
C9—C101.322 (7)C23—C241.320 (7)
C9—H90.9300C23—H230.9300
C10—C111.437 (6)C24—C251.433 (7)
C10—H100.9300C24—H240.9300
C12—C141.313 (10)C26—C281.363 (13)
C12—C131.461 (10)C26—C271.422 (10)
C13—H13A0.9600C27—H27A0.9600
C13—H13B0.9600C27—H27B0.9600
C13—H13C0.9600C27—H27C0.9600
C14—H14A0.9300C28—H28A0.9300
C14—H14B0.9300C28—H28B0.9300
C1—O1—C2107.8 (3)C15—O5—C16107.6 (4)
C7—O2—C11121.7 (3)C25—O6—C21121.5 (3)
C8—O3—H3O136.1C22—O7—H7O136.1
C8—C1—O1123.7 (3)C22—C15—O5123.1 (4)
C8—C1—C4123.2 (4)C22—C15—C18123.2 (4)
O1—C1—C4113.1 (4)O5—C15—C18113.7 (4)
O1—C2—C12107.9 (4)O5—C16—C26111.1 (5)
O1—C2—C3106.3 (4)O5—C16—C17105.4 (3)
C12—C2—C3116.1 (4)C26—C16—C17114.4 (5)
O1—C2—H2108.8O5—C16—H16108.6
C12—C2—H2108.8C26—C16—H16108.6
C3—C2—H2108.8C17—C16—H16108.6
C4—C3—C2103.2 (3)C18—C17—C16102.1 (4)
C4—C3—H3A111.1C18—C17—H17A111.3
C2—C3—H3A111.1C16—C17—H17A111.3
C4—C3—H3B111.1C18—C17—H17B111.3
C2—C3—H3B111.1C16—C17—H17B111.3
H3A—C3—H3B109.1H17A—C17—H17B109.2
C5—C4—C1119.3 (4)C15—C18—C19119.8 (4)
C5—C4—C3133.1 (4)C15—C18—C17107.5 (4)
C1—C4—C3107.6 (4)C19—C18—C17132.6 (4)
C4—C5—C6120.0 (4)C18—C19—C20119.4 (4)
C4—C5—H5120.0C18—C19—H19120.3
C6—C5—H5120.0C20—C19—H19120.3
C5—C6—C7118.4 (4)C19—C20—C21118.9 (4)
C5—C6—C9126.0 (4)C19—C20—C23125.3 (4)
C7—C6—C9115.5 (4)C21—C20—C23115.7 (4)
O2—C7—C8115.0 (3)O6—C21—C20122.2 (3)
O2—C7—C6122.3 (3)O6—C21—C22115.5 (3)
C8—C7—C6122.7 (4)C20—C21—C22122.3 (4)
O3—C8—C1120.0 (4)C15—C22—O7121.1 (3)
O3—C8—C7123.6 (4)C15—C22—C21116.3 (4)
C1—C8—C7116.4 (3)O7—C22—C21122.6 (4)
C10—C9—C6122.1 (4)C24—C23—C20121.7 (4)
C10—C9—H9119.0C24—C23—H23119.1
C6—C9—H9119.0C20—C23—H23119.1
C9—C10—C11121.8 (4)C23—C24—C25121.7 (4)
C9—C10—H10119.1C23—C24—H24119.2
C11—C10—H10119.1C25—C24—H24119.2
O4—C11—O2115.6 (4)O8—C25—O6115.8 (4)
O4—C11—C10127.9 (4)O8—C25—C24127.0 (4)
O2—C11—C10116.5 (4)O6—C25—C24117.2 (4)
C14—C12—C13122.7 (7)C28—C26—C27123.5 (7)
C14—C12—C2118.9 (7)C28—C26—C16121.9 (6)
C13—C12—C2118.4 (5)C27—C26—C16114.7 (6)
C12—C13—H13A109.5C26—C27—H27A109.5
C12—C13—H13B109.5C26—C27—H27B109.5
H13A—C13—H13B109.5H27A—C27—H27B109.5
C12—C13—H13C109.5C26—C27—H27C109.5
H13A—C13—H13C109.5H27A—C27—H27C109.5
H13B—C13—H13C109.5H27B—C27—H27C109.5
C12—C14—H14A120.0C26—C28—H28A120.0
C12—C14—H14B120.0C26—C28—H28B120.0
H14A—C14—H14B120.0H28A—C28—H28B120.0
C2—O1—C1—C8173.1 (5)C16—O5—C15—C22169.4 (5)
C2—O1—C1—C48.5 (6)C16—O5—C15—C189.7 (6)
C1—O1—C2—C12139.0 (4)C15—O5—C16—C26142.2 (4)
C1—O1—C2—C313.8 (5)C15—O5—C16—C1717.7 (6)
O1—C2—C3—C413.6 (5)O5—C16—C17—C1818.6 (6)
C12—C2—C3—C4133.6 (5)C26—C16—C17—C18141.0 (5)
C8—C1—C4—C50.9 (7)C22—C15—C18—C191.1 (7)
O1—C1—C4—C5179.3 (4)O5—C15—C18—C19179.8 (4)
C8—C1—C4—C3177.8 (5)C22—C15—C18—C17177.9 (5)
O1—C1—C4—C30.6 (6)O5—C15—C18—C173.1 (6)
C2—C3—C4—C5172.7 (5)C16—C17—C18—C1513.4 (6)
C2—C3—C4—C18.8 (5)C16—C17—C18—C19170.5 (5)
C1—C4—C5—C60.9 (7)C15—C18—C19—C201.1 (7)
C3—C4—C5—C6177.5 (5)C17—C18—C19—C20176.9 (5)
C4—C5—C6—C70.4 (6)C18—C19—C20—C211.0 (7)
C4—C5—C6—C9177.3 (4)C18—C19—C20—C23176.9 (4)
C11—O2—C7—C8177.6 (4)C25—O6—C21—C200.5 (6)
C11—O2—C7—C63.6 (6)C25—O6—C21—C22178.7 (4)
C5—C6—C7—O2178.7 (4)C19—C20—C21—O6179.9 (4)
C9—C6—C7—O23.4 (6)C23—C20—C21—O62.0 (6)
C5—C6—C7—C80.0 (6)C19—C20—C21—C221.0 (7)
C9—C6—C7—C8177.9 (4)C23—C20—C21—C22177.2 (4)
O1—C1—C8—O31.3 (7)O5—C15—C22—O71.2 (7)
C4—C1—C8—O3179.6 (4)C18—C15—C22—O7179.8 (4)
O1—C1—C8—C7178.7 (4)O5—C15—C22—C21180.0 (4)
C4—C1—C8—C70.5 (7)C18—C15—C22—C211.0 (7)
O2—C7—C8—O31.2 (6)O6—C21—C22—C15179.9 (4)
C6—C7—C8—O3180.0 (4)C20—C21—C22—C150.9 (6)
O2—C7—C8—C1178.8 (4)O6—C21—C22—O71.1 (6)
C6—C7—C8—C10.1 (6)C20—C21—C22—O7179.7 (4)
C5—C6—C9—C10179.6 (5)C19—C20—C23—C24180.0 (5)
C7—C6—C9—C101.9 (7)C21—C20—C23—C242.0 (6)
C6—C9—C10—C110.5 (7)C20—C23—C24—C250.5 (8)
C7—O2—C11—O4179.5 (4)C21—O6—C25—O8180.0 (5)
C7—O2—C11—C102.0 (6)C21—O6—C25—C241.1 (7)
C9—C10—C11—O4178.8 (5)C23—C24—C25—O8179.9 (6)
C9—C10—C11—O20.5 (7)C23—C24—C25—O61.1 (8)
O1—C2—C12—C14122.2 (7)O5—C16—C26—C2810.8 (11)
C3—C2—C12—C14118.7 (7)C17—C16—C26—C28108.4 (10)
O1—C2—C12—C1357.9 (7)O5—C16—C26—C27167.1 (6)
C3—C2—C12—C1361.3 (7)C17—C16—C26—C2773.7 (8)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg9 are the centroids of rings O2/C6/C7/C9–C11 and C15–C22, respectively.
D—H···AD—HH···AD···AD—H···A
O3—H3O···O8i0.831.852.676 (5)174
O7—H7O···O4ii0.841.852.671 (5)168
C10—H10···O3iii0.932.533.199 (5)129
C10—H10···O8iv0.932.503.415 (6)166
C24—H24···O7v0.932.583.229 (5)128
C24—H24···O4vi0.932.533.434 (5)164
C3—H3B···Cg2vii0.972.953.871 (5)160
C13—H13B···Cg90.962.923.680 (9)137
Symmetry codes: (i) x+2, y+1/2, z+1; (ii) x+2, y1/2, z; (iii) x, y, z1; (iv) x+2, y+1/2, z; (v) x, y, z+1; (vi) x+2, y1/2, z+1; (vii) x1, y, z.
 

