research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-(4-hy­dr­oxy­phen­yl)-2-[(E)-2-phenyl­ethen­yl]quinazolin-4(3H)-one

CROSSMARK_Color_square_no_text.svg

aInstitute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Str. P. Valdena 3/7, Riga, LV 1048, Latvia, bLatvian Institute of Organic Synthesis, Str. Aizkraukles 21, Riga, LV 1006, Latvia, and cInstitute of Synthetic Chemistry, Kaunas University of Technology, Str. K. Barsausko 59, Kaunas, LT 51423, Lithuania
*Correspondence e-mail: d_stepanovs@osi.lv, mara@ktf.rtu.lv

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 8 March 2016; accepted 15 March 2016; online 22 March 2016)

The title compound, C22H16N2O2 {systematic name: 3-(4-hy­droxy­phen­yl)-2-[(E)-2-phenyl­ethen­yl]quinazolin-4(3H)-one}, consists of a substituted 2-[(E)-2-aryl­ethen­yl]-3-aryl­quinazolin-4(3H)-one skeleton. The substituents at the ethyl­ene fragment are located in trans positions. The phenyl ring is inclined to the quinazolone ring by 26.44 (19)°, while the 4-hy­droxy­phenyl ring is inclined to the quinazolone ring by 81.25 (8)°. The phenyl ring and the 4-hy­droxy­phenyl ring are inclined to one another by 78.28 (2)°. In the crystal, mol­ecules are connected via O—H⋯O hydrogen bonds, forming a helix along the a-axis direction. The helices are linked by C—H⋯π inter­actions, forming slabs parallel to (001).

1. Chemical context

Compounds containing the 2-[(E)-2-aryl­ethen­yl]-3-aryl­quinazolin-4(3H)-one core are well known for their broad biological activities. These compounds demonstrate anti­biotic effect in vivo against methicillin-resistant Staphylococcus aureus (Bouley et al., 2015[Bouley, R., Kumarasiri, M., Peng, Z., Otero, L. H., Song, W., Suckow, M. A., Schroeder, V. A., Wolter, W. R., Lastochkin, E., Antunes, N. T., Pi, H., Vakulenko, S., Hermoso, J. A., Chang, M. & Mobashery, S. (2015). J. Am. Chem. Soc. 137, 1738-1741.]; Chang et al., 2014[Chang, M., Mobashery, S. & Bouley, R. (2014). Int. Patent Appl. 2014/138302.]) and anti­leishmanial activity (Birhan et al., 2014[Birhan, Y. S., Bekhit, A. A. & Hymete, A. (2014). Org. Med. Chem. 4 doi: 10.1186/s13588-014-0010-1.]). 2-Styryl functional­ized quinazolinones are applicable as anti­cancer agents against human cell lines (Kamal et al., 2013[Kamal, A., Sultana, F., Ramaiah, M. J., Srikanth, Y. V. V., Viswanath, A., Bharathi, E. V., Nayak, R., Pushpavalli, S. N. C. V. L., Srinivas, C. & Pal-Bhadra, M. (2013). Med. Chem. Commun. 4, 575-581.]; 2012[Kamal, A., Sultana, F., Bharathi, E. V., Srikanth, Y. V. V., Viswanath, A. & Swapna, P. (2012). Int. Patent Appl. 2012/111017.]; 2010a[Kamal, A., Bharathi, E. V., Dastagiri, D., Reddy, J. S. & Viswanath, A. (2010a). Int. Patent Appl. 2010/058416.],b[Kamal, A., Bharathi, E. V., Ramaiah, M. J., Dastagiri, D., Reddy, J. S., Viswanath, A., Sultana, F., Pushpavalli, S. N. C. V. L., Pal-Bhadra, M., Srivastava, H. K., Sastry, G. N., Juvekar, A., Sen, S. & Zingde, S. (2010b). Bioorg. Med. Chem. 18, 526-542.]) and anti­convulsants (Das et al., 2014[Das, N., Garabadu, D., Banerjee, A. G., Krishnamurthy, S. & Shrivastava, S. K. (2014). Med. Chem. Res. 23, 4167-4176.]). Analogues of the title compound are Hsp90 inhibitors with in vitro anti-tumor activity (Park et al., 2007[Park, H., Kim, Y.-J. & Hahn, J.-S. (2007). Bioorg. Med. Chem. Lett. 17, 6345-6349.]), as well as suppressants of the ubiquitin ligase activity of a human polypeptide (Erez & Nakache, 2011[Erez, O. & Nakache, P. (2011). Int. Patent Appl. 2011/064657.]), GluN2D-containing NMDA receptors (Hansen & Traynelis, 2011[Hansen, K. B. & Traynelis, S. F. (2011). J. Neurosci. 31, 3650-3661.]) and c-KIT expression (Wang et al., 2013[Wang, X., Zhou, C.-X., Yan, J.-W., Hou, J.-Q., Chen, S.-B., Ou, T.-M., Gu, L.-Q., Huang, Z.-S. & Tan, J. H. (2013). ACS Med. Chem. Lett. 4, 909-914.]). Compounds with such a structure are good modulators of both γ-secretase (Fischer et al., 2011[Fischer, C., Shah, S., Hughes, B. L., Nikov, G. N., Crispino, J. L., Middleton, R. E., Szewczak, A. A., Munoz, B. & Shearman, M. S. (2011). Bioorg. Med. Chem. Lett. 21, 773-776.]) and Rho C activity (Sun et al., 2003[Sun, D., Perkins, E. L. & Tugendreich, S. (2003). Int. Patent Appl. 03/043961.]), as well as AMPA receptor antagonists (Chenard et al., 2001[Chenard, B. L., Welch, W. M., Blake, J. F., Butler, T. W., Reinhold, A., Ewing, F. E., Menniti, F. S. & Pagnozzi, M. (2001). J. Med. Chem. 44, 1710-1717.]; 1999[Chenard, B., Menniti, F. S. & Welch, W. K. (1999). Eur. Patent Appl. 0900568.]; Welch & DeVries, 1998[Welch, W. M. & DeVries, K. M. (1998). Int. Patent Appl. 98/38173.]). Piriqualone (the 2-hetaryl­vinyl analogue of the above mentioned compounds) has been used as a sedative–hypnotic drug (Kumar et al., 2015[Kumar, D., Jadhavar, P. S., Nautiyal, M., Sharma, H., Meena, P. K., Adane, L., Pancholia, S. & Chakraborti, A. K. (2015). RSC Adv. 5, 30819-30825.]).

[Scheme 1]

2. Structural commentary

The title compound 1, Fig. 1[link], consists of a substituted 2-[(E)-2-aryl­ethen­yl]-3-aryl­quinazolin-4(3H)-one skeleton. The substituents at the ethyl­ene fragment are located in trans-positions. Unlike the structure reported by Nosova et al. (2012[Nosova, E. V., Stupina, T. V., Lipunova, G. N., Valova, M. S., Slepukhin, P. A. & Charushin, V. N. (2012). Int. J. Org. Chem, 2, 56-63.]), where the conjugation system of styrylquinazolinone is practically planar, in compound 1 the 2-phenyl­eth-(E)-enyl substituent is twisted with respect to the plane of the quinazolone ring. The phenyl (C21–C26) and the 4-hy­droxy­phenyl (C12–C17) rings are inclined to one another by 78.2 (2)°, and to the quinazolone ring (N1/N2/C2/C4–C10) by 26.44 (19) and 81.25 (8)°, respectively. A similar styryl­quinazolinone conjugation system geometry has been found in structures reported previously (Trashakhova et al., 2011[Trashakhova, T. V., Nosova, E. V., Valova, M. S., Slepukhin, P. A., Lipunova, G. N. & Charushin, V. N. (2011). Russ. J. Org. Chem. 47, 753-761.]; Ovchinnikova et al., 2014[Ovchinnikova, I. G., Kim, G. A., Matochkina, E. G., Kodess, M. I., Barykin, N. V., El'tsov, O. S., Nosova, E. V., Rusinov, G. L. & Charushin, V. N. (2014). Russ. Chem. Bull. 63, 2467-2477.]).

[Figure 1]
Figure 1
The mol­ecular structure of compound 1, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal of 1, mol­ecules are connected via O—H⋯O hydrogen bonds forming a 21 helix, with graph set C(3), propagating along the a-axis direction (Table 1[link] and Fig. 2[link]). This is similar to the crystal packing reported for the structure of diltiazem acetyl­salicilate hydrate (Stepanovs et al., 2016[Stepanovs, D., Jure, M., Gosteva, M., Popelis, J., Kiselovs, G. & Mishnev, A. (2016). CrystEngComm, 18, 1235-1241.]). In 1, the helices are linked via C—H⋯π inter­actions, forming slabs lying parallel to the ab plane (Table 1[link] and Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of the C12–C17 and C21–C26 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O18—H18⋯O11i 0.82 1.84 2.654 (5) 172
C4—H4⋯Cg4ii 0.94 2.96 3.829 (5) 157
C16—H16⋯Cg3i 0.94 2.95 3.646 (5) 133
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+2, -z+1]; (ii) [x-{\script{1\over 2}}, -y+1, -z+1].
[Figure 2]
Figure 2
A fragment of the crystal structure of compound 1, showing the helix-like hydrogen-bonded chain propagating along the a-axis direction.
[Figure 3]
Figure 3
A view along the a axis of the crystal packing of compound 1. The hydrogen bonds are shown as dashed lines and the C—H⋯π inter­actions (see Table 1[link]) are represented as thin black lines.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for substructure S1 (Fig. 4[link]) gave 137 hits, while a search for substructure S2 (2-aryl­vinyl 3-aryl quinazolin-4(3H)-one skeleton, Fig. 4[link]) gave only three hits: Nosova et al. (2012[Nosova, E. V., Stupina, T. V., Lipunova, G. N., Valova, M. S., Slepukhin, P. A. & Charushin, V. N. (2012). Int. J. Org. Chem, 2, 56-63.]); Trashakhova et al. (2011[Trashakhova, T. V., Nosova, E. V., Valova, M. S., Slepukhin, P. A., Lipunova, G. N. & Charushin, V. N. (2011). Russ. J. Org. Chem. 47, 753-761.]); Ovchinnikova et al. (2014[Ovchinnikova, I. G., Kim, G. A., Matochkina, E. G., Kodess, M. I., Barykin, N. V., El'tsov, O. S., Nosova, E. V., Rusinov, G. L. & Charushin, V. N. (2014). Russ. Chem. Bull. 63, 2467-2477.]). However, none of the characterized single crystals contains a hydrogen-bond donor/acceptor in the aryl substituent at position 3 of the quinazolinone unit and information on inter­molecular inter­actions of such structures is still missing. The only example containing a carb­oxy­lic functionality at the 3-aryl substituent of quinazolin-4(3H)-one was analysed as a complex with Staphylococcus aureus at the PBP2a binding site (Bouley et al., 2015[Bouley, R., Kumarasiri, M., Peng, Z., Otero, L. H., Song, W., Suckow, M. A., Schroeder, V. A., Wolter, W. R., Lastochkin, E., Antunes, N. T., Pi, H., Vakulenko, S., Hermoso, J. A., Chang, M. & Mobashery, S. (2015). J. Am. Chem. Soc. 137, 1738-1741.]).

[Figure 4]
Figure 4
Substructures used for the Database survey.

5. Synthesis and crystallization

The title compound 1 was synthesized applying two pathways starting from 2-methyl (2) or 2-styryl (3) benzoxazin-4-one (methods A and B, respectively, Fig. 5[link]).

[Figure 5]
Figure 5
Synthesis of the title compound, 1.

Method A

2-Methyl benzoxazin-4-one (2) (0.263 g, 1.6 mmol) and 4-amino­phenol (4) (0.175 g, 1.6 mmol) in glacial acetic acid (2 ml) were refluxed for 7 h, then poured into crushed ice (50 ml) and filtered. Compound 5 was obtained as a greyish solid. Its spectroscopic data corresponded to those in the literature (Marinho & Proença, 2015[Marinho, E. & Proença, M. F. (2015). Synthesis, 47, 1623-1632.]). The crude product 5, without further purification, was subjected to condensation with benzaldehyde analogously to a known method (Krastina et al., 2014[Krastina, G., Ravina, I., Mierina, I., Zicane, D., Turks, M., Tetere, Z. & Leonciks, A. (2014). J. Chem. Pharm. Res. 6, 6-14.]): 3-(4-hy­droxy­phen­yl)-2-methyl­quinazolin-4(3H)-one (5) (0.276 g, 1.1 mmol), benzaldehyde (0.27 g, 2.53 mol) and acetanhydride (0.5 ml) in acetic acid (4 ml) were refluxed for 8 h, poured into crushed ice (50 ml), filtered and air-dried. The mixture containing compounds 1 and 6 (0.25 g) was refluxed for 7 h in NaOH/methanol (5%, 5 ml), poured into crushed ice (50 ml), acidified with conc. hydro­chloric acid and filtered. The target compound 1 was obtained as a white solid with 53% (0.197 g) yield over two steps.

Method B

The title compound 1 was obtained as a by-product during the synthesis of 2-cinnamamido-N-(4-hy­droxy­phen­yl)benz­amide: benzoxazin-4-one 3 (1.00 g, 4 mmol) and 4-amino­phenol (4) (0.44 g, 4 mmol) were refluxed in toluene (5 ml) for 3 h, then the mixture was filtered. The title compound was isolated by crystallization from ethanol.

Single crystals suitable for X-ray analysis were obtained by slow evaporation from ethanol at room temperature (m.p. > 523 K).

Spectroscopic data: IR (KBr), ν, cm−1: 3300 (OH), 1655 (CON), 1150, 1515, 1470, 1450, 1340, 1225, 970, 775, 965. 1H NMR (300 MHz, DMSO-d6), δ (p.p.m.): 9.91 (1H, s, OH), 8.12 (1H, d, J = 7.8 Hz, H-5), 7.91–7.83 (2H, m, H-b, H-6/7), 7.76 (1H, d, J = 7.8 Hz, H-8), 7.52 (1H, t, J = 7.8 Hz, H-6/7), 7.41–7.33 (5H, m, Ph), 7.23 (2H, d, J = 8.6 Hz, H-1′), 6.94 (2H, d, J = 8.6 Hz, H-2′), 6.42 (1H, d, J = 15.4 Hz, H-a). 13C NMR (75 MHz, DMSO-d6), δ (p.p.m.): 161.5, 157.8, 152.0, 147.4, 138.6, 134.9, 134.7, 129.9, 129.8, 129.1, 127.9, 127.4, 127.1, 126.52, 126.47, 120.6, 120.2, 116.1. HRMS. Calculated [M+H]+, m/z: 341.1285. C22H16N2O2. Found, m/z: 341.1282.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were positioned geometrically and refined as riding on their parent atoms: C—H = 0.93 − 0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. The H atom of the hydroxyl group was included in the position identified from a difference Fourier map and was then refined as riding: O—H = 0.82 Å with Uiso(H) = 1.5Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula C22H16N2O2
Mr 340.37
Crystal system, space group Orthorhombic, P21nb
Temperature (K) 173
a, b, c (Å) 5.3469 (2), 16.5139 (6), 19.8885 (10)
V3) 1756.12 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.22 × 0.18 × 0.09
 
Data collection
Diffractometer Nonius KappaCCD
No. of measured, independent and observed [I > 2σ(I)] reflections 3862, 3862, 2236
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.139, 1.03
No. of reflections 3862
No. of parameters 236
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.17, −0.19
Computer programs: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software for Windows. Nonius BV, Delft, The Netherlands.]), DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SIR2011 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2015 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2015 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2015 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

3-(4-Hydroxyphenyl)-2-[(E)-2-phenylethenyl]quinazolin-4(3H)-one top
Crystal data top
C22H16N2O2Dx = 1.287 Mg m3
Mr = 340.37Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P21nbCell parameters from 6856 reflections
a = 5.3469 (2) Åθ = 1.0–27.5°
b = 16.5139 (6) ŵ = 0.08 mm1
c = 19.8885 (10) ÅT = 173 K
V = 1756.12 (13) Å3Plate, colorless
Z = 40.22 × 0.18 × 0.09 mm
F(000) = 712
Data collection top
Nonius KappaCCD
diffractometer
2236 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 3.2°
φ and ω scanh = 66
3862 measured reflectionsk = 2121
3862 independent reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.3939P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3862 reflectionsΔρmax = 0.17 e Å3
236 parametersΔρmin = 0.19 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6956 (7)0.7742 (2)0.45545 (18)0.0333 (9)
C20.8449 (8)0.7044 (3)0.4584 (2)0.0317 (10)
N30.8479 (7)0.6500 (2)0.41192 (18)0.0372 (9)
C40.6912 (9)0.6013 (3)0.3061 (2)0.0436 (12)
H40.79560.55640.30960.052*
C50.5358 (9)0.6089 (3)0.2518 (2)0.0476 (13)
H50.53490.56900.21880.057*
C60.3791 (11)0.6756 (3)0.2457 (3)0.0564 (15)
H60.27380.68010.20860.068*
C70.3795 (12)0.7346 (3)0.2939 (3)0.0588 (15)
H70.27500.77930.28950.071*
C80.5362 (10)0.7885 (3)0.4018 (3)0.0435 (12)
C90.6946 (8)0.6604 (3)0.3564 (2)0.0337 (11)
C100.5376 (9)0.7278 (3)0.3501 (2)0.0372 (11)
O110.4054 (7)0.8506 (2)0.40120 (19)0.0653 (12)
C120.7042 (8)0.8360 (3)0.5076 (2)0.0315 (10)
C130.5181 (8)0.8382 (3)0.5557 (2)0.0354 (11)
H130.39530.79830.55630.042*
C140.5143 (9)0.8993 (3)0.6027 (2)0.0372 (11)
H140.39050.90020.63560.045*
C150.6941 (8)0.9595 (3)0.6013 (2)0.0309 (10)
C160.8821 (8)0.9566 (3)0.5533 (2)0.0344 (11)
H161.00590.99620.55280.041*
C170.8859 (8)0.8951 (3)0.5064 (2)0.0339 (11)
H171.01100.89360.47390.041*
O180.6763 (7)1.01968 (18)0.64797 (15)0.0426 (8)
H180.75831.05890.63560.064*
C190.9961 (7)0.6928 (3)0.5188 (2)0.0338 (11)
H190.96020.72300.55700.041*
C201.1845 (8)0.6398 (3)0.5204 (2)0.0341 (10)
H201.22200.61330.48040.041*
C211.3390 (9)0.6191 (3)0.5794 (2)0.0361 (11)
C221.2883 (9)0.6474 (3)0.6437 (2)0.0435 (12)
H221.15270.68160.65080.052*
C231.4371 (8)0.6252 (3)0.6973 (3)0.0498 (15)
H231.40060.64410.74020.060*
C241.6404 (9)0.5748 (3)0.6875 (3)0.0512 (14)
H241.74210.56050.72350.061*
C251.6909 (10)0.5460 (3)0.6243 (3)0.0496 (13)
H251.82650.51170.61760.060*
C261.5421 (9)0.5676 (3)0.5706 (2)0.0399 (12)
H261.57790.54750.52800.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0351 (19)0.030 (2)0.035 (2)0.0014 (17)0.0054 (19)0.0034 (17)
C20.031 (2)0.027 (2)0.037 (3)0.003 (2)0.004 (2)0.002 (2)
N30.041 (2)0.033 (2)0.037 (2)0.0064 (18)0.0066 (19)0.0067 (19)
C40.050 (3)0.038 (3)0.042 (3)0.003 (2)0.001 (3)0.007 (2)
C50.052 (3)0.051 (4)0.040 (3)0.011 (3)0.001 (3)0.013 (3)
C60.066 (3)0.065 (4)0.038 (3)0.002 (3)0.017 (3)0.007 (3)
C70.067 (3)0.059 (4)0.050 (3)0.012 (3)0.021 (3)0.003 (3)
C80.045 (3)0.041 (3)0.043 (3)0.004 (3)0.012 (3)0.001 (2)
C90.036 (2)0.034 (3)0.031 (3)0.001 (2)0.004 (2)0.002 (2)
C100.044 (2)0.038 (3)0.030 (3)0.004 (2)0.006 (2)0.001 (2)
O110.081 (3)0.055 (3)0.060 (3)0.029 (2)0.030 (2)0.010 (2)
C120.031 (2)0.031 (3)0.032 (3)0.003 (2)0.003 (2)0.003 (2)
C130.036 (2)0.029 (3)0.041 (3)0.009 (2)0.001 (2)0.004 (2)
C140.039 (2)0.037 (3)0.036 (3)0.002 (2)0.006 (2)0.003 (2)
C150.040 (2)0.027 (3)0.026 (2)0.003 (2)0.003 (2)0.001 (2)
C160.034 (2)0.033 (3)0.036 (3)0.007 (2)0.001 (2)0.000 (2)
C170.032 (2)0.036 (3)0.034 (3)0.001 (2)0.004 (2)0.001 (2)
O180.062 (2)0.0355 (19)0.0304 (17)0.0100 (17)0.0041 (16)0.0058 (16)
C190.038 (2)0.029 (3)0.034 (3)0.002 (2)0.006 (2)0.002 (2)
C200.040 (2)0.027 (2)0.035 (3)0.002 (2)0.005 (2)0.000 (2)
C210.037 (2)0.030 (3)0.041 (3)0.007 (2)0.012 (2)0.001 (2)
C220.041 (3)0.045 (3)0.044 (3)0.003 (2)0.008 (2)0.004 (3)
C230.054 (3)0.060 (4)0.036 (3)0.010 (3)0.009 (2)0.002 (3)
C240.047 (3)0.060 (4)0.047 (4)0.009 (3)0.018 (2)0.011 (3)
C250.038 (3)0.051 (3)0.059 (4)0.001 (2)0.007 (3)0.016 (3)
C260.039 (2)0.040 (3)0.041 (3)0.001 (2)0.003 (2)0.003 (2)
Geometric parameters (Å, º) top
N1—C81.385 (6)C14—H140.9300
N1—C21.404 (5)C15—O181.364 (5)
N1—C121.455 (5)C15—C161.387 (6)
C2—N31.289 (5)C16—C171.379 (6)
C2—C191.459 (6)C16—H160.9300
N3—C91.385 (5)C17—H170.9300
C4—C51.368 (7)O18—H180.8200
C4—C91.398 (6)C19—C201.335 (6)
C4—H40.9300C19—H190.9300
C5—C61.390 (7)C20—C211.475 (6)
C5—H50.9300C20—H200.9300
C6—C71.367 (7)C21—C221.389 (6)
C6—H60.9300C21—C261.390 (6)
C7—C101.406 (7)C22—C231.379 (6)
C7—H70.9300C22—H220.9300
C8—O111.241 (6)C23—C241.382 (7)
C8—C101.436 (6)C23—H230.9300
C9—C101.400 (6)C24—C251.370 (7)
C12—C171.378 (6)C24—H240.9300
C12—C131.381 (6)C25—C261.378 (7)
C13—C141.377 (6)C25—H250.9300
C13—H130.9300C26—H260.9300
C14—C151.383 (6)
C8—N1—C2121.5 (4)C15—C14—H14119.9
C8—N1—C12116.7 (4)O18—C15—C14117.4 (4)
C2—N1—C12121.8 (3)O18—C15—C16123.0 (4)
N3—C2—N1123.3 (4)C14—C15—C16119.6 (4)
N3—C2—C19119.4 (4)C17—C16—C15120.1 (4)
N1—C2—C19117.3 (4)C17—C16—H16119.9
C2—N3—C9118.6 (4)C15—C16—H16119.9
C5—C4—C9120.6 (5)C12—C17—C16120.0 (4)
C5—C4—H4119.7C12—C17—H17120.0
C9—C4—H4119.7C16—C17—H17120.0
C4—C5—C6120.6 (5)C15—O18—H18109.5
C4—C5—H5119.7C20—C19—C2121.6 (4)
C6—C5—H5119.7C20—C19—H19119.2
C7—C6—C5120.2 (5)C2—C19—H19119.2
C7—C6—H6119.9C19—C20—C21126.5 (4)
C5—C6—H6119.9C19—C20—H20116.8
C6—C7—C10120.1 (5)C21—C20—H20116.8
C6—C7—H7119.9C22—C21—C26118.3 (4)
C10—C7—H7119.9C22—C21—C20123.1 (4)
O11—C8—N1119.7 (5)C26—C21—C20118.7 (4)
O11—C8—C10124.9 (5)C23—C22—C21120.6 (5)
N1—C8—C10115.5 (4)C23—C22—H22119.7
N3—C9—C4119.4 (4)C21—C22—H22119.7
N3—C9—C10121.7 (4)C22—C23—C24120.3 (5)
C4—C9—C10118.9 (4)C22—C23—H23119.9
C9—C10—C7119.7 (4)C24—C23—H23119.9
C9—C10—C8119.5 (4)C25—C24—C23119.6 (5)
C7—C10—C8120.7 (5)C25—C24—H24120.2
C17—C12—C13120.1 (4)C23—C24—H24120.2
C17—C12—N1120.4 (4)C24—C25—C26120.4 (5)
C13—C12—N1119.3 (4)C24—C25—H25119.8
C14—C13—C12120.1 (4)C26—C25—H25119.8
C14—C13—H13120.0C25—C26—C21120.8 (5)
C12—C13—H13120.0C25—C26—H26119.6
C13—C14—C15120.1 (4)C21—C26—H26119.6
C13—C14—H14119.9
C8—N1—C2—N31.2 (7)C8—N1—C12—C1795.4 (5)
C12—N1—C2—N3177.5 (4)C2—N1—C12—C1783.3 (5)
C8—N1—C2—C19176.7 (4)C8—N1—C12—C1380.1 (5)
C12—N1—C2—C194.7 (6)C2—N1—C12—C13101.2 (5)
N1—C2—N3—C90.6 (6)C17—C12—C13—C140.3 (6)
C19—C2—N3—C9177.1 (4)N1—C12—C13—C14175.8 (4)
C9—C4—C5—C60.2 (8)C12—C13—C14—C151.1 (7)
C4—C5—C6—C70.2 (9)C13—C14—C15—O18178.2 (4)
C5—C6—C7—C100.3 (9)C13—C14—C15—C161.8 (7)
C2—N1—C8—O11179.4 (5)O18—C15—C16—C17178.4 (4)
C12—N1—C8—O111.9 (7)C14—C15—C16—C171.6 (7)
C2—N1—C8—C100.7 (6)C13—C12—C17—C160.1 (6)
C12—N1—C8—C10178.0 (4)N1—C12—C17—C16175.5 (4)
C2—N3—C9—C4178.7 (4)C15—C16—C17—C120.7 (7)
C2—N3—C9—C100.3 (6)N3—C2—C19—C2017.8 (7)
C5—C4—C9—N3178.0 (4)N1—C2—C19—C20164.3 (4)
C5—C4—C9—C100.5 (7)C2—C19—C20—C21175.8 (4)
N3—C9—C10—C7178.0 (5)C19—C20—C21—C226.9 (7)
C4—C9—C10—C70.4 (7)C19—C20—C21—C26174.5 (4)
N3—C9—C10—C80.7 (7)C26—C21—C22—C230.4 (7)
C4—C9—C10—C8179.1 (4)C20—C21—C22—C23179.0 (4)
C6—C7—C10—C90.0 (8)C21—C22—C23—C240.5 (7)
C6—C7—C10—C8178.7 (5)C22—C23—C24—C251.0 (7)
O11—C8—C10—C9179.8 (5)C23—C24—C25—C260.6 (8)
N1—C8—C10—C90.2 (6)C24—C25—C26—C210.3 (7)
O11—C8—C10—C71.6 (8)C22—C21—C26—C250.8 (7)
N1—C8—C10—C7178.5 (5)C20—C21—C26—C25179.5 (4)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C12–C17 and C21–C26 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O18—H18···O11i0.821.842.654 (5)172
C4—H4···Cg4ii0.942.963.829 (5)157
C16—H16···Cg3i0.942.953.646 (5)133
Symmetry codes: (i) x+1/2, y+2, z+1; (ii) x1/2, y+1, z+1.
 

Acknowledgements

The authors thank the Latvian–Lithuanian–Taiwanese co-project W1935//LV-LT-TW/2015/2 for financial support. JK is grateful for an ERASMUS+ mobility grant for the opportunity of a traineeship at RTU.

References

First citationBirhan, Y. S., Bekhit, A. A. & Hymete, A. (2014). Org. Med. Chem. 4 doi: 10.1186/s13588-014-0010-1.  Google Scholar
First citationBouley, R., Kumarasiri, M., Peng, Z., Otero, L. H., Song, W., Suckow, M. A., Schroeder, V. A., Wolter, W. R., Lastochkin, E., Antunes, N. T., Pi, H., Vakulenko, S., Hermoso, J. A., Chang, M. & Mobashery, S. (2015). J. Am. Chem. Soc. 137, 1738–1741.  CrossRef CAS PubMed Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChang, M., Mobashery, S. & Bouley, R. (2014). Int. Patent Appl. 2014/138302.  Google Scholar
First citationChenard, B., Menniti, F. S. & Welch, W. K. (1999). Eur. Patent Appl. 0900568.  Google Scholar
First citationChenard, B. L., Welch, W. M., Blake, J. F., Butler, T. W., Reinhold, A., Ewing, F. E., Menniti, F. S. & Pagnozzi, M. (2001). J. Med. Chem. 44, 1710–1717.  CrossRef PubMed CAS Google Scholar
First citationDas, N., Garabadu, D., Banerjee, A. G., Krishnamurthy, S. & Shrivastava, S. K. (2014). Med. Chem. Res. 23, 4167–4176.  CrossRef CAS Google Scholar
First citationErez, O. & Nakache, P. (2011). Int. Patent Appl. 2011/064657.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFischer, C., Shah, S., Hughes, B. L., Nikov, G. N., Crispino, J. L., Middleton, R. E., Szewczak, A. A., Munoz, B. & Shearman, M. S. (2011). Bioorg. Med. Chem. Lett. 21, 773–776.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHansen, K. B. & Traynelis, S. F. (2011). J. Neurosci. 31, 3650–3661.  CrossRef CAS PubMed Google Scholar
First citationKamal, A., Bharathi, E. V., Dastagiri, D., Reddy, J. S. & Viswanath, A. (2010a). Int. Patent Appl. 2010/058416.  Google Scholar
First citationKamal, A., Sultana, F., Bharathi, E. V., Srikanth, Y. V. V., Viswanath, A. & Swapna, P. (2012). Int. Patent Appl. 2012/111017.  Google Scholar
First citationKamal, A., Sultana, F., Ramaiah, M. J., Srikanth, Y. V. V., Viswanath, A., Bharathi, E. V., Nayak, R., Pushpavalli, S. N. C. V. L., Srinivas, C. & Pal-Bhadra, M. (2013). Med. Chem. Commun. 4, 575–581.  CrossRef CAS Google Scholar
First citationKamal, A., Bharathi, E. V., Ramaiah, M. J., Dastagiri, D., Reddy, J. S., Viswanath, A., Sultana, F., Pushpavalli, S. N. C. V. L., Pal-Bhadra, M., Srivastava, H. K., Sastry, G. N., Juvekar, A., Sen, S. & Zingde, S. (2010b). Bioorg. Med. Chem. 18, 526–542.  CrossRef CAS PubMed Google Scholar
First citationKrastina, G., Ravina, I., Mierina, I., Zicane, D., Turks, M., Tetere, Z. & Leonciks, A. (2014). J. Chem. Pharm. Res. 6, 6–14.  Google Scholar
First citationKumar, D., Jadhavar, P. S., Nautiyal, M., Sharma, H., Meena, P. K., Adane, L., Pancholia, S. & Chakraborti, A. K. (2015). RSC Adv. 5, 30819–30825.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMarinho, E. & Proença, M. F. (2015). Synthesis, 47, 1623–1632.  CAS Google Scholar
First citationNonius (1997). KappaCCD Server Software for Windows. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationNosova, E. V., Stupina, T. V., Lipunova, G. N., Valova, M. S., Slepukhin, P. A. & Charushin, V. N. (2012). Int. J. Org. Chem, 2, 56–63.  CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationOvchinnikova, I. G., Kim, G. A., Matochkina, E. G., Kodess, M. I., Barykin, N. V., El'tsov, O. S., Nosova, E. V., Rusinov, G. L. & Charushin, V. N. (2014). Russ. Chem. Bull. 63, 2467–2477.  CSD CrossRef CAS Google Scholar
First citationPark, H., Kim, Y.-J. & Hahn, J.-S. (2007). Bioorg. Med. Chem. Lett. 17, 6345–6349.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStepanovs, D., Jure, M., Gosteva, M., Popelis, J., Kiselovs, G. & Mishnev, A. (2016). CrystEngComm, 18, 1235–1241.  CSD CrossRef CAS Google Scholar
First citationSun, D., Perkins, E. L. & Tugendreich, S. (2003). Int. Patent Appl. 03/043961.  Google Scholar
First citationTrashakhova, T. V., Nosova, E. V., Valova, M. S., Slepukhin, P. A., Lipunova, G. N. & Charushin, V. N. (2011). Russ. J. Org. Chem. 47, 753–761.  CrossRef CAS Google Scholar
First citationWang, X., Zhou, C.-X., Yan, J.-W., Hou, J.-Q., Chen, S.-B., Ou, T.-M., Gu, L.-Q., Huang, Z.-S. & Tan, J. H. (2013). ACS Med. Chem. Lett. 4, 909–914.  CrossRef CAS PubMed Google Scholar
First citationWelch, W. M. & DeVries, K. M. (1998). Int. Patent Appl. 98/38173.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds