research communications
Artemisia reticulata
of a photobiologically active furanocoumarin fromaBioorganic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India, bClemens Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Petersenstrasse 22, D-64287 Darmstadt, Germany, and cAccident & Emergency Department, Franco, Vietnamese Hospital, 7-Nguyen, Luong Bang Street, HoChiMinh City, Vietnam
*Correspondence e-mail: nguyendonhuquynh@yahoo.com
The title furanocoumarin, C14H12O4 [systematic name: 9-hydroxy-2-(prop-1-en-2-yl)-2,3-dihydro-7H-furo[3,2-g]chromen-7-one], crystallizes with two independent molecules (A and B) in the The two molecules differ essentially in the orientation of the propenyl group with respect to the mean plane of the furanocoumarin moiety; the O—C(H)—C=C torsion angle is 122.2 (7)° in molecule A and −10.8 (11)° in molecule B. In the crystal, the A and B molecules are linked via O—H⋯O hydrogen bonds, forming zigzag –A–B–A–B– chains propagating along [001]. The chains are reinforced by bifurcated C—H⋯(O,O) hydrogen bonds, forming ribbons which are linked via C—H⋯π and π–π interactions [intercentroid distance = 3.602 (2) Å], forming a three-dimensional structure.
Keywords: crystal structure; furanocoumarin; oroselone; Artemisia reticulata; photobiological property; hydrogen bonding.
CCDC reference: 1422810
1. Chemical context
The title furanocoumarin was isolated from the Indian herb A. reticulata, by over silica gel with a mixture of binary solvent hexane and ethyl acetate by Furanocoumarins, such as oroselone [systematic name: 8-(prop-1-en-2-yl)-2H-furo[2,3-h]chromen-2-one], whose atomic connectivity has been established by spectrometric and spectroscopic analyses (Schroeder et al., 1959; Dorofeenko et al., 1973) but not yet by single crystal X-ray diffraction, exhibit photobiological activity. For example such compounds are employed as photoprotective agents to prevent absorption of harmful UV radiation (Chen et al., 2007, 2009). Anti-oxidant and anti-inflammatory activities have also been reported for furano as well as pyrano and their derivatives (Appendino et al., 2004; Scott et al., 1976).
2. Structural commentary
The title compound, Fig. 1, crystallizes with two independent molecules (A and B) in the The compound is composed of three fused rings (furan, benzene and pyrone) with hydroxyl and propenyl substituents at positions 9 and 2, respectively. The furanocoumarin moieties are essentially planar with r.m.s. deviations of 0.05 Å for molecule A (O1/O2/C1–C11) and 0.079 Å for molecule B (O5/O6/C16–C25). The furan ring in molecule A has an with atom C2 as the flap, deviating by 0.120 (4) Å from the mean plane of the furanocoumarin moiety. In molecule B, the furan ring has a twisted conformation on bond C17–C16 with atoms C16 and C17 deviating by −0.232 (6) and 0.076 (6) Å, respectively, from the other atoms of the twisted five-membered ring. The two molecules differ essentially in the orientation of the propenyl group with respect to the mean plane of the furanocoumarin moiety, as shown by AutoMolFit analysis (Spek, 2009); see Fig. 2. The O1—C2—C12=C14 torsion angle is 122.2 (7)° in molecule A, while the O5—C16—C26=C28 torsion angle is −10.8 (11) ° in molecule B. The bond distances and bond angles in the propenyl side chains (C2,C12–C14 in molecule A and C16,C26–C28 in molecule B) also differ in the two molecules (Table 1), probably due to libration and bond rotation. Overall the bond distances and bond angles in the furanocoumarin moieties are in good agreement with the corresponding values reported for related structures (Stemple & Watson, 1972; Gupta et al., 1993; Singh et al. 1995; Magotra et al., 1995; Thailambal et al., 1986; Thailambal & Pattabhi, 1987, 1985).
|
The A; C16 in molecule B), the (CD) spectrum was measured in a solution of chloroform at concentration of 1 mg/ml using a cell with path length 1 cm. This CD measurement revealed that the of atom C2 (in molecule A; C16 in molecule B) is S.
of the molecule in the crystal could not be determined by In order to determine the at atom C2 (in molecule3. Supramolecular features
In the crystal, the A and B molecules are linked via O—H⋯O hydrogen bonds, forming zigzag –A–B–A–B– chains propagating along the c-axis direction; see Table 2 and Fig. 3. The chains are reinforced by bifurcated C—H⋯(O,O) hydrogen bonds, forming ribbons (Table 2 and Fig. 3). The ribbons are arranged in a herringbone fashion, and are linked via C—H⋯π and slipped parallel π–π interactions, forming a three-dimensional network; see Fig. 4 and Table 2 [Cg2⋯Cg9i = 3.602 (2) Å, interplanar distance = 3.4168 (2) Å, slippage 1.284 Å, where Cg2 and Cg9 are the centroids of rings C1/C4–C8 and C15/C18–C22, respectively; symmetry code: (i) − x + 1, y + , − z].
4. Database survey
A search of the Cambridge Structural Database (Version 5.37, update November 2015; Groom & Allen, 2014) gave 21 hits for the furanocoumarin but only one hit for a 9-hydroxy furanocoumarin, viz. 2,3-dihydro-9-hydroxy-2-(1-hydroxy-1-methylethyl)-7H-furo(3,2-g)(1) benzopyran-7-one monohydrate (refcode FUGVOS; Thailambal & Pattabhi, 1987).
5. Synthesis and crystallization
The title compound was isolated as a colourless solid from the methanol extract of A. reticulata by means of over silica gel by with a mixture of binary solvents system hexane and ethyl acetate. It was purified by reverse-phase high-pressure Colourless rod-like crystals suitable for X ray were obtained after the title compound was recrystallized three times from ethyl acetate:hexane (1:4) at room temperature by slow evaporation of the solvents (m.p. 498 K). 1H NMR data (CHCl3, 200 MHz) 7.60 (d, 1H, J = 9.6 Hz, H-9), 6.85 (s, 1H, H-5), 6.20 (d, 1H, J = 9.6 Hz, H-10), 5.35 (dd, 1H, J = 8.8 and 8.8 Hz, H-7), 5.11 (s, 1H, Ha-14), 4.94 (s, 1H, Hb-14), 3.47–3.34 (dd, 1H, J = 9.0 and 1.2 Hz, Ha-3),3.16–3.04 (dd, 1H, J = 9.0 and 1.2 Hz, Hb-3), 1.78 (s, 3H, –CH3). EIMS (70 ev) data: m/z (%) 244(15.9) [M+], 226 (68.6) [M+ − H2O), 198 (100) [base peak], 185 (30),171 (16.8), 155 (30.1), 140 (16.4), 127 (13.5), 115 (25.10,85 (11.1), 75 (22.3), 63 (26.5), 41 (16.0).
6. Refinement
Crystal data, data collection and structure . The hydroxyl H atoms were located in a difference Fourier map and refined as riding with Uiso(H) = 1.2Ueq(O). The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93–0.98 Å with Uiso(H) = 1.2Ueq(C). The limited number of Friedel pairs measured were merged for refinement.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1422810
https://doi.org/10.1107/S2056989016003303/su5279sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016003303/su5279Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016003303/su5279Isup3.cml
Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell
CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C14H12O4 | F(000) = 512 |
Mr = 244.24 | Dx = 1.322 Mg m−3 |
Monoclinic, P21 | Melting point: 498 K |
Hall symbol: P 2y1 | Cu Kα radiation, λ = 1.54180 Å |
a = 7.2738 (9) Å | Cell parameters from 25 reflections |
b = 21.426 (2) Å | θ = 6.0–19.8° |
c = 8.0152 (9) Å | µ = 0.81 mm−1 |
β = 100.88 (1)° | T = 299 K |
V = 1226.7 (2) Å3 | Rod, colourless |
Z = 4 | 0.50 × 0.18 × 0.15 mm |
Enraf–Nonius CAD-4 diffractometer | 1808 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.111 |
Graphite monochromator | θmax = 66.9°, θmin = 4.1° |
ω/2θ scans | h = −8→8 |
Absorption correction: ψ scan (North et al., 1968) | k = −25→0 |
Tmin = 0.688, Tmax = 0.888 | l = −9→2 |
2692 measured reflections | 3 standard reflections every 120 min |
2133 independent reflections | intensity decay: 1.0% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.057 | H-atom parameters constrained |
wR(F2) = 0.148 | w = 1/[σ2(Fo2) + (0.0983P)2 + 0.0698P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.045 |
2133 reflections | Δρmax = 0.28 e Å−3 |
328 parameters | Δρmin = −0.34 e Å−3 |
1 restraint | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0058 (13) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.5538 (5) | 0.26546 (17) | 0.2707 (4) | 0.0718 (9) | |
O2 | 1.0199 (4) | 0.35147 (14) | 0.0003 (3) | 0.0584 (7) | |
O3 | 0.8972 (4) | 0.32756 (18) | 0.2942 (3) | 0.0716 (9) | |
H3O | 0.9962 | 0.3467 | 0.3283 | 0.086* | |
O4 | 1.2459 (5) | 0.3904 (2) | −0.1133 (4) | 0.0760 (9) | |
C1 | 0.6289 (6) | 0.2805 (2) | 0.1313 (5) | 0.0593 (10) | |
C2 | 0.3653 (7) | 0.2416 (2) | 0.2102 (6) | 0.0677 (11) | |
H2 | 0.2748 | 0.2741 | 0.2241 | 0.081* | |
C3 | 0.3504 (7) | 0.2283 (2) | 0.0208 (6) | 0.0717 (12) | |
H3A | 0.3550 | 0.1838 | −0.0007 | 0.086* | |
H3B | 0.2354 | 0.2452 | −0.0447 | 0.086* | |
C4 | 0.5186 (6) | 0.2609 (2) | −0.0213 (5) | 0.0615 (10) | |
C5 | 0.5778 (7) | 0.2722 (2) | −0.1707 (5) | 0.0646 (11) | |
H5 | 0.5045 | 0.2598 | −0.2732 | 0.078* | |
C6 | 0.7474 (6) | 0.30226 (19) | −0.1693 (5) | 0.0574 (10) | |
C7 | 0.8535 (6) | 0.32065 (19) | −0.0126 (4) | 0.0510 (9) | |
C8 | 0.7961 (6) | 0.3100 (2) | 0.1404 (5) | 0.0559 (10) | |
C9 | 0.8303 (7) | 0.3148 (2) | −0.3149 (5) | 0.0643 (11) | |
H9 | 0.7672 | 0.3025 | −0.4217 | 0.077* | |
C10 | 0.9934 (7) | 0.3435 (2) | −0.3019 (5) | 0.0650 (11) | |
H10 | 1.0412 | 0.3510 | −0.3997 | 0.078* | |
C11 | 1.0988 (7) | 0.3634 (2) | −0.1407 (5) | 0.0608 (10) | |
C12 | 0.3366 (8) | 0.1867 (3) | 0.3189 (7) | 0.0784 (14) | |
C13 | 0.4654 (13) | 0.1340 (4) | 0.3277 (12) | 0.120 (2) | |
H13A | 0.4677 | 0.1193 | 0.2150 | 0.144* | |
H13B | 0.4243 | 0.1010 | 0.3929 | 0.144* | |
H13C | 0.5888 | 0.1471 | 0.3810 | 0.144* | |
C14 | 0.1973 (13) | 0.1879 (5) | 0.4018 (13) | 0.131 (3) | |
H14A | 0.1775 | 0.1543 | 0.4697 | 0.157* | |
H14B | 0.1184 | 0.2224 | 0.3928 | 0.157* | |
O5 | 0.0856 (5) | 0.01320 (19) | −0.0052 (4) | 0.0800 (10) | |
O6 | 0.5536 (4) | −0.07278 (16) | 0.4256 (3) | 0.0632 (8) | |
O7 | 0.4356 (5) | −0.04541 (19) | 0.0908 (3) | 0.0761 (10) | |
H7O | 0.5264 | −0.0689 | 0.0873 | 0.091* | |
O8 | 0.7736 (5) | −0.1141 (3) | 0.6163 (4) | 0.0985 (14) | |
C15 | 0.1590 (6) | −0.0022 (2) | 0.1597 (5) | 0.0605 (10) | |
C16 | −0.1072 (8) | 0.0320 (3) | −0.0122 (7) | 0.0768 (13) | |
H16 | −0.1887 | −0.0035 | −0.0522 | 0.092* | |
C17 | −0.1231 (8) | 0.0464 (3) | 0.1738 (7) | 0.0804 (14) | |
H17A | −0.1172 | 0.0909 | 0.1960 | 0.097* | |
H17B | −0.2382 | 0.0298 | 0.2005 | 0.097* | |
C18 | 0.0452 (6) | 0.0134 (2) | 0.2722 (6) | 0.0648 (11) | |
C19 | 0.1022 (6) | 0.0007 (2) | 0.4429 (6) | 0.0646 (11) | |
H19 | 0.0271 | 0.0117 | 0.5200 | 0.077* | |
C20 | 0.2723 (6) | −0.0287 (2) | 0.4982 (5) | 0.0555 (9) | |
C21 | 0.3829 (6) | −0.04370 (19) | 0.3800 (5) | 0.0536 (9) | |
C22 | 0.3273 (6) | −0.0310 (2) | 0.2071 (5) | 0.0564 (10) | |
C23 | 0.3455 (6) | −0.0475 (2) | 0.6713 (5) | 0.0617 (10) | |
H23 | 0.2751 | −0.0397 | 0.7547 | 0.074* | |
C24 | 0.5094 (7) | −0.0754 (2) | 0.7141 (5) | 0.0670 (12) | |
H24 | 0.5520 | −0.0865 | 0.8270 | 0.080* | |
C25 | 0.6234 (7) | −0.0890 (2) | 0.5911 (5) | 0.0658 (11) | |
C26 | −0.1586 (9) | 0.0850 (3) | −0.1320 (8) | 0.0882 (16) | |
C27 | −0.3538 (11) | 0.0976 (4) | −0.1745 (13) | 0.132 (3) | |
H27A | −0.4064 | 0.0762 | −0.2778 | 0.159* | |
H27B | −0.3732 | 0.1417 | −0.1900 | 0.159* | |
H27C | −0.4136 | 0.0834 | −0.0845 | 0.159* | |
C28 | −0.0275 (15) | 0.1170 (6) | −0.1987 (19) | 0.181 (5) | |
H28A | −0.0641 | 0.1490 | −0.2764 | 0.217* | |
H28B | 0.0986 | 0.1069 | −0.1666 | 0.217* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0756 (18) | 0.094 (2) | 0.0482 (16) | −0.0229 (17) | 0.0165 (13) | −0.0004 (15) |
O2 | 0.0673 (16) | 0.0776 (19) | 0.0310 (12) | −0.0106 (14) | 0.0109 (11) | −0.0007 (12) |
O3 | 0.0767 (18) | 0.107 (2) | 0.0293 (13) | −0.0232 (17) | 0.0062 (12) | −0.0107 (14) |
O4 | 0.079 (2) | 0.104 (2) | 0.0474 (16) | −0.0193 (19) | 0.0178 (14) | −0.0041 (16) |
C1 | 0.074 (2) | 0.066 (2) | 0.0362 (19) | −0.007 (2) | 0.0076 (17) | −0.0017 (18) |
C2 | 0.072 (3) | 0.073 (3) | 0.059 (3) | −0.017 (2) | 0.014 (2) | −0.003 (2) |
C3 | 0.077 (3) | 0.074 (3) | 0.059 (2) | −0.016 (2) | 0.000 (2) | 0.001 (2) |
C4 | 0.070 (2) | 0.058 (2) | 0.052 (2) | −0.0097 (19) | −0.0007 (18) | −0.0027 (17) |
C5 | 0.087 (3) | 0.066 (3) | 0.0349 (19) | −0.006 (2) | −0.0039 (18) | −0.0053 (18) |
C6 | 0.075 (3) | 0.059 (2) | 0.0347 (19) | −0.0034 (19) | 0.0009 (16) | −0.0010 (16) |
C7 | 0.067 (2) | 0.057 (2) | 0.0281 (17) | −0.0028 (18) | 0.0071 (14) | −0.0035 (14) |
C8 | 0.065 (2) | 0.067 (2) | 0.0328 (17) | −0.0066 (19) | 0.0005 (16) | −0.0047 (17) |
C9 | 0.092 (3) | 0.069 (3) | 0.0301 (17) | −0.002 (2) | 0.0067 (17) | 0.0000 (18) |
C10 | 0.087 (3) | 0.074 (3) | 0.0349 (19) | −0.007 (2) | 0.0131 (19) | 0.0024 (18) |
C11 | 0.075 (3) | 0.073 (3) | 0.0370 (19) | 0.001 (2) | 0.0156 (18) | −0.0007 (17) |
C12 | 0.089 (3) | 0.081 (3) | 0.067 (3) | −0.022 (3) | 0.021 (3) | −0.003 (2) |
C13 | 0.146 (6) | 0.094 (5) | 0.120 (6) | 0.009 (5) | 0.023 (5) | 0.028 (4) |
C14 | 0.140 (6) | 0.125 (6) | 0.144 (8) | −0.029 (5) | 0.066 (6) | 0.018 (5) |
O5 | 0.087 (2) | 0.104 (3) | 0.0412 (15) | 0.024 (2) | −0.0062 (14) | 0.0061 (15) |
O6 | 0.0667 (16) | 0.092 (2) | 0.0293 (13) | 0.0173 (15) | 0.0059 (11) | 0.0098 (13) |
O7 | 0.085 (2) | 0.111 (3) | 0.0339 (14) | 0.0274 (19) | 0.0166 (13) | 0.0096 (15) |
O8 | 0.091 (2) | 0.156 (4) | 0.0462 (18) | 0.048 (3) | 0.0075 (16) | 0.026 (2) |
C15 | 0.069 (2) | 0.069 (2) | 0.039 (2) | 0.004 (2) | −0.0011 (17) | 0.0035 (18) |
C16 | 0.080 (3) | 0.079 (3) | 0.063 (3) | 0.008 (3) | −0.009 (2) | 0.001 (2) |
C17 | 0.073 (3) | 0.092 (3) | 0.074 (3) | 0.019 (3) | 0.006 (2) | −0.003 (3) |
C18 | 0.065 (2) | 0.069 (3) | 0.057 (3) | 0.006 (2) | 0.0030 (19) | −0.003 (2) |
C19 | 0.069 (2) | 0.074 (3) | 0.052 (2) | 0.005 (2) | 0.0156 (19) | −0.006 (2) |
C20 | 0.066 (2) | 0.063 (2) | 0.0377 (19) | −0.0015 (19) | 0.0103 (16) | −0.0041 (16) |
C21 | 0.065 (2) | 0.062 (2) | 0.0330 (18) | 0.0021 (18) | 0.0053 (15) | 0.0023 (15) |
C22 | 0.067 (2) | 0.067 (2) | 0.0334 (18) | 0.0069 (19) | 0.0049 (16) | 0.0051 (16) |
C23 | 0.081 (3) | 0.075 (3) | 0.0317 (18) | 0.000 (2) | 0.0183 (17) | −0.0042 (17) |
C24 | 0.082 (3) | 0.085 (3) | 0.0320 (19) | 0.002 (2) | 0.0072 (18) | 0.0045 (19) |
C25 | 0.076 (3) | 0.088 (3) | 0.0319 (18) | 0.012 (2) | 0.0070 (18) | 0.0117 (18) |
C26 | 0.096 (4) | 0.068 (3) | 0.087 (3) | 0.010 (3) | −0.016 (3) | 0.000 (3) |
C27 | 0.111 (5) | 0.114 (6) | 0.152 (7) | 0.017 (4) | −0.025 (5) | 0.034 (5) |
C28 | 0.136 (7) | 0.150 (8) | 0.241 (13) | −0.008 (7) | −0.003 (8) | 0.106 (9) |
O1—C1 | 1.371 (5) | O5—C15 | 1.369 (5) |
O1—C2 | 1.459 (5) | O5—C16 | 1.449 (6) |
O2—C7 | 1.366 (5) | O6—C25 | 1.373 (5) |
O2—C11 | 1.384 (5) | O6—C21 | 1.375 (5) |
O3—C8 | 1.363 (5) | O7—C22 | 1.365 (5) |
O3—H3O | 0.8294 | O7—H7O | 0.8354 |
O4—C11 | 1.199 (5) | O8—C25 | 1.200 (6) |
C1—C8 | 1.361 (6) | C15—C22 | 1.360 (6) |
C1—C4 | 1.395 (6) | C15—C18 | 1.376 (7) |
C2—C12 | 1.500 (8) | C16—C26 | 1.489 (8) |
C2—C3 | 1.529 (7) | C16—C17 | 1.549 (8) |
C2—H2 | 0.9800 | C16—H16 | 0.9800 |
C3—C4 | 1.501 (7) | C17—C18 | 1.502 (7) |
C3—H3A | 0.9700 | C17—H17A | 0.9700 |
C3—H3B | 0.9700 | C17—H17B | 0.9700 |
C4—C5 | 1.369 (7) | C18—C19 | 1.379 (6) |
C5—C6 | 1.389 (7) | C19—C20 | 1.384 (6) |
C5—H5 | 0.9300 | C19—H19 | 0.9300 |
C6—C7 | 1.400 (5) | C20—C21 | 1.391 (6) |
C6—C9 | 1.437 (7) | C20—C23 | 1.447 (5) |
C7—C8 | 1.387 (6) | C21—C22 | 1.395 (5) |
C9—C10 | 1.322 (7) | C23—C24 | 1.320 (7) |
C9—H9 | 0.9300 | C23—H23 | 0.9300 |
C10—C11 | 1.437 (6) | C24—C25 | 1.433 (7) |
C10—H10 | 0.9300 | C24—H24 | 0.9300 |
C12—C14 | 1.313 (10) | C26—C28 | 1.363 (13) |
C12—C13 | 1.461 (10) | C26—C27 | 1.422 (10) |
C13—H13A | 0.9600 | C27—H27A | 0.9600 |
C13—H13B | 0.9600 | C27—H27B | 0.9600 |
C13—H13C | 0.9600 | C27—H27C | 0.9600 |
C14—H14A | 0.9300 | C28—H28A | 0.9300 |
C14—H14B | 0.9300 | C28—H28B | 0.9300 |
C1—O1—C2 | 107.8 (3) | C15—O5—C16 | 107.6 (4) |
C7—O2—C11 | 121.7 (3) | C25—O6—C21 | 121.5 (3) |
C8—O3—H3O | 136.1 | C22—O7—H7O | 136.1 |
C8—C1—O1 | 123.7 (3) | C22—C15—O5 | 123.1 (4) |
C8—C1—C4 | 123.2 (4) | C22—C15—C18 | 123.2 (4) |
O1—C1—C4 | 113.1 (4) | O5—C15—C18 | 113.7 (4) |
O1—C2—C12 | 107.9 (4) | O5—C16—C26 | 111.1 (5) |
O1—C2—C3 | 106.3 (4) | O5—C16—C17 | 105.4 (3) |
C12—C2—C3 | 116.1 (4) | C26—C16—C17 | 114.4 (5) |
O1—C2—H2 | 108.8 | O5—C16—H16 | 108.6 |
C12—C2—H2 | 108.8 | C26—C16—H16 | 108.6 |
C3—C2—H2 | 108.8 | C17—C16—H16 | 108.6 |
C4—C3—C2 | 103.2 (3) | C18—C17—C16 | 102.1 (4) |
C4—C3—H3A | 111.1 | C18—C17—H17A | 111.3 |
C2—C3—H3A | 111.1 | C16—C17—H17A | 111.3 |
C4—C3—H3B | 111.1 | C18—C17—H17B | 111.3 |
C2—C3—H3B | 111.1 | C16—C17—H17B | 111.3 |
H3A—C3—H3B | 109.1 | H17A—C17—H17B | 109.2 |
C5—C4—C1 | 119.3 (4) | C15—C18—C19 | 119.8 (4) |
C5—C4—C3 | 133.1 (4) | C15—C18—C17 | 107.5 (4) |
C1—C4—C3 | 107.6 (4) | C19—C18—C17 | 132.6 (4) |
C4—C5—C6 | 120.0 (4) | C18—C19—C20 | 119.4 (4) |
C4—C5—H5 | 120.0 | C18—C19—H19 | 120.3 |
C6—C5—H5 | 120.0 | C20—C19—H19 | 120.3 |
C5—C6—C7 | 118.4 (4) | C19—C20—C21 | 118.9 (4) |
C5—C6—C9 | 126.0 (4) | C19—C20—C23 | 125.3 (4) |
C7—C6—C9 | 115.5 (4) | C21—C20—C23 | 115.7 (4) |
O2—C7—C8 | 115.0 (3) | O6—C21—C20 | 122.2 (3) |
O2—C7—C6 | 122.3 (3) | O6—C21—C22 | 115.5 (3) |
C8—C7—C6 | 122.7 (4) | C20—C21—C22 | 122.3 (4) |
O3—C8—C1 | 120.0 (4) | C15—C22—O7 | 121.1 (3) |
O3—C8—C7 | 123.6 (4) | C15—C22—C21 | 116.3 (4) |
C1—C8—C7 | 116.4 (3) | O7—C22—C21 | 122.6 (4) |
C10—C9—C6 | 122.1 (4) | C24—C23—C20 | 121.7 (4) |
C10—C9—H9 | 119.0 | C24—C23—H23 | 119.1 |
C6—C9—H9 | 119.0 | C20—C23—H23 | 119.1 |
C9—C10—C11 | 121.8 (4) | C23—C24—C25 | 121.7 (4) |
C9—C10—H10 | 119.1 | C23—C24—H24 | 119.2 |
C11—C10—H10 | 119.1 | C25—C24—H24 | 119.2 |
O4—C11—O2 | 115.6 (4) | O8—C25—O6 | 115.8 (4) |
O4—C11—C10 | 127.9 (4) | O8—C25—C24 | 127.0 (4) |
O2—C11—C10 | 116.5 (4) | O6—C25—C24 | 117.2 (4) |
C14—C12—C13 | 122.7 (7) | C28—C26—C27 | 123.5 (7) |
C14—C12—C2 | 118.9 (7) | C28—C26—C16 | 121.9 (6) |
C13—C12—C2 | 118.4 (5) | C27—C26—C16 | 114.7 (6) |
C12—C13—H13A | 109.5 | C26—C27—H27A | 109.5 |
C12—C13—H13B | 109.5 | C26—C27—H27B | 109.5 |
H13A—C13—H13B | 109.5 | H27A—C27—H27B | 109.5 |
C12—C13—H13C | 109.5 | C26—C27—H27C | 109.5 |
H13A—C13—H13C | 109.5 | H27A—C27—H27C | 109.5 |
H13B—C13—H13C | 109.5 | H27B—C27—H27C | 109.5 |
C12—C14—H14A | 120.0 | C26—C28—H28A | 120.0 |
C12—C14—H14B | 120.0 | C26—C28—H28B | 120.0 |
H14A—C14—H14B | 120.0 | H28A—C28—H28B | 120.0 |
C2—O1—C1—C8 | 173.1 (5) | C16—O5—C15—C22 | 169.4 (5) |
C2—O1—C1—C4 | −8.5 (6) | C16—O5—C15—C18 | −9.7 (6) |
C1—O1—C2—C12 | 139.0 (4) | C15—O5—C16—C26 | 142.2 (4) |
C1—O1—C2—C3 | 13.8 (5) | C15—O5—C16—C17 | 17.7 (6) |
O1—C2—C3—C4 | −13.6 (5) | O5—C16—C17—C18 | −18.6 (6) |
C12—C2—C3—C4 | −133.6 (5) | C26—C16—C17—C18 | −141.0 (5) |
C8—C1—C4—C5 | −0.9 (7) | C22—C15—C18—C19 | 1.1 (7) |
O1—C1—C4—C5 | −179.3 (4) | O5—C15—C18—C19 | −179.8 (4) |
C8—C1—C4—C3 | 177.8 (5) | C22—C15—C18—C17 | 177.9 (5) |
O1—C1—C4—C3 | −0.6 (6) | O5—C15—C18—C17 | −3.1 (6) |
C2—C3—C4—C5 | −172.7 (5) | C16—C17—C18—C15 | 13.4 (6) |
C2—C3—C4—C1 | 8.8 (5) | C16—C17—C18—C19 | −170.5 (5) |
C1—C4—C5—C6 | 0.9 (7) | C15—C18—C19—C20 | −1.1 (7) |
C3—C4—C5—C6 | −177.5 (5) | C17—C18—C19—C20 | −176.9 (5) |
C4—C5—C6—C7 | −0.4 (6) | C18—C19—C20—C21 | 1.0 (7) |
C4—C5—C6—C9 | 177.3 (4) | C18—C19—C20—C23 | −176.9 (4) |
C11—O2—C7—C8 | 177.6 (4) | C25—O6—C21—C20 | 0.5 (6) |
C11—O2—C7—C6 | −3.6 (6) | C25—O6—C21—C22 | −178.7 (4) |
C5—C6—C7—O2 | −178.7 (4) | C19—C20—C21—O6 | 179.9 (4) |
C9—C6—C7—O2 | 3.4 (6) | C23—C20—C21—O6 | −2.0 (6) |
C5—C6—C7—C8 | 0.0 (6) | C19—C20—C21—C22 | −1.0 (7) |
C9—C6—C7—C8 | −177.9 (4) | C23—C20—C21—C22 | 177.2 (4) |
O1—C1—C8—O3 | −1.3 (7) | O5—C15—C22—O7 | 1.2 (7) |
C4—C1—C8—O3 | −179.6 (4) | C18—C15—C22—O7 | −179.8 (4) |
O1—C1—C8—C7 | 178.7 (4) | O5—C15—C22—C21 | −180.0 (4) |
C4—C1—C8—C7 | 0.5 (7) | C18—C15—C22—C21 | −1.0 (7) |
O2—C7—C8—O3 | −1.2 (6) | O6—C21—C22—C15 | −179.9 (4) |
C6—C7—C8—O3 | −180.0 (4) | C20—C21—C22—C15 | 0.9 (6) |
O2—C7—C8—C1 | 178.8 (4) | O6—C21—C22—O7 | −1.1 (6) |
C6—C7—C8—C1 | −0.1 (6) | C20—C21—C22—O7 | 179.7 (4) |
C5—C6—C9—C10 | −179.6 (5) | C19—C20—C23—C24 | 180.0 (5) |
C7—C6—C9—C10 | −1.9 (7) | C21—C20—C23—C24 | 2.0 (6) |
C6—C9—C10—C11 | 0.5 (7) | C20—C23—C24—C25 | −0.5 (8) |
C7—O2—C11—O4 | −179.5 (4) | C21—O6—C25—O8 | −180.0 (5) |
C7—O2—C11—C10 | 2.0 (6) | C21—O6—C25—C24 | 1.1 (7) |
C9—C10—C11—O4 | −178.8 (5) | C23—C24—C25—O8 | −179.9 (6) |
C9—C10—C11—O2 | −0.5 (7) | C23—C24—C25—O6 | −1.1 (8) |
O1—C2—C12—C14 | 122.2 (7) | O5—C16—C26—C28 | −10.8 (11) |
C3—C2—C12—C14 | −118.7 (7) | C17—C16—C26—C28 | 108.4 (10) |
O1—C2—C12—C13 | −57.9 (7) | O5—C16—C26—C27 | 167.1 (6) |
C3—C2—C12—C13 | 61.3 (7) | C17—C16—C26—C27 | −73.7 (8) |
Cg2 and Cg9 are the centroids of rings O2/C6/C7/C9–C11 and C15–C22, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3O···O8i | 0.83 | 1.85 | 2.676 (5) | 174 |
O7—H7O···O4ii | 0.84 | 1.85 | 2.671 (5) | 168 |
C10—H10···O3iii | 0.93 | 2.53 | 3.199 (5) | 129 |
C10—H10···O8iv | 0.93 | 2.50 | 3.415 (6) | 166 |
C24—H24···O7v | 0.93 | 2.58 | 3.229 (5) | 128 |
C24—H24···O4vi | 0.93 | 2.53 | 3.434 (5) | 164 |
C3—H3B···Cg2vii | 0.97 | 2.95 | 3.871 (5) | 160 |
C13—H13B···Cg9 | 0.96 | 2.92 | 3.680 (9) | 137 |
Symmetry codes: (i) −x+2, y+1/2, −z+1; (ii) −x+2, y−1/2, −z; (iii) x, y, z−1; (iv) −x+2, y+1/2, −z; (v) x, y, z+1; (vi) −x+2, y−1/2, −z+1; (vii) x−1, y, z. |
Acknowledgements
The authors thank Professor Dr Hartmut Fuess, FG Strukturforschung, FB Material und Geowissenschaften, Technische Universität Darmstadt, Petersenstrasse 23, 64287 Darmstadt, for diffractometer time, and Professor N. Komatsu, Shiga University of Medical Science, Shiga, Otsu, Japan, for recording the CD spectrum.
References
Appendino, G., Bianchi, F., Bader, A., Campagnuolo, C., Fattorusso, E., Taglialatela-Scafati, O., Blanco-Molina, M., Macho, A., Fiebich, B. L., Bremner, P., Heinrich, M., Ballero, M. & Muñoz, E. (2004). J. Nat. Prod. 67, 532–536. Web of Science CrossRef PubMed CAS Google Scholar
Chen, Y., Fan, G., Zhang, Q., Wu, H. & Wu, Y. (2007). J. Pharm. Biomed. Anal. 43, 926–936. Web of Science CrossRef PubMed CAS Google Scholar
Chen, D., Wang, J., Jiang, Y., Zhou, T., Fan, G. & Wu, Y. (2009). J. Pharm. Biomed. Anal. 50, 695–702. Web of Science CrossRef PubMed CAS Google Scholar
Dorofeenko, G. N., Tkachenko, V. V. & Mezheritskii, V. V. (1973). Chem. Heterocycl. Compd. 9, 948–950. CrossRef Google Scholar
Enraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Gupta, V. K., Rajnikant, Goswami, K. N., Mazumdar, S. K., Gupta, B. D. & Banerjee, S. K. (1993). Cryst. Res. Technol. 28, 187–191. CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Magotra, D. K., Gupta, V. K., Rajnikant, Goswami, K. N. & Gupta, B. D. (1995). Acta Cryst. C51, 2637–2639. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Schroeder, H. D., Bencze, W., Halpern, O. & Schmid, H. (1959). Chem. Ber. 92, 2338–2363. CrossRef CAS Web of Science Google Scholar
Scott, B. R., Pathak, M. A. & Mohn, G. R. (1976). Mutat. Res. 39, 29–74. CrossRef PubMed CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Singh, A., Gupta, V. K., Kant, R. & Goswami, K. N. (1995). Mol. Mater. 5, 289–297. CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stemple, N. R. & Watson, W. H. (1972). Acta Cryst. B28, 2485–2489. CSD CrossRef IUCr Journals Web of Science Google Scholar
Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Thailambal, V. G. & Pattabhi, V. (1985). Acta Cryst. C41, 802–804. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Thailambal, V. G. & Pattabhi, V. (1987). Acta Cryst. C43, 2369–2372. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Thailambal, V. G., Pattabhi, V. & Gabe, E. J. (1986). Acta Cryst. C42, 1017–1019. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.