Acknowledgements

The authors thank Professor Dr Hartmut Fuess, FG Strukturforschung, FB Material und Geowissenschaften, Technische Universität Darmstadt, Petersenstrasse 23, 64287 Darmstadt, for diffractometer time, and Professor N. Komatsu, Shiga University of Medical Science, Shiga, Otsu, Japan, for recording the CD spectrum.

References

First citationAppendino, G., Bianchi, F., Bader, A., Campagnuolo, C., Fattorusso, E., Taglialatela-Scafati, O., Blanco-Molina, M., Macho, A., Fiebich, B. L., Bremner, P., Heinrich, M., Ballero, M. & Muñoz, E. (2004). J. Nat. Prod. 67, 532–536.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChen, Y., Fan, G., Zhang, Q., Wu, H. & Wu, Y. (2007). J. Pharm. Biomed. Anal. 43, 926–936.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChen, D., Wang, J., Jiang, Y., Zhou, T., Fan, G. & Wu, Y. (2009). J. Pharm. Biomed. Anal. 50, 695–702.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDorofeenko, G. N., Tkachenko, V. V. & Mezheritskii, V. V. (1973). Chem. Heterocycl. Compd. 9, 948–950.  CrossRef Google Scholar
First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationGupta, V. K., Rajnikant, Goswami, K. N., Mazumdar, S. K., Gupta, B. D. & Banerjee, S. K. (1993). Cryst. Res. Technol. 28, 187–191.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMagotra, D. K., Gupta, V. K., Rajnikant, Goswami, K. N. & Gupta, B. D. (1995). Acta Cryst. C51, 2637–2639.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSchroeder, H. D., Bencze, W., Halpern, O. & Schmid, H. (1959). Chem. Ber. 92, 2338–2363.  CrossRef CAS Web of Science Google Scholar
First citationScott, B. R., Pathak, M. A. & Mohn, G. R. (1976). Mutat. Res. 39, 29–74.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, A., Gupta, V. K., Kant, R. & Goswami, K. N. (1995). Mol. Mater. 5, 289–297.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStemple, N. R. & Watson, W. H. (1972). Acta Cryst. B28, 2485–2489.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationThailambal, V. G. & Pattabhi, V. (1985). Acta Cryst. C41, 802–804.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationThailambal, V. G. & Pattabhi, V. (1987). Acta Cryst. C43, 2369–2372.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationThailambal, V. G., Pattabhi, V. & Gabe, E. J. (1986). Acta Cryst. C42, 1017–1019.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds