research communications
Crystal structures of three N-(arylsulfonyl)-4-fluorobenzamides
aDepartment of Chemistry, University College of Science, Tumkur University, Tumkur 572 103, India, bInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru-6, India, cDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru-6, India, and dUniversity College of Science, Tumkur, India
*Correspondence e-mail: pasuchetan@yahoo.co.in
The crystal structures of three N-arylsulfonyl-4-fluorobenzamides, namely 4-fluoro-N-(2-methylphenylsulfonyl)benzamide, C14H12FNO3S, (I), N-(2-chlorophenylsulfonyl)-4-fluorobenzamide, C13H9ClFNO3S, (II), and N-(4-chlorophenylsulfonyl)-4-fluorobenzamide monohydrate, C13H9ClFNO3S·H2O, (III), are described and compared with related structures. The of (I) contains two independent molecules (A and B), while that of (II) contains just one molecule, and that of (III) contains a molecule of water in addition to one main molecule. The dihedral angle between the benzene rings is 82.83 (11)° in molecule A and 85.01 (10)° in molecule B of (I), compared to 89.91 (10)° in (II) and 81.82 (11)° in (III). The of (I) features strong N—H⋯O hydrogen bonds between the A and B molecules, resulting in an R44(16) tetrameric unit. These tetrameric units are connected into sheets in the bc plane by various C—H⋯O interactions, and adjacent sheets are further interlinked via C—H⋯πaryl interactions, forming a three-dimensional architecture. The is further stabilized by πaryl–πaryl and S=O⋯πaryl interactions. In the crystal of (II), molecules are connected into R22(8) and R22(14) dimers via N—H⋯O hydrogen bonds and C—H⋯O interactions, respectively; the dimers are further interconnected via a weak C=O⋯πaryl interaction, leading to the formation of chains along [1-10]. In the crystal of (III), N—H⋯O and O—H⋯O hydrogen bonds involving both the main molecule and the solvent water molecule results in the formation of sheets parallel to the bc plane. The sheets are further connected by C—H⋯O interactions and weak C—Cl⋯πaryl, C—F⋯πaryl and S=O⋯πaryl interactions, forming a three-dimensional architecture.
1. Chemical context
Sulfonamide and amide moieties play a very significant role as key constituents in a number of biologically active molecules (Mohan et al., 2013; Manojkumar et al., 2013; Hamad & Abed, 2014). In recent years, N-(arylsulfonyl)arylamides have received much attention as they constitute an important class of drugs for Alzheimer's disease (Hasegawa & Yamamoto, 2000), as well as antibacterial inhibitors of synthetases (Banwell et al., 2000), antagonists for angiotensin II (Chang et al., 1994) and leukotriene D4-receptors (Musser et al., 1990). Further, N-(arylsulfonyl)arylamides are known to be potent anti-tumour agents against a broad spectrum of human tumour xenografts (colon, lung, breast, ovary and prostate) in nude mice (Mader et al., 2005). In view of the importance of N-(arylsulfonyl)arylamides, the title compounds, (I), (II) and (III), were synthesized and we report herein on their crystal structures.
2. Structural commentary
The contains two independent molecules (A and B) (Fig. 1), that differ slightly in their molecular conformations. The of compound (II) (Fig. 2) contains one molecule, while compound (III) (Fig. 3) crystallizes as a water monosolvate. In molecules A and B of (I), the ortho-methyl substituent on the benzenesulfonyl ring is syn to the N—H bond in the central –C–SO2–N–C(O)– segment (Fig. 1). This is similar to the syn conformation observed for the N—H bond in the central –C–SO2–N–C(O)– segment with respect to the ortho-chloro substitution on the benzenesulfonyl ring of (II). The dihedral angle between the benzene rings is 82.83 (11)° in molecule A and 85.01 (10)° in molecule B of (I), compared to 89.91 (10)° in (II) and 81.82 (11)° in (III). Further, in (I) the dihedral angles between the benzoic acid ring and the central C8–C7(O3)–N1–S1 segment are 28.99 (1) and 23.81 (9)° in molecules A and B, respectively, while it is 10.41 (10)° in (II) and 21.23 (10)° in (III). The dihedral angles between the sulfonamide ring and the C7(O3)–N1–S1–C1 segment are, respectively, 68.67 (12) and 77.31 (10)° in molecules A and B of (I). The corresponding dihedral angle in (II) is 70.77 (11)°, whereas in (III) the value is much less, viz 48.03 (12)°. An intramolecular C14B–-H14B⋯O2B hydrogen bond (Fig.1 and Table 1) is observed in molecule B of (I), with an S(6) ring motif.
of compound (I)3. Supramolecular features
The , features two strong N—H⋯O hydrogen bonds, namely, N1A—H1A⋯O1B and N1B—H1B⋯O1A hydrogen bonds (Table 1) between the A and B molecules, resulting in a tetrameric unit (Fig. 4). The unitary level graph-set notation for each hydrogen bond is D(2), while in the second level the tetrameric unit has a graph-set motif of R44(16). Adjacent tetramers are connected into sheets in the bc plane (Fig. 4) via C6A—H6A⋯O3B, C10B—H10B⋯O1B and C10B—H10B⋯O3B interactions (Table 1). Adjacent sheets are further interconnected via C4B—H4B⋯πaryl interactions (involving the centroid of the fluorobenzoyl ring of molecule B) (Fig. 5 and Table 1) to form chains along the a axis, so forming a three-dimensional architecture. The of (I), is further stabilized by πaryl–πaryl interactions (Fig. 6) [Cg1⋯Cg2 = 3.7413 (12) Å; Cg1 and Cg2 are the centroids of the fluorobenzoyl rings of molecules A and B, respectively] and also by weak S1A=O2A⋯πaryl interactions [O⋯Cg3 = 3.7991 (19) Å; Cg3 is the centroid of the benzenesulfonyl ring of molecule B].
of (I)In the crystal of (II), molecules are connected into R22(8) dimers via N1—H1⋯O2 hydrogen bonds (Fig. 7a and Table 2), and the dimers are further interconnected via C13—H13⋯O2 interactions (Fig. 7a and Table 2) with an R22(14) graph-set motif. Weak C7=O3⋯πaryl interactions [O⋯Cg = 3.9157 (19) Å; Cg is the centroid of the fluorobenzoyl ring] connect these dimers, thus forming a one-dimensional architecture (Fig. 7b).
|
In the crystal of (III), molecules are connected via bridging water molecules, through strong N1—H1⋯O4, O4—H1O4⋯O1, O4—H2O4⋯O2 and O4—H2O4⋯O3 hydrogen bonds (Table 3), resulting in the formation of sheets parallel to the bc plane (Figs. 8 and 9). The sheets are further connected by C5—H5⋯O1 interactions, forming C6 chains (Table 3) running parallel to the c axis (Fig. 10). The is also stabilized by several weak C—H⋯π interactions, C4—Cl1⋯Cg1 [Cl⋯Cg1 = 3.7513 (11) Å], C11—F1⋯Cg2 [F1⋯Cg2 = 3.8674 (17) Å] and S1=O2⋯Cg1 interactions [O2⋯Cg1 = 3.2039 (17) Å] (Cg1 and Cg2 are the centroids of the benzenesulfonyl ring and fluorobenzoyl rings, respectively), forming a complex three-dimensional architecture (Fig. 11).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.37, last update February 2016; Groom & Allen, 2014) for similar compounds viz N-(arylsulfonyl)-4-(substituted)benzamides, gave 14 hits. These fourteen compounds along with the three title compounds, (I)–(III), are grouped into three series; series 1: N-(2-methylphenylsulfonyl)benzamide, N-(2-methylphenylsulfonyl)-4-(chloro/methyl/nitro/methoxy)benzamides and (I), series 2: N-(2-chlorophenylsulfonyl)benzamide, N-(2-chlorophenylsulfonyl)-4-(chloro/methyl/nitro/methoxy)benzamides and (II), and series 3: N-(4-chlorophenylsulfonyl)benzamide, N-(4-chlorophenylsulfonyl)-4-(chloro/methyl/nitro)benzamides and (III).
Series 1: In series 1 (Table 4), the asymmetric units of three compounds, namely, N-(2-methylphenylsulfonyl)benzamide (Suchetan et al., 2010d), N-(2-methylphenylsulfonyl)-4-nitrobenzamide (Suchetan et al., 2011b) and N-(2-methylphenylsulfonyl)-4-methoxybenzamide (Sreenivasa et al., 2014a) contain one molecule, while those of N-(2-methylphenylsulfonyl)-4-chlorobenzamide (Suchetan et al., 2010e), N-(2-methylphenylsulfonyl)-4-methylbenzamide (Gowda et al., 2010a) and N-(2-methylphenylsulfonyl)-4-fluorobenzamide (I) contain two molecules. In all of the compounds of series 1, the conformation of the ortho-methyl group on the benzenesulfonyl ring is syn to the N—H bond in the central –C–SO2--N–C(O)– segment. The values of the dihedral angle between the two aromatic rings in the molecules of series 1 fall in the range 73.9 (1)– 89.4 (1)°, the smallest dihedral angle being in N-(2-methylphenylsulfonyl)benzamide and the largest in N-(2-methylphenylsulfonyl)-4-chlorobenzamide (Table 4). Comparison of the intermolecular interactions displayed in the crystal structures of compounds in this series reveals that, except for the methoxy- and fluoro-substituted compounds, the crystal structures all display N—H⋯O(S) hydrogen bonds, while the methoxy- and fluoro-substituted compounds display other weak interactions of the type C—H⋯O, C—H⋯πaryl, πaryl–πaryl in addition to the N—H⋯O(S) hydrogen bonds. However, except for compound (I), all the compounds display one-dimensional supramolecular chains, whereas in (I), the supramolecular architecture is three-dimensional.
|
Series 2: The asymmetric units of all of the compounds in series 2 (Table 5) contain one molecule and the conformation of the ortho-chloro substituent on the benzenesulfonyl ring is syn to the N—H bond in the central –C–SO2–N–C(O)– segment. The values of the dihedral angle between the two aromatic rings in the molecules fall in the range 73.3 (1)–89.91 (10)°, which is almost the same as in series 1, the smallest being in N-(2-chlorophenylsulfonyl)benzamide (Gowda et al., 2010b) and the largest in N-(2-chlorophenylsulfonyl)-4-fluorobenzamide (II) (Table 5). The crystal structures of N-(2-chlorophenylsulfonyl)-benzamide, N-(2-chlorophenylsulfonyl)-4-chlorobenzamide (Suchetan et al., 2011c) and N-(2-chlorophenylsulfonyl)-4-methylbenzamide (Gowda et al., 2010c) display zero-dimensional architectures featuring inversion-related R22(8) dimers formed via N—H⋯O(S) hydrogen bonds, while strong N—H⋯O(S) hydrogen bonds in N-(2-chlorophenylsulfonyl)-4-nitrobenzamide (Suchetan et al., 2011d) lead to one-dimensional chains. Similar to that observed in series 1, the methoxy- and fluoro-substituted compounds in series 2 show diversity in their intermolecular interactions. N-(2-chlorophenylsulfonyl)-4-methoxybenzamide (Sreenivasa et al., 2014b) features structure-directing N—H⋯O(S) and C—H⋯O(S) hydrogen bonds and weak πaryl–πaryl interactions, resulting in a two-dimensional structure. However, in N-(2-chlorophenylsulfonyl)-4-fluorobenzamide (II), N—H⋯O(S) and C—H⋯O(S) hydrogen bonds (with no structure-directing characteristics) between molecules form inversion-related dimers, and these dimers are interconnected via C=O⋯πaryl interactions, forming a one-dimensional architecture.
|
Series 3: In series 3, the parent compound N-(4-chlorophenylsulfonyl)benzamide (Suchetan et al., 2010a) crystallizes with two molecules in the while N-(4-chlorophenylsulfonyl)-4-chlorobenzamide (Suchetan et al., 2010b), N-(4-chlorophenylsulfonyl)-4-methylbenzamide (Suchetan et al., 2010c) and N-(4-chlorophenylsulfonyl)-4-nitrobenzamide (Suchetan et al., 2011a) crystallize with one molecule, and N-(4-chlorophenylsulfonyl)-4-fluorobenzamide (III) crystallizes with one molecule and a molecule of water in the The values of the dihedral angle between the two aromatic rings in the molecules are in the range 62.8 (1)–89.5 (1)°, the smallest value being for N-(4-chlorophenylsulfonyl)benzamide and the largest for N-(4-chlorophenylsulfonyl)-4-methylbenzamide (Table 6). Except for compound (III), the crystals of all of the compounds feature N—H⋯O(S) hydrogen bonds, either forming R22(8) inversion dimers (zero-dimensional structure) or one-dimensional chains. Once again, the fluoro-substituted compound (III) displays a variety of hydrogen bonds and weak interactions (Tables 3 and 6), leading to a three-dimensional architecture.
|
5. Synthesis and crystallization
Compounds (I)–(III) were prepared by refluxing a mixture of 4-fluorobenzoic acid, the corresponding substituted benzenesulfonamides and phosphorousoxychloride for 3 h on a water bath. The resultant mixtures were cooled and poured into ice-cold water. The solids obtained were filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solutions. The compounds were later re-precipitated by acidifying the filtered solutions with dilute HCl. They were filtered, dried and recrystallized. [Melting point (m.p.) of (I) = 410 K, (II) = 428 K and (III) = 456 K]. Prism-like, colourless single crystals of all three of the compounds were obtained from slow evaporation of the respective solutions of the compounds in methanol (with few drops of water).
6. Refinement
Crystal data, data collection and structure . The H atoms of the NH groups in (I)–(III) were located in difference Fourier maps and freely refined. The H atoms of the water molecule in (III) were located in a difference Fourier map and were refined with the bond length restraint O—H = 0.83 (3) Å. The other H atoms were positioned with idealized geometry using a riding model: C—H = 0.93–0.96 Å, with Uiso = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms. In the final cycles of reflections (0 1 1), (0 0 2) and ( 0 20) in (I), (0 0 2) in (II) and (2 0 0) in (III) were omitted due to large differences in F2obs and F2calc.
details are summarized in Table 7
|
Supporting information
For all compounds, data collection: APEX2 (Bruker, 2009); cell
APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C14H12FNO3S | Prism |
Mr = 293.31 | Dx = 1.447 Mg m−3 |
Monoclinic, P21/c | Melting point: 406 K |
Hall symbol: -P 2ybc | Cu Kα radiation, λ = 1.54178 Å |
a = 10.0259 (3) Å | Cell parameters from 147 reflections |
b = 12.4289 (3) Å | θ = 5.4–64.8° |
c = 21.6241 (6) Å | µ = 2.32 mm−1 |
β = 92.443 (1)° | T = 173 K |
V = 2692.15 (13) Å3 | Prism, colourless |
Z = 8 | 0.28 × 0.26 × 0.21 mm |
F(000) = 1216 |
Bruker APEXII diffractometer | 4165 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.042 |
Graphite monochromator | θmax = 64.8°, θmin = 5.4° |
phi and φ scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | k = −14→14 |
Tmin = 0.548, Tmax = 0.614 | l = −25→22 |
26667 measured reflections | 1 standard reflections every 1 reflections |
4404 independent reflections | intensity decay: 0.1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.121 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0793P)2 + 2.0561P] where P = (Fo2 + 2Fc2)/3 |
4404 reflections | (Δ/σ)max = 0.001 |
371 parameters | Δρmax = 0.36 e Å−3 |
0 restraints | Δρmin = −0.46 e Å−3 |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
H1B | 0.025 (3) | 0.916 (2) | 0.1633 (11) | 0.025 (6)* | |
H1A | 0.141 (3) | 1.144 (2) | 0.0099 (15) | 0.047 (9)* | |
S1B | 0.19601 (5) | 0.98360 (4) | 0.12225 (2) | 0.01914 (16) | |
S1A | 0.23194 (5) | 1.14938 (4) | −0.07809 (2) | 0.02559 (17) | |
F1B | −0.25542 (13) | 0.86212 (10) | 0.41052 (6) | 0.0328 (3) | |
O3B | 0.15022 (14) | 1.09200 (11) | 0.24124 (6) | 0.0235 (3) | |
F1A | −0.30717 (16) | 1.30341 (12) | 0.16831 (7) | 0.0461 (4) | |
N1B | 0.08517 (17) | 0.95866 (14) | 0.17484 (8) | 0.0208 (4) | |
O2B | 0.17274 (15) | 0.90165 (12) | 0.07688 (6) | 0.0290 (4) | |
O1B | 0.18579 (15) | 1.09350 (12) | 0.10231 (6) | 0.0267 (3) | |
N1A | 0.12947 (17) | 1.17667 (15) | −0.02228 (8) | 0.0232 (4) | |
C9B | −0.05607 (19) | 0.86357 (15) | 0.27587 (9) | 0.0200 (4) | |
H9B | −0.0281 | 0.8166 | 0.2456 | 0.024* | |
C8A | −0.05155 (19) | 1.26905 (17) | 0.02721 (9) | 0.0223 (4) | |
O3A | 0.04337 (19) | 1.32855 (18) | −0.06557 (9) | 0.0580 (6) | |
C13B | −0.0598 (2) | 1.04189 (16) | 0.32012 (9) | 0.0203 (4) | |
H13B | −0.0330 | 1.1135 | 0.3199 | 0.024* | |
C8B | −0.01651 (19) | 0.97167 (15) | 0.27488 (9) | 0.0181 (4) | |
C11B | −0.1779 (2) | 0.89869 (17) | 0.36500 (9) | 0.0223 (4) | |
C11A | −0.2225 (2) | 1.29198 (18) | 0.12140 (10) | 0.0275 (5) | |
C2A | 0.4432 (2) | 1.27633 (19) | −0.03690 (10) | 0.0289 (5) | |
C7B | 0.07876 (19) | 1.01470 (15) | 0.23026 (9) | 0.0187 (4) | |
C1B | 0.35084 (19) | 0.96772 (16) | 0.16277 (8) | 0.0191 (4) | |
O1A | 0.15399 (18) | 1.14550 (19) | −0.13481 (7) | 0.0515 (6) | |
C10A | −0.1853 (2) | 1.18949 (17) | 0.10451 (10) | 0.0257 (5) | |
H10A | −0.2181 | 1.1294 | 0.1245 | 0.031* | |
C12A | −0.1790 (2) | 1.38297 (17) | 0.09230 (11) | 0.0284 (5) | |
H12A | −0.2062 | 1.4509 | 0.1046 | 0.034* | |
C2B | 0.3912 (2) | 0.86733 (17) | 0.18633 (9) | 0.0259 (5) | |
C10B | −0.1364 (2) | 0.82636 (16) | 0.32158 (9) | 0.0218 (4) | |
H10B | −0.1618 | 0.7545 | 0.3230 | 0.026* | |
C1A | 0.34173 (19) | 1.25928 (16) | −0.08229 (9) | 0.0215 (4) | |
C9A | −0.0986 (2) | 1.17872 (16) | 0.05733 (9) | 0.0211 (4) | |
H9A | −0.0711 | 1.1106 | 0.0455 | 0.025* | |
C3B | 0.5152 (2) | 0.8644 (2) | 0.21795 (11) | 0.0357 (6) | |
H3B | 0.5455 | 0.7996 | 0.2349 | 0.043* | |
C12B | −0.1426 (2) | 1.00568 (16) | 0.36547 (9) | 0.0232 (4) | |
H12B | −0.1733 | 1.0523 | 0.3953 | 0.028* | |
C6B | 0.4292 (2) | 1.05960 (18) | 0.16986 (9) | 0.0246 (4) | |
H6B | 0.3992 | 1.1251 | 0.1538 | 0.029* | |
C13A | −0.0943 (2) | 1.37067 (17) | 0.04461 (11) | 0.0287 (5) | |
H13A | −0.0652 | 1.4310 | 0.0237 | 0.034* | |
C6A | 0.3221 (2) | 1.32776 (19) | −0.13289 (11) | 0.0311 (5) | |
H6A | 0.2538 | 1.3141 | −0.1623 | 0.037* | |
C14B | 0.3083 (3) | 0.76662 (18) | 0.17972 (12) | 0.0382 (6) | |
H14A | 0.3605 | 0.7058 | 0.1936 | 0.057* | |
H14B | 0.2805 | 0.7568 | 0.1371 | 0.057* | |
H14C | 0.2311 | 0.7730 | 0.2043 | 0.057* | |
C7A | 0.0419 (2) | 1.26305 (19) | −0.02419 (10) | 0.0288 (5) | |
C5B | 0.5520 (2) | 1.0525 (2) | 0.20096 (10) | 0.0337 (5) | |
H5B | 0.6059 | 1.1131 | 0.2057 | 0.040* | |
C4B | 0.5943 (2) | 0.9547 (2) | 0.22491 (10) | 0.0395 (6) | |
H4B | 0.6769 | 0.9497 | 0.2459 | 0.047* | |
C5A | 0.4038 (3) | 1.4155 (2) | −0.13928 (14) | 0.0440 (7) | |
H5A | 0.3927 | 1.4605 | −0.1735 | 0.053* | |
C4A | 0.5015 (3) | 1.4359 (2) | −0.09479 (16) | 0.0519 (8) | |
H4A | 0.5553 | 1.4964 | −0.0983 | 0.062* | |
C3A | 0.5214 (3) | 1.3684 (2) | −0.04501 (14) | 0.0457 (7) | |
H3A | 0.5890 | 1.3843 | −0.0156 | 0.055* | |
C14A | 0.4705 (3) | 1.2051 (3) | 0.01773 (12) | 0.0456 (7) | |
H14D | 0.3884 | 1.1898 | 0.0372 | 0.068* | |
H14E | 0.5308 | 1.2407 | 0.0467 | 0.068* | |
H14F | 0.5099 | 1.1391 | 0.0044 | 0.068* | |
O2A | 0.30147 (18) | 1.05485 (12) | −0.05762 (8) | 0.0405 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1B | 0.0203 (3) | 0.0232 (3) | 0.0137 (3) | −0.00057 (17) | −0.00218 (19) | −0.00037 (17) |
S1A | 0.0249 (3) | 0.0336 (3) | 0.0185 (3) | −0.0111 (2) | 0.0033 (2) | −0.0071 (2) |
F1B | 0.0362 (7) | 0.0321 (7) | 0.0311 (7) | −0.0018 (5) | 0.0135 (6) | 0.0065 (5) |
O3B | 0.0282 (8) | 0.0217 (7) | 0.0209 (7) | −0.0055 (6) | 0.0024 (6) | −0.0018 (6) |
F1A | 0.0571 (9) | 0.0440 (8) | 0.0390 (8) | 0.0092 (7) | 0.0248 (7) | −0.0041 (6) |
N1B | 0.0195 (9) | 0.0249 (9) | 0.0178 (9) | −0.0062 (7) | −0.0031 (7) | −0.0036 (7) |
O2B | 0.0305 (8) | 0.0377 (8) | 0.0189 (7) | −0.0068 (6) | 0.0001 (6) | −0.0088 (6) |
O1B | 0.0312 (8) | 0.0285 (8) | 0.0201 (7) | 0.0048 (6) | −0.0012 (6) | 0.0075 (6) |
N1A | 0.0223 (9) | 0.0305 (9) | 0.0165 (9) | −0.0020 (7) | −0.0024 (7) | 0.0039 (7) |
C9B | 0.0208 (10) | 0.0192 (9) | 0.0197 (10) | 0.0027 (7) | −0.0033 (8) | −0.0031 (8) |
C8A | 0.0173 (10) | 0.0286 (11) | 0.0205 (10) | 0.0000 (8) | −0.0047 (8) | 0.0042 (8) |
O3A | 0.0389 (10) | 0.0834 (15) | 0.0532 (12) | 0.0299 (10) | 0.0207 (9) | 0.0507 (11) |
C13B | 0.0224 (10) | 0.0176 (9) | 0.0205 (10) | 0.0005 (8) | −0.0023 (8) | −0.0007 (8) |
C8B | 0.0181 (10) | 0.0196 (9) | 0.0161 (9) | 0.0007 (7) | −0.0037 (7) | 0.0012 (7) |
C11B | 0.0197 (10) | 0.0276 (11) | 0.0198 (10) | −0.0001 (8) | 0.0024 (8) | 0.0059 (8) |
C11A | 0.0275 (11) | 0.0335 (12) | 0.0217 (11) | 0.0016 (9) | 0.0032 (9) | −0.0050 (9) |
C2A | 0.0183 (10) | 0.0414 (13) | 0.0270 (11) | −0.0027 (9) | 0.0014 (8) | −0.0093 (10) |
C7B | 0.0200 (10) | 0.0179 (9) | 0.0176 (9) | 0.0023 (8) | −0.0047 (8) | 0.0003 (7) |
C1B | 0.0189 (10) | 0.0258 (10) | 0.0127 (9) | 0.0017 (8) | 0.0025 (7) | −0.0010 (7) |
O1A | 0.0365 (10) | 0.0998 (16) | 0.0184 (8) | −0.0369 (10) | 0.0025 (7) | −0.0104 (9) |
C10A | 0.0288 (11) | 0.0232 (10) | 0.0254 (11) | −0.0040 (8) | 0.0049 (9) | 0.0004 (8) |
C12A | 0.0262 (11) | 0.0227 (10) | 0.0358 (12) | 0.0030 (8) | −0.0039 (9) | −0.0040 (9) |
C2B | 0.0314 (12) | 0.0284 (11) | 0.0183 (10) | 0.0089 (9) | 0.0055 (9) | 0.0000 (8) |
C10B | 0.0222 (10) | 0.0184 (9) | 0.0247 (11) | −0.0014 (8) | −0.0004 (8) | 0.0033 (8) |
C1A | 0.0174 (10) | 0.0240 (10) | 0.0234 (10) | −0.0002 (8) | 0.0040 (8) | −0.0025 (8) |
C9A | 0.0218 (10) | 0.0218 (10) | 0.0194 (10) | −0.0021 (8) | −0.0027 (8) | −0.0032 (8) |
C3B | 0.0346 (13) | 0.0494 (14) | 0.0234 (11) | 0.0220 (11) | 0.0030 (10) | 0.0054 (10) |
C12B | 0.0261 (11) | 0.0232 (10) | 0.0202 (10) | 0.0029 (8) | 0.0021 (8) | −0.0028 (8) |
C6B | 0.0258 (11) | 0.0305 (11) | 0.0176 (10) | −0.0051 (9) | 0.0027 (8) | −0.0011 (8) |
C13A | 0.0222 (11) | 0.0251 (11) | 0.0382 (13) | −0.0008 (8) | −0.0042 (9) | 0.0096 (9) |
C6A | 0.0252 (11) | 0.0387 (12) | 0.0300 (12) | 0.0094 (9) | 0.0099 (9) | 0.0066 (10) |
C14B | 0.0574 (16) | 0.0207 (11) | 0.0365 (13) | 0.0065 (10) | 0.0022 (11) | 0.0030 (9) |
C7A | 0.0192 (10) | 0.0428 (13) | 0.0242 (11) | 0.0026 (9) | −0.0008 (8) | 0.0121 (10) |
C5B | 0.0235 (11) | 0.0565 (15) | 0.0214 (11) | −0.0125 (10) | 0.0048 (9) | −0.0069 (10) |
C4B | 0.0188 (11) | 0.0783 (19) | 0.0213 (11) | 0.0079 (12) | −0.0006 (9) | −0.0022 (12) |
C5A | 0.0447 (15) | 0.0306 (13) | 0.0590 (17) | 0.0096 (11) | 0.0297 (13) | 0.0109 (12) |
C4A | 0.0470 (16) | 0.0310 (13) | 0.081 (2) | −0.0122 (12) | 0.0373 (16) | −0.0114 (14) |
C3A | 0.0278 (13) | 0.0561 (16) | 0.0536 (17) | −0.0163 (11) | 0.0080 (11) | −0.0263 (14) |
C14A | 0.0313 (13) | 0.0746 (19) | 0.0301 (13) | 0.0010 (12) | −0.0100 (10) | 0.0012 (13) |
O2A | 0.0515 (11) | 0.0221 (8) | 0.0496 (10) | −0.0010 (7) | 0.0231 (8) | −0.0059 (7) |
S1B—O2B | 1.4265 (15) | C1B—C6B | 1.391 (3) |
S1B—O1B | 1.4347 (15) | C1B—C2B | 1.401 (3) |
S1B—N1B | 1.6528 (18) | C10A—C9A | 1.375 (3) |
S1B—C1B | 1.7609 (19) | C10A—H10A | 0.9300 |
S1A—O2A | 1.4268 (18) | C12A—C13A | 1.372 (3) |
S1A—O1A | 1.4268 (17) | C12A—H12A | 0.9300 |
S1A—N1A | 1.6531 (18) | C2B—C3B | 1.393 (3) |
S1A—C1A | 1.759 (2) | C2B—C14B | 1.506 (3) |
F1B—C11B | 1.358 (2) | C10B—H10B | 0.9300 |
O3B—C7B | 1.216 (2) | C1A—C6A | 1.394 (3) |
F1A—C11A | 1.358 (3) | C9A—H9A | 0.9300 |
N1B—C7B | 1.390 (3) | C3B—C4B | 1.379 (4) |
N1B—H1B | 0.83 (3) | C3B—H3B | 0.9300 |
N1A—C7A | 1.386 (3) | C12B—H12B | 0.9300 |
N1A—H1A | 0.81 (3) | C6B—C5B | 1.381 (3) |
C9B—C10B | 1.381 (3) | C6B—H6B | 0.9300 |
C9B—C8B | 1.401 (3) | C13A—H13A | 0.9300 |
C9B—H9B | 0.9300 | C6A—C5A | 1.374 (4) |
C8A—C9A | 1.390 (3) | C6A—H6A | 0.9300 |
C8A—C13A | 1.391 (3) | C14B—H14A | 0.9600 |
C8A—C7A | 1.486 (3) | C14B—H14B | 0.9600 |
O3A—C7A | 1.210 (3) | C14B—H14C | 0.9600 |
C13B—C12B | 1.387 (3) | C5B—C4B | 1.381 (4) |
C13B—C8B | 1.394 (3) | C5B—H5B | 0.9300 |
C13B—H13B | 0.9300 | C4B—H4B | 0.9300 |
C8B—C7B | 1.486 (3) | C5A—C4A | 1.368 (4) |
C11B—C12B | 1.376 (3) | C5A—H5A | 0.9300 |
C11B—C10B | 1.377 (3) | C4A—C3A | 1.373 (4) |
C11A—C12A | 1.374 (3) | C4A—H4A | 0.9300 |
C11A—C10A | 1.381 (3) | C3A—H3A | 0.9300 |
C2A—C1A | 1.400 (3) | C14A—H14D | 0.9600 |
C2A—C3A | 1.402 (4) | C14A—H14E | 0.9600 |
C2A—C14A | 1.492 (4) | C14A—H14F | 0.9600 |
O2B—S1B—O1B | 117.75 (9) | C11B—C10B—C9B | 118.15 (18) |
O2B—S1B—N1B | 104.14 (9) | C11B—C10B—H10B | 120.9 |
O1B—S1B—N1B | 110.11 (9) | C9B—C10B—H10B | 120.9 |
O2B—S1B—C1B | 112.15 (9) | C6A—C1A—C2A | 122.2 (2) |
O1B—S1B—C1B | 107.84 (9) | C6A—C1A—S1A | 116.56 (16) |
N1B—S1B—C1B | 103.94 (9) | C2A—C1A—S1A | 121.28 (17) |
O2A—S1A—O1A | 118.77 (12) | C10A—C9A—C8A | 120.44 (19) |
O2A—S1A—N1A | 104.66 (10) | C10A—C9A—H9A | 119.8 |
O1A—S1A—N1A | 107.45 (10) | C8A—C9A—H9A | 119.8 |
O2A—S1A—C1A | 110.91 (10) | C4B—C3B—C2B | 121.9 (2) |
O1A—S1A—C1A | 107.63 (11) | C4B—C3B—H3B | 119.0 |
N1A—S1A—C1A | 106.75 (9) | C2B—C3B—H3B | 119.0 |
C7B—N1B—S1B | 123.81 (15) | C11B—C12B—C13B | 118.04 (19) |
C7B—N1B—H1B | 121.1 (17) | C11B—C12B—H12B | 121.0 |
S1B—N1B—H1B | 114.4 (17) | C13B—C12B—H12B | 121.0 |
C7A—N1A—S1A | 123.34 (15) | C5B—C6B—C1B | 119.3 (2) |
C7A—N1A—H1A | 119 (2) | C5B—C6B—H6B | 120.4 |
S1A—N1A—H1A | 117 (2) | C1B—C6B—H6B | 120.4 |
C10B—C9B—C8B | 120.41 (18) | C12A—C13A—C8A | 120.8 (2) |
C10B—C9B—H9B | 119.8 | C12A—C13A—H13A | 119.6 |
C8B—C9B—H9B | 119.8 | C8A—C13A—H13A | 119.6 |
C9A—C8A—C13A | 119.5 (2) | C5A—C6A—C1A | 119.9 (2) |
C9A—C8A—C7A | 123.17 (19) | C5A—C6A—H6A | 120.0 |
C13A—C8A—C7A | 117.36 (19) | C1A—C6A—H6A | 120.0 |
C12B—C13B—C8B | 120.45 (18) | C2B—C14B—H14A | 109.5 |
C12B—C13B—H13B | 119.8 | C2B—C14B—H14B | 109.5 |
C8B—C13B—H13B | 119.8 | H14A—C14B—H14B | 109.5 |
C13B—C8B—C9B | 119.51 (19) | C2B—C14B—H14C | 109.5 |
C13B—C8B—C7B | 117.28 (17) | H14A—C14B—H14C | 109.5 |
C9B—C8B—C7B | 123.05 (18) | H14B—C14B—H14C | 109.5 |
F1B—C11B—C12B | 118.24 (18) | O3A—C7A—N1A | 121.0 (2) |
F1B—C11B—C10B | 118.33 (18) | O3A—C7A—C8A | 123.2 (2) |
C12B—C11B—C10B | 123.41 (19) | N1A—C7A—C8A | 115.80 (18) |
F1A—C11A—C12A | 118.48 (19) | C4B—C5B—C6B | 119.5 (2) |
F1A—C11A—C10A | 118.6 (2) | C4B—C5B—H5B | 120.3 |
C12A—C11A—C10A | 122.9 (2) | C6B—C5B—H5B | 120.3 |
C1A—C2A—C3A | 115.4 (2) | C5B—C4B—C3B | 120.7 (2) |
C1A—C2A—C14A | 124.7 (2) | C5B—C4B—H4B | 119.7 |
C3A—C2A—C14A | 119.9 (2) | C3B—C4B—H4B | 119.7 |
O3B—C7B—N1B | 121.05 (19) | C4A—C5A—C6A | 119.3 (2) |
O3B—C7B—C8B | 123.19 (17) | C4A—C5A—H5A | 120.4 |
N1B—C7B—C8B | 115.73 (16) | C6A—C5A—H5A | 120.4 |
C6B—C1B—C2B | 122.55 (19) | C5A—C4A—C3A | 120.9 (2) |
C6B—C1B—S1B | 116.40 (15) | C5A—C4A—H4A | 119.6 |
C2B—C1B—S1B | 121.05 (16) | C3A—C4A—H4A | 119.6 |
C9A—C10A—C11A | 118.20 (19) | C4A—C3A—C2A | 122.3 (2) |
C9A—C10A—H10A | 120.9 | C4A—C3A—H3A | 118.9 |
C11A—C10A—H10A | 120.9 | C2A—C3A—H3A | 118.9 |
C13A—C12A—C11A | 118.1 (2) | C2A—C14A—H14D | 109.5 |
C13A—C12A—H12A | 120.9 | C2A—C14A—H14E | 109.5 |
C11A—C12A—H12A | 120.9 | H14D—C14A—H14E | 109.5 |
C3B—C2B—C1B | 116.1 (2) | C2A—C14A—H14F | 109.5 |
C3B—C2B—C14B | 120.1 (2) | H14D—C14A—H14F | 109.5 |
C1B—C2B—C14B | 123.77 (19) | H14E—C14A—H14F | 109.5 |
O2B—S1B—N1B—C7B | 174.96 (16) | C14A—C2A—C1A—S1A | 1.0 (3) |
O1B—S1B—N1B—C7B | −57.91 (18) | O2A—S1A—C1A—C6A | 139.74 (16) |
C1B—S1B—N1B—C7B | 57.37 (18) | O1A—S1A—C1A—C6A | 8.3 (2) |
O2A—S1A—N1A—C7A | −179.46 (17) | N1A—S1A—C1A—C6A | −106.81 (17) |
O1A—S1A—N1A—C7A | −52.3 (2) | O2A—S1A—C1A—C2A | −40.3 (2) |
C1A—S1A—N1A—C7A | 62.90 (19) | O1A—S1A—C1A—C2A | −171.72 (18) |
C12B—C13B—C8B—C9B | −0.7 (3) | N1A—S1A—C1A—C2A | 73.19 (19) |
C12B—C13B—C8B—C7B | −176.25 (17) | C11A—C10A—C9A—C8A | −0.8 (3) |
C10B—C9B—C8B—C13B | −0.6 (3) | C13A—C8A—C9A—C10A | −0.8 (3) |
C10B—C9B—C8B—C7B | 174.72 (17) | C7A—C8A—C9A—C10A | −179.80 (18) |
S1B—N1B—C7B—O3B | 5.4 (3) | C1B—C2B—C3B—C4B | −0.8 (3) |
S1B—N1B—C7B—C8B | −172.64 (13) | C14B—C2B—C3B—C4B | 179.9 (2) |
C13B—C8B—C7B—O3B | 23.1 (3) | F1B—C11B—C12B—C13B | 177.87 (17) |
C9B—C8B—C7B—O3B | −152.28 (19) | C10B—C11B—C12B—C13B | −0.6 (3) |
C13B—C8B—C7B—N1B | −158.91 (17) | C8B—C13B—C12B—C11B | 1.3 (3) |
C9B—C8B—C7B—N1B | 25.7 (3) | C2B—C1B—C6B—C5B | 0.3 (3) |
O2B—S1B—C1B—C6B | 133.35 (16) | S1B—C1B—C6B—C5B | −179.72 (16) |
O1B—S1B—C1B—C6B | 2.11 (18) | C11A—C12A—C13A—C8A | −1.4 (3) |
N1B—S1B—C1B—C6B | −114.76 (16) | C9A—C8A—C13A—C12A | 2.0 (3) |
O2B—S1B—C1B—C2B | −46.72 (19) | C7A—C8A—C13A—C12A | −178.98 (18) |
O1B—S1B—C1B—C2B | −177.95 (16) | C2A—C1A—C6A—C5A | −0.1 (3) |
N1B—S1B—C1B—C2B | 65.17 (18) | S1A—C1A—C6A—C5A | 179.88 (17) |
F1A—C11A—C10A—C9A | −179.39 (18) | S1A—N1A—C7A—O3A | −5.6 (3) |
C12A—C11A—C10A—C9A | 1.5 (3) | S1A—N1A—C7A—C8A | 174.40 (14) |
F1A—C11A—C12A—C13A | −179.49 (19) | C9A—C8A—C7A—O3A | 149.7 (2) |
C10A—C11A—C12A—C13A | −0.3 (3) | C13A—C8A—C7A—O3A | −29.2 (3) |
C6B—C1B—C2B—C3B | 0.4 (3) | C9A—C8A—C7A—N1A | −30.3 (3) |
S1B—C1B—C2B—C3B | −179.57 (16) | C13A—C8A—C7A—N1A | 150.71 (19) |
C6B—C1B—C2B—C14B | 179.6 (2) | C1B—C6B—C5B—C4B | −0.6 (3) |
S1B—C1B—C2B—C14B | −0.3 (3) | C6B—C5B—C4B—C3B | 0.1 (3) |
F1B—C11B—C10B—C9B | −179.09 (17) | C2B—C3B—C4B—C5B | 0.6 (4) |
C12B—C11B—C10B—C9B | −0.6 (3) | C1A—C6A—C5A—C4A | −1.7 (3) |
C8B—C9B—C10B—C11B | 1.2 (3) | C6A—C5A—C4A—C3A | 1.9 (4) |
C3A—C2A—C1A—C6A | 1.6 (3) | C5A—C4A—C3A—C2A | −0.3 (4) |
C14A—C2A—C1A—C6A | −179.0 (2) | C1A—C2A—C3A—C4A | −1.4 (4) |
C3A—C2A—C1A—S1A | −178.41 (17) | C14A—C2A—C3A—C4A | 179.2 (2) |
Cg is the centroid of the fluorobenzene ring of molecule B of (I). |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A···O1B | 0.81 (3) | 2.12 (3) | 2.918 (2) | 167 (2) |
N1B—H1B···O1Ai | 0.83 (3) | 2.02 (3) | 2.828 (3) | 162 (3) |
C6A—H6A···O3B | 0.93 | 2.57 | 3.313 (3) | 137 |
C10B—H10B···O1Bii | 0.93 | 2.59 | 3.376 (2) | 143 |
C10B—H10B···O3Bii | 0.93 | 2.46 | 3.215 (2) | 139 |
C4B—H4B···Cgiii | 0.93 | 2.72 | 3.646 (2) | 173 |
C14B—H14B···O2B | 0.96 | 2.45 | 3.058 (3) | 121 |
Symmetry codes: (i) −x, −y+2, −z; (ii) −x, y−1/2, −z+1/2; (iii) x−1, y, z. |
C13H9ClFNO3S | Prism |
Mr = 313.72 | Dx = 1.601 Mg m−3 |
Monoclinic, P21/c | Melting point: 428 K |
Hall symbol: -P 2ybc | Cu Kα radiation, λ = 1.54178 Å |
a = 7.9009 (2) Å | Cell parameters from 133 reflections |
b = 9.0775 (3) Å | θ = 5.5–64.3° |
c = 18.4216 (5) Å | µ = 4.29 mm−1 |
β = 99.801 (1)° | T = 173 K |
V = 1301.92 (6) Å3 | Prism, colourless |
Z = 4 | 0.30 × 0.27 × 0.23 mm |
F(000) = 640 |
Bruker APEXII diffractometer | 2074 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.042 |
Graphite monochromator | θmax = 64.3°, θmin = 5.5° |
phi and φ scans | h = −9→9 |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | k = −10→10 |
Tmin = 0.317, Tmax = 0.373 | l = −21→21 |
10032 measured reflections | 1 standard reflections every 1 reflections |
2124 independent reflections | intensity decay: 0.1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.124 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.97 | w = 1/[σ2(Fo2) + (0.0987P)2 + 0.7647P] where P = (Fo2 + 2Fc2)/3 |
2124 reflections | (Δ/σ)max < 0.001 |
185 parameters | Δρmax = 0.37 e Å−3 |
0 restraints | Δρmin = −0.50 e Å−3 |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
H1 | 0.410 (3) | 0.844 (3) | 0.5009 (14) | 0.024 (6)* | |
S1 | 0.37229 (6) | 0.89119 (5) | 0.38590 (2) | 0.0164 (2) | |
Cl1 | 0.16839 (7) | 1.11686 (6) | 0.47955 (3) | 0.0297 (2) | |
F1 | 0.34792 (18) | 0.38611 (13) | 0.74018 (7) | 0.0273 (3) | |
O3 | 0.2088 (2) | 0.60943 (15) | 0.41128 (8) | 0.0271 (4) | |
O1 | 0.41851 (18) | 0.79617 (16) | 0.33118 (7) | 0.0233 (4) | |
O2 | 0.47707 (16) | 1.01786 (16) | 0.40831 (7) | 0.0209 (3) | |
N1 | 0.3743 (2) | 0.79899 (19) | 0.46309 (9) | 0.0189 (4) | |
C8 | 0.3185 (3) | 0.5908 (2) | 0.54010 (11) | 0.0177 (4) | |
C6 | 0.0748 (3) | 0.8957 (2) | 0.28779 (12) | 0.0213 (5) | |
H6 | 0.1296 | 0.8275 | 0.2621 | 0.026* | |
C7 | 0.2942 (2) | 0.6622 (2) | 0.46614 (10) | 0.0190 (4) | |
C5 | −0.0885 (3) | 0.9447 (2) | 0.25822 (12) | 0.0263 (5) | |
H5 | −0.1431 | 0.9100 | 0.2127 | 0.032* | |
C1 | 0.1572 (2) | 0.9480 (2) | 0.35573 (10) | 0.0168 (4) | |
C2 | 0.0741 (3) | 1.0495 (2) | 0.39430 (11) | 0.0208 (5) | |
C12 | 0.4439 (3) | 0.5719 (2) | 0.66854 (11) | 0.0215 (4) | |
H12 | 0.5198 | 0.6053 | 0.7094 | 0.026* | |
C4 | −0.1698 (3) | 1.0460 (2) | 0.29697 (13) | 0.0284 (5) | |
H4 | −0.2791 | 1.0796 | 0.2771 | 0.034* | |
C13 | 0.4350 (3) | 0.6399 (2) | 0.60076 (11) | 0.0199 (4) | |
H13 | 0.5071 | 0.7188 | 0.5956 | 0.024* | |
C9 | 0.2136 (3) | 0.4697 (2) | 0.54802 (12) | 0.0238 (5) | |
H9 | 0.1372 | 0.4353 | 0.5075 | 0.029* | |
C11 | 0.3375 (3) | 0.4534 (2) | 0.67409 (11) | 0.0210 (5) | |
C10 | 0.2222 (3) | 0.4010 (2) | 0.61510 (13) | 0.0258 (5) | |
H10 | 0.1517 | 0.3211 | 0.6205 | 0.031* | |
C3 | −0.0903 (3) | 1.0973 (2) | 0.36473 (13) | 0.0276 (5) | |
H3 | −0.1467 | 1.1639 | 0.3906 | 0.033* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0164 (3) | 0.0194 (3) | 0.0127 (3) | 0.00182 (16) | 0.0000 (2) | 0.00090 (16) |
Cl1 | 0.0282 (4) | 0.0347 (4) | 0.0244 (4) | 0.0040 (2) | −0.0002 (2) | −0.01415 (19) |
F1 | 0.0376 (8) | 0.0273 (7) | 0.0179 (7) | 0.0058 (5) | 0.0079 (5) | 0.0058 (4) |
O3 | 0.0339 (9) | 0.0251 (8) | 0.0192 (8) | −0.0037 (6) | −0.0047 (6) | −0.0008 (6) |
O1 | 0.0243 (7) | 0.0277 (8) | 0.0178 (7) | 0.0068 (6) | 0.0031 (6) | −0.0004 (6) |
O2 | 0.0187 (7) | 0.0255 (8) | 0.0172 (7) | −0.0037 (6) | −0.0010 (5) | 0.0029 (5) |
N1 | 0.0227 (9) | 0.0206 (9) | 0.0115 (8) | 0.0006 (7) | −0.0026 (6) | −0.0001 (7) |
C8 | 0.0190 (10) | 0.0159 (9) | 0.0174 (10) | 0.0045 (7) | 0.0006 (8) | −0.0007 (7) |
C6 | 0.0235 (11) | 0.0234 (11) | 0.0163 (10) | −0.0021 (8) | 0.0012 (8) | 0.0001 (7) |
C7 | 0.0200 (10) | 0.0185 (10) | 0.0178 (10) | 0.0040 (8) | 0.0010 (8) | −0.0008 (8) |
C5 | 0.0243 (11) | 0.0307 (12) | 0.0207 (10) | −0.0045 (9) | −0.0049 (8) | 0.0016 (9) |
C1 | 0.0167 (9) | 0.0175 (10) | 0.0149 (9) | −0.0001 (7) | −0.0009 (7) | 0.0030 (7) |
C2 | 0.0215 (10) | 0.0197 (11) | 0.0197 (10) | 0.0001 (8) | −0.0008 (8) | −0.0011 (8) |
C12 | 0.0229 (10) | 0.0228 (10) | 0.0171 (10) | 0.0041 (8) | −0.0011 (8) | −0.0013 (8) |
C4 | 0.0185 (10) | 0.0284 (12) | 0.0350 (12) | 0.0025 (9) | −0.0049 (9) | 0.0064 (9) |
C13 | 0.0195 (10) | 0.0175 (10) | 0.0223 (10) | 0.0015 (8) | 0.0028 (8) | 0.0007 (8) |
C9 | 0.0264 (11) | 0.0194 (10) | 0.0231 (10) | −0.0004 (8) | −0.0028 (8) | −0.0009 (8) |
C11 | 0.0261 (10) | 0.0208 (10) | 0.0175 (10) | 0.0095 (8) | 0.0076 (8) | 0.0033 (8) |
C10 | 0.0280 (12) | 0.0205 (11) | 0.0290 (12) | −0.0021 (8) | 0.0050 (9) | 0.0038 (8) |
C3 | 0.0233 (11) | 0.0238 (12) | 0.0348 (13) | 0.0051 (8) | 0.0029 (10) | −0.0016 (9) |
S1—O1 | 1.4208 (14) | C5—C4 | 1.387 (3) |
S1—O2 | 1.4358 (15) | C5—H5 | 0.9300 |
S1—N1 | 1.6478 (16) | C1—C2 | 1.395 (3) |
S1—C1 | 1.7721 (19) | C2—C3 | 1.390 (3) |
Cl1—C2 | 1.731 (2) | C12—C11 | 1.380 (3) |
F1—C11 | 1.352 (2) | C12—C13 | 1.384 (3) |
O3—C7 | 1.214 (3) | C12—H12 | 0.9300 |
N1—C7 | 1.399 (3) | C4—C3 | 1.379 (3) |
N1—H1 | 0.82 (3) | C4—H4 | 0.9300 |
C8—C13 | 1.394 (3) | C13—H13 | 0.9300 |
C8—C9 | 1.399 (3) | C9—C10 | 1.375 (3) |
C8—C7 | 1.492 (3) | C9—H9 | 0.9300 |
C6—C5 | 1.385 (3) | C11—C10 | 1.378 (3) |
C6—C1 | 1.392 (3) | C10—H10 | 0.9300 |
C6—H6 | 0.9300 | C3—H3 | 0.9300 |
O1—S1—O2 | 119.01 (9) | C3—C2—C1 | 119.76 (19) |
O1—S1—N1 | 109.76 (9) | C3—C2—Cl1 | 118.34 (16) |
O2—S1—N1 | 103.79 (8) | C1—C2—Cl1 | 121.90 (15) |
O1—S1—C1 | 107.61 (9) | C11—C12—C13 | 118.46 (18) |
O2—S1—C1 | 109.42 (9) | C11—C12—H12 | 120.8 |
N1—S1—C1 | 106.62 (9) | C13—C12—H12 | 120.8 |
C7—N1—S1 | 123.20 (14) | C3—C4—C5 | 120.64 (19) |
C7—N1—H1 | 120.2 (18) | C3—C4—H4 | 119.7 |
S1—N1—H1 | 115.7 (18) | C5—C4—H4 | 119.7 |
C13—C8—C9 | 119.30 (19) | C12—C13—C8 | 120.40 (19) |
C13—C8—C7 | 123.92 (18) | C12—C13—H13 | 119.8 |
C9—C8—C7 | 116.77 (18) | C8—C13—H13 | 119.8 |
C5—C6—C1 | 120.4 (2) | C10—C9—C8 | 120.7 (2) |
C5—C6—H6 | 119.8 | C10—C9—H9 | 119.7 |
C1—C6—H6 | 119.8 | C8—C9—H9 | 119.7 |
O3—C7—N1 | 120.53 (18) | F1—C11—C10 | 119.02 (19) |
O3—C7—C8 | 123.75 (18) | F1—C11—C12 | 118.31 (18) |
N1—C7—C8 | 115.71 (16) | C10—C11—C12 | 122.67 (19) |
C6—C5—C4 | 119.5 (2) | C9—C10—C11 | 118.5 (2) |
C6—C5—H5 | 120.2 | C9—C10—H10 | 120.8 |
C4—C5—H5 | 120.2 | C11—C10—H10 | 120.8 |
C6—C1—C2 | 119.64 (18) | C4—C3—C2 | 120.1 (2) |
C6—C1—S1 | 117.37 (15) | C4—C3—H3 | 120.0 |
C2—C1—S1 | 122.82 (15) | C2—C3—H3 | 120.0 |
O1—S1—N1—C7 | −48.40 (17) | C6—C1—C2—C3 | 0.2 (3) |
O2—S1—N1—C7 | −176.62 (15) | S1—C1—C2—C3 | 175.27 (16) |
C1—S1—N1—C7 | 67.89 (17) | C6—C1—C2—Cl1 | 179.12 (15) |
S1—N1—C7—O3 | −4.9 (3) | S1—C1—C2—Cl1 | −5.8 (3) |
S1—N1—C7—C8 | 176.37 (13) | C6—C5—C4—C3 | −0.5 (3) |
C13—C8—C7—O3 | 170.6 (2) | C11—C12—C13—C8 | 1.2 (3) |
C9—C8—C7—O3 | −11.0 (3) | C9—C8—C13—C12 | −1.5 (3) |
C13—C8—C7—N1 | −10.7 (3) | C7—C8—C13—C12 | 176.78 (18) |
C9—C8—C7—N1 | 167.68 (17) | C13—C8—C9—C10 | 1.2 (3) |
C1—C6—C5—C4 | −0.3 (3) | C7—C8—C9—C10 | −177.21 (19) |
C5—C6—C1—C2 | 0.4 (3) | C13—C12—C11—F1 | 179.23 (17) |
C5—C6—C1—S1 | −174.92 (16) | C13—C12—C11—C10 | −0.5 (3) |
O1—S1—C1—C6 | −0.75 (18) | C8—C9—C10—C11 | −0.6 (3) |
O2—S1—C1—C6 | 129.90 (15) | F1—C11—C10—C9 | −179.53 (18) |
N1—S1—C1—C6 | −118.45 (16) | C12—C11—C10—C9 | 0.2 (3) |
O1—S1—C1—C2 | −175.94 (16) | C5—C4—C3—C2 | 1.1 (3) |
O2—S1—C1—C2 | −45.29 (19) | C1—C2—C3—C4 | −0.9 (3) |
N1—S1—C1—C2 | 66.36 (18) | Cl1—C2—C3—C4 | −179.92 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.82 (3) | 2.16 (3) | 2.968 (2) | 172 (2) |
C13—H13···O2i | 0.93 | 2.40 | 3.194 (2) | 144 |
Symmetry code: (i) −x+1, −y+2, −z+1. |
C13H9ClFNO3S·H2O | Prism |
Mr = 331.74 | Dx = 1.568 Mg m−3 |
Monoclinic, C2/c | Melting point: 456 K |
Hall symbol: -C 2yc | Cu Kα radiation, λ = 1.54178 Å |
a = 45.5989 (11) Å | Cell parameters from 163 reflections |
b = 4.8853 (1) Å | θ = 5.8–64.3° |
c = 12.6517 (3) Å | µ = 4.06 mm−1 |
β = 94.481 (1)° | T = 173 K |
V = 2809.73 (11) Å3 | Prism, colourless |
Z = 8 | 0.28 × 0.25 × 0.23 mm |
F(000) = 1360 |
Bruker APEXII diffractometer | 2030 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.054 |
Graphite monochromator | θmax = 64.3°, θmin = 5.8° |
phi and φ scans | h = −52→51 |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | k = −5→5 |
Tmin = 0.369, Tmax = 0.393 | l = −14→14 |
11176 measured reflections | 1 standard reflections every 1 reflections |
2320 independent reflections | intensity decay: 0.1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.118 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.94 | w = 1/[σ2(Fo2) + (0.0912P)2 + 2.087P] where P = (Fo2 + 2Fc2)/3 |
2320 reflections | (Δ/σ)max = 0.001 |
205 parameters | Δρmax = 0.34 e Å−3 |
2 restraints | Δρmin = −0.35 e Å−3 |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.356285 (11) | 0.64551 (10) | 0.55127 (4) | 0.0147 (2) | |
Cl1 | 0.261887 (12) | −0.14924 (12) | 0.34233 (4) | 0.0273 (2) | |
O2 | 0.36322 (3) | 0.8548 (3) | 0.47847 (11) | 0.0176 (4) | |
O1 | 0.34790 (3) | 0.7192 (3) | 0.65445 (11) | 0.0195 (4) | |
F1 | 0.49577 (3) | −0.3420 (3) | 0.62191 (12) | 0.0384 (4) | |
O3 | 0.39675 (3) | 0.4091 (3) | 0.40288 (11) | 0.0207 (4) | |
O4 | 0.38058 (4) | 0.1618 (4) | 0.75835 (13) | 0.0290 (4) | |
N1 | 0.38535 (4) | 0.4484 (4) | 0.57495 (14) | 0.0161 (4) | |
C7 | 0.40210 (5) | 0.3508 (4) | 0.49595 (16) | 0.0165 (5) | |
C8 | 0.42713 (5) | 0.1710 (4) | 0.53341 (17) | 0.0174 (5) | |
C3 | 0.28843 (5) | 0.1252 (5) | 0.50950 (18) | 0.0216 (5) | |
H3 | 0.2753 | 0.0371 | 0.5507 | 0.026* | |
C13 | 0.43853 (5) | −0.0018 (5) | 0.45932 (17) | 0.0218 (5) | |
H13 | 0.4305 | −0.0004 | 0.3895 | 0.026* | |
C2 | 0.30931 (5) | 0.3027 (5) | 0.55508 (17) | 0.0206 (5) | |
H2 | 0.3105 | 0.3346 | 0.6278 | 0.025* | |
C1 | 0.32848 (4) | 0.4331 (4) | 0.49134 (16) | 0.0155 (5) | |
C6 | 0.32692 (5) | 0.3910 (5) | 0.38239 (16) | 0.0174 (5) | |
H6 | 0.3397 | 0.4821 | 0.3406 | 0.021* | |
C5 | 0.30619 (5) | 0.2126 (5) | 0.33712 (16) | 0.0189 (5) | |
H5 | 0.3049 | 0.1814 | 0.2644 | 0.023* | |
C4 | 0.28742 (5) | 0.0806 (5) | 0.40070 (17) | 0.0190 (5) | |
C9 | 0.43954 (5) | 0.1702 (5) | 0.63795 (18) | 0.0241 (5) | |
H9 | 0.4321 | 0.2858 | 0.6878 | 0.029* | |
C10 | 0.46276 (5) | −0.0009 (6) | 0.66765 (19) | 0.0295 (6) | |
H10 | 0.4712 | −0.0013 | 0.7369 | 0.035* | |
C12 | 0.46171 (5) | −0.1755 (5) | 0.48843 (19) | 0.0265 (6) | |
H12 | 0.4694 | −0.2917 | 0.4393 | 0.032* | |
C11 | 0.47306 (5) | −0.1710 (5) | 0.5923 (2) | 0.0264 (6) | |
H1O4 | 0.3743 (8) | 0.011 (6) | 0.761 (3) | 0.067 (12)* | |
H1 | 0.3854 (6) | 0.373 (6) | 0.634 (2) | 0.037 (8)* | |
H2O4 | 0.3812 (7) | 0.229 (6) | 0.8178 (19) | 0.039 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0164 (3) | 0.0130 (3) | 0.0148 (3) | 0.0011 (2) | 0.0022 (2) | −0.00059 (18) |
Cl1 | 0.0245 (4) | 0.0239 (4) | 0.0326 (4) | −0.0091 (2) | −0.0040 (3) | 0.0024 (2) |
O2 | 0.0191 (8) | 0.0126 (8) | 0.0213 (8) | 0.0000 (6) | 0.0024 (6) | 0.0004 (6) |
O1 | 0.0221 (8) | 0.0194 (8) | 0.0173 (7) | 0.0012 (7) | 0.0040 (6) | −0.0034 (6) |
F1 | 0.0277 (8) | 0.0398 (10) | 0.0466 (9) | 0.0179 (7) | −0.0037 (7) | 0.0018 (7) |
O3 | 0.0240 (8) | 0.0209 (8) | 0.0173 (8) | 0.0031 (7) | 0.0034 (6) | 0.0016 (6) |
O4 | 0.0504 (12) | 0.0206 (11) | 0.0165 (8) | −0.0034 (8) | 0.0067 (8) | −0.0021 (7) |
N1 | 0.0180 (10) | 0.0154 (10) | 0.0149 (9) | 0.0003 (8) | 0.0004 (7) | 0.0021 (7) |
C7 | 0.0165 (11) | 0.0135 (11) | 0.0195 (11) | −0.0041 (8) | 0.0010 (8) | −0.0018 (8) |
C8 | 0.0145 (11) | 0.0155 (11) | 0.0225 (11) | −0.0025 (8) | 0.0030 (8) | 0.0011 (8) |
C3 | 0.0181 (11) | 0.0233 (13) | 0.0240 (12) | −0.0016 (9) | 0.0048 (9) | 0.0060 (9) |
C13 | 0.0210 (11) | 0.0217 (13) | 0.0227 (11) | 0.0006 (10) | 0.0017 (9) | −0.0018 (9) |
C2 | 0.0211 (12) | 0.0232 (13) | 0.0175 (11) | 0.0012 (10) | 0.0022 (9) | 0.0013 (9) |
C1 | 0.0156 (11) | 0.0114 (11) | 0.0195 (10) | 0.0029 (9) | 0.0014 (8) | 0.0003 (8) |
C6 | 0.0159 (11) | 0.0176 (12) | 0.0191 (10) | 0.0016 (9) | 0.0031 (8) | 0.0031 (9) |
C5 | 0.0183 (11) | 0.0213 (12) | 0.0168 (10) | 0.0010 (9) | 0.0001 (8) | −0.0011 (9) |
C4 | 0.0158 (11) | 0.0133 (11) | 0.0273 (11) | −0.0003 (9) | −0.0024 (8) | 0.0010 (9) |
C9 | 0.0224 (12) | 0.0268 (14) | 0.0230 (11) | 0.0033 (10) | 0.0005 (9) | −0.0032 (9) |
C10 | 0.0225 (12) | 0.0397 (16) | 0.0255 (12) | 0.0043 (11) | −0.0040 (9) | 0.0016 (11) |
C12 | 0.0227 (12) | 0.0236 (14) | 0.0335 (13) | 0.0022 (10) | 0.0045 (10) | −0.0069 (10) |
C11 | 0.0163 (12) | 0.0251 (14) | 0.0374 (13) | 0.0061 (10) | −0.0016 (10) | 0.0050 (10) |
S1—O2 | 1.4279 (15) | C3—H3 | 0.9300 |
S1—O1 | 1.4346 (14) | C13—C12 | 1.382 (3) |
S1—N1 | 1.6466 (18) | C13—H13 | 0.9300 |
S1—C1 | 1.763 (2) | C2—C1 | 1.389 (3) |
Cl1—C4 | 1.740 (2) | C2—H2 | 0.9300 |
F1—C11 | 1.360 (3) | C1—C6 | 1.390 (3) |
O3—C7 | 1.217 (3) | C6—C5 | 1.377 (3) |
O4—H1O4 | 0.79 (3) | C6—H6 | 0.9300 |
O4—H2O4 | 0.82 (2) | C5—C4 | 1.380 (3) |
N1—C7 | 1.389 (3) | C5—H5 | 0.9300 |
N1—H1 | 0.84 (3) | C9—C10 | 1.378 (3) |
C7—C8 | 1.488 (3) | C9—H9 | 0.9300 |
C8—C13 | 1.392 (3) | C10—C11 | 1.375 (4) |
C8—C9 | 1.397 (3) | C10—H10 | 0.9300 |
C3—C2 | 1.380 (3) | C12—C11 | 1.374 (3) |
C3—C4 | 1.391 (3) | C12—H12 | 0.9300 |
O2—S1—O1 | 119.70 (9) | C2—C1—C6 | 121.5 (2) |
O2—S1—N1 | 108.70 (9) | C2—C1—S1 | 118.95 (16) |
O1—S1—N1 | 104.43 (9) | C6—C1—S1 | 119.53 (16) |
O2—S1—C1 | 109.39 (9) | C5—C6—C1 | 119.1 (2) |
O1—S1—C1 | 107.77 (9) | C5—C6—H6 | 120.4 |
N1—S1—C1 | 105.99 (10) | C1—C6—H6 | 120.4 |
H1O4—O4—H2O4 | 109 (3) | C6—C5—C4 | 119.3 (2) |
C7—N1—S1 | 123.36 (15) | C6—C5—H5 | 120.3 |
C7—N1—H1 | 122 (2) | C4—C5—H5 | 120.3 |
S1—N1—H1 | 112 (2) | C5—C4—C3 | 122.0 (2) |
O3—C7—N1 | 122.4 (2) | C5—C4—Cl1 | 118.63 (17) |
O3—C7—C8 | 122.48 (19) | C3—C4—Cl1 | 119.37 (17) |
N1—C7—C8 | 115.13 (18) | C10—C9—C8 | 120.4 (2) |
C13—C8—C9 | 119.4 (2) | C10—C9—H9 | 119.8 |
C13—C8—C7 | 117.45 (19) | C8—C9—H9 | 119.8 |
C9—C8—C7 | 123.2 (2) | C9—C10—C11 | 118.3 (2) |
C2—C3—C4 | 118.7 (2) | C9—C10—H10 | 120.8 |
C2—C3—H3 | 120.6 | C11—C10—H10 | 120.8 |
C4—C3—H3 | 120.6 | C11—C12—C13 | 117.9 (2) |
C12—C13—C8 | 120.7 (2) | C11—C12—H12 | 121.0 |
C12—C13—H13 | 119.6 | C13—C12—H12 | 121.0 |
C8—C13—H13 | 119.6 | F1—C11—C12 | 118.4 (2) |
C3—C2—C1 | 119.4 (2) | F1—C11—C10 | 118.3 (2) |
C3—C2—H2 | 120.3 | C12—C11—C10 | 123.3 (2) |
C1—C2—H2 | 120.3 | ||
O2—S1—N1—C7 | −45.29 (19) | O1—S1—C1—C6 | 163.03 (17) |
O1—S1—N1—C7 | −174.12 (17) | N1—S1—C1—C6 | −85.63 (19) |
C1—S1—N1—C7 | 72.20 (19) | C2—C1—C6—C5 | −1.0 (3) |
S1—N1—C7—O3 | 1.5 (3) | S1—C1—C6—C5 | 176.33 (16) |
S1—N1—C7—C8 | −178.80 (14) | C1—C6—C5—C4 | 0.2 (3) |
O3—C7—C8—C13 | −20.8 (3) | C6—C5—C4—C3 | 1.0 (3) |
N1—C7—C8—C13 | 159.45 (19) | C6—C5—C4—Cl1 | −178.71 (16) |
O3—C7—C8—C9 | 158.7 (2) | C2—C3—C4—C5 | −1.4 (3) |
N1—C7—C8—C9 | −21.0 (3) | C2—C3—C4—Cl1 | 178.32 (18) |
C9—C8—C13—C12 | 0.7 (3) | C13—C8—C9—C10 | −0.3 (3) |
C7—C8—C13—C12 | −179.7 (2) | C7—C8—C9—C10 | −179.8 (2) |
C4—C3—C2—C1 | 0.5 (3) | C8—C9—C10—C11 | −0.6 (4) |
C3—C2—C1—C6 | 0.7 (3) | C8—C13—C12—C11 | −0.2 (3) |
C3—C2—C1—S1 | −176.74 (17) | C13—C12—C11—F1 | 179.7 (2) |
O2—S1—C1—C2 | −151.16 (17) | C13—C12—C11—C10 | −0.8 (4) |
O1—S1—C1—C2 | −19.5 (2) | C9—C10—C11—F1 | −179.3 (2) |
N1—S1—C1—C2 | 91.82 (19) | C9—C10—C11—C12 | 1.2 (4) |
O2—S1—C1—C6 | 31.4 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O4 | 0.83 (3) | 1.91 (3) | 2.733 (3) | 171 (2) |
O4—H1O4···O1i | 0.79 (3) | 2.25 (3) | 2.884 (2) | 138 (3) |
O4—H2O4···O2ii | 0.82 (2) | 2.29 (3) | 2.955 (2) | 139 (3) |
O4—H2O4···O3ii | 0.82 (2) | 2.16 (3) | 2.841 (2) | 141 (3) |
C5—H5···O1iii | 0.93 | 2.54 | 3.124 (3) | 121 |
Symmetry codes: (i) x, y−1, z; (ii) x, −y+1, z+1/2; (iii) x, −y+1, z−1/2. |
Parameters | H | Cl | CH3 | NO2 | OCH3 | F |
Crystal System | Orthorhombic | Triclinic | Triclinic | Monoclinic | Monoclinic | Monoclinic |
Z' | 1 | 2 | 2 | 1 | 1 | 2 |
Orientation of 2-CH3 group to the N—H bond | syn | syn, syn | syn, syn | syn | syn | syn, syn |
Angle between aromatic rings | 73.9 (1) | 89.4 (1), 82.4 (1) | 88.1 (1), 83.5 (1) | 83.8 (2) | 80.81 (1) | 82.83 (11), 85.01 (10) |
Intermolecular Interactions | N—H···O(S) | N—H···O(S) | N—H···O(S) | N—H···O(S) | N—H···O(S), C—H···O(S), π–π | N—H···O(S), C—H···O(S), C—H···π, π–π, S═O···π |
Supramolecular architecture | 1D chains | 1D chains | 1D chains | 1D chains | 1D chains | 3D |
Parameters | H | Cl | CH3 | NO2 | OCH3 | F |
Crystal System | Triclinic | Triclinic | Monoclinic | Monoclinic | Monoclinic | Monoclinic |
Z' | 1 | 1 | 1 | 1 | 1 | 1 |
Orientation of 2-Cl group to the N—H bond | syn | syn | syn | syn | syn | syn |
Angle between aromatic rings | 73.3 (1) | 85.7 (1) | 89.1 (2) | 85.4 (1) | 82.07 (1) | 89.9 (1) |
Intermolecular Interactions | N—H···O(S) | N—H···O(S) | N—H···O(S) | N—H···O(S) | N—H···O(S), C—H···O(S), π–p | N—H···O(S), C—H···O(S), C═O···π |
Supramolecular architecture | 0D (ring motifs) | 0D (ring motifs) | 0D (ring motifs) | 1D chains | 2D | 1D |
Parameters | H | Cl | CH3 | NO2 | F |
Crystal System | Triclinic | Orthorhombic | Orthorhombic | Monoclinic | Monoclinic |
Z' | 2 | 1 | 1 | 1 | 1, H2O |
Angle between aromatic rings | 62.8 (1), 78.6 (1) | 85.6 (1) | 89.5 (1) | 87.8 (1) | 81.82 (11) |
Intermolecular Interactions | N—H···O(S) | N—H···O(S) | N—H···O(C) | N—H···O(S) | N—H···O(W), O(W)—H···O(S), O(W)—H···O(C), C—H···O(S), C—Cl···π, C—F···π, S═O···π |
Supramolecular architecture | 0D (ring motifs) | 1D chains | 0D (ring motifs) | 1D chains | 3D |
Footnotes
‡These authors contributed equally.
Acknowledgements
The authors are thankful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, Mysore, for providing the single-crystal X-ray diffraction data. GMS thanks the Vision Group on Science and Technology (VGST), Karnataka, India, for financial support under its SPiCE project scheme.
References
Banwell, M. G., Crasto, C. F., Easton, C. J., Forrest, A. K., Karoli, T., March, D. R., Mensah, L., Nairn, M. R., O'Hanlon, P. J., Oldham, M. D. & Yue, W. (2000). Bioorg. Med. Chem. Lett. 10, 2263–2266. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chang, L. L., Ashton, W. T., Flanagan, K. L., Chen, T. B., O'Malley, S. S., Zingaro, G. J., Siegl, P. K. S., Kivlighn, S. D., Lotti, V. J., Chang, R. S. L. & Greenlee, W. J. (1994). J. Med. Chem. 37, 4464–4478. CrossRef CAS PubMed Web of Science Google Scholar
Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010a). Acta Cryst. E66, o747. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010b). Acta Cryst. E66, o794. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010c). Acta Cryst. E66, o1466. CrossRef IUCr Journals Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Hamad, A. S. & Abed, F. S. (2014). J. Appl. Chem, 3, 56–63. Google Scholar
Hasegawa, T. & Yamamoto, H. (2000). Bull. Chem. Soc. Jpn, 73, 423–428. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mader, M., Shih, C., Considine, E., De Dios, A., Grossman, C., Hipskind, P., Lin, H., Lobb, K., Lopez, B., Lopez, J., Cabrejas, L., Richett, M., White, W., Cheung, Y., Huang, Z., Reilly, J. & Dinn, S. (2005). Bioorg. Med. Chem. Lett. 15, 617–620. Web of Science CrossRef PubMed CAS Google Scholar
Manojkumar, K. E., Sreenivasa, S., Mohan, N. R., Madhu Chakrapani Rao, T. & Harikrishna, T. (2013). J. Appl. Chem, 2, 730–737. CAS Google Scholar
Mohan, N. R., Sreenivasa, S., Manojkumar, K. E. & Chakrapani Rao, T. M. (2013). J. Appl. Chem. 2, 722–729. Google Scholar
Musser, J. H., Kreft, A. F., Bender, R. H. W., Kubrak, D. M., Grimes, D., Carlson, R. P., Hand, J. M. & Chang, J. (1990). J. Med. Chem. 33, 240–245. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sreenivasa, S., Palakshamurthy, B. S., Madankumar, S., Lokanath, N. K. & Suchetan, P. A. (2014a). Acta Cryst. E70, o193. CrossRef IUCr Journals Google Scholar
Sreenivasa, S., Palakshamurthy, B. S., Pampa, K. J., Lokanath, N. K. & Suchetan, P. A. (2014b). Acta Cryst. E70, o199. CrossRef IUCr Journals Google Scholar
Suchetan, P. A., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o904. CrossRef IUCr Journals Google Scholar
Suchetan, P. A., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o929. CrossRef IUCr Journals Google Scholar
Suchetan, P. A., Foro, S. & Gowda, B. T. (2011c). Acta Cryst. E67, o146. CrossRef IUCr Journals Google Scholar
Suchetan, P. A., Foro, S. & Gowda, B. T. (2011d). Acta Cryst. E67, o930. CrossRef IUCr Journals Google Scholar
Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010a). Acta Cryst. E66, o766. Web of Science CSD CrossRef IUCr Journals Google Scholar
Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010b). Acta Cryst. E66, o1253. Web of Science CSD CrossRef IUCr Journals Google Scholar
Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010c). Acta Cryst. E66, o1501. Web of Science CSD CrossRef IUCr Journals Google Scholar
Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010d). Acta Cryst. E66, o1024. CrossRef IUCr Journals Google Scholar
Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010e). Acta Cryst. E66, o1997. CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.