research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A redetermination from the original data of the crystal structure of 2-amino-4,6-di­meth­­oxy­pyrimidin-1-ium 4-amino­benzoate

CROSSMARK_Color_square_no_text.svg

aInstitute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: fabry@fzu.cz

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 9 March 2016; accepted 14 March 2016; online 18 March 2016)

The title structure, C6H9.5N3O20.5+·C7H6.5NO20.5−, which might be named schematically as 2-amino-4,6-di­meth­oxy­pyrimidine-(μ2-hydrogen)-4-amino­benzoate to indicate a bridging H atom, has been redetermined from the data published by Thanigaimani, Mu­thiah & Lynch [Acta Cryst. (2006), E62, o2976–o2978]. The improvement of the present redetermination consists in a released geometry of the primary amine groups, which were originally assumed to be planar, as well as in a redetermination of the position of the hy­droxy H atom. This H atom, whose parameters were originally constrained, turns out to be situated about the centre of the O⋯N hydrogen bond in two disordered positions with occupancies of 0.5 each.

1. Chemical context

Structures which contain hydroxyl, secondary and primary amine groups are often determined incorrectly because of an assumed geometry of these groups from which the applied constraints or restraints were inferred. In such cases, the correct geometry is missed as it is not verified by inspection of the difference electron-density maps. Thus, a considerable number of structures could have been determined more correctly – cf. Figs. 1 and 2 in Fábry et al. (2014[Fábry, J., Dušek, M., Vaněk, P., Rafalovskyi, I., Hlinka, J. & Urban, J. (2014). Acta Cryst. C70, 1153-1160.]). The inclusion of such structures causes bias in crystallographic databases such as the Cambridge Structural Database (CSD; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]).

[Scheme 1]

In the course of recalculation of suspect structures which were retrieved from the CSD, defects in the structure determination of 2-amino-4,6-di­meth­oxy­pyrimidine–4-amino­benzoic acid (1/1) by Thanigaimani et al. (2006[Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, o2976-o2978.]) have been found; the pertinent CSD refcode is IFACUO.

The defects in the original structure concern positional parameters both of the hydroxyl and the primary amine hydrogen atoms, which follow from unsubstanti­ated constraints of these hydrogen atoms. This means that the amine groups were assumed to be planar while the disorder regarding atom H4 was neglected because atom H4 was forced to be situated at atom O4.

The aim of the present article is to demonstrate how the original structure determination can be improved.

2. Structural commentary

The structure of the title compound has been described by Thanigaimani et al. (2006[Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, o2976-o2978.]) as 2-amino-4,6-di­meth­oxy­pyrimidine/4-amino­benzoic acid (1/1). In that article, the amine groups (centred on atoms N2 and N4) were assumed to be planar and were refined with distance constraints of N—H = 0.86 Å. For the hydroxyl group O4—H4, atom H4 was refined with a distance constraint of O4—H4 = 0.82 Å [Uiso(Hprimary amine) = 1.2Ueq(Nprimary amine) while Uiso(H4) = 1.5Ueq(O4)].

The improved refinement by JANA2006 (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]) yielded a non-planar geometry of the primary amine groups and a considerably different position for the hydrogen atom H4. This atom turns out to be disordered over two positions at about the centre of the hydrogen bond O4⋯N1 (Fig. 1[link]). Thus, the title structure can be envisaged as an example of a structure with a symmetric hydrogen bond where the bridging hydrogen atom is disordered over two positions (see: for example Olovsson et al., 2002[Olovsson, I., Ptasiewicz-Bak, H., Gustafsson, T. & Majerz, I. (2002). Acta Cryst. B58, 627-631.]). One of these positions is closer to atom N1 while the other is closer to atom O4, and correspondingly they were labelled as H4n1 and H4o4. Each of the occupancies of H4n1 and H4o4 turned out to be equal to 0.5 within the inter­val given by the refined standard uncertainties; cf. the section of the electron density map in Fig. 2[link]. The pKa of the conjugate acid to 2-amino-4,6-di­meth­oxy­pyrimidine is equal to 3.36 (Baldwin & van den Broek, 1975[Baldwin, D. & van den Broek, P. (1975). J. Chem. Soc. Perkin Trans. 1, pp. 375-377.]), while pKa1 and pKa2 of 4-amino­benzoic acid are equal to 2.50 and 4.87, respectively (CRC Handbook of Chemistry and Physics, 2009[CRC Handbook of Chemistry and Physics (2009). Editor-in-chief D. R. Lidl, 90th ed. Boca Raton: CRC Press.]). pKa1 refers to the deprotonation of the hydrogen carboxyl­ate into the carboxyl­ate group, while pKa2 refers to the deprotonation of the ammonium group into the primary amine group in the solution (cf. pKa for benzoic acid and aniline are equal to 4.20 and 4.87, respectively; CRC Handbook of Chemistry and Physics, 2009[CRC Handbook of Chemistry and Physics (2009). Editor-in-chief D. R. Lidl, 90th ed. Boca Raton: CRC Press.]). Thus, 2-amino-4,6-di­meth­oxy­pyrimidine is a weaker acid while 4-amino­benzoic acid is a weaker base. These values favour the formation of the salt rather than of the co-crystal. Since differences in the dissociation constants are relatively mild, the hydrogen atom is situated about the centre of the hydrogen bond N1⋯O4 and the structure in the solid state can be envisaged as a mixture of a co-crystal 2-amino-4,6-di­meth­oxy­pyrimidine–4-amino­benzoic acid (1:1) with a salt 2-amino-4,6-di­meth­oxy­pyrimidin-1-ium 4-amino­benzoate in a 1:1 proportion. Alternatively – as has been stated above – it can be assumed to be a structure with a disordered bridging hydrogen involved in a symmetric hydrogen bond (Olovsson et al., 2002[Olovsson, I., Ptasiewicz-Bak, H., Gustafsson, T. & Majerz, I. (2002). Acta Cryst. B58, 627-631.]).

[Figure 1]
Figure 1
View of the constituent mol­ecules of the title structure after the improved refinement. The displacement ellipsoids are depicted at the 50% probability level. The occupancies of atoms H4N1 and H4O4 are each equal to 0.5.
[Figure 2]
Figure 2
A section of the difference electron-density map for the present redetermined title structure, which shows the build-up of the electron density between the atom O4 (red) and N1 (blue). Positive and negative electron densities are indicated by continuous and dashed lines, respectively. The increment of electron density between neighbouring contours is 0.05 e Å−3 (JANA2006; Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]).

In the recalculated structure determination, the deviation from planarity of the primary amine groups (including the C atoms to which they are attached) is larger for the one that is centred on N4 [C12–N4–H4a 115.4 (9), C12–N4–H4a 114.5 (9), H4a–N4–H4b 119.5 (13)°] than on N2 [C2–N2–H2a 119.5 (8), C2–N2–H2b 119.7 (8), H2a–N2–H2b 120.7 (12)°]. This is in agreement with the longer bond length for C12—N4 [1.3786 (17) Å] compared to C2—N2 [1.3253 (16) Å].

In a broader sense, the present redetermination emphasizes the importance of careful examination of the difference electron-density maps during structure determinations.

3. Supra­molecular features

The details of the hydrogen bonding and the N—H⋯π-electron ring inter­action involving N4—H4b are given in Table 1[link]. The graph-set motifs (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]) were described by Thanigaimani et al. (2006[Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, o2976-o2978.]) for the title structure. The graph-set motif R23(7) (Fig. 3[link]) is shown in Fig. 2[link] of the article by Thanigaimani et al. (2006[Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, o2976-o2978.]) and described there as R22(6).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H4N1⋯O4 0.86 (3) 1.78 (3) 2.6459 (14) 176 (2)
O4—H4O4⋯N1 0.89 (3) 1.77 (3) 2.6459 (14) 170 (3)
N2—H2A⋯O3 0.92 (1) 1.91 (1) 2.8163 (14) 172 (1)
N2—H2B⋯O3i 0.88 (1) 2.04 (1) 2.8544 (14) 154 (1)
N4—H4A⋯O4ii 0.92 (2) 2.27 (2) 3.1625 (15) 164 (1)
C7—H7B⋯O2iii 0.96 2.59 3.4571 (15) 150
N4—H4bCg1iv 0.89 (2) 2.724 (15) 3.5472 (14) 154.7 (12)
Symmetry codes: (i) -x+1, -y+2, -z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x, -y+1, -z; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
The section of the title structure which shows the graph-set motifs R(7)32 O4—H4O4⋯N1—C6—O2⋯H4ai⋯N4i and O4⋯H4N1—N1—C6—O2⋯H4ai⋯N4i [symmetry code: (i) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]; colour code for atoms: grey – C and H, blue – N; red – O; colour code for bonds: black: covalent bonds, dashed orange: H⋯hydrogen-bond acceptor; blue O2—N4: inclusion into the graph-set motif R(7)32].

In the present article, the graph-set motif R23(7) includes the atoms O4—H4o4⋯N1—C6—O2⋯H4ai—N4i or O4⋯H4n1—N1—C6—O2⋯H4ai—N4i on a local scale [Fig. 3[link]; symmetry code (i): −x + 1, y − [{1\over 2}], −z + [{1\over 2}]].

4. Database survey

The structure determination by Thanigaimani et al. (2006[Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, o2976-o2978.]) has been included in the Cambridge Structural Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) under the refcode IFACUO.

5. Synthesis and crystallization

The preparation of the title compound has been described by Thanigaimani et al. (2006[Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, o2976-o2978.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All the hydrogen atoms were discernible in the difference electron-density map. The aryl hydrogen atoms were constrained by the constraints Car­yl—Har­yl = 0.93 Å and Uiso(Har­yl) = 1.2Ueq(Car­yl) while the methyl hydrogens were constrained by the constraints Cmeth­yl—Hmeth­yl = 0.96 Å and Uiso(Hmeth­yl) = 1.5Ueq(Cmeth­yl). The hydrogen atoms of the primary amine group N2 were constrained by Uiso(HN2) = 1.2Ueq(N2). The displacement parameters of the hydroxyl hydrogen H4O4 and of the secondary amine H4N1 were constrained by Uiso(H4O4) = 1.5Ueq(O4) and Uiso(H4N1) = 1.5Ueq(N1) while their positional parameters were refined freely.

Table 2
Experimental details

Crystal data
Chemical formula C6H9.5N3O20.5+·C7H6.5NO20.5−
Mr 292.30
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 6.6358 (4), 7.5560 (5), 27.4226 (16)
β (°) 94.418 (2)
V3) 1370.89 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.44 × 0.32 × 0.08
 
Data collection
Diffractometer Bruker–Nonius KappaCCD area-detector
No. of measured, independent and observed [I > 3σ(I)] reflections 14577, 3130, 2302
Rint 0.032
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 3σ(F2)], wR(F2), S 0.037, 0.084, 1.91
No. of reflections 3130
No. of parameters 208
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.23
Computer programs: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, part A, edited by C. W. Carter Jr. & R. M. Sweet, pp. 307-326. New York: Academic Press.]), COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and JANA2006 (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]).

The model with the refinement of the occupational factors of H4N1 and H4O4 under the condition that the sum of these occupational factors should equal to 1 resulted in the values 0.499 (25) and 0.501 (25), respectively. Therefore the occupational parameters were set to 0.5 in the final model and not further refined.

Supporting information


Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: JANA2006 (Petříček et al., 2014); molecular graphics: PLATON (Spek, 2009), DIAMOND (Brandenburg & Putz, 2005) and JANA2006 (Petříček et al., 2014); software used to prepare material for publication: JANA2006 (Petříček et al., 2014).

2-Amino-4,6-dimethoxypyrimidin-1-ium 4-aminobenzoate top
Crystal data top
C6H9.5N3O20.5+·C7H6.5NO20.5F(000) = 616
Mr = 292.30Dx = 1.416 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 50 reflections
a = 6.6358 (4) Åθ = 3.5–27.5°
b = 7.5560 (5) ŵ = 0.11 mm1
c = 27.4226 (16) ÅT = 293 K
β = 94.418 (2)°Block, colourless
V = 1370.89 (15) Å30.44 × 0.32 × 0.08 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
2302 reflections with I > 3σ(I)
Radiation source: Bruker–Nonius FR591 rotating anodeRint = 0.032
Graphite monochromatorθmax = 27.5°, θmin = 3.5°
φ and ω scansh = 88
14577 measured reflectionsk = 99
3130 independent reflectionsl = 3535
Refinement top
Refinement on F250 constraints
R[F > 3σ(F)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F) = 0.084Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
S = 1.91(Δ/σ)max = 0.021
3130 reflectionsΔρmax = 0.21 e Å3
208 parametersΔρmin = 0.23 e Å3
0 restraints
Special details top

Refinement. This part differs from the original article by Thanigaimani et al. (2006). It also differs from the refinement by Thanigaimani et al. (2006) by a different threshold for the consideration of the observed diffractions: F2 > 3σ(F2) has been used as criterion for observed diffractions by JANA2006 which was used for the calculation of the corrected structural model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.31928 (12)0.65273 (11)0.06555 (3)0.0245 (3)
O20.10295 (12)0.62305 (10)0.10293 (3)0.0220 (3)
N10.08195 (15)0.75282 (13)0.04894 (4)0.0190 (3)
N20.29136 (17)0.87608 (15)0.00426 (4)0.0257 (4)
N30.01303 (15)0.76827 (13)0.03671 (3)0.0195 (3)
C20.11662 (18)0.79867 (15)0.00265 (4)0.0187 (4)
C40.18261 (18)0.68662 (15)0.02786 (4)0.0194 (4)
C50.23220 (18)0.62937 (15)0.01815 (4)0.0201 (4)
C60.09140 (18)0.66647 (15)0.05581 (4)0.0186 (4)
C70.26609 (18)0.70054 (18)0.11374 (4)0.0261 (4)
C80.26910 (18)0.51184 (16)0.11446 (4)0.0244 (4)
O30.54244 (13)0.93439 (11)0.08178 (3)0.0263 (3)
O40.31630 (13)0.82158 (12)0.12916 (3)0.0258 (3)
N40.9485 (2)1.16699 (16)0.28973 (4)0.0366 (4)
C90.60450 (18)0.96745 (15)0.16726 (4)0.0198 (4)
C100.5334 (2)0.95948 (16)0.21374 (5)0.0252 (4)
C110.6456 (2)1.02612 (16)0.25407 (5)0.0286 (4)
C120.8340 (2)1.10412 (16)0.24933 (4)0.0251 (4)
C130.90630 (19)1.11079 (16)0.20281 (5)0.0254 (4)
C140.79433 (19)1.04458 (15)0.16262 (5)0.0227 (4)
C150.48369 (18)0.90491 (15)0.12288 (4)0.0202 (4)
H2a0.3827 (19)0.8954 (17)0.0219 (5)0.0308*
H2b0.3152 (19)0.9139 (17)0.0336 (5)0.0308*
H50.3521880.5703550.0228270.0241*
H7a0.383360.6918730.136410.0391*
H7b0.1632590.6217940.1236270.0391*
H7c0.2162040.8198320.1133290.0391*
H8a0.2662840.4039930.0960190.0365*
H8b0.2574510.4849610.1487750.0365*
H8c0.3942760.5724710.1062620.0365*
H4a0.878 (2)1.1906 (19)0.3166 (6)0.0439*
H4b1.050 (2)1.237 (2)0.2829 (5)0.0439*
H100.4081670.9083730.2176310.0302*
H110.5952991.0190270.2847320.0344*
H131.0321451.1608270.1989770.0305*
H140.8450861.0510130.1319870.0273*
H4N10.157 (5)0.771 (4)0.0756 (12)0.0285*0.5
H4O40.251 (5)0.797 (4)0.1004 (12)0.0387*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0216 (5)0.0332 (5)0.0179 (5)0.0044 (4)0.0040 (4)0.0017 (4)
O20.0211 (5)0.0274 (5)0.0173 (5)0.0059 (4)0.0009 (4)0.0032 (4)
N10.0188 (6)0.0218 (6)0.0161 (5)0.0025 (5)0.0004 (4)0.0001 (4)
N20.0232 (6)0.0371 (7)0.0165 (6)0.0107 (5)0.0004 (5)0.0015 (5)
N30.0190 (6)0.0212 (5)0.0179 (5)0.0008 (4)0.0012 (4)0.0006 (4)
C20.0203 (7)0.0184 (6)0.0173 (6)0.0003 (5)0.0008 (5)0.0010 (5)
C40.0188 (7)0.0188 (6)0.0201 (6)0.0027 (5)0.0026 (5)0.0015 (5)
C50.0178 (7)0.0212 (6)0.0211 (7)0.0029 (5)0.0000 (5)0.0002 (5)
C60.0212 (7)0.0171 (6)0.0175 (6)0.0015 (5)0.0024 (5)0.0007 (5)
C70.0260 (7)0.0347 (8)0.0169 (7)0.0014 (6)0.0024 (6)0.0022 (5)
C80.0228 (7)0.0268 (7)0.0239 (7)0.0055 (6)0.0043 (6)0.0043 (5)
O30.0258 (5)0.0358 (5)0.0172 (5)0.0057 (4)0.0016 (4)0.0019 (4)
O40.0243 (5)0.0324 (5)0.0204 (5)0.0089 (4)0.0002 (4)0.0003 (4)
N40.0480 (8)0.0393 (7)0.0209 (6)0.0112 (6)0.0072 (6)0.0028 (5)
C90.0236 (7)0.0177 (6)0.0176 (6)0.0004 (5)0.0009 (5)0.0006 (5)
C100.0294 (8)0.0246 (7)0.0214 (7)0.0043 (6)0.0017 (6)0.0008 (5)
C110.0400 (9)0.0287 (7)0.0171 (7)0.0048 (6)0.0017 (6)0.0005 (5)
C120.0341 (8)0.0189 (6)0.0207 (7)0.0012 (6)0.0076 (6)0.0002 (5)
C130.0239 (7)0.0261 (7)0.0255 (7)0.0033 (6)0.0031 (6)0.0001 (5)
C140.0252 (7)0.0240 (7)0.0189 (7)0.0016 (6)0.0004 (6)0.0002 (5)
C150.0211 (7)0.0196 (6)0.0199 (7)0.0019 (5)0.0017 (5)0.0010 (5)
Geometric parameters (Å, º) top
O1—C41.3462 (14)O4—H4O40.89 (3)
O1—C71.4400 (14)N4—C121.3786 (17)
O2—C61.3411 (14)N4—H4a0.918 (15)
O2—C81.4405 (15)N4—H4b0.886 (15)
N1—C21.3525 (16)C9—C101.3940 (17)
N1—C61.3483 (16)C9—C141.4026 (17)
N1—H4N10.86 (3)C9—C151.4821 (16)
N2—C21.3253 (16)C10—C111.3799 (17)
N2—H2a0.914 (13)C10—H100.93
N2—H2b0.880 (14)C11—C121.3973 (19)
N3—C21.3472 (15)C11—H110.93
N3—C41.3221 (15)C12—C131.3980 (18)
C4—C51.3969 (17)C13—C141.3751 (17)
C5—C61.3672 (16)C13—H130.93
C5—H50.93C14—H140.93
C7—H7a0.96H2a—H2b1.559 (19)
C7—H7b0.96H7a—H7b1.5677
C7—H7c0.96H7a—H7c1.5677
C8—H8a0.96H7b—H7c1.5677
C8—H8b0.96H8a—H8b1.5677
C8—H8c0.96H8a—H8c1.5677
O3—C151.2409 (15)H8b—H8c1.5677
O4—C151.2998 (15)H4a—H4b1.56 (2)
C4—O1—C7117.31 (9)H8a—C8—H8b109.47
C6—O2—C8117.11 (8)H8a—C8—H8c109.47
C2—N1—C6117.63 (10)H8b—C8—H8c109.47
C2—N1—H4N1129 (2)C15—O4—H4O4110 (2)
C6—N1—H4N1114 (2)C12—N4—H4a115.4 (9)
C2—N2—H2a119.5 (8)C12—N4—H4b114.5 (9)
C2—N2—H2b119.7 (8)H4a—N4—H4b119.5 (13)
H2a—N2—H2b120.7 (12)C10—C9—C14118.07 (11)
C2—N3—C4115.62 (10)C10—C9—C15122.49 (11)
N1—C2—N2117.46 (11)C14—C9—C15119.39 (11)
N1—C2—N3124.33 (11)C9—C10—C11121.15 (12)
N2—C2—N3118.20 (11)C9—C10—H10119.43
O1—C4—N3118.71 (10)C11—C10—H10119.43
O1—C4—C5116.29 (10)C10—C11—C12120.73 (12)
N3—C4—C5125.00 (10)C10—C11—H11119.64
C4—C5—C6115.08 (11)C12—C11—H11119.64
C4—C5—H5122.46N4—C12—C11120.82 (12)
C6—C5—H5122.46N4—C12—C13120.96 (12)
O2—C6—N1111.45 (10)C11—C12—C13118.18 (11)
O2—C6—C5126.24 (11)C12—C13—C14121.08 (12)
N1—C6—C5122.31 (11)C12—C13—H13119.46
O1—C7—H7a109.47C14—C13—H13119.46
O1—C7—H7b109.47C9—C14—C13120.80 (12)
O1—C7—H7c109.47C9—C14—H14119.6
H7a—C7—H7b109.47C13—C14—H14119.6
H7a—C7—H7c109.47O3—C15—O4122.60 (11)
H7b—C7—H7c109.47O3—C15—C9120.04 (11)
O2—C8—H8a109.47O4—C15—C9117.35 (11)
O2—C8—H8b109.47N1—H4N1—H4O4171 (5)
O2—C8—H8c109.47O4—H4O4—H4N1165 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
N1—H4N1···O40.86 (3)1.78 (3)2.6459 (14)176 (2)
O4—H4O4···N10.89 (3)1.77 (3)2.6459 (14)170 (3)
N2—H2A···O30.92 (1)1.91 (1)2.8163 (14)172 (1)
N2—H2B···O3i0.88 (1)2.04 (1)2.8544 (14)154 (1)
N4—H4A···O4ii0.92 (2)2.27 (2)3.1625 (15)164 (1)
C7—H7B···O2iii0.962.593.4571 (15)150
N4—H4b···Cg1iv0.89 (2)2.724 (15)3.5472 (14)154.7 (12)
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x+2, y+1/2, z+1/2.
 

Acknowledgements

The author expresses gratitude for the support provided by Project NPU I - LO1603 of the Ministry of Education of the Czech Republic. Discussions with Dr Radek Cibulka and Igor Linhart from the Chemical University in Prague are gratefully acknowledged.

References

First citationBaldwin, D. & van den Broek, P. (1975). J. Chem. Soc. Perkin Trans. 1, pp. 375–377.  CrossRef Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCRC Handbook of Chemistry and Physics (2009). Editor-in-chief D. R. Lidl, 90th ed. Boca Raton: CRC Press.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFábry, J., Dušek, M., Vaněk, P., Rafalovskyi, I., Hlinka, J. & Urban, J. (2014). Acta Cryst. C70, 1153–1160.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOlovsson, I., Ptasiewicz-Bak, H., Gustafsson, T. & Majerz, I. (2002). Acta Cryst. B58, 627–631.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, part A, edited by C. W. Carter Jr. & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, o2976–o2978.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds