research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Orientational disorder in the one-dimensional coordination polymer catena-poly[[bis­­(acetyl­acetonato-κ2O,O′)cobalt(II)]-μ-1,4-di­aza­bi­cyclo­[2.2.2]octane-κ2N1:N4]

CROSSMARK_Color_square_no_text.svg

aFaculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Polizu 1, RO-011061 Bucharest, Romania, bInstitute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany, and cInstitute of Chemistry, Humboldt University of Berlin, Brook-Taylor-Strasse 2, D-12489 Berlin, Germany
*Correspondence e-mail: beatrice.braun@hu-berlin.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 1 March 2016; accepted 13 March 2016; online 31 March 2016)

The title compound, [Co(C5H7O2)2(C6H12N2)]n, was obtained as a one-dimensional coordination polymer from bis­(acetyl­acetonato)di­aqua­cobalt(II), [Co(acac)2(OH2)2], and 1,4-di­aza­bicyclo­[2.2.2]octane (DABCO), a di­amine with good bridging ability and rod-like spacer function. In the chain complex that extends along the c axis, the CoII atom is six-coordinated, the O-donor atoms of the chelating acac ligands occupying the equatorial positions and the bridging DABCO ligands being in trans-axial positions. In the crystal structure, the DABCO ligand is conformationally disordered in a 50:50 manner as a result of its location across a crystallographic mirror plane. The metal–metal distance is very close to that in a related compound exhibiting weak anti­ferromagnetic exchange between the CoII ions, and the title compound can thus be useful for obtaining more information about the contribution of different bridges to the magnetic coupling between paramagnetic ions.

1. Chemical context

Self-assembly of coordination polymers from simple building blocks is of considerable inter­est due to their diverse architectures and potential applications in catalysis and advanced materials, such as magnetic, optic and electronic materials.

[Scheme 1]

In this paper, two simple building blocks, namely 1,4-di­aza­bicyclo­[2.2.2]octane (DABCO), a di­amine with good bridging ability and rod-like spacer function, and the unsatur­ated square-planar metal complex bis­(acetyl­aceto­nato-κ2O,O′)cobalt(II), [Co(acac)2], have been chosen to design a one-dimensional coordination polymer in which the paramagnetic CoII ions are separated by a distance of 7.2328 (7) Å. This metal–metal distance is very close to the distance of 7.267 (3) Å reported by Ma et al. (2001[Ma, B.-Q., Gao, S., Yi, T. & Xu, G.-X. (2001). Polyhedron, 20, 1255-1261.]) for the structurally related [Co(acac)2(pyrazine)]n compound which exhibits weak anti­ferromagnetic exchange between the CoII ions.

Within this context, the title compound catena-poly[[bis(acetyl­acetonato-κ2O,O′)cobalt(II)]-μ-1,4-di­aza­bicyclo­[2.2.2]octane-κ2N1:N4], [Co(acac)2(DABCO)]n, (I)[link], can serve for a comparative investigation of the magnetic behaviour of analogous compounds and, thus, allow more information about the contribution of different bridges to the magnetic coupling between paramagnetic ions to be obtained.

2. Structural commentary

In the crystalline state, the title compound, (I)[link], represents a one-dimensional coordination polymer self-assembled from bis­(acetyl­acetonato)cobalt(II) units as metal–complex connectors and 1,4-di­aza­bicyclo­[2.2.2]octane (DABCO) as linkers.

The acetyl­acetonate (acac) ligand, which is the deproton­ated form of acetyl­acetone (pentane-2,4-dione, acacH), is a well-known mononegative O,O′-chelating donor agent and its metal coordination chemistry is well documented [for reviews on the coordination chemistry of acac ligands, see: Aromí et al. (2008[Aromí, G., Gamez, P. & Reedijk, J. (2008). Coord. Chem. Rev. 252, 964-989.]); Bray et al. (2007[Bray, D. J., Clegg, J. K., Lindoy, L. F. & Schilter, D. (2007). Adv. Inorg. Chem. 59, 1-37.]); Vigato et al. (2009[Vigato, P. A., Peruzzo, V. & Tamburini, S. (2009). Coord. Chem. Rev. 253, 1099-1201.])]. For DABCO, the bridging coordination behaviour is most exploited for the generation of coordination polymers and metal–organic frameworks (MOFs), with Zn2+ being the most common metal ion used in these structures [for representative examples, see: Furukawa et al. (2009[Furukawa, S., Hirai, K., Nakagawa, K., Takashima, Y., Matsuda, R., Tsuruoka, T., Kondo, M., Haruki, R., Tanaka, D., Sakamoto, H., Shimomura, S., Sakata, O. & Kitagawa, S. (2009). Angew. Chem. Int. Ed. 48, 1766-1770.]); Uemura et al. (2007[Uemura, K., Yamasaki, Y., Komagawa, Y., Tanaka, K. & Kita, H. (2007). Angew. Chem. Int. Ed. 46, 6662-6665.])].

The complex crystallizes in the ortho­rhom­bic Pnnm space group with the metal atom on a special position with site symmetry ..2/m. The CoII atom shows an octa­hedral environment defined by four equatorial acac O atoms on a mirror plane, with bond lengths ranging from 2.0299 (10) to 2.0411 (10) Å, and with two N atoms of bridging DABCO groups on a twofold rotation axis in the axial positions at distances of 2.3071 (12) Å (Fig. 1[link]).

[Figure 1]
Figure 1
A section of the coordination polymer of (I)[link]. Only one of the 50:50 DABCO disorder forms and one orientation of the disordered acac methyl groups are shown. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles. [Symmetry codes: (a) −x, −y, −z; (c) x, y, −z + 1; (d) −x, −y, −z + 1.]

3. Supra­molecular features

The centrosymmetric DABCO ligand is bonded to two [Co(acac)2] units, which gives rise to the formation of chains extending along the c axis (Fig. 2[link]). The individual chains run parallel in the crystal and do not inter­act with each other. This polymer is essentially a one-dimensional coordination polymer, the only structural motif that is present being based on the CoII coordination requirements.

[Figure 2]
Figure 2
The mol­ecular packing of the coordination polymer chains.

4. Database survey

Although some polymeric complexes of the form [Co(acac)2(μ-di­amine)]n [di­amine = NH2R–NH2, with R = CyH2y+1 (y = 6, 11, 12; Fine, 1973[Fine, D. A. (1973). J. Inorg. Nucl. Chem. 35, 4023-4028.]), piperazine (Pellacani et al., 1973[Pellacani, G. C., Battistuzzi, R. & Marcotrigiano, G. (1973). J. Inorg. Nucl. Chem. 35, 2243-2247.]), 2,5-di­methyl­pyrazine (Blake & Hatfield, 1978[Blake, A. B. & Hatfield, W. E. (1978). J. Chem. Soc. Dalton Trans. pp. 868-871.]), and 1,2-bis­(4-pyrid­yl)ethane and trans-1,2-bis­(4-pyrid­yl)ethyl­ene (Atienza et al., 2008[Atienza, J., Gutiérrez, A., Felisa Perpiñán, M. & Sánchez, A. E. (2008). Eur. J. Inorg. Chem. pp. 5524-5531.])] have been synthesized over the years, their structures were elucidated only on the basis of spectroscopic and magnetic analyses. [Co(acac)2(μ-di­amine)]n complexes similar in structure to the title compound, with square-planar [Co(acac)2] units connected by bridging di­amine ligands into infinite linear chains, were retrieved from the Cambridge Structural Database (CSD, Version 5.36 of November 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]), viz. [Co(acac)2{μ-1,3-bis­(pyridin-4-yl)propane}]n (Lennartson & Håkansson, 2009[Lennartson, A. & Håkansson, M. (2009). Acta Cryst. C65, m325-m327.]), [Co(acac)2(pyrazine)]n and [Co(acac)2(4,4′-bi­pyridine)]n (Ma et al., 2001[Ma, B.-Q., Gao, S., Yi, T. & Xu, G.-X. (2001). Polyhedron, 20, 1255-1261.]).

5. Synthesis and crystallization

[Co(acac)2(H2O)2] was prepared by precipitation of CoCl2·6H2O with aqueous ammonia, followed by solubilization and complexation with acetyl­acetone. Elemental analysis calculated for [Co(C5H7O2)2(H2O)2] (%): C 40.96, H 6.14; found: C 40.94, H 6.19.

[Co(acac)2(H2O)2] (293 mg, 1 mmol) and 1,4-di­aza­bicyclo­[2.2.2]octane (DABCO) (112 mg, 1 mmol) were stirred in CH3OH (15 ml) at 333 K for 1 h. The pink precipitate which formed was collected by filtration and redissolved in dimethyl sulfoxide (DMSO, 5 ml). Elemental analysis calculated for [Co(acac)2(DABCO)] (%): C 52.04, H 7.05, N 7.59; found: C 51.63, H 7.39, N 7.41. Layering the solution of the complex in DMSO with CH3OH at 293 K gave pale-pink crystals suitable for X-ray single-crystal analysis.

Elemental analyses were carried out on a Heraeus CHNO Rapid apparatus (Institute of Inorganic Chemistry, RWTH Aachen University).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Space filling more symmetric than atom positions leads to pronounced orientational disorder (Herberich et al., 1993[Herberich, G. E., Wesemann, L. & Englert, U. (1993). Struct. Chem. 4, 199-202.]) for the DABCO ligand over two positions due to mirror symmetry. As a result, the site occupancies of the C atoms are constrained to 0.5. In principle, the same should be true for the associated H atoms, their alternative positions for the different C positions overlap very closely, thus forming the hexa­gon of local residual electron-density maxima about the C-atom scaffold shown in Fig. 3[link]. These maxima can be freely refined as H atoms with reasonable C—H geometry and displacement parameters.

Table 1
Experimental details

Crystal data
Chemical formula [Co(C5H7O2)2(C6H12N2)]
Mr 369.32
Crystal system, space group Orthorhombic, Pnnm
Temperature (K) 100
a, b, c (Å) 7.7468 (3), 15.1573 (4), 7.2328 (7)
V3) 849.28 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.03
Crystal size (mm) 0.48 × 0.10 × 0.04
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Multi-scan (MULABS in PLATON; Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.])
Tmin, Tmax 0.637, 0.960
No. of measured, independent and observed [I > 2σ(I)] reflections 11457, 1045, 944
Rint 0.045
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.055, 1.09
No. of reflections 1045
No. of parameters 81
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.39
Computer programs: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]), X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 3]
Figure 3
Difference-density Fourier synthesis in the ab plane through three DABCO C atoms before assignment of the DABCO H-atom positions; contour lines are drawn at 0.2 e A−3 inter­vals.

H atoms attached to C atoms were calculated, introduced in their idealized positions and treated as riding, with C—H = 0.95 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) otherwise. For consistency, we opted to calculate the positions of the DABCO H atoms and fix them in their idealized positions. Due to the fact that the acac ligand lies on a mirror plane, the acac methyl groups are therefore equally disordered over two orientations.

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

catena-Poly[[bis(acetylacetonato-κ2O,O')cobalt(II)]-µ-1,4-diazabicyclo[2.2.2]octane-κ2N1:N4] top
Crystal data top
[Co(C5H7O2)2(C6H12N2)]Dx = 1.444 Mg m3
Mr = 369.32Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnnmCell parameters from 16455 reflections
a = 7.7468 (3) Åθ = 3.8–29.5°
b = 15.1573 (4) ŵ = 1.03 mm1
c = 7.2328 (7) ÅT = 100 K
V = 849.28 (9) Å3Elongated plate, pale pink
Z = 20.48 × 0.10 × 0.04 mm
F(000) = 390
Data collection top
Stoe IPDS 2T
diffractometer
1045 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus944 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.045
Detector resolution: 6.67 pixels mm-1θmax = 27.5°, θmin = 3.8°
rotation method scansh = 1010
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2003)
k = 1919
Tmin = 0.637, Tmax = 0.960l = 89
11457 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.0389P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1045 reflectionsΔρmax = 0.25 e Å3
81 parametersΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.00000.00000.00000.00790 (10)
O10.24789 (12)0.04561 (6)0.00000.0122 (2)
O20.08057 (13)0.12744 (7)0.00000.0173 (2)
N10.00000.00000.31898 (17)0.0106 (3)
C10.29942 (18)0.12455 (10)0.00000.0134 (3)
C20.19083 (19)0.19922 (9)0.00000.0148 (3)
H20.24420.25570.00000.018*
C30.01048 (18)0.19635 (10)0.00000.0127 (3)
C40.0887 (2)0.28217 (9)0.00000.0196 (3)
H4A0.17330.28170.10080.029*0.5
H4B0.14880.28910.11840.029*0.5
H4C0.00850.33140.01760.029*0.5
C50.49196 (18)0.13858 (12)0.00000.0228 (3)
H5A0.51900.19440.06190.034*0.5
H5B0.54810.08990.06590.034*0.5
H5C0.53400.14050.12770.034*0.5
C60.1745 (3)0.02067 (16)0.3932 (3)0.0167 (4)0.5
H6A0.25820.02370.34770.020*0.5
H6B0.21150.07930.34770.020*0.5
C70.1237 (3)0.06034 (13)0.3934 (3)0.0155 (4)0.5
H7A0.09750.12060.34840.019*0.5
H7B0.24020.04420.34840.019*0.5
C80.0438 (3)0.09127 (13)0.3934 (3)0.0142 (4)0.5
H8A0.15890.10930.34770.017*0.5
H8B0.04200.13450.34770.017*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01008 (15)0.00601 (15)0.00760 (15)0.00078 (8)0.0000.000
O10.0133 (5)0.0109 (5)0.0122 (5)0.0013 (4)0.0000.000
O20.0147 (5)0.0089 (5)0.0282 (6)0.0001 (4)0.0000.000
N10.0122 (6)0.0114 (6)0.0081 (5)0.0000 (4)0.0000.000
C10.0158 (7)0.0143 (7)0.0102 (6)0.0041 (5)0.0000.000
C20.0195 (7)0.0093 (6)0.0156 (6)0.0036 (5)0.0000.000
C30.0202 (7)0.0089 (7)0.0089 (6)0.0004 (5)0.0000.000
C40.0238 (8)0.0106 (6)0.0243 (8)0.0022 (5)0.0000.000
C50.0151 (7)0.0177 (8)0.0355 (9)0.0031 (5)0.0000.000
C60.0143 (9)0.0269 (10)0.0090 (9)0.0046 (8)0.0003 (8)0.0007 (8)
C70.0219 (10)0.0169 (9)0.0079 (9)0.0109 (8)0.0005 (8)0.0015 (7)
C80.0252 (10)0.0099 (9)0.0075 (9)0.0030 (7)0.0007 (8)0.0006 (7)
Geometric parameters (Å, º) top
Co1—O2i2.0299 (10)C2—H20.9500
Co1—O22.0299 (10)C3—C41.511 (2)
Co1—O12.0410 (10)C4—H4A0.9800
Co1—O1i2.0411 (10)C4—H4B0.9800
Co1—N12.3071 (12)C4—H4C0.9800
Co1—N1i2.3071 (12)C5—H5A0.9800
O1—C11.2612 (18)C5—H5B0.9800
O2—C31.2603 (18)C5—H5C0.9800
N1—C7ii1.4299 (19)C6—C6iii1.545 (4)
N1—C71.4299 (19)C6—H6A0.9900
N1—C61.488 (2)C6—H6B0.9900
N1—C6ii1.488 (2)C7—C7iii1.542 (4)
N1—C81.523 (2)C7—H7A0.9900
N1—C8ii1.523 (2)C7—H7B0.9900
C1—C21.410 (2)C8—C8iii1.541 (4)
C1—C51.5067 (19)C8—H8A0.9900
C2—C31.398 (2)C8—H8B0.9900
O2i—Co1—O2180.0O1—C1—C5116.56 (13)
O2i—Co1—O191.89 (4)C2—C1—C5118.50 (14)
O2—Co1—O188.11 (4)C3—C2—C1124.83 (14)
O2i—Co1—O1i88.11 (4)C3—C2—H2117.6
O2—Co1—O1i91.89 (4)C1—C2—H2117.6
O1—Co1—O1i180.0O2—C3—C2125.82 (14)
O2i—Co1—N190.0O2—C3—C4115.39 (13)
O2—Co1—N190.0C2—C3—C4118.79 (14)
O1—Co1—N190.0C3—C4—H4A109.5
O1i—Co1—N190.0C3—C4—H4B109.5
O2i—Co1—N1i90.0H4A—C4—H4B109.5
O2—Co1—N1i90.0C3—C4—H4C109.5
O1—Co1—N1i90.0H4A—C4—H4C109.5
O1i—Co1—N1i90.0H4B—C4—H4C109.5
N1—Co1—N1i180.0C1—C5—H5A109.5
C1—O1—Co1128.25 (9)C1—C5—H5B109.5
C3—O2—Co1128.06 (9)H5A—C5—H5B109.5
C7ii—N1—C7135.78 (17)C1—C5—H5C109.5
C7ii—N1—C652.41 (12)H5A—C5—H5C109.5
C7—N1—C6109.78 (13)H5B—C5—H5C109.5
C7ii—N1—C6ii109.78 (13)N1—C6—C6iii111.15 (9)
C7—N1—C6ii52.41 (12)N1—C6—H6A109.4
C6—N1—C6ii137.70 (17)C6iii—C6—H6A109.4
C7ii—N1—C855.60 (12)N1—C6—H6B109.4
C7—N1—C8107.38 (12)C6iii—C6—H6B109.4
C6—N1—C8105.43 (13)H6A—C6—H6B108.0
C6ii—N1—C858.58 (12)N1—C7—C7iii112.11 (9)
C7ii—N1—C8ii107.38 (12)N1—C7—H7A109.2
C7—N1—C8ii55.60 (12)C7iii—C7—H7A109.2
C6—N1—C8ii58.58 (12)N1—C7—H7B109.2
C6ii—N1—C8ii105.43 (13)C7iii—C7—H7B109.2
C8—N1—C8ii138.58 (17)H7A—C7—H7B107.9
C7ii—N1—Co1112.11 (9)N1—C8—C8iii110.71 (8)
C7—N1—Co1112.11 (9)N1—C8—H8A109.5
C6—N1—Co1111.15 (9)C8iii—C8—H8A109.5
C6ii—N1—Co1111.15 (9)N1—C8—H8B109.5
C8—N1—Co1110.71 (8)C8iii—C8—H8B109.5
C8ii—N1—Co1110.71 (8)H8A—C8—H8B108.1
O1—C1—C2124.93 (13)
Co1—O1—C1—C20.0Co1—N1—C6—C6iii179.998 (1)
Co1—O1—C1—C5180.0C7ii—N1—C7—C7iii0.002 (1)
O1—C1—C2—C30.0C6—N1—C7—C7iii55.94 (12)
C5—C1—C2—C3180.0C6ii—N1—C7—C7iii79.70 (11)
Co1—O2—C3—C20.0C8—N1—C7—C7iii58.19 (11)
Co1—O2—C3—C4180.0C8ii—N1—C7—C7iii79.37 (10)
C1—C2—C3—O20.0Co1—N1—C7—C7iii179.998 (1)
C1—C2—C3—C4180.0C7ii—N1—C8—C8iii76.77 (11)
C7ii—N1—C6—C6iii77.79 (11)C7—N1—C8—C8iii57.32 (11)
C7—N1—C6—C6iii55.39 (11)C6—N1—C8—C8iii59.70 (11)
C6ii—N1—C6—C6iii0.002 (1)C6ii—N1—C8—C8iii77.23 (10)
C8—N1—C6—C6iii59.99 (10)C8ii—N1—C8—C8iii0.000 (1)
C8ii—N1—C6—C6iii77.99 (10)Co1—N1—C8—C8iii180.000 (1)
Symmetry codes: (i) x, y, z; (ii) x, y, z; (iii) x, y, z+1.
 

References

First citationAromí, G., Gamez, P. & Reedijk, J. (2008). Coord. Chem. Rev. 252, 964–989.  Google Scholar
First citationAtienza, J., Gutiérrez, A., Felisa Perpiñán, M. & Sánchez, A. E. (2008). Eur. J. Inorg. Chem. pp. 5524–5531.  CrossRef Google Scholar
First citationBlake, A. B. & Hatfield, W. E. (1978). J. Chem. Soc. Dalton Trans. pp. 868–871.  CrossRef Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBray, D. J., Clegg, J. K., Lindoy, L. F. & Schilter, D. (2007). Adv. Inorg. Chem. 59, 1–37.  CrossRef CAS Google Scholar
First citationFine, D. A. (1973). J. Inorg. Nucl. Chem. 35, 4023–4028.  CrossRef CAS Google Scholar
First citationFurukawa, S., Hirai, K., Nakagawa, K., Takashima, Y., Matsuda, R., Tsuruoka, T., Kondo, M., Haruki, R., Tanaka, D., Sakamoto, H., Shimomura, S., Sakata, O. & Kitagawa, S. (2009). Angew. Chem. Int. Ed. 48, 1766–1770.  CrossRef CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHerberich, G. E., Wesemann, L. & Englert, U. (1993). Struct. Chem. 4, 199–202.  CrossRef CAS Google Scholar
First citationLennartson, A. & Håkansson, M. (2009). Acta Cryst. C65, m325–m327.  CrossRef IUCr Journals Google Scholar
First citationMa, B.-Q., Gao, S., Yi, T. & Xu, G.-X. (2001). Polyhedron, 20, 1255–1261.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPellacani, G. C., Battistuzzi, R. & Marcotrigiano, G. (1973). J. Inorg. Nucl. Chem. 35, 2243–2247.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationUemura, K., Yamasaki, Y., Komagawa, Y., Tanaka, K. & Kita, H. (2007). Angew. Chem. Int. Ed. 46, 6662–6665.  CrossRef CAS Google Scholar
First citationVigato, P. A., Peruzzo, V. & Tamburini, S. (2009). Coord. Chem. Rev. 253, 1099–1201.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds