research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of cytosinium hydrogen maleate–cytosine (1/1) from the original data

CROSSMARK_Color_square_no_text.svg

aInst. of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: fabry@fzu.cz

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 9 February 2016; accepted 8 March 2016; online 15 March 2016)

The title salt, C4H6N3O+·C4H3O4·C4H5N3O, has been redetermined from the data published by Benali-Cherif, Falek & Direm [Acta Cryst. (2009), E65, o3058–o3059]. The improvement of the present redetermination consists in the discovery of the splitting of one of the H atoms into two disordered positions, the occupancies of which are equal to 0.55 (2) and 0.45 (2). These H atoms are involved in an N⋯N hydrogen bond and are shifted towards its centre. The disorder of these H atoms is in agreement with a similar environment of the two independent, but chemically equivalent, cytosinium/cytosine mol­ecules.

1. Chemical context

Structures which contain hydroxyl, secondary and primary amine groups are often determined incorrectly because of an assumed geometry of these groups and the subsequent applied constraints or restraints. In such cases, the correct geometry is missed as it is not verified by inspection of the difference electron-density maps. Thus a considerable number of structures could have been determined more correctly – cf. Figs. 1[link] and 2[link] in Fábry et al. (2014[Fábry, J., Dušek, M., Vaněk, P., Rafalovskyi, I., Hlinka, J. & Urban, J. (2014). Acta Cryst. C70, 1153-1160.]). The inclusion of such structures causes bias in the crystallographic databases.

[Scheme 1]
[Figure 1]
Figure 1
View of the constituent mol­ecules and atoms of the title structure in the original article [Benali-Cherif, Falek & Direm (2009[Benali-Cherif, N., Falek, W. & Direm, A. (2009). Acta Cryst. E65, o3058-o3059.]). Acta Cryst. E65, o3058–o3059]. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
A section of the difference electron-density map for the present redetermined title structure, which shows the build up of the electron density between atoms N1 and N3. Positive and negative electron densities are indicated by continuous and dashed lines, respectively. The increment between the contours is 0.05 e Å−3 (JANA2006; Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]).

In the course of recalculation of suspect structures which were retrieved from the Cambridge Crystallographic Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]), a defect in the structure determination of 2-amino-4,6-di­meth­oxy­pyrimidine–4-amino­benzoic acid (1/1) by Benali-Cherif et al. (2009[Benali-Cherif, N., Falek, W. & Direm, A. (2009). Acta Cryst. E65, o3058-o3059.]) has been found; the CSD refcode is DUJCAN. The aim of the present article is to demonstrate how the original structure determination can be improved.

2. Structural commentary

The structure of the title compound has been described by Benali-Cherif et al. (2009[Benali-Cherif, N., Falek, W. & Direm, A. (2009). Acta Cryst. E65, o3058-o3059.]). In that article, the hydrogen atom H3b was attached to atom N3b and refined with a distance constraint of N3b—H3b = 0.86 Å with Uiso(H3b) = 1.2Ueq(N3b). This hydrogen is involved in the hydrogen bond N3b—H3b⋯N3a (Fig. 1[link]).

However, inspection of the difference electron density map of the recalculated structure has shown that hydrogen atom H3b is disordered over two positions (Fig. 2[link]), between atoms N3a and N3b. Thus, atom H3b was split into two atoms, labelled as H1n3b and H1n3a, with respective occupancies 0.52 (2) and 0.48 (2). These hydrogen atoms remain involved in the N3a⋯N3b hydrogen bond (Table 1[link]), as shown in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1b—H1b⋯O2i 0.956 (15) 1.824 (15) 2.7718 (14) 170.8 (13)
N8b—H8b1⋯O7bii 0.900 (17) 2.030 (18) 2.8517 (14) 151.2 (13)
N8b—H8b2⋯O7a 0.992 (15) 1.850 (15) 2.8411 (15) 177.4 (12)
C5b—H5b⋯O2iii 0.93 2.43 3.3347 (16) 164.60
N1a—H1a⋯O4 0.952 (14) 1.793 (14) 2.7411 (14) 173.2 (12)
N8a—H8a1⋯O7b 0.897 (16) 1.959 (16) 2.8555 (15) 179.0 (13)
N8a—H8a2⋯O7aiv 0.885 (17) 2.028 (18) 2.8368 (15) 151.5 (14)
C5a—H5a⋯O4iv 0.93 2.37 3.2970 (16) 175.15
O1—H3⋯O3 1.223 (14) 1.201 (14) 2.4155 (12) 170.6 (15)
O1—H3⋯C1 1.223 (14) 2.071 (15) 3.0775 (15) 136.7 (11)
O3—H3⋯O1 1.201 (14) 1.223 (14) 2.4155 (12) 170.6 (15)
O3—H3⋯C4 1.201 (14) 2.100 (15) 3.0927 (15) 137.4 (12)
N3b—H1n3b⋯N3a 0.861 (16) 1.979 (16) 2.8398 (14) 178 (2)
N3a—H1n3a⋯N3b 0.873 (18) 1.970 (18) 2.8398 (14) 174 (3)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x, y-1, z; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) x, y+1, z.
[Figure 3]
Figure 3
View of the constituent mol­ecules and atoms of the present redetermined title structure. The displacement ellipsoids are drawn at the 50% probability level.

The observed disorder of the secondary amine hydrogen atoms is probably due to the chemical equality of two symmetry-independent cytosinium/cytosine mol­ecules and their quite similar environments. Otherwise, the description of the hydrogen-bond pattern by Benali-Cherif et al. (2009[Benali-Cherif, N., Falek, W. & Direm, A. (2009). Acta Cryst. E65, o3058-o3059.]) remains intact because locally one of the nitro­gen atoms, N3a or N3b, acts as a donor while the other acts as an acceptor of the hydrogen bond.

The hydrogen atom H3, which was situated about the centre of the hydrogen bond O3—H3⋯O1 has also been checked (Fig. 4[link]). It turns out that the build-up of the electron density is not split into two positions and the original position determined by Benali-Cherif et al. (2009[Benali-Cherif, N., Falek, W. & Direm, A. (2009). Acta Cryst. E65, o3058-o3059.]) is correct.

[Figure 4]
Figure 4
A section of the difference electron-density map for the present redetermined title structure, which shows the build up of the electron density between atoms O1 and O3. Positive and negative electron densities are indicated by continuous and dashed lines, respectively. The increment between the contours is 0.05 e Å−3 (JANA2006; Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]).

In a broader sense, the present redetermination emphasizes how important it is to carefully examine the difference electron-density maps during structure determinations.

3. Supra­molecular features

The graph set analysis (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]) of the title compound has been described by Benali-Cherif et al. (2009[Benali-Cherif, N., Falek, W. & Direm, A. (2009). Acta Cryst. E65, o3058-o3059.]).

4. Database survey

The CIF file of the article by Benali-Cherif et al. (2009[Benali-Cherif, N., Falek, W. & Direm, A. (2009). Acta Cryst. E65, o3058-o3059.]) has been included in the Cambridge Crystallographic Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) under the refcode DUJCAN.

5. Synthesis and crystallization

The preparation of the title compound has been described by Benali-Cherif et al. (2009[Benali-Cherif, N., Falek, W. & Direm, A. (2009). Acta Cryst. E65, o3058-o3059.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All the hydrogen atoms were discernible in the difference electron density maps. The aryl hydrogen atoms were refined as constrained with Car­yl—Har­yl = 0.93 Å and Uiso(Har­yl) = 1.2Ueq(Car­yl). The displacement parameter of the hydroxyl hydrogen atom H3 was constrained by Uiso(H3) = 1.5Ueq(O3). The hydrogen atoms of the primary and secondary amine groups were constrained by Uiso(Hamine) = 1.2Ueq(Namine). In addition, the distances of the disordered amine hydrogen atoms, H1n36 and H1n3b, were refined with the distance restraint N—H = 0.87 (1) Å, and their occupational parameters constrained to fulfill the condition that their sum = 1 [viz. 0.55 (2) (H1n3b) and 0.45 (2) (H1n3a)].

Table 2
Experimental details

Crystal data
Chemical formula C4H6N3O+·C4H3O4·C4H5N3O
Mr 338.29
Crystal system, space group Monoclinic, C2/c
Temperature (K) 298
a, b, c (Å) 27.3226 (5), 7.3618 (2), 14.6742 (4)
β (°) 93.905 (1)
V3) 2944.77 (13)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.13
Crystal size (mm) 0.3 × 0.15 × 0.1
 
Data collection
Diffractometer Nonius KappaCCD
No. of measured, independent and observed [I > 3σ(I)] reflections 3490, 3474, 2367
Rint 0.043
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 3σ(F2)], wR(F2), S 0.038, 0.093, 1.85
No. of reflections 3474
No. of parameters 246
No. of restraints 2
H-atom treatment H atoms treated by a mixture of restrained and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.20
Computer programs: KappaCCD Server Software (Nonius, 1998[Nonius (1998). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.]), DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and JANA2006 (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]). Extinction correction: Becker & Coppens (1974[Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129-147.]).

Nine reflections [5 1 0; −9 1 1;-1 1 1; −8 2 1; 4 2 1; −2 0 2; 0 0 2;-3 1 2; −20 0 8; 22 2 8] for which ||Fo| − |Fc|| >10σ(F) were omitted from the final cycles of refinement.

Supporting information


Computing details top

Data collection: KappaCCD Server Software (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: JANA2006 (Petříček et al., 2014); molecular graphics: PLATON (Spek, 2009) and JANA2006 (Petříček et al., 2014); software used to prepare material for publication: JANA2006 (Petříček et al., 2014).

Cytosinium hydrogen maleate–cytosine (1/1) top
Crystal data top
C4H6N3O+·C4H3O4·C4H5N3OF(000) = 1408
Mr = 338.29Dx = 1.526 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3490 reflections
a = 27.3226 (5) Åθ = 2.8–28.0°
b = 7.3618 (2) ŵ = 0.13 mm1
c = 14.6742 (4) ÅT = 298 K
β = 93.905 (1)°Prism, colourless
V = 2944.77 (13) Å30.3 × 0.15 × 0.1 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
2367 reflections with I > 3σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
Graphite monochromatorθmax = 28.0°, θmin = 2.8°
ωθ scansh = 035
3490 measured reflectionsk = 09
3474 independent reflectionsl = 1919
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
R[F > 3σ(F)] = 0.038Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
wR(F) = 0.093(Δ/σ)max = 0.022
S = 1.85Δρmax = 0.20 e Å3
3474 reflectionsΔρmin = 0.20 e Å3
246 parametersExtinction correction: B–C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
2 restraintsExtinction coefficient: 21000 (5000)
33 constraints
Special details top

Refinement. This part differs from the original article by Benali-Cherif et al. (2009). In the refinement, F2 > 3σ(F2) has been used as a criterion for observed diffractions.

