research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A [Cu3(μ3-O)]–pyrazolate metallacycle with terminal nitrate ligands exhibiting point group symmetry 3

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Puerto Rico – Rio Piedras, San Juan 00936, Puerto Rico, USA
*Correspondence e-mail: logesh.mathivathanan@fiu.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 23 December 2015; accepted 4 March 2016; online 15 March 2016)

The trinuclear triangular cuprate anion of the title compound, tris­[bis­(tri­phenyl­phospho­ranyl­idene)ammonium] tris­(μ2-4-chloro­pyrazolato-κ2N:N′)-μ3-oxido-tris­[(nitrato-κ2O,O′)cuprate(II)] nitrate monohydrate, (C36H30P2N)[Cu3(C3H2ClN2)3(NO3)3O]NO3·H2O, has point group symmetry 3., with the μ3-O atom located on the threefold rotation axis. The distorted square-pyramidal coordination sphere of the CuII atom is completed by two N atoms of trans-bridging pyrazolate groups and a chelating nitrate anion. The complex anion is slightly bent, with the nitrate and pyrazolate groups occupying positions above and below the Cu3 plane, respectively. In the crystal, weak O—H⋯O and C—H⋯O hydrogen bonds, as well as ππ inter­actions, are present.

1. Chemical context

Trinuclear copper complexes with a triangular arrangement of the copper(II) cations are of importance in terms of their magnetic and redox properties (Rivera-Carrillo et al., 2008[Rivera-Carrillo, M., Chakraborty, I., Mezei, G., Webster, R. D. & Raptis, R. G. (2008). Inorg. Chem. 47, 7644-7650.]). Moreover, Cu3(μ3-O/OH) moieties make up the active sites of several multicopper oxidase enzymes (Solomon et al., 2014[Solomon, E. I., Heppner, D. E., Johnston, E. M., Ginsbach, J. W., Cirera, J., Qayyum, M., Kieber-Emmons, M. T., Kjaergaard, C. H., Hadt, R. G. & Tian, L. (2014). Chem. Rev. 114, 3659-3853.]). Pyrazolate anions as ligands are of bidentate chelating nature and are able to bind to the the CuII cations in suitable angles to form triangular complexes (Halcrow, 2009[Halcrow, M. A. (2009). Dalton Trans. pp. 2059-2073.]; Viciano-Chumillas et al., 2010[Viciano-Chumillas, M., Tanase, S., de Jongh, L. J. & Reedijk, J. (2010). Eur. J. Inorg. Chem. pp. 3403-3418.]).

[Scheme 1]

Nitrato and pyrazolato ligands are commonly studied ligands in CuII coordination chemistry. Simple CuII nitrate complexes are aplenty in the literature and have been studied in detail with respect to their part in the nitro­gen cycle. Triangular trinuclear CuII complexes with terminal nitrate ligands, however, are scarcer (Alsalme et al., 2014[Alsalme, A., Ghazzali, M., Khan, R. A., Al-Farhan, K. & Reedijk, J. (2014). Polyhedron, 75, 64-67.]). Nitrates, being good hydrogen-bonding acceptors, are able to form Cu3(μ3-OH) complexes, with hydrogen bonds to the μ3-OH group and to ancilliary ligands and water mol­ecules.

In this communication we describe the accidental synthesis and the structure of a trinuclear Cu–pyrazolato complex, viz. (PPN)3[Cu3(μ3-O)(μ-4-Clpz)3(NO3)3](NO3)·H2O, where PPN = bis­(tri­phenyl­phospho­ranyl­idene)ammonium; 4-Cl-pz = 4-chloropyrazolate. A related Cu3-pyrazolato complex was reported by Angaridis et al. (2002[Angaridis, P. A., Baran, P., Boča, R., Cervantes-Lee, F., Haase, W., Mezei, G., Raptis, R. G. & Werner, R. (2002). Inorg. Chem. 41, 2219-2228.]).

2. Structural commentary

The nine-membered metallacycle Cu3N6 in the cuprate anion (Fig. 1[link]) is strung together by a μ3-O group located at the center of the triangle (point group symmetry of the complete mol­ecule 3.), forming an almost planar Cu3(μ3-O)-core, where the μ3-O atom O1 is located 0.122 (7) Å above the Cu3 plane. The distorted square-pyramidal geometry of the CuII atom is completed by the two N atoms of symmetry-related trans-bridging pyrazolato ligands, and a terminal nitrato ligand that is bound to the metal in a chelating fashion (Table 1[link]). The complex is slightly bent with the nitrate and pyrazolato groups occupying positions above and below the Cu3 plane, respectively. The Cl atom of the pyrazole anion is located approximately 1.28 Å below the Cu3 plane. The non-coordinating nitrate counter-anion is located about a special position with the nitro­gen atom on the threefold rotation axis.

Table 1
Selected bond lengths (Å)

Cu1—O1 1.8816 (7) Cu1—O2 2.059 (3)
Cu1—N2 1.952 (4) Cu1—O3 2.483 (4)
Cu1—N1 1.960 (4)    
[Figure 1]
Figure 1
The mol­ecular structure of the trinuclear pyrazolatocuprate anion in the title compound showing the atom-labeling scheme for the symmetry-independent atoms. Non-H atoms are shown as displacement ellipsoids at the 30% probability level.

The tri­phenyl­phosphene groups in the PPN cation are staggered around the central N atom [P—N—P angle 139.5 (2)°] and show bond lengths and angles characteristic for this unit (Beckett et al., 2010[Beckett, M. A., Horton, P. N., Hursthouse, M. B. & Timmis, J. L. (2010). Acta Cryst. E66, o319.]).

3. Supra­molecular features

The interstitial water O atom is also located on a threefold rotation axis which consequently results in disordered H atoms of this moiety. Although these H atoms could not be located, three O⋯O distances to the chelating nitrate anions of 3.367 (6) Å point to weak O—H⋯O hydrogen bonds in the structure. This nitrate O atom is additionally involved in weak non-classical hydrogen-bonding inter­actions with one of the C–H groups of the PPN cation (Table 2[link]). The latter shows also ππ inter­actions [3.902 (7) Å] with one of the pyrazolate rings, leading to an overall three-dimensional network. The packing of the mol­ecular units is shown in Fig. 2[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O3i 0.93 2.53 3.410 (11) 157
Symmetry code: (i) [-x+y+{\script{4\over 3}}, -x+{\script{2\over 3}}, z-{\script{1\over 3}}].
[Figure 2]
Figure 2
The crystal packing diagram for the title compound shown down [001].

4. Synthesis and crystallization

4-Cl-pz and the hexa­nuclear Cu6-pyrazolato complex (PPN)[{Cu3(μ3-O)(μ-4-Cl-pz)3}2(μ-3,5-Ph2pz)3], were synthesized by published procedures (Maresca et al., 1997[Maresca, K. P., Rose, D. J. & Zubieta, J. (1997). Inorg. Chim. Acta, 260, 83-88.]; Mezei et al., 2007[Mezei, G., Rivera-Carrillo, M. & Raptis, R. G. (2007). Dalton Trans. pp. 37-40.]). (NH4)2Ce(NO3)6 (2 eq.) was dissolved in 5 ml of aceto­nitrile and was layered over a CH2Cl2 solution of the hexa­nuclear copper(II) complex (1 eq.). Slow mixing of the reactants and solvent evaporation over a few weeks yielded dark-blue crystals of the title compound.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The C-bound H atoms were placed geometrically, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The isolated water solvent O atom, O1W, was refined isotropically. H atoms bound to the water oxygen atom could not be placed satisfactorily with agreeable occupancy as O1W resides on a threefold rotation axis, resulting in crystallographically disordered H atoms. These H atoms were not modelled but are included in the formula of the title compound.

Table 3
Experimental details

Crystal data
Chemical formula (C36H30P2N)[Cu3(C3H2ClN2)3(NO3)3O]NO3·H2O
Mr 2390.85
Crystal system, space group Trigonal, R3
Temperature (K) 296
a, c (Å) 23.038 (2), 18.4214 (17)
V3) 8466.9 (17)
Z 3
Radiation type Mo Kα
μ (mm−1) 0.79
Crystal size (mm) 0.23 × 0.14 × 0.13
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.840, 0.905
No. of measured, independent and observed [I > 2σ(I)] reflections 30414, 7675, 6428
Rint 0.033
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.088, 1.03
No. of reflections 7675
No. of parameters 468
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.29
Absolute structure Flack x determined using 2750 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.004 (5)
Computer programs: APEX2 and SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Tris[bis(triphenylphosphoranylidene)ammonium] tris(µ2-4-chloropyrazolato-κ2N:N')-µ3-oxido-tris[(nitrato-κ2O,O')cuprate(II)] nitrate monohydrate top
Crystal data top
(C36H30P2N)[Cu3(C3H2ClN2)3(NO3)3O]NO3·H2ODx = 1.407 Mg m3
Mr = 2390.85Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 9882 reflections
a = 23.038 (2) Åθ = 2.3–26.0°
c = 18.4214 (17) ŵ = 0.79 mm1
V = 8466.9 (17) Å3T = 296 K
Z = 3Polygon, blue
F(000) = 36870.23 × 0.14 × 0.13 mm
Data collection top
Bruker APEXII CCD
diffractometer
7675 independent reflections
Radiation source: sealed tube6428 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2828
Tmin = 0.840, Tmax = 0.905k = 2828
30414 measured reflectionsl = 2222
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.1352P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.41 e Å3
7675 reflectionsΔρmin = 0.29 e Å3
468 parametersAbsolute structure: Flack x determined using 2750 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.004 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1W0.00001.00000.3698 (7)0.141 (4)*
Cu10.57819 (3)0.31688 (3)0.88140 (3)0.04893 (15)
O10.66670.33330.8748 (4)0.0691 (18)
O20.48058 (17)0.29648 (18)0.8736 (2)0.0619 (9)
N10.54504 (18)0.22155 (19)0.8997 (2)0.0504 (9)
N20.61014 (18)0.41208 (18)0.8960 (2)0.0493 (9)
N30.4670 (2)0.28251 (19)0.8087 (3)0.0582 (10)
C10.4851 (2)0.1710 (2)0.9186 (3)0.0590 (12)
H10.44650.17380.92490.071*
C20.4893 (3)0.1144 (2)0.9272 (3)0.0570 (12)
C30.5783 (3)0.4455 (3)0.9126 (3)0.0582 (12)
H30.53210.42740.91410.070*
Cl10.42537 (8)0.03570 (7)0.95132 (10)0.0859 (5)
O30.5141 (2)0.2937 (2)0.7664 (2)0.0753 (10)
O40.4095 (2)0.2572 (3)0.7874 (3)0.1105 (17)
P10.81315 (5)0.23893 (5)0.23155 (5)0.0379 (2)
P20.78221 (5)0.16748 (5)0.37198 (5)0.0392 (2)
N40.78666 (18)0.21790 (18)0.31150 (18)0.0461 (8)
C40.7627 (2)0.1937 (2)0.4558 (2)0.0440 (10)
C50.7353 (2)0.2344 (2)0.4544 (2)0.0487 (11)
H50.72930.25000.41010.058*
C60.7165 (3)0.2526 (3)0.5183 (3)0.0625 (13)
H60.69780.28030.51670.075*
C70.7254 (3)0.2299 (3)0.5829 (3)0.0754 (17)
H70.71290.24240.62560.090*
C80.7527 (3)0.1887 (3)0.5860 (3)0.0788 (17)
H80.75840.17320.63050.095*
C90.7717 (3)0.1703 (3)0.5224 (3)0.0615 (13)
H90.79040.14270.52420.074*
C100.8593 (2)0.1669 (2)0.3837 (2)0.0463 (10)
C110.9135 (2)0.2251 (3)0.4090 (3)0.0610 (12)
H110.90810.26060.42410.073*
C120.9761 (3)0.2304 (4)0.4120 (3)0.0801 (18)
H121.01280.26960.42890.096*
C130.9836 (3)0.1783 (4)0.3899 (3)0.0796 (18)
H131.02570.18190.39220.095*
C140.9302 (3)0.1205 (4)0.3645 (4)0.0833 (18)
H140.93630.08550.34900.100*
C150.8679 (3)0.1139 (3)0.3617 (3)0.0629 (13)
H150.83150.07430.34510.075*
C160.7162 (2)0.0829 (2)0.3546 (2)0.0467 (10)
C170.6790 (2)0.0681 (3)0.2917 (3)0.0569 (12)
H170.68750.10210.25890.068*
C180.6291 (3)0.0032 (3)0.2771 (3)0.0732 (15)
H180.60530.00640.23380.088*
C190.6146 (3)0.0466 (3)0.3259 (4)0.0771 (17)
H190.58100.09020.31580.093*
C200.6493 (3)0.0327 (3)0.3896 (4)0.0807 (18)
H200.63810.06650.42360.097*
C210.7012 (3)0.0315 (3)0.4039 (3)0.0737 (16)
H210.72600.04030.44650.088*
C220.8529 (2)0.1956 (2)0.1928 (2)0.0414 (9)
C230.8160 (2)0.1331 (2)0.1628 (3)0.0532 (11)
H230.76980.11410.15780.064*
C240.8467 (3)0.0979 (3)0.1398 (3)0.0678 (14)
H240.82140.05590.11850.081*
C250.9149 (3)0.1251 (3)0.1483 (3)0.0666 (14)
H250.93550.10100.13390.080*
C260.9520 (3)0.1870 (3)0.1778 (3)0.0630 (13)
H260.99800.20550.18280.076*
C270.9219 (2)0.2228 (2)0.2003 (3)0.0505 (10)
H270.94770.26520.22040.061*
C280.7444 (2)0.2268 (2)0.1749 (2)0.0415 (9)
C290.6909 (2)0.2287 (2)0.2075 (3)0.0526 (11)
H290.69020.23340.25750.063*
C300.6394 (2)0.2237 (3)0.1659 (3)0.0674 (14)
H300.60370.22500.18800.081*
C310.6397 (3)0.2167 (3)0.0916 (3)0.0738 (16)
H310.60480.21400.06360.089*
C320.6910 (3)0.2138 (3)0.0599 (3)0.0698 (15)
H320.69060.20810.00980.084*
C330.7439 (3)0.2192 (3)0.1000 (2)0.0578 (12)
H330.77910.21760.07720.069*
C340.8736 (2)0.3267 (2)0.2287 (3)0.0468 (10)
C350.8897 (3)0.3652 (3)0.2894 (4)0.0845 (19)
H350.86860.34620.33310.101*
C360.9372 (5)0.4322 (3)0.2866 (5)0.123 (3)
H360.94950.45800.32870.147*
C370.9664 (4)0.4611 (3)0.2211 (5)0.106 (3)
H370.99800.50650.21900.127*
C380.9497 (3)0.4245 (3)0.1612 (4)0.0813 (18)
H380.96970.44450.11730.098*
C390.9028 (3)0.3568 (2)0.1633 (3)0.0632 (13)
H390.89080.33160.12080.076*
N50.66670.33330.3566 (5)0.069 (2)
O50.6275 (3)0.2721 (2)0.3545 (3)0.1083 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0436 (3)0.0458 (3)0.0582 (3)0.0230 (3)0.0029 (3)0.0017 (3)
O10.044 (2)0.044 (2)0.119 (6)0.0220 (10)0.0000.000
O20.058 (2)0.069 (2)0.065 (2)0.0356 (18)0.0048 (17)0.0040 (18)
N10.044 (2)0.046 (2)0.060 (2)0.0217 (18)0.0012 (17)0.0010 (17)
N20.049 (2)0.048 (2)0.054 (2)0.0268 (19)0.0061 (17)0.0045 (17)
N30.054 (3)0.048 (2)0.073 (3)0.025 (2)0.011 (2)0.007 (2)
C10.047 (3)0.053 (3)0.069 (3)0.019 (2)0.005 (2)0.002 (2)
C20.059 (3)0.045 (3)0.051 (3)0.014 (2)0.001 (2)0.005 (2)
C30.060 (3)0.061 (3)0.062 (3)0.037 (3)0.011 (2)0.014 (2)
Cl10.0748 (10)0.0513 (8)0.0996 (11)0.0075 (7)0.0071 (8)0.0112 (7)
O30.084 (3)0.078 (3)0.064 (2)0.040 (2)0.008 (2)0.0030 (19)
O40.068 (3)0.129 (4)0.118 (4)0.037 (3)0.030 (3)0.004 (3)
P10.0386 (6)0.0401 (6)0.0386 (5)0.0224 (5)0.0019 (4)0.0017 (4)
P20.0378 (5)0.0423 (6)0.0376 (5)0.0200 (5)0.0016 (4)0.0010 (4)
N40.053 (2)0.055 (2)0.0393 (18)0.0341 (19)0.0026 (16)0.0058 (16)
C40.038 (2)0.044 (2)0.040 (2)0.0136 (19)0.0028 (17)0.0008 (18)
C50.046 (2)0.050 (3)0.046 (3)0.021 (2)0.0003 (19)0.0051 (19)
C60.055 (3)0.063 (3)0.064 (3)0.025 (3)0.010 (2)0.008 (3)
C70.068 (4)0.094 (4)0.054 (3)0.033 (3)0.009 (3)0.020 (3)
C80.083 (4)0.100 (5)0.036 (3)0.033 (4)0.001 (2)0.007 (3)
C90.071 (3)0.076 (3)0.043 (3)0.041 (3)0.003 (2)0.003 (2)
C100.041 (2)0.057 (3)0.044 (2)0.027 (2)0.0013 (18)0.008 (2)
C110.048 (3)0.065 (3)0.066 (3)0.026 (3)0.007 (2)0.005 (3)
C120.042 (3)0.103 (5)0.078 (4)0.023 (3)0.008 (3)0.005 (3)
C130.057 (4)0.120 (6)0.077 (4)0.056 (4)0.006 (3)0.027 (4)
C140.081 (4)0.098 (5)0.099 (5)0.066 (4)0.006 (4)0.009 (4)
C150.059 (3)0.061 (3)0.080 (3)0.038 (3)0.004 (3)0.008 (3)
C160.040 (2)0.046 (2)0.054 (3)0.022 (2)0.0006 (19)0.000 (2)
C170.048 (3)0.059 (3)0.056 (3)0.022 (2)0.009 (2)0.003 (2)
C180.055 (3)0.079 (4)0.071 (3)0.023 (3)0.013 (3)0.020 (3)
C190.051 (3)0.055 (3)0.105 (5)0.011 (3)0.001 (3)0.022 (3)
C200.073 (4)0.048 (3)0.103 (5)0.017 (3)0.004 (3)0.009 (3)
C210.069 (3)0.055 (3)0.077 (4)0.016 (3)0.015 (3)0.011 (3)
C220.041 (2)0.046 (2)0.042 (2)0.026 (2)0.0018 (17)0.0011 (18)
C230.044 (2)0.046 (3)0.067 (3)0.021 (2)0.002 (2)0.006 (2)
C240.067 (3)0.050 (3)0.090 (4)0.032 (3)0.005 (3)0.016 (3)
C250.069 (4)0.063 (3)0.087 (4)0.047 (3)0.020 (3)0.005 (3)
C260.045 (3)0.068 (3)0.085 (4)0.035 (3)0.012 (2)0.008 (3)
C270.042 (2)0.047 (3)0.065 (3)0.025 (2)0.002 (2)0.001 (2)
C280.044 (2)0.042 (2)0.043 (2)0.0243 (19)0.0007 (17)0.0019 (17)
C290.053 (3)0.062 (3)0.052 (3)0.036 (2)0.002 (2)0.000 (2)
C300.049 (3)0.077 (4)0.086 (4)0.038 (3)0.006 (3)0.004 (3)
C310.069 (4)0.079 (4)0.082 (4)0.044 (3)0.026 (3)0.001 (3)
C320.080 (4)0.088 (4)0.049 (3)0.047 (3)0.013 (3)0.004 (3)
C330.064 (3)0.076 (3)0.045 (3)0.043 (3)0.001 (2)0.006 (2)
C340.046 (2)0.038 (2)0.059 (3)0.023 (2)0.004 (2)0.0018 (19)
C350.089 (4)0.055 (3)0.077 (4)0.011 (3)0.013 (3)0.009 (3)
C360.157 (8)0.054 (4)0.106 (6)0.015 (4)0.015 (5)0.025 (4)
C370.084 (5)0.045 (3)0.166 (8)0.015 (3)0.029 (5)0.000 (4)
C380.074 (4)0.055 (3)0.118 (5)0.035 (3)0.035 (4)0.021 (4)
C390.064 (3)0.049 (3)0.074 (3)0.026 (3)0.017 (3)0.009 (2)
N50.065 (3)0.065 (3)0.077 (5)0.0327 (16)0.0000.000
O50.090 (3)0.074 (3)0.150 (5)0.032 (3)0.020 (3)0.000 (3)
Geometric parameters (Å, º) top
Cu1—O11.8816 (7)C10—C151.393 (7)
Cu1—N21.952 (4)C11—C121.385 (8)
Cu1—N11.960 (4)C12—C131.360 (9)
Cu1—O22.059 (3)C13—C141.366 (9)
Cu1—O32.483 (4)C14—C151.367 (8)
O1—Cu1i1.8816 (7)C16—C171.379 (6)
O1—Cu1ii1.8816 (7)C16—C211.391 (7)
O2—N31.237 (5)C17—C181.382 (7)
N1—C11.334 (6)C18—C191.362 (9)
N1—N2i1.345 (5)C19—C201.365 (9)
N2—C31.337 (6)C20—C211.386 (8)
N2—N1ii1.345 (5)C22—C231.371 (6)
N3—O41.215 (6)C22—C271.393 (6)
N3—O31.253 (6)C23—C241.382 (7)
C1—C21.364 (7)C24—C251.379 (8)
C2—C3i1.368 (7)C25—C261.356 (8)
C2—Cl11.727 (5)C26—C271.381 (6)
C3—C2ii1.368 (7)C28—C331.389 (6)
P1—N41.575 (4)C28—C291.391 (6)
P1—C341.794 (4)C29—C301.368 (7)
P1—C281.799 (4)C30—C311.379 (8)
P1—C221.805 (4)C31—C321.350 (8)
P2—N41.576 (4)C32—C331.378 (7)
P2—C101.795 (4)C34—C351.358 (7)
P2—C41.795 (4)C34—C391.386 (7)
P2—C161.802 (4)C35—C361.376 (9)
C4—C51.366 (6)C36—C371.379 (11)
C4—C91.397 (6)C37—C381.323 (10)
C5—C61.391 (7)C38—C391.384 (8)
C6—C71.356 (8)N5—O5i1.238 (5)
C7—C81.379 (9)N5—O51.238 (5)
C8—C91.388 (8)N5—O5ii1.238 (5)
C10—C111.378 (7)
O1—Cu1—N291.18 (12)C8—C9—C4119.5 (5)
O1—Cu1—N190.73 (12)C11—C10—C15119.6 (4)
N2—Cu1—N1162.20 (16)C11—C10—P2117.0 (4)
O1—Cu1—O2172.2 (2)C15—C10—P2123.2 (4)
N2—Cu1—O291.22 (15)C10—C11—C12119.8 (5)
N1—Cu1—O289.25 (14)C13—C12—C11119.8 (6)
Cu1—O1—Cu1i119.59 (5)C12—C13—C14120.8 (5)
Cu1—O1—Cu1ii119.59 (5)C13—C14—C15120.4 (6)
Cu1i—O1—Cu1ii119.59 (5)C14—C15—C10119.6 (6)
N3—O2—Cu1103.4 (3)C17—C16—C21118.6 (4)
C1—N1—N2i108.1 (4)C17—C16—P2120.0 (4)
C1—N1—Cu1132.6 (3)C21—C16—P2121.4 (4)
N2i—N1—Cu1119.3 (3)C16—C17—C18120.6 (5)
C3—N2—N1ii108.3 (4)C19—C18—C17120.3 (5)
C3—N2—Cu1132.1 (3)C18—C19—C20120.1 (5)
N1ii—N2—Cu1118.9 (3)C19—C20—C21120.4 (6)
O4—N3—O2120.7 (5)C20—C21—C16119.9 (5)
O4—N3—O3121.5 (5)C23—C22—C27118.8 (4)
O2—N3—O3117.9 (4)C23—C22—P1121.4 (3)
N1—C1—C2109.1 (4)C27—C22—P1119.4 (3)
C1—C2—C3i105.8 (4)C22—C23—C24120.6 (4)
C1—C2—Cl1127.0 (4)C25—C24—C23120.0 (5)
C3i—C2—Cl1127.2 (4)C26—C25—C24119.9 (5)
N2—C3—C2ii108.6 (4)C25—C26—C27120.6 (5)
N4—P1—C34109.7 (2)C26—C27—C22120.1 (5)
N4—P1—C28108.61 (19)C33—C28—C29118.8 (4)
C34—P1—C28106.6 (2)C33—C28—P1123.1 (3)
N4—P1—C22115.14 (19)C29—C28—P1118.1 (3)
C34—P1—C22106.8 (2)C30—C29—C28120.1 (5)
C28—P1—C22109.62 (19)C29—C30—C31120.6 (5)
N4—P2—C10113.0 (2)C32—C31—C30119.5 (5)
N4—P2—C4107.2 (2)C31—C32—C33121.3 (5)
C10—P2—C4108.3 (2)C32—C33—C28119.7 (5)
N4—P2—C16112.4 (2)C35—C34—C39118.9 (5)
C10—P2—C16108.4 (2)C35—C34—P1121.2 (4)
C4—P2—C16107.4 (2)C39—C34—P1119.9 (4)
P1—N4—P2139.5 (2)C34—C35—C36120.4 (6)
C5—C4—C9119.3 (4)C35—C36—C37119.7 (7)
C5—C4—P2119.6 (3)C38—C37—C36120.5 (6)
C9—C4—P2121.0 (4)C37—C38—C39120.6 (6)
C4—C5—C6120.8 (5)C38—C39—C34119.8 (5)
C7—C6—C5119.7 (5)O5i—N5—O5119.91 (5)
C6—C7—C8120.7 (5)O5i—N5—O5ii119.90 (6)
C7—C8—C9119.8 (5)O5—N5—O5ii119.91 (5)
Symmetry codes: (i) y+1, xy, z; (ii) x+y+1, x+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O3iii0.932.533.410 (11)157
Symmetry code: (iii) x+y+4/3, x+2/3, z1/3.
 

Footnotes

Present address: Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA.

Acknowledgements

RC thanks NSF–CREST at UPR–Mayaguez for an undergraduate research fellowship. LM thanks NSF–IFN for a graduate student fellowship.

References

First citationAlsalme, A., Ghazzali, M., Khan, R. A., Al-Farhan, K. & Reedijk, J. (2014). Polyhedron, 75, 64–67.  Web of Science CSD CrossRef CAS Google Scholar
First citationAngaridis, P. A., Baran, P., Boča, R., Cervantes-Lee, F., Haase, W., Mezei, G., Raptis, R. G. & Werner, R. (2002). Inorg. Chem. 41, 2219–2228.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBeckett, M. A., Horton, P. N., Hursthouse, M. B. & Timmis, J. L. (2010). Acta Cryst. E66, o319.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHalcrow, M. A. (2009). Dalton Trans. pp. 2059–2073.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMaresca, K. P., Rose, D. J. & Zubieta, J. (1997). Inorg. Chim. Acta, 260, 83–88.  CSD CrossRef CAS Web of Science Google Scholar
First citationMezei, G., Rivera-Carrillo, M. & Raptis, R. G. (2007). Dalton Trans. pp. 37–40.  Web of Science CSD CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRivera-Carrillo, M., Chakraborty, I., Mezei, G., Webster, R. D. & Raptis, R. G. (2008). Inorg. Chem. 47, 7644–7650.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSolomon, E. I., Heppner, D. E., Johnston, E. M., Ginsbach, J. W., Cirera, J., Qayyum, M., Kieber-Emmons, M. T., Kjaergaard, C. H., Hadt, R. G. & Tian, L. (2014). Chem. Rev. 114, 3659–3853.  Web of Science CrossRef CAS PubMed Google Scholar
First citationViciano-Chumillas, M., Tanase, S., de Jongh, L. J. & Reedijk, J. (2010). Eur. J. Inorg. Chem. pp. 3403–3418.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds