research communications
trans-bis(diethanolamine-κ3O,N,O′)manganese(II) bis(3-aminobenzoate)
ofaInstitute of General and Inorganic Chemistry of Uzbekistan Academy of Sciences, M. Ulugbek Str. 77a, Tashkent 700170, Uzbekistan, and bInstitute of Bioorganic Chemistry Academy of Sciences of Uzbekistan, M. Ulugbek Str. 83, Tashkent 700125, Uzbekistan
*Correspondence e-mail: aziz_ibragimov@mail.ru
Reaction of m-aminobenzoic acid (MABA), diethanolamine (DEA) and MnCl2·4H2O led to the formation of the title salt, [Mn(C4H11NO2)2](C7H6NO2)2. In the complex cation, the Mn2+ ion is located on an inversion centre and is coordinated by two symmetry-related tridentate DEA molecules, leading to the formation of a slightly distorted MnN2O4 octahedron. The MABA− counter-anions are connected to the complex ion by a pair of rather strong O—H⋯O hydrogen bonds, yielding a 1:2 supramolecular aggregate. Much weaker N—H⋯O hydrogen bonds connect neighbouring aggregates into a three-dimensional network structure.
Keywords: crystal structure; coordination compound; 2-aminobenzoic acid; diethanolamine; Mn complex; hydrogen bonding.
CCDC reference: 1463701
1. Chemical context
In contrast to the two other isomers of aminobenzoic acid, viz. p-aminobenzoic acid (or vitamin B10) and o-aminobenzoic acid (or antranylic acid), m-aminobenzoic acid (3-aminobenzoic acid or MABA) is not biologically active. Nevertheless, we are studying this substance within the context of mixed-ligand coordination complex formation including benzoic acid isomers and ethanolamines (Ashurov et al., 2015). As a result of the presence of two spatially separated electron-donor functional groups in the MABA molecule, the reported metal complexes of this ligand are mostly coordination polymers. Polymerization may take place involving both COOH and NH2 functional groups (Wang et al., 2004; Flemig et al., 2008; Tan et al., 2006; Wei et al., 2006; Shen & Lush, 2010; Wang et al., 2006;), or only one of them: COOH (Kozioł et al., 1992; Murugavel & Banerjee, 2003; Flemig et al., 2008; Tsaryuk et al., 2014) or, more infrequently, NH2 (Wang et al., 2004).
In discrete monoligand complexes, the MABA molecules coordinate to metal ions only bidentately through the oxygen atoms of the carboxylic group (Ozhafarov et al., 1981) while in mixed-ligand complexes, the carboxylic group can feature mono- (Sundberg et al., 1998;) or bidentate (Palanisami et al., 2013) coordination modes. Coordination through the nitrogen atom is observed only in an Ag complex with participation of the co-ligand p-toluenesulfonate (Smith et al., 1998).
The disposition of MABA molecules as non-coordinating counter-ions (in their benzoate form) is characteristic for mixed-ligand Mn (Fang & Nie, 2011) or Cd complexes (Gao et al., 2011) with 4,4-bipyridine as co-ligand whereas the simultaneous presence of coordinating and non-coordinating MABA species was reported for an Mn complex with 1,10-phenanthroline as an additional ligand (Zhang, 2006).
Diethanolamine (DEA) ligands can coordinate to metal ions in a mono- (Petrović et al., 2006), bi- (Yilmaz et al., 2000) or tridenentate (Buvaylo et al., 2009) mode if two ligand molecules are situated around the central atom. However, a combination of these modes, for example, in a bi- and tridentate fashion, is also possible (Bertrand et al., 1979).
A search in the Cambridge Structural Database (CSD; Groom & Allen, 2014) revealed that crystal structures have been reported for complexes of MABA and DEA with many metal ions, including zinc, copper, nickel, manganese, cadmium, cobalt, etc. However, no mixed-ligand metal complex including MABA and DEA is documented in the CSD. In order to prepare such compounds, we carried out a synthesis in a solution containing an Mn salt, MABA and DEA. Instead of the desired complex, the title salt, [Mn(C4H11NO2)2](C7H6NO2)2, consisting of discrete [Mn(DEA)2]2+ cations and MABA− anions was obtained.
2. Structural commentary
The − anion and one Mn2+-ion, the latter being located on an inversion centre (Fig. 1). Coordination of the DEA ligand to the metal ion takes place in a tridentate O,N,O′ mode. The Mn—ligand bond lengths cover a range from 2.065 (2) to 2.096 (2) Å with an angular range of 81.79 (10) to 98.21 (10)°, leading to a slightly distorted MnN2O4 octahedron. Since the DEA ligands are in their neutral form, a charged component in the outer sphere is required for charge compensation. Hence, two MABA− anions in the benzoate form are present per complex ion. The carboxylate group of the anionic molecule is tilted by 14.4 (4)° relative to the aromatic ring.
consists of one DEA ligand, one MABA3. Supramolecular features
The MABA− anion is connected to the complex ion by a pair of rather strong O—H⋯O hydrogen bonds involving the DEA hydroxy groups [2.562 (3) and 2.611 (3) Å; Table 1], which give rise to the formation of a supramolecular motif with graph-set notation R22(8). The resulting supramolecular cationic:anionic 1:2 units are associated to other such units by relatively weak N—H⋯O hydrogen bonds [2.965 (4) and 3.008 (4) Å; Table 1] involving the secondary amine function of the DEA ligand and one of the H atoms of the MABA− amino group; notably, the second H atom (H1B) of the amino group remains without an acceptor. These four hydrogen bonds associate the different moieties into a three-dimensional network (Fig. 2).
4. Synthesis and crystallization
To an aqueous solution (5 ml) of MnCl2·4H2O (0.098 g, 0.5 mmol) was slowly added an ethanolic solution (5 ml) containing DEA (96 µl) and MABA (0.137 g, 1 mmol) under constant stirring. A light-pink crystalline product was obtained at room temperature by solvent evaporation after 20 days.
5. Refinement
Crystal data, data collection and structure . The positions of the O- and N-bound hydrogen atoms were located from difference Fourier maps. Whereas O-bound hydrogen atoms were refined freely, N-bound H atoms were refined with soft distance restraints of 0.98 Å for the secondary amine function and of 0.95 Å for the primary amine function. The C-bound hydrogen atoms were placed in calculated positions and refined as riding atoms with C—H = 0.93 and 0.97 Å for aromatic and methylene hydrogen atoms, respectively, and with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1463701
https://doi.org/10.1107/S2056989016004072/wm5277sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016004072/wm5277Isup2.hkl
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Mn(C4H11NO2)2](C7H6NO2)2 | Dx = 1.429 Mg m−3 |
Mr = 537.47 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, Pbca | Cell parameters from 1995 reflections |
a = 10.6120 (4) Å | θ = 4.1–75.0° |
b = 10.8219 (4) Å | µ = 4.76 mm−1 |
c = 21.7591 (8) Å | T = 293 K |
V = 2498.86 (15) Å3 | Block, pink |
Z = 4 | 0.32 × 0.20 × 0.18 mm |
F(000) = 1132 |
Oxford Diffraction Xcalibur Ruby diffractometer | 2589 independent reflections |
Radiation source: fine-focus sealed X-ray tube | 1740 reflections with I > 2σ(I) |
Detector resolution: 10.2576 pixels mm-1 | Rint = 0.056 |
ω scans | θmax = 76.3°, θmin = 4.1° |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | h = −13→11 |
Tmin = 0.932, Tmax = 1.000 | k = −10→13 |
10631 measured reflections | l = −23→27 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: mixed |
wR(F2) = 0.136 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0511P)2 + 0.8708P] where P = (Fo2 + 2Fc2)/3 |
2589 reflections | (Δ/σ)max < 0.001 |
180 parameters | Δρmax = 0.37 e Å−3 |
3 restraints | Δρmin = −0.22 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Mn1 | 0.5000 | 0.5000 | 0.5000 | 0.04895 (19) | |
O4 | 0.3260 (2) | 0.5819 (2) | 0.52055 (10) | 0.0539 (5) | |
O3 | 0.5434 (2) | 0.4939 (2) | 0.59247 (10) | 0.0565 (5) | |
O1 | 0.7755 (2) | 0.5192 (2) | 0.62224 (11) | 0.0632 (6) | |
O2 | 0.8300 (3) | 0.3560 (3) | 0.56693 (12) | 0.0734 (7) | |
N2 | 0.4066 (3) | 0.3381 (2) | 0.52171 (12) | 0.0512 (6) | |
C1 | 0.9619 (3) | 0.4152 (3) | 0.64986 (13) | 0.0518 (7) | |
C2 | 0.9990 (3) | 0.5096 (3) | 0.68864 (13) | 0.0516 (6) | |
H2A | 0.9520 | 0.5821 | 0.6899 | 0.062* | |
N1 | 1.1449 (4) | 0.5979 (4) | 0.76146 (16) | 0.0793 (10) | |
C7 | 0.8479 (3) | 0.4310 (3) | 0.60979 (14) | 0.0547 (7) | |
C3 | 1.1051 (3) | 0.4986 (4) | 0.72582 (13) | 0.0566 (7) | |
C6 | 1.0307 (3) | 0.3059 (4) | 0.64803 (16) | 0.0617 (8) | |
H6 | 1.0069 | 0.2422 | 0.6218 | 0.074* | |
C4 | 1.1723 (3) | 0.3888 (4) | 0.72398 (15) | 0.0659 (9) | |
H4A | 1.2432 | 0.3795 | 0.7487 | 0.079* | |
C11 | 0.2710 (3) | 0.3669 (3) | 0.53064 (17) | 0.0618 (8) | |
H11A | 0.2348 | 0.3081 | 0.5592 | 0.074* | |
H11B | 0.2272 | 0.3586 | 0.4917 | 0.074* | |
C5 | 1.1356 (3) | 0.2928 (4) | 0.68595 (16) | 0.0682 (9) | |
H5 | 1.1811 | 0.2193 | 0.6857 | 0.082* | |
C10 | 0.2524 (4) | 0.4967 (3) | 0.55517 (17) | 0.0657 (9) | |
H10A | 0.1640 | 0.5191 | 0.5525 | 0.079* | |
H10B | 0.2772 | 0.4999 | 0.5980 | 0.079* | |
C9 | 0.4717 (4) | 0.2849 (3) | 0.57585 (18) | 0.0690 (10) | |
H9A | 0.5494 | 0.2457 | 0.5628 | 0.083* | |
H9B | 0.4187 | 0.2222 | 0.5944 | 0.083* | |
C8 | 0.5008 (4) | 0.3832 (4) | 0.62248 (16) | 0.0724 (10) | |
H8A | 0.4259 | 0.4010 | 0.6464 | 0.087* | |
H8B | 0.5656 | 0.3537 | 0.6503 | 0.087* | |
H4 | 0.276 (5) | 0.606 (5) | 0.484 (2) | 0.099 (15)* | |
H2 | 0.429 (4) | 0.278 (3) | 0.4912 (14) | 0.071 (11)* | |
H3 | 0.628 (6) | 0.501 (5) | 0.600 (3) | 0.109 (18)* | |
H1A | 1.196 (5) | 0.571 (6) | 0.7962 (18) | 0.13 (2)* | |
H1B | 1.087 (6) | 0.664 (5) | 0.771 (3) | 0.18 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.0487 (3) | 0.0479 (3) | 0.0503 (3) | −0.0033 (3) | −0.0032 (3) | −0.0027 (3) |
O4 | 0.0536 (11) | 0.0496 (11) | 0.0586 (12) | 0.0035 (10) | −0.0011 (10) | −0.0037 (10) |
O3 | 0.0553 (12) | 0.0658 (14) | 0.0485 (10) | −0.0038 (11) | −0.0093 (9) | −0.0029 (11) |
O1 | 0.0529 (12) | 0.0758 (16) | 0.0608 (12) | 0.0082 (11) | −0.0109 (10) | −0.0144 (12) |
O2 | 0.0762 (16) | 0.0790 (17) | 0.0650 (14) | 0.0167 (14) | −0.0226 (12) | −0.0215 (13) |
N2 | 0.0540 (14) | 0.0457 (13) | 0.0539 (13) | −0.0065 (11) | 0.0018 (11) | −0.0061 (11) |
C1 | 0.0494 (15) | 0.0631 (18) | 0.0429 (13) | −0.0042 (14) | 0.0023 (12) | 0.0026 (14) |
C2 | 0.0465 (14) | 0.0632 (17) | 0.0452 (13) | −0.0017 (14) | 0.0025 (11) | 0.0061 (14) |
N1 | 0.077 (2) | 0.094 (3) | 0.0674 (19) | −0.014 (2) | −0.0126 (16) | −0.0015 (19) |
C7 | 0.0504 (16) | 0.064 (2) | 0.0496 (16) | −0.0016 (15) | −0.0012 (12) | −0.0024 (14) |
C3 | 0.0520 (16) | 0.073 (2) | 0.0448 (13) | −0.0117 (16) | 0.0003 (12) | 0.0032 (16) |
C6 | 0.067 (2) | 0.065 (2) | 0.0535 (16) | 0.0017 (17) | −0.0015 (14) | −0.0011 (16) |
C4 | 0.0520 (17) | 0.094 (3) | 0.0522 (17) | 0.0043 (19) | −0.0040 (14) | 0.0079 (18) |
C11 | 0.0559 (19) | 0.0569 (18) | 0.073 (2) | −0.0107 (15) | 0.0060 (15) | −0.0005 (16) |
C5 | 0.063 (2) | 0.079 (2) | 0.0622 (19) | 0.0150 (18) | −0.0014 (15) | 0.0056 (18) |
C10 | 0.0606 (19) | 0.066 (2) | 0.071 (2) | 0.0055 (18) | 0.0172 (16) | 0.0018 (19) |
C9 | 0.077 (2) | 0.0563 (19) | 0.074 (2) | −0.0046 (17) | −0.0092 (18) | 0.0154 (17) |
C8 | 0.076 (2) | 0.088 (3) | 0.0533 (18) | −0.014 (2) | −0.0086 (17) | 0.0136 (19) |
Mn1—O3i | 2.065 (2) | N1—C3 | 1.391 (5) |
Mn1—O3 | 2.065 (2) | N1—H1A | 0.97 (2) |
Mn1—N2 | 2.067 (3) | N1—H1B | 0.97 (2) |
Mn1—N2i | 2.068 (3) | C3—C4 | 1.387 (5) |
Mn1—O4 | 2.096 (2) | C6—C5 | 1.393 (5) |
Mn1—O4i | 2.096 (2) | C6—H6 | 0.9300 |
O4—C10 | 1.424 (4) | C4—C5 | 1.384 (6) |
O4—H4 | 0.99 (5) | C4—H4A | 0.9300 |
O3—C8 | 1.438 (4) | C11—C10 | 1.515 (5) |
O3—H3 | 0.92 (6) | C11—H11A | 0.9700 |
O1—C7 | 1.255 (4) | C11—H11B | 0.9700 |
O2—C7 | 1.251 (4) | C5—H5 | 0.9300 |
N2—C9 | 1.482 (4) | C10—H10A | 0.9700 |
N2—C11 | 1.485 (4) | C10—H10B | 0.9700 |
N2—H2 | 0.959 (19) | C9—C8 | 1.502 (5) |
C1—C2 | 1.383 (5) | C9—H9A | 0.9700 |
C1—C6 | 1.390 (5) | C9—H9B | 0.9700 |
C1—C7 | 1.501 (4) | C8—H8A | 0.9700 |
C2—C3 | 1.391 (4) | C8—H8B | 0.9700 |
C2—H2A | 0.9300 | ||
O3i—Mn1—O3 | 180.00 (14) | O1—C7—C1 | 117.0 (3) |
O3i—Mn1—N2 | 98.21 (10) | C4—C3—N1 | 121.5 (3) |
O3—Mn1—N2 | 81.79 (10) | C4—C3—C2 | 118.2 (3) |
O3i—Mn1—N2i | 81.79 (10) | N1—C3—C2 | 120.3 (4) |
O3—Mn1—N2i | 98.21 (10) | C1—C6—C5 | 119.3 (4) |
N2—Mn1—N2i | 180.0 | C1—C6—H6 | 120.4 |
O3i—Mn1—O4 | 89.88 (9) | C5—C6—H6 | 120.4 |
O3—Mn1—O4 | 90.12 (9) | C5—C4—C3 | 121.1 (3) |
N2—Mn1—O4 | 83.54 (10) | C5—C4—H4A | 119.5 |
N2i—Mn1—O4 | 96.46 (10) | C3—C4—H4A | 119.5 |
O3i—Mn1—O4i | 90.11 (9) | N2—C11—C10 | 111.6 (3) |
O3—Mn1—O4i | 89.89 (9) | N2—C11—H11A | 109.3 |
N2—Mn1—O4i | 96.47 (10) | C10—C11—H11A | 109.3 |
N2i—Mn1—O4i | 83.53 (10) | N2—C11—H11B | 109.3 |
O4—Mn1—O4i | 180.0 | C10—C11—H11B | 109.3 |
C10—O4—Mn1 | 108.80 (19) | H11A—C11—H11B | 108.0 |
C10—O4—H4 | 107 (3) | C4—C5—C6 | 120.2 (4) |
Mn1—O4—H4 | 115 (3) | C4—C5—H5 | 119.9 |
C8—O3—Mn1 | 113.5 (2) | C6—C5—H5 | 119.9 |
C8—O3—H3 | 108 (3) | O4—C10—C11 | 110.0 (3) |
Mn1—O3—H3 | 113 (4) | O4—C10—H10A | 109.7 |
C9—N2—C11 | 115.4 (3) | C11—C10—H10A | 109.7 |
C9—N2—Mn1 | 106.7 (2) | O4—C10—H10B | 109.7 |
C11—N2—Mn1 | 108.5 (2) | C11—C10—H10B | 109.7 |
C9—N2—H2 | 100 (2) | H10A—C10—H10B | 108.2 |
C11—N2—H2 | 118 (3) | N2—C9—C8 | 110.9 (3) |
Mn1—N2—H2 | 108 (2) | N2—C9—H9A | 109.4 |
C2—C1—C6 | 119.8 (3) | C8—C9—H9A | 109.4 |
C2—C1—C7 | 120.0 (3) | N2—C9—H9B | 109.4 |
C6—C1—C7 | 120.2 (3) | C8—C9—H9B | 109.4 |
C1—C2—C3 | 121.5 (3) | H9A—C9—H9B | 108.0 |
C1—C2—H2A | 119.3 | O3—C8—C9 | 110.4 (3) |
C3—C2—H2A | 119.3 | O3—C8—H8A | 109.6 |
C3—N1—H1A | 112 (4) | C9—C8—H8A | 109.6 |
C3—N1—H1B | 119 (5) | O3—C8—H8B | 109.6 |
H1A—N1—H1B | 114 (5) | C9—C8—H8B | 109.6 |
O2—C7—O1 | 124.2 (3) | H8A—C8—H8B | 108.1 |
O2—C7—C1 | 118.8 (3) | ||
C6—C1—C2—C3 | 0.7 (5) | C2—C3—C4—C5 | 0.4 (5) |
C7—C1—C2—C3 | −179.2 (3) | C9—N2—C11—C10 | 88.9 (4) |
C2—C1—C7—O2 | 166.2 (3) | Mn1—N2—C11—C10 | −30.7 (3) |
C6—C1—C7—O2 | −13.6 (5) | C3—C4—C5—C6 | 0.9 (6) |
C2—C1—C7—O1 | −14.4 (5) | C1—C6—C5—C4 | −1.4 (5) |
C6—C1—C7—O1 | 165.7 (3) | Mn1—O4—C10—C11 | −38.9 (3) |
C1—C2—C3—C4 | −1.2 (5) | N2—C11—C10—O4 | 47.5 (4) |
C1—C2—C3—N1 | 175.9 (3) | C11—N2—C9—C8 | −76.9 (4) |
C2—C1—C6—C5 | 0.7 (5) | Mn1—N2—C9—C8 | 43.7 (4) |
C7—C1—C6—C5 | −179.5 (3) | Mn1—O3—C8—C9 | 17.4 (4) |
N1—C3—C4—C5 | −176.6 (3) | N2—C9—C8—O3 | −40.8 (4) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O2ii | 0.96 (3) | 2.19 (3) | 2.965 (4) | 137 (3) |
N1—H1A···O1iii | 0.97 (2) | 2.05 (2) | 3.008 (4) | 170 (5) |
O4—H4···O2i | 0.99 (5) | 1.63 (5) | 2.611 (3) | 169 (4) |
O3—H3···O1 | 0.92 (6) | 1.65 (6) | 2.562 (3) | 173 (5) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1/2, −y+1/2, −z+1; (iii) x+1/2, y, −z+3/2. |
Acknowledgements
This work was supported by a Grant for Fundamental Research from the Center of Science and Technology, Uzbekistan (No. FPFI T.2–16).
References
Ashurov, J. M., Ibragimov, A. B. & Ibragimov, B. T. (2015). Polyhedron, 102, 441–446. Web of Science CSD CrossRef CAS Google Scholar
Bertrand, J. A., Fujita, E. & VanDerveer, D. G. (1979). Inorg. Chem. 18, 230–233. CSD CrossRef CAS Web of Science Google Scholar
Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W. & Jezierska, J. (2009). Inorg. Chim. Acta, 362, 2429–2434. Web of Science CSD CrossRef CAS Google Scholar
Fang, Z. & Nie, Q. (2011). J. Coord. Chem. 64, 2573–2582. Web of Science CSD CrossRef CAS Google Scholar
Flemig, H., Pantenburg, I. & Meyer, G. (2008). J. Alloys Compd. 451, 429–432. Web of Science CSD CrossRef CAS Google Scholar
Gao, J., Wang, J. & Nie, J. (2011). Acta Cryst. C67, m181–m184. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Kozioł, A. E., Klimek, B., Stępniak, K., Rzączyńska, Z., Brzvska, W., Bodak, O. I., Akselrud, L. G., Pavlyuk, V. V. & Tafeenko, V. A. (1992). Z. Kristallogr. 200, 25–33. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Murugavel, R. & Banerjee, S. (2003). Inorg. Chem. Commun. 6, 810–814. Web of Science CSD CrossRef CAS Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Ozhafarov, N. Kh., Amiraslanov, I. R., Nadzhafov, G. N., Movsumov, E. M. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 121–122. Google Scholar
Palanisami, N., Rajakannu, P. & Murugavel, R. (2013). Inorg. Chim. Acta, 405, 522–531. Web of Science CSD CrossRef CAS Google Scholar
Petrović, Z. D., Djuran, M. I., Heinemann, F. W., Rajković, S. & Trifunović, S. R. (2006). Bioorg. Chem. 34, 225–234. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shen, F. M. & Lush, S. F. (2010). Acta Cryst. E66, m1427. Web of Science CSD CrossRef IUCr Journals Google Scholar
Smith, G., Cloutt, B. A., Lynch, D. E., Byriel, K. A. & Kennard, C. H. L. (1998). Inorg. Chem. 37, 3236–3242. Web of Science CSD CrossRef CAS Google Scholar
Sundberg, M. R., Koskimies, J. K., Matikainen, J. & Tylli, H. (1998). Inorg. Chim. Acta, 268, 21–30. Web of Science CSD CrossRef CAS Google Scholar
Tan, A.-Z., Wei, Y.-H., Chen, Z.-L., Liang, F.-P. & Hu, R.-X. (2006). Wuji Huaxue Xuebao, 22, 394–398. CAS Google Scholar
Tsaryuk, V., Vologzhanina, A., Zhuravlev, K., Kudryashova, V., Szostak, R. & Zolin, V. (2014). J. Photochem. Photobiol. A, 285, 52–61. Web of Science CSD CrossRef CAS Google Scholar
Wang, R., Hong, M., Luo, J., Jiang, F., Han, L., Lin, Z. & Cao, R. (2004). Inorg. Chim. Acta, 357, 103–114. Web of Science CSD CrossRef CAS Google Scholar
Wang, R., Yuan, D., Jiang, F., Han, L., Gao, S. & Hong, M. (2006). Eur. J. Inorg. Chem. pp. 1649–1656. Web of Science CSD CrossRef Google Scholar
Wei, Y.-H., Tan, A.-Z., Chen, Z.-L., Liang, F., -, P. & Hu, R.-X. (2006). Jiegou Huaxue, 25, 343–348. CAS Google Scholar
Yilmaz, V. T., Karadag, A., Thöne, C. & Herbst-Irmer, R. (2000). Acta Cryst. C56, 948–949. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Zhang, W.-Z. (2006). Acta Cryst. E62, m857–m859. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.