The diffractions for which ||Fo|-|Fc||>10σ(F) were discarded from the refinement. This refers to the diffractions 5 1 0; -9 1 1; -1 1 1; -8 2 1; 4 2 1; -2 0 2; 0 0 2; -3 1 2; -20 0 8; 22 2 8.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O7b0.33926 (3)1.06385 (11)0.29287 (6)0.0445 (3)
N1b0.40065 (3)0.90018 (14)0.23744 (7)0.0400 (3)
H1b0.4157 (5)1.011 (2)0.2197 (9)0.048*
N3b0.33591 (3)0.75686 (12)0.30318 (7)0.0368 (3)
N8b0.33297 (5)0.44786 (15)0.31476 (9)0.0506 (4)
H8b10.3454 (5)0.338 (2)0.3026 (9)0.0607*
H8b20.3002 (6)0.458 (2)0.3394 (9)0.0607*
C2b0.35770 (4)0.91429 (16)0.27860 (8)0.0352 (4)
C4b0.35664 (4)0.59317 (16)0.28928 (8)0.0386 (4)
C5b0.40187 (4)0.58331 (18)0.24835 (9)0.0443 (4)
H5b0.4169450.4721740.239130.0531*
C6b0.42233 (5)0.73892 (18)0.22326 (9)0.0443 (4)
H6b0.4519590.7359420.1956190.0531*
O7a0.23772 (3)0.47438 (12)0.38018 (7)0.0481 (3)
N1a0.17576 (3)0.63613 (15)0.43512 (7)0.0413 (3)
H1a0.1595 (4)0.528 (2)0.4518 (9)0.0496*
N3a0.24303 (3)0.78185 (13)0.37815 (7)0.0375 (3)
N8a0.24808 (5)1.09110 (16)0.37611 (9)0.0522 (4)
H8a10.2767 (6)1.0812 (19)0.3501 (10)0.0627*
H8a20.2363 (5)1.200 (2)0.3886 (10)0.0627*
C2a0.21958 (4)0.62341 (16)0.39695 (8)0.0364 (4)
C4a0.22340 (4)0.94481 (16)0.39665 (8)0.0388 (4)
C5a0.17788 (4)0.95478 (18)0.43679 (9)0.0439 (4)
H5a0.1640211.0660810.4503870.0527*
C6a0.15539 (5)0.79794 (18)0.45457 (9)0.0447 (4)
H6a0.1253220.8004620.4806830.0536*
O10.00024 (3)0.51326 (12)0.62974 (6)0.0463 (3)
O20.05067 (3)0.30108 (13)0.67262 (7)0.0560 (3)
O30.07413 (3)0.53082 (11)0.54869 (6)0.0433 (3)
H30.0368 (5)0.535 (2)0.5874 (9)0.0649*
O40.12217 (3)0.33900 (14)0.48088 (7)0.0555 (3)
C10.08603 (4)0.37076 (18)0.52453 (8)0.0394 (4)
C20.05595 (5)0.21144 (19)0.54864 (10)0.0512 (5)
H10.0673970.1001380.5289620.0614*
C30.01546 (5)0.20204 (19)0.59362 (10)0.0523 (5)
H20.0032810.0852360.6005010.0628*
C40.01355 (4)0.34770 (18)0.63476 (8)0.0415 (4)
H1n3b0.3079 (5)0.763 (3)0.3267 (14)0.0442*0.554 (16)
H1n3a0.2718 (6)0.783 (4)0.3556 (18)0.045*0.446 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O7b0.0462 (5)0.0256 (5)0.0628 (6)0.0015 (3)0.0110 (4)0.0015 (4)
N1b0.0413 (6)0.0342 (6)0.0454 (6)0.0014 (4)0.0100 (5)0.0016 (5)
N3b0.0375 (5)0.0249 (6)0.0486 (6)0.0009 (4)0.0073 (4)0.0018 (4)
N8b0.0551 (7)0.0278 (6)0.0705 (8)0.0025 (5)0.0171 (6)0.0000 (5)
C2b0.0374 (6)0.0291 (7)0.0388 (7)0.0009 (5)0.0007 (5)0.0022 (5)
C4b0.0450 (6)0.0285 (7)0.0420 (7)0.0019 (5)0.0002 (5)0.0021 (5)
C5b0.0452 (7)0.0368 (8)0.0516 (8)0.0105 (5)0.0093 (6)0.0029 (6)
C6b0.0425 (6)0.0435 (8)0.0476 (8)0.0062 (5)0.0093 (6)0.0040 (6)
O7a0.0468 (5)0.0246 (5)0.0740 (6)0.0004 (4)0.0134 (4)0.0008 (4)
N1a0.0382 (5)0.0335 (6)0.0532 (6)0.0044 (4)0.0100 (5)0.0018 (5)
N3a0.0354 (5)0.0246 (5)0.0531 (6)0.0008 (4)0.0079 (4)0.0001 (4)
N8a0.0515 (6)0.0263 (6)0.0806 (9)0.0013 (5)0.0171 (6)0.0004 (6)
C2a0.0374 (6)0.0269 (7)0.0448 (7)0.0008 (5)0.0024 (5)0.0000 (5)
C4a0.0400 (6)0.0296 (7)0.0467 (7)0.0024 (5)0.0009 (5)0.0017 (5)
C5a0.0421 (7)0.0341 (7)0.0560 (8)0.0085 (5)0.0059 (6)0.0059 (6)
C6a0.0375 (6)0.0457 (8)0.0514 (8)0.0032 (5)0.0073 (6)0.0065 (6)
O10.0411 (5)0.0411 (6)0.0582 (6)0.0016 (4)0.0155 (4)0.0041 (4)
O20.0471 (5)0.0532 (6)0.0703 (7)0.0059 (4)0.0234 (5)0.0033 (5)
O30.0426 (5)0.0365 (5)0.0521 (5)0.0035 (4)0.0137 (4)0.0025 (4)
O40.0547 (5)0.0476 (6)0.0677 (6)0.0001 (4)0.0288 (5)0.0052 (5)
C10.0402 (6)0.0388 (7)0.0398 (7)0.0003 (5)0.0070 (5)0.0002 (6)
C20.0545 (8)0.0338 (8)0.0675 (9)0.0020 (6)0.0202 (7)0.0028 (6)
C30.0544 (8)0.0332 (8)0.0714 (10)0.0045 (6)0.0185 (7)0.0033 (7)
C40.0383 (6)0.0417 (8)0.0449 (7)0.0028 (5)0.0059 (5)0.0025 (6)
Geometric parameters (Å, º) top
O7b—C2b1.2345 (14)N3a—H1n3a0.873 (18)
N1b—H1b0.956 (15)N8a—H8a10.897 (16)
N1b—C2b1.3600 (15)N8a—H8a20.885 (17)
N1b—C6b1.3492 (17)N8a—C4a1.3165 (17)
N3b—C2b1.3627 (15)H8a1—H8a21.54 (2)
N3b—C4b1.3528 (15)C4a—C5a1.4137 (17)
N3b—H1n3b0.861 (16)C5a—H5a0.93
N8b—H8b10.900 (17)C5a—C6a1.3420 (19)
N8b—H8b20.992 (15)C6a—H6a0.93
N8b—C4b1.3174 (17)O1—H31.223 (14)
H8b1—H8b21.64 (2)O1—C41.2793 (16)
C4b—C5b1.4123 (17)O2—C41.2376 (15)
C5b—H5b0.93O3—H31.201 (14)
C5b—C6b1.3373 (18)O3—C11.2789 (15)
C6b—H6b0.93O4—C11.2354 (15)
O7a—C2a1.2356 (14)C1—C21.4886 (19)
N1a—H1a0.952 (14)C2—H10.93
N1a—C2a1.3591 (15)C2—C31.328 (2)
N1a—C6a1.3535 (17)C3—H20.93
N3a—C2a1.3679 (15)C3—C41.4859 (19)
N3a—C4a1.3493 (15)H1n3b—H1n3a1.11 (2)
H1b—N1b—C2b117.2 (8)H8a2—N8a—C4a119.4 (10)
H1b—N1b—C6b120.3 (8)O7a—C2a—N1a121.32 (11)
C2b—N1b—C6b122.48 (11)O7a—C2a—N3a121.14 (10)
C2b—N3b—C4b121.52 (10)N1a—C2a—N3a117.53 (10)
C2b—N3b—H1n3b118.7 (15)N3a—C4a—N8a117.68 (11)
C4b—N3b—H1n3b119.8 (15)N3a—C4a—C5a120.20 (11)
H8b1—N8b—H8b2120.1 (13)N8a—C4a—C5a122.12 (12)
H8b1—N8b—C4b118.2 (9)C4a—C5a—H5a121.18
H8b2—N8b—C4b121.2 (9)C4a—C5a—C6a117.64 (12)
O7b—C2b—N1b121.19 (11)H5a—C5a—C6a121.18
O7b—C2b—N3b121.54 (10)N1a—C6a—C5a121.06 (12)
N1b—C2b—N3b117.28 (10)N1a—C6a—H6a119.47
N3b—C4b—N8b117.51 (11)C5a—C6a—H6a119.47
N3b—C4b—C5b119.83 (11)H3—O1—C4114.1 (8)
N8b—C4b—C5b122.67 (11)H3—O3—C1113.3 (8)
C4b—C5b—H5b121.07O1—H3—O3170.6 (15)
C4b—C5b—C6b117.86 (12)O3—C1—O4123.05 (12)
H5b—C5b—C6b121.07O3—C1—C2120.35 (11)
N1b—C6b—C5b121.00 (12)O4—C1—C2116.60 (12)
N1b—C6b—H6b119.5C1—C2—H1114.68
C5b—C6b—H6b119.5C1—C2—C3130.64 (13)
H1a—N1a—C2a119.2 (8)H1—C2—C3114.68
H1a—N1a—C6a118.4 (8)C2—C3—H2114.74
C2a—N1a—C6a122.28 (11)C2—C3—C4130.53 (13)
C2a—N3a—C4a121.30 (10)H2—C3—C4114.74
C2a—N3a—H1n3a121.9 (18)O1—C4—O2122.93 (12)
C4a—N3a—H1n3a116.8 (18)O1—C4—C3119.78 (11)
H8a1—N8a—H8a2120.2 (14)O2—C4—C3117.28 (12)
H8a1—N8a—C4a120.4 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1b—H1b···O2i0.956 (15)1.824 (15)2.7718 (14)170.8 (13)
N8b—H8b1···O7bii0.900 (17)2.030 (18)2.8517 (14)151.2 (13)
N8b—H8b2···O7a0.992 (15)1.850 (15)2.8411 (15)177.4 (12)
C5b—H5b···O2iii0.932.433.3347 (16)164.60
N1a—H1a···O40.952 (14)1.793 (14)2.7411 (14)173.2 (12)
N8a—H8a1···O7b0.897 (16)1.959 (16)2.8555 (15)179.0 (13)
N8a—H8a2···O7aiv0.885 (17)2.028 (18)2.8368 (15)151.5 (14)
C5a—H5a···O4iv0.932.373.2970 (16)175.15
O1—H3···O31.223 (14)1.201 (14)2.4155 (12)170.6 (15)
O1—H3···C11.223 (14)2.071 (15)3.0775 (15)136.7 (11)
O3—H3···O11.201 (14)1.223 (14)2.4155 (12)170.6 (15)
O3—H3···C41.201 (14)2.100 (15)3.0927 (15)137.4 (12)
N3b—H1n3b···N3a0.861 (16)1.979 (16)2.8398 (14)178 (2)
N3a—H1n3a···N3b0.873 (18)1.970 (18)2.8398 (14)174 (3)
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x, y1, z; (iii) x+1/2, y+1/2, z1/2; (iv) x, y+1, z.
 

Acknowledgements

The author is grateful for the support of the Ministry of Education of the Czech Republic under Project NPU I-LO1603.

References

First citationBecker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129–147.  CrossRef IUCr Journals Web of Science Google Scholar
First citationBenali-Cherif, N., Falek, W. & Direm, A. (2009). Acta Cryst. E65, o3058–o3059.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFábry, J., Dušek, M., Vaněk, P., Rafalovskyi, I., Hlinka, J. & Urban, J. (2014). Acta Cryst. C70, 1153–1160.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (1998). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds