research communications
E)-2-phenylethenyl]quinazolin-4(3H)-one
of 3-(4-hydroxyphenyl)-2-[(aInstitute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Str. P. Valdena 3/7, Riga, LV 1048, Latvia, bLatvian Institute of Organic Synthesis, Str. Aizkraukles 21, Riga, LV 1006, Latvia, and cInstitute of Synthetic Chemistry, Kaunas University of Technology, Str. K. Barsausko 59, Kaunas, LT 51423, Lithuania
*Correspondence e-mail: d_stepanovs@osi.lv, mara@ktf.rtu.lv
The title compound, C22H16N2O2 {systematic name: 3-(4-hydroxyphenyl)-2-[(E)-2-phenylethenyl]quinazolin-4(3H)-one}, consists of a substituted 2-[(E)-2-arylethenyl]-3-arylquinazolin-4(3H)-one skeleton. The substituents at the ethylene fragment are located in trans positions. The phenyl ring is inclined to the quinazolone ring by 26.44 (19)°, while the 4-hydroxyphenyl ring is inclined to the quinazolone ring by 81.25 (8)°. The phenyl ring and the 4-hydroxyphenyl ring are inclined to one another by 78.28 (2)°. In the crystal, molecules are connected via O—H⋯O hydrogen bonds, forming a helix along the a-axis direction. The helices are linked by C—H⋯π interactions, forming slabs parallel to (001).
Keywords: crystal structure; 2,3-disubstituted quinazolin-4(3H)-one; styrylquinazolinone conjugation system; hydrogen bonding.
CCDC reference: 1468806
1. Chemical context
Compounds containing the 2-[(E)-2-arylethenyl]-3-arylquinazolin-4(3H)-one core are well known for their broad biological activities. These compounds demonstrate antibiotic effect in vivo against methicillin-resistant Staphylococcus aureus (Bouley et al., 2015; Chang et al., 2014) and antileishmanial activity (Birhan et al., 2014). 2-Styryl functionalized quinazolinones are applicable as anticancer agents against human cell lines (Kamal et al., 2013; 2012; 2010a,b) and anticonvulsants (Das et al., 2014). Analogues of the title compound are Hsp90 inhibitors with in vitro anti-tumor activity (Park et al., 2007), as well as suppressants of the ubiquitin ligase activity of a human polypeptide (Erez & Nakache, 2011), GluN2D-containing NMDA receptors (Hansen & Traynelis, 2011) and c-KIT expression (Wang et al., 2013). Compounds with such a structure are good modulators of both γ-secretase (Fischer et al., 2011) and Rho C activity (Sun et al., 2003), as well as AMPA receptor antagonists (Chenard et al., 2001; 1999; Welch & DeVries, 1998). Piriqualone (the 2-hetarylvinyl analogue of the above mentioned compounds) has been used as a sedative–hypnotic drug (Kumar et al., 2015).
2. Structural commentary
The title compound 1, Fig. 1, consists of a substituted 2-[(E)-2-arylethenyl]-3-arylquinazolin-4(3H)-one skeleton. The substituents at the ethylene fragment are located in trans-positions. Unlike the structure reported by Nosova et al. (2012), where the conjugation system of styrylquinazolinone is practically planar, in compound 1 the 2-phenyleth-(E)-enyl substituent is twisted with respect to the plane of the quinazolone ring. The phenyl (C21–C26) and the 4-hydroxyphenyl (C12–C17) rings are inclined to one another by 78.2 (2)°, and to the quinazolone ring (N1/N2/C2/C4–C10) by 26.44 (19) and 81.25 (8)°, respectively. A similar styrylquinazolinone conjugation system geometry has been found in structures reported previously (Trashakhova et al., 2011; Ovchinnikova et al., 2014).
3. Supramolecular features
In the crystal of 1, molecules are connected via O—H⋯O hydrogen bonds forming a 21 helix, with graph set C(3), propagating along the a-axis direction (Table 1 and Fig. 2). This is similar to the crystal packing reported for the structure of diltiazem acetylsalicilate hydrate (Stepanovs et al., 2016). In 1, the helices are linked via C—H⋯π interactions, forming slabs lying parallel to the ab plane (Table 1 and Fig. 3).
4. Database survey
A search of the Cambridge Structural Database (Version 5.37; Groom & Allen, 2014) for S1 (Fig. 4) gave 137 hits, while a search for S2 (2-arylvinyl 3-aryl quinazolin-4(3H)-one skeleton, Fig. 4) gave only three hits: Nosova et al. (2012); Trashakhova et al. (2011); Ovchinnikova et al. (2014). However, none of the characterized single crystals contains a hydrogen-bond donor/acceptor in the aryl substituent at position 3 of the quinazolinone unit and information on intermolecular interactions of such structures is still missing. The only example containing a carboxylic functionality at the 3-aryl substituent of quinazolin-4(3H)-one was analysed as a complex with Staphylococcus aureus at the PBP2a binding site (Bouley et al., 2015).
5. Synthesis and crystallization
The title compound 1 was synthesized applying two pathways starting from 2-methyl (2) or 2-styryl (3) benzoxazin-4-one (methods A and B, respectively, Fig. 5).
Method A
2-Methyl benzoxazin-4-one (2) (0.263 g, 1.6 mmol) and 4-aminophenol (4) (0.175 g, 1.6 mmol) in glacial acetic acid (2 ml) were refluxed for 7 h, then poured into crushed ice (50 ml) and filtered. Compound 5 was obtained as a greyish solid. Its spectroscopic data corresponded to those in the literature (Marinho & Proença, 2015). The crude product 5, without further purification, was subjected to condensation with benzaldehyde analogously to a known method (Krastina et al., 2014): 3-(4-hydroxyphenyl)-2-methylquinazolin-4(3H)-one (5) (0.276 g, 1.1 mmol), benzaldehyde (0.27 g, 2.53 mol) and acetanhydride (0.5 ml) in acetic acid (4 ml) were refluxed for 8 h, poured into crushed ice (50 ml), filtered and air-dried. The mixture containing compounds 1 and 6 (0.25 g) was refluxed for 7 h in NaOH/methanol (5%, 5 ml), poured into crushed ice (50 ml), acidified with conc. hydrochloric acid and filtered. The target compound 1 was obtained as a white solid with 53% (0.197 g) yield over two steps.
Method B
The title compound 1 was obtained as a by-product during the synthesis of 2-cinnamamido-N-(4-hydroxyphenyl)benzamide: benzoxazin-4-one 3 (1.00 g, 4 mmol) and 4-aminophenol (4) (0.44 g, 4 mmol) were refluxed in toluene (5 ml) for 3 h, then the mixture was filtered. The title compound was isolated by crystallization from ethanol.
Single crystals suitable for X-ray analysis were obtained by slow evaporation from ethanol at room temperature (m.p. > 523 K).
Spectroscopic data: IR (KBr), ν, cm−1: 3300 (OH), 1655 (CON), 1150, 1515, 1470, 1450, 1340, 1225, 970, 775, 965. 1H NMR (300 MHz, DMSO-d6), δ (p.p.m.): 9.91 (1H, s, OH), 8.12 (1H, d, J = 7.8 Hz, H-5), 7.91–7.83 (2H, m, H-b, H-6/7), 7.76 (1H, d, J = 7.8 Hz, H-8), 7.52 (1H, t, J = 7.8 Hz, H-6/7), 7.41–7.33 (5H, m, Ph), 7.23 (2H, d, J = 8.6 Hz, H-1′), 6.94 (2H, d, J = 8.6 Hz, H-2′), 6.42 (1H, d, J = 15.4 Hz, H-a). 13C NMR (75 MHz, DMSO-d6), δ (p.p.m.): 161.5, 157.8, 152.0, 147.4, 138.6, 134.9, 134.7, 129.9, 129.8, 129.1, 127.9, 127.4, 127.1, 126.52, 126.47, 120.6, 120.2, 116.1. HRMS. Calculated [M+H]+, m/z: 341.1285. C22H16N2O2. Found, m/z: 341.1282.
6. Refinement
Crystal data, data collection and structure . The C-bound H atoms were positioned geometrically and refined as riding on their parent atoms: C—H = 0.93 − 0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. The H atom of the hydroxyl group was included in the position identified from a difference Fourier map and was then refined as riding: O—H = 0.82 Å with Uiso(H) = 1.5Ueq(O).
details are summarized in Table 2Supporting information
CCDC reference: 1468806
https://doi.org/10.1107/S2056989016004473/su5288sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016004473/su5288Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016004473/su5288Isup3.cml
Data collection: KappaCCD Server Software (Nonius, 1997); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2015 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2015 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).C22H16N2O2 | Dx = 1.287 Mg m−3 |
Mr = 340.37 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P21nb | Cell parameters from 6856 reflections |
a = 5.3469 (2) Å | θ = 1.0–27.5° |
b = 16.5139 (6) Å | µ = 0.08 mm−1 |
c = 19.8885 (10) Å | T = 173 K |
V = 1756.12 (13) Å3 | Plate, colorless |
Z = 4 | 0.22 × 0.18 × 0.09 mm |
F(000) = 712 |
Nonius KappaCCD diffractometer | 2236 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | θmax = 27.5°, θmin = 3.2° |
φ and ω scan | h = −6→6 |
3862 measured reflections | k = −21→21 |
3862 independent reflections | l = −25→25 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.068 | H-atom parameters constrained |
wR(F2) = 0.139 | w = 1/[σ2(Fo2) + (0.0478P)2 + 0.3939P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
3862 reflections | Δρmax = 0.17 e Å−3 |
236 parameters | Δρmin = −0.19 e Å−3 |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.6956 (7) | 0.7742 (2) | 0.45545 (18) | 0.0333 (9) | |
C2 | 0.8449 (8) | 0.7044 (3) | 0.4584 (2) | 0.0317 (10) | |
N3 | 0.8479 (7) | 0.6500 (2) | 0.41192 (18) | 0.0372 (9) | |
C4 | 0.6912 (9) | 0.6013 (3) | 0.3061 (2) | 0.0436 (12) | |
H4 | 0.7956 | 0.5564 | 0.3096 | 0.052* | |
C5 | 0.5358 (9) | 0.6089 (3) | 0.2518 (2) | 0.0476 (13) | |
H5 | 0.5349 | 0.5690 | 0.2188 | 0.057* | |
C6 | 0.3791 (11) | 0.6756 (3) | 0.2457 (3) | 0.0564 (15) | |
H6 | 0.2738 | 0.6801 | 0.2086 | 0.068* | |
C7 | 0.3795 (12) | 0.7346 (3) | 0.2939 (3) | 0.0588 (15) | |
H7 | 0.2750 | 0.7793 | 0.2895 | 0.071* | |
C8 | 0.5362 (10) | 0.7885 (3) | 0.4018 (3) | 0.0435 (12) | |
C9 | 0.6946 (8) | 0.6604 (3) | 0.3564 (2) | 0.0337 (11) | |
C10 | 0.5376 (9) | 0.7278 (3) | 0.3501 (2) | 0.0372 (11) | |
O11 | 0.4054 (7) | 0.8506 (2) | 0.40120 (19) | 0.0653 (12) | |
C12 | 0.7042 (8) | 0.8360 (3) | 0.5076 (2) | 0.0315 (10) | |
C13 | 0.5181 (8) | 0.8382 (3) | 0.5557 (2) | 0.0354 (11) | |
H13 | 0.3953 | 0.7983 | 0.5563 | 0.042* | |
C14 | 0.5143 (9) | 0.8993 (3) | 0.6027 (2) | 0.0372 (11) | |
H14 | 0.3905 | 0.9002 | 0.6356 | 0.045* | |
C15 | 0.6941 (8) | 0.9595 (3) | 0.6013 (2) | 0.0309 (10) | |
C16 | 0.8821 (8) | 0.9566 (3) | 0.5533 (2) | 0.0344 (11) | |
H16 | 1.0059 | 0.9962 | 0.5528 | 0.041* | |
C17 | 0.8859 (8) | 0.8951 (3) | 0.5064 (2) | 0.0339 (11) | |
H17 | 1.0110 | 0.8936 | 0.4739 | 0.041* | |
O18 | 0.6763 (7) | 1.01968 (18) | 0.64797 (15) | 0.0426 (8) | |
H18 | 0.7583 | 1.0589 | 0.6356 | 0.064* | |
C19 | 0.9961 (7) | 0.6928 (3) | 0.5188 (2) | 0.0338 (11) | |
H19 | 0.9602 | 0.7230 | 0.5570 | 0.041* | |
C20 | 1.1845 (8) | 0.6398 (3) | 0.5204 (2) | 0.0341 (10) | |
H20 | 1.2220 | 0.6133 | 0.4804 | 0.041* | |
C21 | 1.3390 (9) | 0.6191 (3) | 0.5794 (2) | 0.0361 (11) | |
C22 | 1.2883 (9) | 0.6474 (3) | 0.6437 (2) | 0.0435 (12) | |
H22 | 1.1527 | 0.6816 | 0.6508 | 0.052* | |
C23 | 1.4371 (8) | 0.6252 (3) | 0.6973 (3) | 0.0498 (15) | |
H23 | 1.4006 | 0.6441 | 0.7402 | 0.060* | |
C24 | 1.6404 (9) | 0.5748 (3) | 0.6875 (3) | 0.0512 (14) | |
H24 | 1.7421 | 0.5605 | 0.7235 | 0.061* | |
C25 | 1.6909 (10) | 0.5460 (3) | 0.6243 (3) | 0.0496 (13) | |
H25 | 1.8265 | 0.5117 | 0.6176 | 0.060* | |
C26 | 1.5421 (9) | 0.5676 (3) | 0.5706 (2) | 0.0399 (12) | |
H26 | 1.5779 | 0.5475 | 0.5280 | 0.048* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0351 (19) | 0.030 (2) | 0.035 (2) | 0.0014 (17) | −0.0054 (19) | −0.0034 (17) |
C2 | 0.031 (2) | 0.027 (2) | 0.037 (3) | 0.003 (2) | −0.004 (2) | −0.002 (2) |
N3 | 0.041 (2) | 0.033 (2) | 0.037 (2) | 0.0064 (18) | −0.0066 (19) | −0.0067 (19) |
C4 | 0.050 (3) | 0.038 (3) | 0.042 (3) | 0.003 (2) | −0.001 (3) | −0.007 (2) |
C5 | 0.052 (3) | 0.051 (4) | 0.040 (3) | −0.011 (3) | −0.001 (3) | −0.013 (3) |
C6 | 0.066 (3) | 0.065 (4) | 0.038 (3) | −0.002 (3) | −0.017 (3) | −0.007 (3) |
C7 | 0.067 (3) | 0.059 (4) | 0.050 (3) | 0.012 (3) | −0.021 (3) | −0.003 (3) |
C8 | 0.045 (3) | 0.041 (3) | 0.043 (3) | 0.004 (3) | −0.012 (3) | −0.001 (2) |
C9 | 0.036 (2) | 0.034 (3) | 0.031 (3) | −0.001 (2) | −0.004 (2) | −0.002 (2) |
C10 | 0.044 (2) | 0.038 (3) | 0.030 (3) | 0.004 (2) | −0.006 (2) | −0.001 (2) |
O11 | 0.081 (3) | 0.055 (3) | 0.060 (3) | 0.029 (2) | −0.030 (2) | −0.010 (2) |
C12 | 0.031 (2) | 0.031 (3) | 0.032 (3) | 0.003 (2) | −0.003 (2) | −0.003 (2) |
C13 | 0.036 (2) | 0.029 (3) | 0.041 (3) | −0.009 (2) | −0.001 (2) | 0.004 (2) |
C14 | 0.039 (2) | 0.037 (3) | 0.036 (3) | −0.002 (2) | 0.006 (2) | 0.003 (2) |
C15 | 0.040 (2) | 0.027 (3) | 0.026 (2) | −0.003 (2) | −0.003 (2) | 0.001 (2) |
C16 | 0.034 (2) | 0.033 (3) | 0.036 (3) | −0.007 (2) | 0.001 (2) | 0.000 (2) |
C17 | 0.032 (2) | 0.036 (3) | 0.034 (3) | −0.001 (2) | 0.004 (2) | 0.001 (2) |
O18 | 0.062 (2) | 0.0355 (19) | 0.0304 (17) | −0.0100 (17) | 0.0041 (16) | −0.0058 (16) |
C19 | 0.038 (2) | 0.029 (3) | 0.034 (3) | −0.002 (2) | −0.006 (2) | −0.002 (2) |
C20 | 0.040 (2) | 0.027 (2) | 0.035 (3) | −0.002 (2) | −0.005 (2) | 0.000 (2) |
C21 | 0.037 (2) | 0.030 (3) | 0.041 (3) | −0.007 (2) | −0.012 (2) | 0.001 (2) |
C22 | 0.041 (3) | 0.045 (3) | 0.044 (3) | −0.003 (2) | −0.008 (2) | −0.004 (3) |
C23 | 0.054 (3) | 0.060 (4) | 0.036 (3) | −0.010 (3) | −0.009 (2) | 0.002 (3) |
C24 | 0.047 (3) | 0.060 (4) | 0.047 (4) | −0.009 (3) | −0.018 (2) | 0.011 (3) |
C25 | 0.038 (3) | 0.051 (3) | 0.059 (4) | 0.001 (2) | −0.007 (3) | 0.016 (3) |
C26 | 0.039 (2) | 0.040 (3) | 0.041 (3) | −0.001 (2) | −0.003 (2) | 0.003 (2) |
N1—C8 | 1.385 (6) | C14—H14 | 0.9300 |
N1—C2 | 1.404 (5) | C15—O18 | 1.364 (5) |
N1—C12 | 1.455 (5) | C15—C16 | 1.387 (6) |
C2—N3 | 1.289 (5) | C16—C17 | 1.379 (6) |
C2—C19 | 1.459 (6) | C16—H16 | 0.9300 |
N3—C9 | 1.385 (5) | C17—H17 | 0.9300 |
C4—C5 | 1.368 (7) | O18—H18 | 0.8200 |
C4—C9 | 1.398 (6) | C19—C20 | 1.335 (6) |
C4—H4 | 0.9300 | C19—H19 | 0.9300 |
C5—C6 | 1.390 (7) | C20—C21 | 1.475 (6) |
C5—H5 | 0.9300 | C20—H20 | 0.9300 |
C6—C7 | 1.367 (7) | C21—C22 | 1.389 (6) |
C6—H6 | 0.9300 | C21—C26 | 1.390 (6) |
C7—C10 | 1.406 (7) | C22—C23 | 1.379 (6) |
C7—H7 | 0.9300 | C22—H22 | 0.9300 |
C8—O11 | 1.241 (6) | C23—C24 | 1.382 (7) |
C8—C10 | 1.436 (6) | C23—H23 | 0.9300 |
C9—C10 | 1.400 (6) | C24—C25 | 1.370 (7) |
C12—C17 | 1.378 (6) | C24—H24 | 0.9300 |
C12—C13 | 1.381 (6) | C25—C26 | 1.378 (7) |
C13—C14 | 1.377 (6) | C25—H25 | 0.9300 |
C13—H13 | 0.9300 | C26—H26 | 0.9300 |
C14—C15 | 1.383 (6) | ||
C8—N1—C2 | 121.5 (4) | C15—C14—H14 | 119.9 |
C8—N1—C12 | 116.7 (4) | O18—C15—C14 | 117.4 (4) |
C2—N1—C12 | 121.8 (3) | O18—C15—C16 | 123.0 (4) |
N3—C2—N1 | 123.3 (4) | C14—C15—C16 | 119.6 (4) |
N3—C2—C19 | 119.4 (4) | C17—C16—C15 | 120.1 (4) |
N1—C2—C19 | 117.3 (4) | C17—C16—H16 | 119.9 |
C2—N3—C9 | 118.6 (4) | C15—C16—H16 | 119.9 |
C5—C4—C9 | 120.6 (5) | C12—C17—C16 | 120.0 (4) |
C5—C4—H4 | 119.7 | C12—C17—H17 | 120.0 |
C9—C4—H4 | 119.7 | C16—C17—H17 | 120.0 |
C4—C5—C6 | 120.6 (5) | C15—O18—H18 | 109.5 |
C4—C5—H5 | 119.7 | C20—C19—C2 | 121.6 (4) |
C6—C5—H5 | 119.7 | C20—C19—H19 | 119.2 |
C7—C6—C5 | 120.2 (5) | C2—C19—H19 | 119.2 |
C7—C6—H6 | 119.9 | C19—C20—C21 | 126.5 (4) |
C5—C6—H6 | 119.9 | C19—C20—H20 | 116.8 |
C6—C7—C10 | 120.1 (5) | C21—C20—H20 | 116.8 |
C6—C7—H7 | 119.9 | C22—C21—C26 | 118.3 (4) |
C10—C7—H7 | 119.9 | C22—C21—C20 | 123.1 (4) |
O11—C8—N1 | 119.7 (5) | C26—C21—C20 | 118.7 (4) |
O11—C8—C10 | 124.9 (5) | C23—C22—C21 | 120.6 (5) |
N1—C8—C10 | 115.5 (4) | C23—C22—H22 | 119.7 |
N3—C9—C4 | 119.4 (4) | C21—C22—H22 | 119.7 |
N3—C9—C10 | 121.7 (4) | C22—C23—C24 | 120.3 (5) |
C4—C9—C10 | 118.9 (4) | C22—C23—H23 | 119.9 |
C9—C10—C7 | 119.7 (4) | C24—C23—H23 | 119.9 |
C9—C10—C8 | 119.5 (4) | C25—C24—C23 | 119.6 (5) |
C7—C10—C8 | 120.7 (5) | C25—C24—H24 | 120.2 |
C17—C12—C13 | 120.1 (4) | C23—C24—H24 | 120.2 |
C17—C12—N1 | 120.4 (4) | C24—C25—C26 | 120.4 (5) |
C13—C12—N1 | 119.3 (4) | C24—C25—H25 | 119.8 |
C14—C13—C12 | 120.1 (4) | C26—C25—H25 | 119.8 |
C14—C13—H13 | 120.0 | C25—C26—C21 | 120.8 (5) |
C12—C13—H13 | 120.0 | C25—C26—H26 | 119.6 |
C13—C14—C15 | 120.1 (4) | C21—C26—H26 | 119.6 |
C13—C14—H14 | 119.9 | ||
C8—N1—C2—N3 | 1.2 (7) | C8—N1—C12—C17 | −95.4 (5) |
C12—N1—C2—N3 | −177.5 (4) | C2—N1—C12—C17 | 83.3 (5) |
C8—N1—C2—C19 | −176.7 (4) | C8—N1—C12—C13 | 80.1 (5) |
C12—N1—C2—C19 | 4.7 (6) | C2—N1—C12—C13 | −101.2 (5) |
N1—C2—N3—C9 | −0.6 (6) | C17—C12—C13—C14 | −0.3 (6) |
C19—C2—N3—C9 | 177.1 (4) | N1—C12—C13—C14 | −175.8 (4) |
C9—C4—C5—C6 | 0.2 (8) | C12—C13—C14—C15 | 1.1 (7) |
C4—C5—C6—C7 | 0.2 (9) | C13—C14—C15—O18 | 178.2 (4) |
C5—C6—C7—C10 | −0.3 (9) | C13—C14—C15—C16 | −1.8 (7) |
C2—N1—C8—O11 | 179.4 (5) | O18—C15—C16—C17 | −178.4 (4) |
C12—N1—C8—O11 | −1.9 (7) | C14—C15—C16—C17 | 1.6 (7) |
C2—N1—C8—C10 | −0.7 (6) | C13—C12—C17—C16 | 0.1 (6) |
C12—N1—C8—C10 | 178.0 (4) | N1—C12—C17—C16 | 175.5 (4) |
C2—N3—C9—C4 | −178.7 (4) | C15—C16—C17—C12 | −0.7 (7) |
C2—N3—C9—C10 | −0.3 (6) | N3—C2—C19—C20 | 17.8 (7) |
C5—C4—C9—N3 | 178.0 (4) | N1—C2—C19—C20 | −164.3 (4) |
C5—C4—C9—C10 | −0.5 (7) | C2—C19—C20—C21 | −175.8 (4) |
N3—C9—C10—C7 | −178.0 (5) | C19—C20—C21—C22 | 6.9 (7) |
C4—C9—C10—C7 | 0.4 (7) | C19—C20—C21—C26 | −174.5 (4) |
N3—C9—C10—C8 | 0.7 (7) | C26—C21—C22—C23 | 0.4 (7) |
C4—C9—C10—C8 | 179.1 (4) | C20—C21—C22—C23 | 179.0 (4) |
C6—C7—C10—C9 | 0.0 (8) | C21—C22—C23—C24 | 0.5 (7) |
C6—C7—C10—C8 | −178.7 (5) | C22—C23—C24—C25 | −1.0 (7) |
O11—C8—C10—C9 | 179.8 (5) | C23—C24—C25—C26 | 0.6 (8) |
N1—C8—C10—C9 | −0.2 (6) | C24—C25—C26—C21 | 0.3 (7) |
O11—C8—C10—C7 | −1.6 (8) | C22—C21—C26—C25 | −0.8 (7) |
N1—C8—C10—C7 | 178.5 (5) | C20—C21—C26—C25 | −179.5 (4) |
Cg3 and Cg4 are the centroids of the C12–C17 and C21–C26 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O18—H18···O11i | 0.82 | 1.84 | 2.654 (5) | 172 |
C4—H4···Cg4ii | 0.94 | 2.96 | 3.829 (5) | 157 |
C16—H16···Cg3i | 0.94 | 2.95 | 3.646 (5) | 133 |
Symmetry codes: (i) x+1/2, −y+2, −z+1; (ii) x−1/2, −y+1, −z+1. |
Acknowledgements
The authors thank the Latvian–Lithuanian–Taiwanese co-project W1935//LV-LT-TW/2015/2 for financial support. JK is grateful for an ERASMUS+ mobility grant for the opportunity of a traineeship at RTU.
References
Birhan, Y. S., Bekhit, A. A. & Hymete, A. (2014). Org. Med. Chem. 4 doi: 10.1186/s13588-014-0010-1. Google Scholar
Bouley, R., Kumarasiri, M., Peng, Z., Otero, L. H., Song, W., Suckow, M. A., Schroeder, V. A., Wolter, W. R., Lastochkin, E., Antunes, N. T., Pi, H., Vakulenko, S., Hermoso, J. A., Chang, M. & Mobashery, S. (2015). J. Am. Chem. Soc. 137, 1738–1741. CrossRef CAS PubMed Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361. Web of Science CrossRef CAS IUCr Journals Google Scholar
Chang, M., Mobashery, S. & Bouley, R. (2014). Int. Patent Appl. 2014/138302. Google Scholar
Chenard, B., Menniti, F. S. & Welch, W. K. (1999). Eur. Patent Appl. 0900568. Google Scholar
Chenard, B. L., Welch, W. M., Blake, J. F., Butler, T. W., Reinhold, A., Ewing, F. E., Menniti, F. S. & Pagnozzi, M. (2001). J. Med. Chem. 44, 1710–1717. CrossRef PubMed CAS Google Scholar
Das, N., Garabadu, D., Banerjee, A. G., Krishnamurthy, S. & Shrivastava, S. K. (2014). Med. Chem. Res. 23, 4167–4176. CrossRef CAS Google Scholar
Erez, O. & Nakache, P. (2011). Int. Patent Appl. 2011/064657. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fischer, C., Shah, S., Hughes, B. L., Nikov, G. N., Crispino, J. L., Middleton, R. E., Szewczak, A. A., Munoz, B. & Shearman, M. S. (2011). Bioorg. Med. Chem. Lett. 21, 773–776. CrossRef CAS PubMed Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Hansen, K. B. & Traynelis, S. F. (2011). J. Neurosci. 31, 3650–3661. CrossRef CAS PubMed Google Scholar
Kamal, A., Bharathi, E. V., Dastagiri, D., Reddy, J. S. & Viswanath, A. (2010a). Int. Patent Appl. 2010/058416. Google Scholar
Kamal, A., Sultana, F., Bharathi, E. V., Srikanth, Y. V. V., Viswanath, A. & Swapna, P. (2012). Int. Patent Appl. 2012/111017. Google Scholar
Kamal, A., Sultana, F., Ramaiah, M. J., Srikanth, Y. V. V., Viswanath, A., Bharathi, E. V., Nayak, R., Pushpavalli, S. N. C. V. L., Srinivas, C. & Pal-Bhadra, M. (2013). Med. Chem. Commun. 4, 575–581. CrossRef CAS Google Scholar
Kamal, A., Bharathi, E. V., Ramaiah, M. J., Dastagiri, D., Reddy, J. S., Viswanath, A., Sultana, F., Pushpavalli, S. N. C. V. L., Pal-Bhadra, M., Srivastava, H. K., Sastry, G. N., Juvekar, A., Sen, S. & Zingde, S. (2010b). Bioorg. Med. Chem. 18, 526–542. CrossRef CAS PubMed Google Scholar
Krastina, G., Ravina, I., Mierina, I., Zicane, D., Turks, M., Tetere, Z. & Leonciks, A. (2014). J. Chem. Pharm. Res. 6, 6–14. Google Scholar
Kumar, D., Jadhavar, P. S., Nautiyal, M., Sharma, H., Meena, P. K., Adane, L., Pancholia, S. & Chakraborti, A. K. (2015). RSC Adv. 5, 30819–30825. CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Marinho, E. & Proença, M. F. (2015). Synthesis, 47, 1623–1632. CAS Google Scholar
Nonius (1997). KappaCCD Server Software for Windows. Nonius BV, Delft, The Netherlands. Google Scholar
Nosova, E. V., Stupina, T. V., Lipunova, G. N., Valova, M. S., Slepukhin, P. A. & Charushin, V. N. (2012). Int. J. Org. Chem, 2, 56–63. CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Ovchinnikova, I. G., Kim, G. A., Matochkina, E. G., Kodess, M. I., Barykin, N. V., El'tsov, O. S., Nosova, E. V., Rusinov, G. L. & Charushin, V. N. (2014). Russ. Chem. Bull. 63, 2467–2477. CSD CrossRef CAS Google Scholar
Park, H., Kim, Y.-J. & Hahn, J.-S. (2007). Bioorg. Med. Chem. Lett. 17, 6345–6349. CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stepanovs, D., Jure, M., Gosteva, M., Popelis, J., Kiselovs, G. & Mishnev, A. (2016). CrystEngComm, 18, 1235–1241. CSD CrossRef CAS Google Scholar
Sun, D., Perkins, E. L. & Tugendreich, S. (2003). Int. Patent Appl. 03/043961. Google Scholar
Trashakhova, T. V., Nosova, E. V., Valova, M. S., Slepukhin, P. A., Lipunova, G. N. & Charushin, V. N. (2011). Russ. J. Org. Chem. 47, 753–761. CrossRef CAS Google Scholar
Wang, X., Zhou, C.-X., Yan, J.-W., Hou, J.-Q., Chen, S.-B., Ou, T.-M., Gu, L.-Q., Huang, Z.-S. & Tan, J. H. (2013). ACS Med. Chem. Lett. 4, 909–914. CrossRef CAS PubMed Google Scholar
Welch, W. M. & DeVries, K. M. (1998). Int. Patent Appl. 98/38173. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.