research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of spinel-type Li0.64Fe2.15Ge0.21O4

CROSSMARK_Color_square_no_text.svg

aUniversity of Salzburg, Department Chemistry and Physics of Materials, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
*Correspondence e-mail: guenther.redhammer@sbg.ac.at

Edited by M. Weil, Vienna University of Technology, Austria (Received 1 March 2016; accepted 11 March 2016; online 15 March 2016)

Spinel-type Li0.64Fe2.15Ge0.21O4, lithium diiron(III) germanium tetra­oxide, has been formed as a by-product during flux growth of an Li–Fe–Ge pyroxene-type material. In the title compound, lithium is ordered on the octa­hedral B sites, while Ge4+ orders onto the tetra­hedral A sites, and iron distributes over both the octa­hedral and tetra­hedral sites, and is in the trivalent state as determined from Mössbauer spectroscopy. The oxygen parameter u is 0.2543; thus, the spinel is close to having an ideal cubic closed packing of the O atoms. The title spinel is compared with other Li- and Ge-containing spinels.

1. Chemical context

The minerals of the spinel group are widely occurring compounds in the geosphere and are important not only in geoscience but also in many other disciplines. In recent years, in particular, Li-containing spinels like LiMn2O4 or Li0.5Fe2.5O4 have attracted much inter­est in battery technology as possible candidates for cathode materials in lithium ion secondary batteries (Liu et al., 2014[Liu, D., Zhu, W., Trottier, J., Gagnon, C., Barray, F., Guerfi, A., Mauger, A., Groult, H., Julien, C. M., Goodenough, J. B. & Zaghib, K. (2014). RSC Adv. 4, 154-167.]; Patil et al., 2016[Patil, R. P., Patil, S. B., Jadhav, B. V., Delekar, S. D. & Hankare, P. P. (2016). J. Magn. Magn. Mater. 401, 870-874.]; Thackeray et al., 1983[Thackeray, M. M., David, W. I. F., Bruce, P. G. & Goodenough, J. B. (1983). Mater. Res. Bull. 18, 461-472.]). The ideal spinel structure consists of a closed packing of anions X, with one-eighth of the tetra­hedral inter­stices and one-half of the octa­hedral inter­stices occupied by the cations. The vast majority of spinels crystallize in the space group Fd[\overline{3}]m. Here the cations in tetra­hedral coordination occupy special position 8a (point symmetry [\overline{4}]3m, at [1 \over 8][1 \over 8][1 \over 8]), while the octa­hedrally coordinated cations reside on special position 16d (point symmetry [\overline{3}]m at [1 \over 2][1 \over 2][1 \over 2]). The anions are at equipoint position 32e, which requires one positional parameter, often denoted as the u parameter. For u = 0.25, an ideal cubic closed packing of anions is realized and the octa­hedral bond length is 1.155 times larger than the tetra­hedral one. Following Hill et al. (1979[Hill, R. J., Craig, J. R. & Gibbs, G. V. (1979). Phys. Chem. Miner. 4, 317-339.]), variations in u reflect the adjustment of the structure to accommodate cations of different size in octa­hedral and tetra­hedral positions. Increasing the value of u above 0.25 moves the anions away along [111] from the nearest tetra­hedral cation, thereby increasing the size of the tetra­hedron at the extent of the size of the octa­hedron. The majority of the spinels can be described with the general formula AB2O4, with the A and B cations having the formal charges A = 2 and B = 3 (2,3 spinels) or A = 4 and B = 2 (4,2 spinels). The perfect normal spinel is one in which the single A cation occupies the tetra­hedral site and the two B cations reside at the two equivalent octa­hedral positions. Introducing parentheses, i.e. (…) and brackets, i.e. […], for tetra­hedral and octa­hedral coordination, respectively, one may write the normal spinels in the form (A)[B2]O4. In contrast, the complete inverse spinel has a cationic distribution of (B)[AB]O4 (O'Neill & Navrotsky, 1983[O'Neill, H. S. C. & Navrotsky, A. (1983). Am. Mineral. 68, 181-194.]). More detailed reviews on the spinel structure and crystal chemistry can be found, for example, in Biagioni & Pasero (2014[Biagioni, C. & Pasero, M. (2014). Am. Mineral. 99, 1254-1264.]), Harrison & Putnis (1998[Harrison, R. J. & Putnis, A. (1998). Surv. Geophys. 19, 461-520.]), Hill et al. (1979[Hill, R. J., Craig, J. R. & Gibbs, G. V. (1979). Phys. Chem. Miner. 4, 317-339.]) and O'Neill & Navrotsky (1983[O'Neill, H. S. C. & Navrotsky, A. (1983). Am. Mineral. 68, 181-194.]).

Germanium-containing spinels are considered to belong to the normal spinels, with a full ordering of Ge4+ onto the tetra­hedral A site, while metal cations M order onto the octa­hedral B sites. This was demonstrated by, among others, Von Dreele et al. (1977[Von Dreele, R. B., Navrotsky, A. & Bowman, A. L. (1977). Acta Cryst. B33, 2287-2288.]) for GeMg2O4 and Welch et al. (2001[Welch, M. D., Cooper, M. A. & Hawthorne, F. C. (2001). Mineral. Mag. 65, 441-444.]) for the mineral brunogeierite (GeFe2O4). For LiMn2O4 and LiNi0.5Mn1.5O4, which represent excellent cathode materials, it was found that Li+ orders onto the tetra­hedral site (Berg et al., 1998[Berg, H., Thomas, J. O., Liu, W. & Farrington, G. C. (1998). Solid State Ionics, 112, 165-168.]; Liu et al., 2014[Liu, D., Zhu, W., Trottier, J., Gagnon, C., Barray, F., Guerfi, A., Mauger, A., Groult, H., Julien, C. M., Goodenough, J. B. & Zaghib, K. (2014). RSC Adv. 4, 154-167.]). Also for LiCrGeO4, Touboul & Bourée (1993[Touboul, M. & Bourée, F. (1993). J. Mater. Chem. 3, 623-626.]) reported an almost exclusive ordering of Li+ for the tetra­hedral site, while Cr3+ and Ge4+ occupy the octa­hedral sites. Different to this is the spinel Li0.5Fe2.5O4. This compound is an inverse spinel in which Fe3+ is ordered onto the tetra­hedral site, while Li+ and the remaining Fe3+ are distributed over the octa­hedral site (Hankare et al., 2009[Hankare, P. P., Patil, R. P., Sankpal, U. B., Jadhav, S. D., Lokhande, P. D., Jadhav, K. M. & Sasikala, R. (2009). J. Solid State Chem. 182, 3217-3221.]; Patil et al., 2016[Patil, R. P., Patil, S. B., Jadhav, B. V., Delekar, S. D. & Hankare, P. P. (2016). J. Magn. Magn. Mater. 401, 870-874.]; Tomas et al., 1983[Tomas, A., Laruelle, P., Dormann, J. L. & Nogues, M. (1983). Acta Cryst. C39, 1615-1617.]). This cationic distribution is thus similar to that in the inverse spinel magnetite, FeFe2O4 (Fleet, 1981[Fleet, M. E. (1981). Acta Cryst. B37, 917-920.]).

During the synthesis of Li–Fe–Ge pyroxenes (Redhammer et al., 2009[Redhammer, G. J., Roth, G., Treutmann, W., Hoelzel, M., Paulus, W., André, G., Pietzonka, C. & Amthauer, G. (2009). J. Solid State Chem. 182, 2374-2384.], 2010[Redhammer, G. J., Cámara, F., Alvaro, M., Nestola, F., Tippelt, G., Prinz, S., Simons, J., Roth, G. & Amthauer, G. (2010). Phys. Chem. Miner. 37, 685-704.]), black octa­hedral-shaped single crystals were frequently obtained, which turned out to be a spinel-type compound with significant Li+ and small Ge4+ concentrations. We present here the structure refinement and 57Fe Mössbauer spectroscopic characterization of these crystals.

2. Structural commentary

The structure of the title compound is shown in Fig. 1[link]. The site-occupation refinement indicates that Li+ orders onto the octa­hedral B site, while Ge4+ is found on the tetra­hedral A site, indicating a partial inverse spinel arrangement; iron is distributed over both sites. The derived crystal chemical formula of the title compound is thus (Fe3+0.79Ge4+0.21)[Li+0.64Fe3+1.36]O4, with the valence state of iron determined from 57Fe Mössbauer spectroscopy (see below). This formula is balanced in charge and agrees very well with the chemical composition determined from electron microprobe analysis. Generally, the title compound is similar to the Li0.5Fe2.5O4 spinel-type materials. The shift of Li+ to the octa­hedral site, for example, in comparison with LiCrGeO4 or LiMn2O4, can be explained by the strong preference of Fe3+ for the tetra­hedral site. Based on the concept of crystal field stabilization energy, Miller (1959[Miller, A. (1959). J. Appl. Phys. 30, S24-S25.]) theoretically calculated octa­hedral site preference energies which gave a stronger preference of Fe3+ for the tetra­hedral site as compared, for example, to Li+ or Mn3+.

[Figure 1]
Figure 1
Polyhedral drawing of the spinel-type structure of the title compound. Anisotropic displacement parameters are drawn at the 95% probability level.

The lattice parameter of the title compound [8.2903 (3) Å] is smaller in comparison with, for example, magnetite Fe3O4 [a = 8.3941 (7) Å; Fleet, 1981[Fleet, M. E. (1981). Acta Cryst. B37, 917-920.]], but larger than that observed in the Li spinels LiCrGeO4 [a = 8.1976 (1) Å; Touboul & Bourée, 1993[Touboul, M. & Bourée, F. (1993). J. Mater. Chem. 3, 623-626.]] or LiMn2O4 and LiNi0.5Mn1.5O4 (a = 8.243 and 8.1685 Å, respectively; Liu et al., 2014[Liu, D., Zhu, W., Trottier, J., Gagnon, C., Barray, F., Guerfi, A., Mauger, A., Groult, H., Julien, C. M., Goodenough, J. B. & Zaghib, K. (2014). RSC Adv. 4, 154-167.]). This is due mainly to the high amount of Fe3+ at the A sites, which has a larger ionic radius than Ge4+, Ni3+ or Mn3+/4+ (Shannon & Prewitt, 1969[Shannon, R. D. & Prewitt, C. T. (1969). Acta Cryst. B25, 925-946.]). The oxygen parameter u = 0.2543 is close to the ideal value for cubic closed packing, reflecting some distinct differences to the spinels which have the A site fully occupied by Li+. In the title compound, the bond length of the tetra­hedrally coordinated site T is 1.857 (2) Å, which is distinctly smaller than in, for example, LiMn2O4, with the tetra­hedral site being fully occupied by Li+. The T—O bond length is also smaller than in magnetite (Fleet, 1981[Fleet, M. E. (1981). Acta Cryst. B37, 917-920.]) or Li0.5Fe2.5O5 (Tomas et al., 1983[Tomas, A., Laruelle, P., Dormann, J. L. & Nogues, M. (1983). Acta Cryst. C39, 1615-1617.]), with values of 1.8889 (9) and 1.880 (5) Å, respectively. In GeFe2O4, the T—O bond length is only 1.771 (2) Å and this smaller value of T—O compared to, for example, magnetite is due to the substitution of Ge4+ onto the A site and can be seen as additional proof for the correctness of the derived cationic distribution.

The bond length involving the octa­hedrally coordinated site M is 2.0373 (11) Å, which is 1.07 times larger than the bond length involving the tetra­hedrally coordinated site. The M—O bond length is somewhat larger than 2.025 (3) Å in Li0.5Fe2.5O4 (Tomas et al., 1983[Tomas, A., Laruelle, P., Dormann, J. L. & Nogues, M. (1983). Acta Cryst. C39, 1615-1617.]). This agrees well with the observed higher Li content in the title compound, with the ionic radius for Li+ in an octa­hedral coordination (0.740 Å) being larger than that of Fe3+ (0.645 Å; Shannon & Prewitt, 1969[Shannon, R. D. & Prewitt, C. T. (1969). Acta Cryst. B25, 925-946.]), thus increasing the M—O distance. Magnetite has a mixed occupation of the octa­hedral sites, with both Fe2+ and Fe3+, thus having a larger M—O bond length of 2.0582 (9) Å, while in GeFe2O4, all the Fe atoms are in a divalent state and an M—O bond length of 2.132 (2) Å is observed.

In order to qu­antify the valence state of iron in the title compound, a 57Fe Mössbauer spectrum was recorded at 340 K. It shows a broad, slightly asymmetric, doublet, which can be evaluated with two Lorentzian-shaped doublets (Fig. 2[link]). The first doublet shows an isomer shift (IS) of −0.053 (17) mm s−1 and a quadrupole splitting (QS) of 0.57 (3) mm s−1, and can be assigned to the ferric iron on the tetra­hedral site. The second doublet has a larger IS of 0.115 (14) mm s−1 and an almost identical QS of 0.58 (2) mm s−1, and is assigned to ferric iron at the octa­hedral site. No indications for ferrous iron are present. The QS values suggest low polyhedral distortion, which is almost identical in both sites. The relative area ratio of tetra­hedral to octa­hedral sites is 38.6 (8) to 61.4 (9)%. Assuming a total amount of 2.15 formula units Fe3+, the results of Mössbauer spectroscopy give a cation distribution of (Fe3+0.83)[Fe3+1.32], which is in good agreement with that obtained from the site-occupation refinement of the X-ray data. At room temperature, the title compound is magnetically ordered, as revealed by its 57Fe Mössbauer spectrum.

[Figure 2]
Figure 2
57Fe Mössbauer spectrum of the title compound, recorded at 740 K.

3. Synthesis and crystallization

The spinel formed as a by-product during the synthesis of pyroxene-type LiFeGe2O6 in flux-growth experiments (Redhammer et al., 2010[Redhammer, G. J., Cámara, F., Alvaro, M., Nestola, F., Tippelt, G., Prinz, S., Simons, J., Roth, G. & Amthauer, G. (2010). Phys. Chem. Miner. 37, 685-704.]). For the synthesis of the pyroxene, Li2CO3, Fe2O3 and GeO2 in the stoichiometry of the compound and Li2MoO4/LiVO3 as a flux (mass ratio sample to flux = 1:10) were mixed together, heated to 1473 K in a platinum crucible, covered with a lid, held at this temperature for 24 h and cooled afterwards at a rate of 1.5 K h−1 to 973 K. The experimental batch consisted of large pyroxene crystals and a distinct amount of black crystals with idiomorphic octa­hedral habit, up to 200 µm. Semi-qu­anti­tative EDX (energy-dispersive X-ray) analysis revealed iron and some germanium as the main elements; powder X-ray diffraction analysis revealed the crystals as a spinel-type material. An electron microprobe analysis on polished/embedded crystals (three different grains with five measurement points each) yielded a chemical composition of 84.86 (30) wt% Fe2O3, 10.52 (25) wt% GeO2 and 4.62 wt% Li2O, with the latter calculated from the difference to 100 oxide%. There is no evidence for Mo or V from the flux, nor for any other chemical elements. From the oxide percentage, a chemical formula of Li0.63 (2)Fe2.18 (1)Ge0.20 (2)O4 was calculated, which is in good agreement with that obtained from the structure refinement. Individual crystals are homogeneous in composition, with no significant systematic variation from rim-core; also, there is no systematic variation in composition from crystal to crystal.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. In a first stage of refinement, only iron was considered on the A and B sites, thereby allowing unconstrained refinement of the site-occupation factors. This gave a surplus of electron density (higher occupation than allowed by the multiplicity) at the tetra­hedral site, while a lower occupation than possible was found for the octa­hedral site. From this it was concluded that Li enters the octa­hedral site and Ge enters the tetra­hedral site. In the final refinements, it was assumed that both tetra­hedral and octa­hedral sites are fully occupied, with Fe + Ge = 1 as a restraint for the tetra­hedral site and Fe + Li = 1 for the octa­hedral site.

Table 1
Experimental details

Crystal data
Chemical formula Li0.64Fe2.15Ge0.21O4
Mr 203.5
Crystal system, space group Cubic, Fd[\overline{3}]m
Temperature (K) 298
a (Å) 8.2903 (3)
V3) 569.78 (6)
Z 8
Radiation type Mo Kα
μ (mm−1) 12.85
Crystal size (mm) 0.13 × 0.12 × 0.12
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.83, 0.94
No. of measured, independent and observed [I > 2σ(I)] reflections 3046, 118, 114
Rint 0.021
(sin θ/λ)max−1) 0.940
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.042, 1.37
No. of reflections 118
No. of parameters 10
No. of restraints 1
Δρmax, Δρmin (e Å−3) 0.36, −0.67
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: coordinates from an isotypic structure; program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Lithium diiron(III) germanium tetraoxide top
Crystal data top
Li0.64Fe2.15Ge0.21O4Dx = 4.744 Mg m3
Mr = 203.5Mo Kα radiation, λ = 0.71073 Å
Cubic, Fd3mCell parameters from 3046 reflections
Hall symbol: -F 4vw 2vw 3θ = 7.0–41.9°
a = 8.2903 (3) ŵ = 12.85 mm1
V = 569.78 (6) Å3T = 298 K
Z = 8Octahedron, black
F(000) = 7710.13 × 0.12 × 0.12 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
118 independent reflections
Radiation source: 3-circle diffractometer114 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω–scan at 4 different φ positionsθmax = 41.9°, θmin = 7.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1514
Tmin = 0.83, Tmax = 0.94k = 1410
3046 measured reflectionsl = 1513
Refinement top
Refinement on F21 restraint
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0139P)2 + 2.542P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.018(Δ/σ)max < 0.001
wR(F2) = 0.042Δρmax = 0.36 e Å3
S = 1.37Δρmin = 0.67 e Å3
118 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015)
10 parametersExtinction coefficient: 0.0051 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.50.50.50.00795 (17)0.678 (4)
Li10.50.50.50.00795 (17)0.322 (4)
Fe20.1250.1250.1250.00573 (17)0.795 (3)
Ge20.1250.1250.1250.00573 (17)0.205 (3)
O20.25434 (14)0.25434 (14)0.25434 (14)0.0095 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.00795 (17)0.00795 (17)0.00795 (17)0.00100 (11)0.00100 (11)0.00100 (11)
Li10.00795 (17)0.00795 (17)0.00795 (17)0.00100 (11)0.00100 (11)0.00100 (11)
Fe20.00573 (17)0.00573 (17)0.00573 (17)000
Ge20.00573 (17)0.00573 (17)0.00573 (17)000
O20.0095 (3)0.0095 (3)0.0095 (3)0.0010 (3)0.0010 (3)0.0010 (3)
Geometric parameters (Å, º) top
Fe1—O2i2.0373 (11)Fe1—Fe1ii2.9311 (1)
Fe1—O2ii2.0373 (11)Fe2—O2vii1.857 (2)
Fe1—O2iii2.0373 (11)Fe2—O2viii1.857 (2)
Fe1—O2iv2.0373 (11)Fe2—O2ix1.857 (2)
Fe1—O2v2.0373 (11)Fe2—O21.857 (2)
Fe1—O2vi2.0373 (11)
O2i—Fe1—O2ii180O2ii—Fe1—O2vi87.96 (7)
O2i—Fe1—O2iii87.96 (7)O2iii—Fe1—O2vi92.04 (7)
O2ii—Fe1—O2iii92.04 (7)O2iv—Fe1—O2vi87.96 (7)
O2i—Fe1—O2iv92.04 (7)O2v—Fe1—O2vi180.00 (7)
O2ii—Fe1—O2iv87.96 (7)O2vii—Fe2—O2viii109.5
O2iii—Fe1—O2iv180O2vii—Fe2—O2ix109.5
O2i—Fe1—O2v87.96 (7)O2viii—Fe2—O2ix109.5
O2ii—Fe1—O2v92.04 (7)O2vii—Fe2—O2109.4710 (10)
O2iii—Fe1—O2v87.96 (7)O2viii—Fe2—O2109.5
O2iv—Fe1—O2v92.04 (7)O2ix—Fe2—O2109.4710 (10)
O2i—Fe1—O2vi92.04 (7)
Symmetry codes: (i) x+1/4, y+1/4, z+1; (ii) x+3/4, y+3/4, z; (iii) x+1/4, y+1, z+1/4; (iv) x+3/4, y, z+3/4; (v) x+1, y+1/4, z+1/4; (vi) x, y+3/4, z+3/4; (vii) x+1/4, y, z+1/4; (viii) x, y+1/4, z+1/4; (ix) x+1/4, y+1/4, z.
 

References

First citationBerg, H., Thomas, J. O., Liu, W. & Farrington, G. C. (1998). Solid State Ionics, 112, 165–168.  CAS Google Scholar
First citationBiagioni, C. & Pasero, M. (2014). Am. Mineral. 99, 1254–1264.  Web of Science CrossRef Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFleet, M. E. (1981). Acta Cryst. B37, 917–920.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHankare, P. P., Patil, R. P., Sankpal, U. B., Jadhav, S. D., Lokhande, P. D., Jadhav, K. M. & Sasikala, R. (2009). J. Solid State Chem. 182, 3217–3221.  Web of Science CrossRef CAS Google Scholar
First citationHarrison, R. J. & Putnis, A. (1998). Surv. Geophys. 19, 461–520.  Web of Science CrossRef Google Scholar
First citationHill, R. J., Craig, J. R. & Gibbs, G. V. (1979). Phys. Chem. Miner. 4, 317–339.  CrossRef CAS Web of Science Google Scholar
First citationLiu, D., Zhu, W., Trottier, J., Gagnon, C., Barray, F., Guerfi, A., Mauger, A., Groult, H., Julien, C. M., Goodenough, J. B. & Zaghib, K. (2014). RSC Adv. 4, 154–167.  Web of Science CrossRef CAS Google Scholar
First citationMiller, A. (1959). J. Appl. Phys. 30, S24–S25.  CrossRef Google Scholar
First citationO'Neill, H. S. C. & Navrotsky, A. (1983). Am. Mineral. 68, 181–194.  CAS Google Scholar
First citationPatil, R. P., Patil, S. B., Jadhav, B. V., Delekar, S. D. & Hankare, P. P. (2016). J. Magn. Magn. Mater. 401, 870–874.  Web of Science CrossRef CAS Google Scholar
First citationRedhammer, G. J., Cámara, F., Alvaro, M., Nestola, F., Tippelt, G., Prinz, S., Simons, J., Roth, G. & Amthauer, G. (2010). Phys. Chem. Miner. 37, 685–704.  Web of Science CrossRef CAS Google Scholar
First citationRedhammer, G. J., Roth, G., Treutmann, W., Hoelzel, M., Paulus, W., André, G., Pietzonka, C. & Amthauer, G. (2009). J. Solid State Chem. 182, 2374–2384.  Web of Science CrossRef CAS Google Scholar
First citationShannon, R. D. & Prewitt, C. T. (1969). Acta Cryst. B25, 925–946.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThackeray, M. M., David, W. I. F., Bruce, P. G. & Goodenough, J. B. (1983). Mater. Res. Bull. 18, 461–472.  CrossRef CAS Web of Science Google Scholar
First citationTomas, A., Laruelle, P., Dormann, J. L. & Nogues, M. (1983). Acta Cryst. C39, 1615–1617.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationTouboul, M. & Bourée, F. (1993). J. Mater. Chem. 3, 623–626.  CrossRef CAS Web of Science Google Scholar
First citationVon Dreele, R. B., Navrotsky, A. & Bowman, A. L. (1977). Acta Cryst. B33, 2287–2288.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWelch, M. D., Cooper, M. A. & Hawthorne, F. C. (2001). Mineral. Mag. 65, 441–444.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds