research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of trans-bis­­(di­ethano­lamine-κ3O,N,O′)manganese(II) bis­­(3-amino­benzoate)

CROSSMARK_Color_square_no_text.svg

aInstitute of General and Inorganic Chemistry of Uzbekistan Academy of Sciences, M. Ulugbek Str. 77a, Tashkent 700170, Uzbekistan, and bInstitute of Bioorganic Chemistry Academy of Sciences of Uzbekistan, M. Ulugbek Str. 83, Tashkent 700125, Uzbekistan
*Correspondence e-mail: aziz_ibragimov@mail.ru

Edited by M. Weil, Vienna University of Technology, Austria (Received 29 February 2016; accepted 10 March 2016; online 15 March 2016)

Reaction of m-amino­benzoic acid (MABA), di­ethano­lamine (DEA) and MnCl2·4H2O led to the formation of the title salt, [Mn(C4H11NO2)2](C7H6NO2)2. In the complex cation, the Mn2+ ion is located on an inversion centre and is coordinated by two symmetry-related tridentate DEA mol­ecules, leading to the formation of a slightly distorted MnN2O4 octa­hedron. The MABA counter-anions are connected to the complex ion by a pair of rather strong O—H⋯O hydrogen bonds, yielding a 1:2 supra­molecular aggregate. Much weaker N—H⋯O hydrogen bonds connect neighbouring aggregates into a three-dimensional network structure.

1. Chemical context

In contrast to the two other isomers of amino­benzoic acid, viz. p-amino­benzoic acid (or vitamin B10) and o-amino­benzoic acid (or antranylic acid), m-amino­benzoic acid (3-amino­benzoic acid or MABA) is not biologically active. Nevertheless, we are studying this substance within the context of mixed-ligand coordination complex formation including benzoic acid isomers and ethano­lamines (Ashurov et al., 2015[Ashurov, J. M., Ibragimov, A. B. & Ibragimov, B. T. (2015). Polyhedron, 102, 441-446.]). As a result of the presence of two spatially separated electron-donor functional groups in the MABA mol­ecule, the reported metal complexes of this ligand are mostly coordination polymers. Polymerization may take place involving both COOH and NH2 functional groups (Wang et al., 2004[Wang, R., Hong, M., Luo, J., Jiang, F., Han, L., Lin, Z. & Cao, R. (2004). Inorg. Chim. Acta, 357, 103-114.]; Flemig et al., 2008[Flemig, H., Pantenburg, I. & Meyer, G. (2008). J. Alloys Compd. 451, 429-432.]; Tan et al., 2006[Tan, A.-Z., Wei, Y.-H., Chen, Z.-L., Liang, F.-P. & Hu, R.-X. (2006). Wuji Huaxue Xuebao, 22, 394-398.]; Wei et al., 2006[Wei, Y.-H., Tan, A.-Z., Chen, Z.-L., Liang, F., -, P. & Hu, R.-X. (2006). Jiegou Huaxue, 25, 343-348.]; Shen & Lush, 2010[Shen, F. M. & Lush, S. F. (2010). Acta Cryst. E66, m1427.]; Wang et al., 2006[Wang, R., Yuan, D., Jiang, F., Han, L., Gao, S. & Hong, M. (2006). Eur. J. Inorg. Chem. pp. 1649-1656.];), or only one of them: COOH (Kozioł et al., 1992[Kozioł, A. E., Klimek, B., Stępniak, K., Rzączyńska, Z., Brzvska, W., Bodak, O. I., Akselrud, L. G., Pavlyuk, V. V. & Tafeenko, V. A. (1992). Z. Kristallogr. 200, 25-33.]; Murugavel & Banerjee, 2003[Murugavel, R. & Banerjee, S. (2003). Inorg. Chem. Commun. 6, 810-814.]; Flemig et al., 2008[Flemig, H., Pantenburg, I. & Meyer, G. (2008). J. Alloys Compd. 451, 429-432.]; Tsaryuk et al., 2014[Tsaryuk, V., Vologzhanina, A., Zhuravlev, K., Kudryashova, V., Szostak, R. & Zolin, V. (2014). J. Photochem. Photobiol. A, 285, 52-61.]) or, more infrequently, NH2 (Wang et al., 2004[Wang, R., Hong, M., Luo, J., Jiang, F., Han, L., Lin, Z. & Cao, R. (2004). Inorg. Chim. Acta, 357, 103-114.]).

[Scheme 1]

In discrete monoligand complexes, the MABA mol­ecules coordinate to metal ions only bidentately through the oxygen atoms of the carb­oxy­lic group (Ozhafarov et al., 1981[Ozhafarov, N. Kh., Amiraslanov, I. R., Nadzhafov, G. N., Movsumov, E. M. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 121-122.]) while in mixed-ligand complexes, the carb­oxy­lic group can feature mono- (Sundberg et al., 1998[Sundberg, M. R., Koskimies, J. K., Matikainen, J. & Tylli, H. (1998). Inorg. Chim. Acta, 268, 21-30.];) or bidentate (Palanisami et al., 2013[Palanisami, N., Rajakannu, P. & Murugavel, R. (2013). Inorg. Chim. Acta, 405, 522-531.]) coordination modes. Coordination through the nitro­gen atom is observed only in an Ag complex with participation of the co-ligand p-toluene­sulfonate (Smith et al., 1998[Smith, G., Cloutt, B. A., Lynch, D. E., Byriel, K. A. & Kennard, C. H. L. (1998). Inorg. Chem. 37, 3236-3242.]).

The disposition of MABA mol­ecules as non-coordinating counter-ions (in their benzoate form) is characteristic for mixed-ligand Mn (Fang & Nie, 2011[Fang, Z. & Nie, Q. (2011). J. Coord. Chem. 64, 2573-2582.]) or Cd complexes (Gao et al., 2011[Gao, J., Wang, J. & Nie, J. (2011). Acta Cryst. C67, m181-m184.]) with 4,4-bi­pyridine as co-ligand whereas the simultaneous presence of coordinating and non-coordinating MABA species was reported for an Mn complex with 1,10-phenanthroline as an additional ligand (Zhang, 2006[Zhang, W.-Z. (2006). Acta Cryst. E62, m857-m859.]).

Di­ethano­lamine (DEA) ligands can coordinate to metal ions in a mono- (Petrović et al., 2006[Petrović, Z. D., Djuran, M. I., Heinemann, F. W., Rajković, S. & Trifunović, S. R. (2006). Bioorg. Chem. 34, 225-234.]), bi- (Yilmaz et al., 2000[Yilmaz, V. T., Karadag, A., Thöne, C. & Herbst-Irmer, R. (2000). Acta Cryst. C56, 948-949.]) or tridenentate (Buvaylo et al., 2009[Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W. & Jezierska, J. (2009). Inorg. Chim. Acta, 362, 2429-2434.]) mode if two ligand mol­ecules are situated around the central atom. However, a combination of these modes, for example, in a bi- and tridentate fashion, is also possible (Bertrand et al., 1979[Bertrand, J. A., Fujita, E. & VanDerveer, D. G. (1979). Inorg. Chem. 18, 230-233.]).

A search in the Cambridge Structural Database (CSD; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) revealed that crystal structures have been reported for complexes of MABA and DEA with many metal ions, including zinc, copper, nickel, manganese, cadmium, cobalt, etc. However, no mixed-ligand metal complex including MABA and DEA is documented in the CSD. In order to prepare such compounds, we carried out a synthesis in a solution containing an Mn salt, MABA and DEA. Instead of the desired complex, the title salt, [Mn(C4H11NO2)2](C7H6NO2)2, consisting of discrete [Mn(DEA)2]2+ cations and MABA anions was obtained.

2. Structural commentary

The asymmetric unit consists of one DEA ligand, one MABA anion and one Mn2+-ion, the latter being located on an inversion centre (Fig. 1[link]). Coordination of the DEA ligand to the metal ion takes place in a tridentate O,N,O′ mode. The Mn—ligand bond lengths cover a range from 2.065 (2) to 2.096 (2) Å with an angular range of 81.79 (10) to 98.21 (10)°, leading to a slightly distorted MnN2O4 octa­hedron. Since the DEA ligands are in their neutral form, a charged component in the outer sphere is required for charge compensation. Hence, two MABA anions in the benzoate form are present per complex ion. The carboxyl­ate group of the anionic mol­ecule is tilted by 14.4 (4)° relative to the aromatic ring.

[Figure 1]
Figure 1
The structures of the mol­ecular moieties in the title salt. Displacement ellipsoids are drawn at the 50% probability level and the asymmetric unit is identified by the numbering of its atoms.

3. Supra­molecular features

The MABA anion is connected to the complex ion by a pair of rather strong O—H⋯O hydrogen bonds involving the DEA hy­droxy groups [2.562 (3) and 2.611 (3) Å; Table 1[link]], which give rise to the formation of a supra­molecular motif with graph-set notation R22(8). The resulting supra­molecular cationic:anionic 1:2 units are associated to other such units by relatively weak N—H⋯O hydrogen bonds [2.965 (4) and 3.008 (4) Å; Table 1[link]] involving the secondary amine function of the DEA ligand and one of the H atoms of the MABA amino group; notably, the second H atom (H1B) of the amino group remains without an acceptor. These four hydrogen bonds associate the different moieties into a three-dimensional network (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.96 (3) 2.19 (3) 2.965 (4) 137 (3)
N1—H1A⋯O1ii 0.97 (2) 2.05 (2) 3.008 (4) 170 (5)
O4—H4⋯O2iii 0.99 (5) 1.63 (5) 2.611 (3) 169 (4)
O3—H3⋯O1 0.92 (6) 1.65 (6) 2.562 (3) 173 (5)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (iii) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
The crystal packing in the title structure. Hydrogen bonds are shown as dashed lines.

4. Synthesis and crystallization

To an aqueous solution (5 ml) of MnCl2·4H2O (0.098 g, 0.5 mmol) was slowly added an ethano­lic solution (5 ml) containing DEA (96 µl) and MABA (0.137 g, 1 mmol) under constant stirring. A light-pink crystalline product was obtained at room temperature by solvent evaporation after 20 days.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The positions of the O- and N-bound hydrogen atoms were located from difference Fourier maps. Whereas O-bound hydrogen atoms were refined freely, N-bound H atoms were refined with soft distance restraints of 0.98 Å for the secondary amine function and of 0.95 Å for the primary amine function. The C-bound hydrogen atoms were placed in calculated positions and refined as riding atoms with C—H = 0.93 and 0.97 Å for aromatic and methyl­ene hydrogen atoms, respectively, and with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Mn(C4H11NO2)2](C7H6NO2)2
Mr 537.47
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 293
a, b, c (Å) 10.6120 (4), 10.8219 (4), 21.7591 (8)
V3) 2498.86 (15)
Z 4
Radiation type Cu Kα
μ (mm−1) 4.76
Crystal size (mm) 0.32 × 0.20 × 0.18
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Ruby
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.932, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10631, 2589, 1740
Rint 0.056
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.136, 1.06
No. of reflections 2589
No. of parameters 180
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.22
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]), SHELXS97, XP and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

trans-Bis(diethanolamine-κ3O,N,O')manganese(II) bis(3-aminobenzoate) top
Crystal data top
[Mn(C4H11NO2)2](C7H6NO2)2Dx = 1.429 Mg m3
Mr = 537.47Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 1995 reflections
a = 10.6120 (4) Åθ = 4.1–75.0°
b = 10.8219 (4) ŵ = 4.76 mm1
c = 21.7591 (8) ÅT = 293 K
V = 2498.86 (15) Å3Block, pink
Z = 40.32 × 0.20 × 0.18 mm
F(000) = 1132
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
2589 independent reflections
Radiation source: fine-focus sealed X-ray tube1740 reflections with I > 2σ(I)
Detector resolution: 10.2576 pixels mm-1Rint = 0.056
ω scansθmax = 76.3°, θmin = 4.1°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1311
Tmin = 0.932, Tmax = 1.000k = 1013
10631 measured reflectionsl = 2327
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: mixed
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.8708P]
where P = (Fo2 + 2Fc2)/3
2589 reflections(Δ/σ)max < 0.001
180 parametersΔρmax = 0.37 e Å3
3 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50000.50000.50000.04895 (19)
O40.3260 (2)0.5819 (2)0.52055 (10)0.0539 (5)
O30.5434 (2)0.4939 (2)0.59247 (10)0.0565 (5)
O10.7755 (2)0.5192 (2)0.62224 (11)0.0632 (6)
O20.8300 (3)0.3560 (3)0.56693 (12)0.0734 (7)
N20.4066 (3)0.3381 (2)0.52171 (12)0.0512 (6)
C10.9619 (3)0.4152 (3)0.64986 (13)0.0518 (7)
C20.9990 (3)0.5096 (3)0.68864 (13)0.0516 (6)
H2A0.95200.58210.68990.062*
N11.1449 (4)0.5979 (4)0.76146 (16)0.0793 (10)
C70.8479 (3)0.4310 (3)0.60979 (14)0.0547 (7)
C31.1051 (3)0.4986 (4)0.72582 (13)0.0566 (7)
C61.0307 (3)0.3059 (4)0.64803 (16)0.0617 (8)
H61.00690.24220.62180.074*
C41.1723 (3)0.3888 (4)0.72398 (15)0.0659 (9)
H4A1.24320.37950.74870.079*
C110.2710 (3)0.3669 (3)0.53064 (17)0.0618 (8)
H11A0.23480.30810.55920.074*
H11B0.22720.35860.49170.074*
C51.1356 (3)0.2928 (4)0.68595 (16)0.0682 (9)
H51.18110.21930.68570.082*
C100.2524 (4)0.4967 (3)0.55517 (17)0.0657 (9)
H10A0.16400.51910.55250.079*
H10B0.27720.49990.59800.079*
C90.4717 (4)0.2849 (3)0.57585 (18)0.0690 (10)
H9A0.54940.24570.56280.083*
H9B0.41870.22220.59440.083*
C80.5008 (4)0.3832 (4)0.62248 (16)0.0724 (10)
H8A0.42590.40100.64640.087*
H8B0.56560.35370.65030.087*
H40.276 (5)0.606 (5)0.484 (2)0.099 (15)*
H20.429 (4)0.278 (3)0.4912 (14)0.071 (11)*
H30.628 (6)0.501 (5)0.600 (3)0.109 (18)*
H1A1.196 (5)0.571 (6)0.7962 (18)0.13 (2)*
H1B1.087 (6)0.664 (5)0.771 (3)0.18 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0487 (3)0.0479 (3)0.0503 (3)0.0033 (3)0.0032 (3)0.0027 (3)
O40.0536 (11)0.0496 (11)0.0586 (12)0.0035 (10)0.0011 (10)0.0037 (10)
O30.0553 (12)0.0658 (14)0.0485 (10)0.0038 (11)0.0093 (9)0.0029 (11)
O10.0529 (12)0.0758 (16)0.0608 (12)0.0082 (11)0.0109 (10)0.0144 (12)
O20.0762 (16)0.0790 (17)0.0650 (14)0.0167 (14)0.0226 (12)0.0215 (13)
N20.0540 (14)0.0457 (13)0.0539 (13)0.0065 (11)0.0018 (11)0.0061 (11)
C10.0494 (15)0.0631 (18)0.0429 (13)0.0042 (14)0.0023 (12)0.0026 (14)
C20.0465 (14)0.0632 (17)0.0452 (13)0.0017 (14)0.0025 (11)0.0061 (14)
N10.077 (2)0.094 (3)0.0674 (19)0.014 (2)0.0126 (16)0.0015 (19)
C70.0504 (16)0.064 (2)0.0496 (16)0.0016 (15)0.0012 (12)0.0024 (14)
C30.0520 (16)0.073 (2)0.0448 (13)0.0117 (16)0.0003 (12)0.0032 (16)
C60.067 (2)0.065 (2)0.0535 (16)0.0017 (17)0.0015 (14)0.0011 (16)
C40.0520 (17)0.094 (3)0.0522 (17)0.0043 (19)0.0040 (14)0.0079 (18)
C110.0559 (19)0.0569 (18)0.073 (2)0.0107 (15)0.0060 (15)0.0005 (16)
C50.063 (2)0.079 (2)0.0622 (19)0.0150 (18)0.0014 (15)0.0056 (18)
C100.0606 (19)0.066 (2)0.071 (2)0.0055 (18)0.0172 (16)0.0018 (19)
C90.077 (2)0.0563 (19)0.074 (2)0.0046 (17)0.0092 (18)0.0154 (17)
C80.076 (2)0.088 (3)0.0533 (18)0.014 (2)0.0086 (17)0.0136 (19)
Geometric parameters (Å, º) top
Mn1—O3i2.065 (2)N1—C31.391 (5)
Mn1—O32.065 (2)N1—H1A0.97 (2)
Mn1—N22.067 (3)N1—H1B0.97 (2)
Mn1—N2i2.068 (3)C3—C41.387 (5)
Mn1—O42.096 (2)C6—C51.393 (5)
Mn1—O4i2.096 (2)C6—H60.9300
O4—C101.424 (4)C4—C51.384 (6)
O4—H40.99 (5)C4—H4A0.9300
O3—C81.438 (4)C11—C101.515 (5)
O3—H30.92 (6)C11—H11A0.9700
O1—C71.255 (4)C11—H11B0.9700
O2—C71.251 (4)C5—H50.9300
N2—C91.482 (4)C10—H10A0.9700
N2—C111.485 (4)C10—H10B0.9700
N2—H20.959 (19)C9—C81.502 (5)
C1—C21.383 (5)C9—H9A0.9700
C1—C61.390 (5)C9—H9B0.9700
C1—C71.501 (4)C8—H8A0.9700
C2—C31.391 (4)C8—H8B0.9700
C2—H2A0.9300
O3i—Mn1—O3180.00 (14)O1—C7—C1117.0 (3)
O3i—Mn1—N298.21 (10)C4—C3—N1121.5 (3)
O3—Mn1—N281.79 (10)C4—C3—C2118.2 (3)
O3i—Mn1—N2i81.79 (10)N1—C3—C2120.3 (4)
O3—Mn1—N2i98.21 (10)C1—C6—C5119.3 (4)
N2—Mn1—N2i180.0C1—C6—H6120.4
O3i—Mn1—O489.88 (9)C5—C6—H6120.4
O3—Mn1—O490.12 (9)C5—C4—C3121.1 (3)
N2—Mn1—O483.54 (10)C5—C4—H4A119.5
N2i—Mn1—O496.46 (10)C3—C4—H4A119.5
O3i—Mn1—O4i90.11 (9)N2—C11—C10111.6 (3)
O3—Mn1—O4i89.89 (9)N2—C11—H11A109.3
N2—Mn1—O4i96.47 (10)C10—C11—H11A109.3
N2i—Mn1—O4i83.53 (10)N2—C11—H11B109.3
O4—Mn1—O4i180.0C10—C11—H11B109.3
C10—O4—Mn1108.80 (19)H11A—C11—H11B108.0
C10—O4—H4107 (3)C4—C5—C6120.2 (4)
Mn1—O4—H4115 (3)C4—C5—H5119.9
C8—O3—Mn1113.5 (2)C6—C5—H5119.9
C8—O3—H3108 (3)O4—C10—C11110.0 (3)
Mn1—O3—H3113 (4)O4—C10—H10A109.7
C9—N2—C11115.4 (3)C11—C10—H10A109.7
C9—N2—Mn1106.7 (2)O4—C10—H10B109.7
C11—N2—Mn1108.5 (2)C11—C10—H10B109.7
C9—N2—H2100 (2)H10A—C10—H10B108.2
C11—N2—H2118 (3)N2—C9—C8110.9 (3)
Mn1—N2—H2108 (2)N2—C9—H9A109.4
C2—C1—C6119.8 (3)C8—C9—H9A109.4
C2—C1—C7120.0 (3)N2—C9—H9B109.4
C6—C1—C7120.2 (3)C8—C9—H9B109.4
C1—C2—C3121.5 (3)H9A—C9—H9B108.0
C1—C2—H2A119.3O3—C8—C9110.4 (3)
C3—C2—H2A119.3O3—C8—H8A109.6
C3—N1—H1A112 (4)C9—C8—H8A109.6
C3—N1—H1B119 (5)O3—C8—H8B109.6
H1A—N1—H1B114 (5)C9—C8—H8B109.6
O2—C7—O1124.2 (3)H8A—C8—H8B108.1
O2—C7—C1118.8 (3)
C6—C1—C2—C30.7 (5)C2—C3—C4—C50.4 (5)
C7—C1—C2—C3179.2 (3)C9—N2—C11—C1088.9 (4)
C2—C1—C7—O2166.2 (3)Mn1—N2—C11—C1030.7 (3)
C6—C1—C7—O213.6 (5)C3—C4—C5—C60.9 (6)
C2—C1—C7—O114.4 (5)C1—C6—C5—C41.4 (5)
C6—C1—C7—O1165.7 (3)Mn1—O4—C10—C1138.9 (3)
C1—C2—C3—C41.2 (5)N2—C11—C10—O447.5 (4)
C1—C2—C3—N1175.9 (3)C11—N2—C9—C876.9 (4)
C2—C1—C6—C50.7 (5)Mn1—N2—C9—C843.7 (4)
C7—C1—C6—C5179.5 (3)Mn1—O3—C8—C917.4 (4)
N1—C3—C4—C5176.6 (3)N2—C9—C8—O340.8 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2ii0.96 (3)2.19 (3)2.965 (4)137 (3)
N1—H1A···O1iii0.97 (2)2.05 (2)3.008 (4)170 (5)
O4—H4···O2i0.99 (5)1.63 (5)2.611 (3)169 (4)
O3—H3···O10.92 (6)1.65 (6)2.562 (3)173 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+1/2, z+1; (iii) x+1/2, y, z+3/2.
 

Acknowledgements

This work was supported by a Grant for Fundamental Research from the Center of Science and Technology, Uzbek­istan (No. FPFI T.2–16).

References

First citationAshurov, J. M., Ibragimov, A. B. & Ibragimov, B. T. (2015). Polyhedron, 102, 441–446.  Web of Science CSD CrossRef CAS Google Scholar
First citationBertrand, J. A., Fujita, E. & VanDerveer, D. G. (1979). Inorg. Chem. 18, 230–233.  CSD CrossRef CAS Web of Science Google Scholar
First citationBuvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W. & Jezierska, J. (2009). Inorg. Chim. Acta, 362, 2429–2434.  Web of Science CSD CrossRef CAS Google Scholar
First citationFang, Z. & Nie, Q. (2011). J. Coord. Chem. 64, 2573–2582.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlemig, H., Pantenburg, I. & Meyer, G. (2008). J. Alloys Compd. 451, 429–432.  Web of Science CSD CrossRef CAS Google Scholar
First citationGao, J., Wang, J. & Nie, J. (2011). Acta Cryst. C67, m181–m184.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationKozioł, A. E., Klimek, B., Stępniak, K., Rzączyńska, Z., Brzvska, W., Bodak, O. I., Akselrud, L. G., Pavlyuk, V. V. & Tafeenko, V. A. (1992). Z. Kristallogr. 200, 25–33.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMurugavel, R. & Banerjee, S. (2003). Inorg. Chem. Commun. 6, 810–814.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationOzhafarov, N. Kh., Amiraslanov, I. R., Nadzhafov, G. N., Movsumov, E. M. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 121–122.  Google Scholar
First citationPalanisami, N., Rajakannu, P. & Murugavel, R. (2013). Inorg. Chim. Acta, 405, 522–531.  Web of Science CSD CrossRef CAS Google Scholar
First citationPetrović, Z. D., Djuran, M. I., Heinemann, F. W., Rajković, S. & Trifunović, S. R. (2006). Bioorg. Chem. 34, 225–234.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShen, F. M. & Lush, S. F. (2010). Acta Cryst. E66, m1427.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Cloutt, B. A., Lynch, D. E., Byriel, K. A. & Kennard, C. H. L. (1998). Inorg. Chem. 37, 3236–3242.  Web of Science CSD CrossRef CAS Google Scholar
First citationSundberg, M. R., Koskimies, J. K., Matikainen, J. & Tylli, H. (1998). Inorg. Chim. Acta, 268, 21–30.  Web of Science CSD CrossRef CAS Google Scholar
First citationTan, A.-Z., Wei, Y.-H., Chen, Z.-L., Liang, F.-P. & Hu, R.-X. (2006). Wuji Huaxue Xuebao, 22, 394–398.  CAS Google Scholar
First citationTsaryuk, V., Vologzhanina, A., Zhuravlev, K., Kudryashova, V., Szostak, R. & Zolin, V. (2014). J. Photochem. Photobiol. A, 285, 52–61.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, R., Hong, M., Luo, J., Jiang, F., Han, L., Lin, Z. & Cao, R. (2004). Inorg. Chim. Acta, 357, 103–114.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, R., Yuan, D., Jiang, F., Han, L., Gao, S. & Hong, M. (2006). Eur. J. Inorg. Chem. pp. 1649–1656.  Web of Science CSD CrossRef Google Scholar
First citationWei, Y.-H., Tan, A.-Z., Chen, Z.-L., Liang, F., -, P. & Hu, R.-X. (2006). Jiegou Huaxue, 25, 343–348.  CAS Google Scholar
First citationYilmaz, V. T., Karadag, A., Thöne, C. & Herbst-Irmer, R. (2000). Acta Cryst. C56, 948–949.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W.-Z. (2006). Acta Cryst. E62, m857–m859.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds