research communications
κ4N,O,O′,O′′)cadmium bis[2-(2-oxo-2,3-dihydro-1,3-benzothiazol-3-yl)acetate]
of the salt bis(triethanolamine-aInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str. 83, Tashkent 700125, Uzbekistan
*Correspondence e-mail: atom.uz@mail.ru
The reaction of 2-(2-oxo-2,3-dihydro-1,3-benzothiazol-3-yl)acetic acid (NBTA) and triethanolamine (TEA) with Cd(CH3OO)2 resulted in the formation of the title salt, [Cd(C6H15NO3)2](C9H6NO3S)2. In its the complex cation [Cd(TEA)2]2+ and two independent NBTA− units with essentially similar geometries and conformations are present. In the complex cation, each TEA molecule behaves as an N,O,O′,O′′-tetradentate ligand, giving rise to an eight-coordinate CdII ion with a bicapped trigonal–prismatic configuration. All ethanol groups of each TEA molecule form three five-membered chelate rings around the CdII ion. The Cd—O and Cd—N distances are in the ranges 2.392 (2)–2.478 (2) and 2.465 (2)–2.475 (3) Å, respectively. O—H⋯O hydrogen bonds between the TEA hydroxy groups and carboxylate O atoms connect cationic and anionic moieties into chains parallel to [110]. Each NBTA− anion is additionally linked to a symmetry-related anion through π–π stacking interactions between the benzene and thiazoline rings [minimum centroid-to-centroid separation = 3.604 (2) Å]. Together with additional C—H⋯O interactions, these establish a double-layer polymeric network parallel to (001).
Keywords: crystal structure; cadmium(II) complex; triethanolamine; 2-(2-oxo-2,3-dihydro-1,3-benzothiazolin-3-yl)acetate; hydrogen bonding.
CCDC reference: 1468939
1. Chemical context
Triethanolamine (TEA) is a potential ligand for the incorporation of metals into metal-ion-containing supramolecular frameworks, and many compounds constructed from TEA have been reported in the last decade (Haukka et al., 2005; Topcu et al., 2001; Ucar et al., 2004). TEA is also used as a corrosion inhibitor in metal-cutting fluids, as a curing agent for epoxy and rubber polymers, adhesives, antistatic agents or as a pharmaceutical intermediate and an ointment emulsifier. However, TEA has no specific physiological effects (Beyer et al., 1983; Knaak et al., 1997), with exception of its low antibacterial action. Benzothiazoles are bicyclic ring systems and their derivatives have been studied and found to have various chemical reactivities and biological activities. For example, benzothiazole is a precursor for rubber accelerators, a component of is used as a slimicide in the paper and pulp industry, or in the production of certain fungicides, herbicides, pharmaceuticals (Bellavia et al., 2000; Seo et al., 2000), anti-allergic (Musser et al., 1984), antitumor (Yoshida et al., 2005) or anti-diabetic (Pattan et al., 2005) substances.
The interaction of metal ions with TEA results in the formation of complexes in which TEA demonstrates monodentate (Kumar et al., 2014), bidentate (Kapteijn et al., 1997; Long et al., 2004), tridentate (Gao et al., 2004; Ucar et al., 2004; Krabbes et al., 1999; Haukka et al., 2005; Yeşilel et al., 2004; Mirskova et al., 2013) or tetradentate binding modes (Zaitsev et al., 2014; Kazak et al., 2003; Yilmaz et al., 2004; Rickard et al., 1999; Maestri & Brown, 2004; Kovbasyuk et al., 2001; Tudor et al., 2001). In some complexes, TEA has bridging properties (Langley et al., 2011; Atria et al., 2015; Wittick et al., 2006; Sharma et al., 2014; Yang et al., 2014; Funes et al., 2014). In addition, there are metal complexes known in which TEA molecules are uncoordinating (Ilyukhin et al., 2013; Manos et al., 2012). As an ancillary ligand, TEA may enhance the physiological action of bioactive substances in mixed-ligand metal complexes (Boulsourani et al., 2011). We have reported the synthesis of mixed-ligand complexes of Zn, Cd and Cu with TEA and p-nitrobenzoic acid (NBA) and determined the structures of [Cu2(NBA)2TEA](NBA)(5H2O), [Zn(NBA)2TEA] and [Cd(NBA)2TEA] (Ashurov et al., 2015). The cobalt(II) complex [Co(C6H15NO3)2](C9H6NO3S)2, obtained by the reaction of NBTA and TEA with Co(NO3)2, has been reported (Ashurov et al., 2016). Here, the synthesis and structure of the related title compound, [Cd(C6H15NO3)2](C9H6NO3S)2, (I), is described.
2. Structural commentary
The structure of the molecular entities of (I) is shown in Fig. 1; these consist of a complex cation and two independent NBTA− anions. In the cationic complex, the CdII ion is ligated by two neutral TEA molecules, which act as N,O,O′,O′′-tetradentate ligands, resulting in a bicapped trigonal–prismatic of the type CdN2O6. In the complex, Cd—O and Cd—N distances are in the range 2.392 (2)–2.478 (2) and 2.465 (2)–2.475 (3) Å, respectively. The N—Cd—O bond angles range from 68.58 (8) to 122.59 (10)° and the O—Cd—O angles are in an interval of 72.54 (9) to 162.13 (11)°. Both thiazoline rings (C1/C6/N1/C7/S1 and C1A/C6A/N1A/C7A/S1A) and bicyclic benzothiazole units (N1/S1/C1–C7 and (N1A/S1A/C1A–C7A) are close to planar, the largest deviations from the least-squares planes being 0.002 (2), 0.004 (2) and 0.008 (3), 0.005 (3) Å, respectively. The dihedral angles between the plane of the carboxylate group and the attached benzothiazole ring system are 77.895 (3) and 71.408 (3)° in the two anions.
3. Supramolecular features
In the , classical intermolecular O—H⋯O hydrogen bonds are observed (Table 1) which link the complex cations and NBTA− anions into a chain structure extending parallel to [110], whereby each cation is surrounded by four NBTA− anions. The H atoms of all hydroxyl groups of the TEA ligands form a hydrogen bond with a carboxylate O atom of the NBTA− ions. In addition, there is weak hydrogen bond between one –CH2 group and the O1 atom of the NBTA anion, with a C⋯O distance of 3.282 (6)Å (Table 1). The above-mentioned hydrogen bonds give rise to R22(8), R42(12) and R44(16) graph-set motifs (Fig. 2). The NBTA− anion layers are not linked by hydrogen bonds, but there are mutual π–π stacking interactions between benzene rings (centroid Cg1) and thiazoline rings (centroid Cg2) of adjacent inversion-related molecules [Cg1⋯Cg2 (2 − x, −y, 1 − z) = 3.604 (2) Å] (Fig. 3). Together, these supramolecular interactions generate a double-layer polymeric network parallel to (001).
of (I)4. Database survey
A survey of the Cambridge Structural Database (CSD; Groom & Allen, 2014) showed that coordination complexes of TEA with many metals including those of the s-, d-, p-, and f-block elements have been reported. Structures containing the [Cd(TEA)2]2+ cation are deposited in the CSD with reference codes EYIPAD, MEVQIN and YOVBIU.
5. Synthesis and crystallization
To an aqueous solution (2.5 ml) of Cd(CH3OO)2 (0.103 g, 0.5 mmol) was slowly added an ethanolic solution (5 ml) containing TEA (132 µl) and NBT (0.209 g, 1 mmol) under constant stirring. A bright-yellow crystalline product was obtained at room temperature by solvent evaporation after four weeks. Yield: 75%; calculated for C30H42CdN4O12S2: C, 43.56; H, 5.12; N, 6.77, found: C, 43.61; H, 5.15; N, 6.69
6. details
Crystal data, data collection and structure . The hydroxyl H atoms of the TEA ligands were located in a difference-Fourier map and were refined with soft O—H distance restraints of 0.87 Å. The C-bound hydrogen atoms were placed in calculated positions and refined as riding atoms with C—H = 0.93 and 0.97 Å for aromatic and methylene hydrogen atoms, respectively, and with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1468939
https://doi.org/10.1107/S2056989016004515/wm5280sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016004515/wm5280Isup2.hkl
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Cd(C6H15NO3)2](C9H6NO3S)2 | Z = 2 |
Mr = 827.20 | F(000) = 852 |
Triclinic, P1 | Dx = 1.609 Mg m−3 |
Hall symbol: -P 1 | Cu Kα radiation, λ = 1.54184 Å |
a = 10.7061 (5) Å | Cell parameters from 10769 reflections |
b = 12.2157 (5) Å | θ = 3.4–75.7° |
c = 14.6159 (8) Å | µ = 6.85 mm−1 |
α = 65.520 (5)° | T = 293 K |
β = 79.600 (4)° | Block, bright yellow |
γ = 82.417 (4)° | 0.6 × 0.3 × 0.2 mm |
V = 1707.59 (14) Å3 |
Oxford Diffraction Xcalibur Ruby diffractometer | 7001 independent reflections |
Radiation source: fine-focus sealed tube | 6533 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.047 |
Detector resolution: 10.2576 pixels mm-1 | θmax = 75.9°, θmin = 3.4° |
ω scans | h = −13→12 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | k = −14→15 |
Tmin = 0.127, Tmax = 0.254 | l = −17→18 |
14752 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.107 | w = 1/[σ2(Fo2) + (0.0692P)2 + 0.3219P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
7001 reflections | Δρmax = 1.20 e Å−3 |
461 parameters | Δρmin = −0.67 e Å−3 |
18 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00078 (13) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.712574 (17) | 0.241527 (14) | 0.997601 (13) | 0.02746 (9) | |
O6A | 0.8300 (3) | 0.0513 (2) | 1.00868 (17) | 0.0434 (5) | |
H6A | 0.855 (4) | 0.0269 (19) | 0.9608 (12) | 0.065* | |
O5A | 0.5116 (2) | 0.1940 (2) | 0.97875 (18) | 0.0444 (5) | |
H5A | 0.4541 (16) | 0.247 (2) | 0.947 (2) | 0.067* | |
O5 | 0.7418 (2) | 0.24576 (19) | 0.82842 (16) | 0.0368 (5) | |
H5 | 0.736 (3) | 0.186 (2) | 0.8118 (19) | 0.055* | |
O4 | 0.9043 (2) | 0.2228 (2) | 1.0772 (2) | 0.0457 (6) | |
H4 | 0.960 (2) | 0.1633 (14) | 1.100 (3) | 0.069* | |
O4A | 0.6459 (3) | 0.3096 (2) | 1.13739 (19) | 0.0462 (6) | |
H4A | 0.668 (4) | 0.3705 (16) | 1.1455 (16) | 0.069* | |
N2A | 0.6329 (2) | 0.0713 (2) | 1.15330 (18) | 0.0310 (5) | |
N2 | 0.8509 (2) | 0.4053 (2) | 0.8822 (2) | 0.0333 (5) | |
O6 | 0.5915 (3) | 0.4392 (3) | 0.9324 (3) | 0.0594 (7) | |
H6 | 0.5116 (9) | 0.453 (2) | 0.934 (4) | 0.089* | |
C13A | 0.5318 (3) | 0.0196 (3) | 1.1293 (3) | 0.0405 (7) | |
H13A | 0.4851 | −0.0337 | 1.1921 | 0.049* | |
H13B | 0.5707 | −0.0279 | 1.0912 | 0.049* | |
C15A | 0.7417 (3) | −0.0170 (3) | 1.1835 (2) | 0.0383 (7) | |
H15A | 0.7114 | −0.0886 | 1.2408 | 0.046* | |
H15B | 0.8014 | 0.0170 | 1.2056 | 0.046* | |
C14 | 0.6569 (4) | 0.5438 (3) | 0.8689 (3) | 0.0474 (8) | |
H14A | 0.6188 | 0.6117 | 0.8845 | 0.057* | |
H14B | 0.6518 | 0.5628 | 0.7983 | 0.057* | |
C12A | 0.4410 (3) | 0.1157 (3) | 1.0688 (3) | 0.0431 (7) | |
H12A | 0.3780 | 0.0794 | 1.0521 | 0.052* | |
H12B | 0.3973 | 0.1604 | 1.1079 | 0.052* | |
C14A | 0.8105 (3) | −0.0530 (3) | 1.0995 (2) | 0.0404 (7) | |
H14C | 0.8918 | −0.0948 | 1.1175 | 0.048* | |
H14D | 0.7605 | −0.1072 | 1.0900 | 0.048* | |
C15 | 0.7929 (3) | 0.5198 (3) | 0.8870 (3) | 0.0430 (7) | |
H15C | 0.8415 | 0.5856 | 0.8366 | 0.052* | |
H15D | 0.7979 | 0.5178 | 0.9533 | 0.052* | |
C13 | 0.8646 (4) | 0.4119 (3) | 0.7768 (3) | 0.0445 (8) | |
H13C | 0.9443 | 0.4465 | 0.7394 | 0.053* | |
H13D | 0.7960 | 0.4645 | 0.7429 | 0.053* | |
C10 | 0.9712 (4) | 0.3297 (3) | 1.0288 (3) | 0.0514 (9) | |
H10A | 1.0567 | 0.3125 | 1.0467 | 0.062* | |
H10B | 0.9289 | 0.3898 | 1.0531 | 0.062* | |
C11 | 0.9783 (3) | 0.3794 (3) | 0.9157 (3) | 0.0501 (9) | |
H11A | 1.0229 | 0.4531 | 0.8859 | 0.060* | |
H11B | 1.0270 | 0.3219 | 0.8909 | 0.060* | |
C12 | 0.8618 (3) | 0.2906 (3) | 0.7759 (3) | 0.0405 (7) | |
H12C | 0.8722 | 0.2968 | 0.7066 | 0.049* | |
H12D | 0.9302 | 0.2369 | 0.8094 | 0.049* | |
C11A | 0.5800 (4) | 0.1123 (3) | 1.2352 (3) | 0.0456 (8) | |
H11C | 0.5818 | 0.0443 | 1.3002 | 0.055* | |
H11D | 0.4918 | 0.1409 | 1.2286 | 0.055* | |
C10A | 0.6504 (4) | 0.2095 (3) | 1.2338 (3) | 0.0480 (8) | |
H10C | 0.6118 | 0.2341 | 1.2883 | 0.058* | |
H10D | 0.7381 | 0.1812 | 1.2433 | 0.058* | |
S1 | 0.71637 (9) | 0.01677 (10) | 0.49722 (8) | 0.0535 (2) | |
O2 | 0.7640 (2) | 0.05730 (19) | 0.77831 (17) | 0.0375 (5) | |
O3 | 0.9143 (3) | −0.0435 (2) | 0.87446 (19) | 0.0475 (6) | |
N1 | 0.8544 (3) | −0.0361 (2) | 0.6378 (2) | 0.0384 (6) | |
O1 | 0.7093 (3) | −0.1763 (3) | 0.6719 (3) | 0.0660 (8) | |
C6 | 0.8954 (3) | 0.0728 (3) | 0.5643 (2) | 0.0362 (6) | |
C1 | 0.8305 (3) | 0.1163 (3) | 0.4801 (3) | 0.0408 (7) | |
C9 | 0.8546 (3) | −0.0180 (3) | 0.8009 (2) | 0.0333 (6) | |
C8 | 0.8983 (4) | −0.0917 (3) | 0.7365 (3) | 0.0463 (8) | |
H8A | 0.9906 | −0.1007 | 0.7269 | 0.056* | |
H8B | 0.8667 | −0.1715 | 0.7727 | 0.056* | |
C7 | 0.7584 (3) | −0.0826 (3) | 0.6175 (3) | 0.0438 (8) | |
C5 | 0.9898 (4) | 0.1373 (4) | 0.5677 (3) | 0.0493 (8) | |
H5B | 1.0324 | 0.1099 | 0.6240 | 0.059* | |
C4 | 1.0196 (4) | 0.2437 (4) | 0.4851 (4) | 0.0646 (12) | |
H4B | 1.0839 | 0.2877 | 0.4856 | 0.078* | |
C2 | 0.8590 (5) | 0.2232 (4) | 0.3992 (3) | 0.0555 (10) | |
H2 | 0.8145 | 0.2527 | 0.3438 | 0.067* | |
C3 | 0.9553 (5) | 0.2852 (4) | 0.4026 (4) | 0.0656 (12) | |
H3 | 0.9772 | 0.3567 | 0.3478 | 0.079* | |
S1A | 0.79635 (10) | 0.49886 (10) | 1.49702 (8) | 0.0570 (2) | |
N1A | 0.6853 (3) | 0.5582 (2) | 1.3394 (2) | 0.0411 (6) | |
O2A | 0.7500 (3) | 0.4620 (2) | 1.19404 (19) | 0.0455 (5) | |
C2A | 0.6322 (5) | 0.3091 (4) | 1.5830 (3) | 0.0633 (12) | |
H2A | 0.6654 | 0.2787 | 1.6440 | 0.076* | |
O3A | 0.6440 (3) | 0.6114 (3) | 1.0843 (2) | 0.0602 (7) | |
O1A | 0.8392 (3) | 0.6849 (3) | 1.3194 (3) | 0.0691 (8) | |
C6A | 0.6268 (3) | 0.4562 (3) | 1.4111 (2) | 0.0378 (7) | |
C7A | 0.7774 (4) | 0.5974 (3) | 1.3696 (3) | 0.0474 (8) | |
C8A | 0.6497 (4) | 0.6233 (3) | 1.2389 (3) | 0.0456 (8) | |
H8AA | 0.6891 | 0.6998 | 1.2081 | 0.055* | |
H8AB | 0.5583 | 0.6406 | 1.2455 | 0.055* | |
C1A | 0.6771 (4) | 0.4107 (3) | 1.5032 (3) | 0.0456 (8) | |
C5A | 0.5312 (4) | 0.4003 (4) | 1.3989 (3) | 0.0508 (9) | |
H5AA | 0.4984 | 0.4301 | 1.3378 | 0.061* | |
C9A | 0.6860 (3) | 0.5590 (3) | 1.1673 (2) | 0.0353 (6) | |
C3A | 0.5362 (5) | 0.2531 (4) | 1.5704 (4) | 0.0703 (14) | |
H3A | 0.5055 | 0.1838 | 1.6234 | 0.084* | |
C4A | 0.4852 (4) | 0.2984 (4) | 1.4801 (4) | 0.0645 (12) | |
H4AA | 0.4195 | 0.2603 | 1.4739 | 0.077* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.03033 (13) | 0.02172 (12) | 0.02883 (12) | −0.00431 (7) | −0.00164 (8) | −0.00887 (8) |
O6A | 0.0632 (15) | 0.0304 (11) | 0.0320 (11) | 0.0038 (10) | 0.0008 (10) | −0.0131 (9) |
O5A | 0.0400 (12) | 0.0439 (13) | 0.0370 (11) | −0.0092 (10) | −0.0066 (10) | −0.0017 (10) |
O5 | 0.0450 (12) | 0.0319 (10) | 0.0331 (10) | −0.0079 (9) | 0.0024 (9) | −0.0143 (9) |
O4 | 0.0386 (12) | 0.0331 (11) | 0.0648 (16) | −0.0003 (9) | −0.0148 (11) | −0.0165 (11) |
O4A | 0.0587 (15) | 0.0375 (12) | 0.0485 (13) | 0.0007 (10) | −0.0069 (11) | −0.0247 (11) |
N2A | 0.0339 (12) | 0.0293 (11) | 0.0300 (11) | −0.0041 (9) | −0.0015 (10) | −0.0125 (10) |
N2 | 0.0343 (13) | 0.0246 (11) | 0.0431 (14) | −0.0049 (9) | −0.0023 (10) | −0.0159 (10) |
O6 | 0.0388 (13) | 0.0431 (14) | 0.085 (2) | −0.0025 (11) | −0.0041 (14) | −0.0170 (14) |
C13A | 0.0410 (17) | 0.0305 (14) | 0.0459 (17) | −0.0117 (12) | −0.0052 (14) | −0.0089 (13) |
C15A | 0.0471 (18) | 0.0315 (14) | 0.0336 (15) | 0.0026 (12) | −0.0101 (13) | −0.0100 (12) |
C14 | 0.050 (2) | 0.0336 (16) | 0.053 (2) | 0.0060 (14) | −0.0059 (16) | −0.0144 (15) |
C12A | 0.0325 (15) | 0.0476 (18) | 0.0395 (16) | −0.0104 (13) | −0.0009 (13) | −0.0072 (15) |
C14A | 0.0499 (18) | 0.0283 (14) | 0.0394 (16) | 0.0076 (13) | −0.0077 (14) | −0.0123 (13) |
C15 | 0.0494 (19) | 0.0256 (14) | 0.0540 (19) | −0.0066 (12) | −0.0001 (15) | −0.0176 (14) |
C13 | 0.057 (2) | 0.0291 (15) | 0.0405 (17) | −0.0121 (13) | 0.0104 (15) | −0.0116 (13) |
C10 | 0.0445 (19) | 0.0366 (17) | 0.080 (3) | −0.0048 (14) | −0.0231 (18) | −0.0240 (18) |
C11 | 0.0341 (17) | 0.0399 (18) | 0.079 (3) | −0.0053 (13) | −0.0051 (17) | −0.0273 (18) |
C12 | 0.0480 (18) | 0.0344 (15) | 0.0383 (16) | −0.0075 (13) | 0.0055 (14) | −0.0171 (13) |
C11A | 0.054 (2) | 0.0467 (19) | 0.0336 (16) | −0.0024 (15) | 0.0053 (14) | −0.0181 (14) |
C10A | 0.061 (2) | 0.051 (2) | 0.0403 (17) | −0.0004 (16) | −0.0052 (16) | −0.0282 (16) |
S1 | 0.0509 (5) | 0.0601 (5) | 0.0625 (6) | 0.0047 (4) | −0.0210 (4) | −0.0347 (5) |
O2 | 0.0419 (12) | 0.0328 (10) | 0.0408 (11) | 0.0018 (9) | −0.0047 (9) | −0.0193 (9) |
O3 | 0.0560 (15) | 0.0518 (14) | 0.0432 (13) | 0.0144 (11) | −0.0160 (11) | −0.0289 (12) |
N1 | 0.0504 (16) | 0.0363 (13) | 0.0308 (12) | 0.0019 (11) | −0.0050 (11) | −0.0173 (11) |
O1 | 0.0657 (18) | 0.0528 (17) | 0.075 (2) | −0.0178 (14) | 0.0162 (16) | −0.0277 (15) |
C6 | 0.0397 (16) | 0.0364 (15) | 0.0368 (15) | 0.0057 (12) | −0.0037 (13) | −0.0219 (13) |
C1 | 0.0475 (18) | 0.0391 (16) | 0.0410 (16) | 0.0087 (13) | −0.0073 (14) | −0.0240 (14) |
C9 | 0.0407 (16) | 0.0286 (13) | 0.0306 (14) | −0.0007 (11) | −0.0009 (12) | −0.0139 (11) |
C8 | 0.067 (2) | 0.0382 (17) | 0.0354 (16) | 0.0153 (15) | −0.0129 (16) | −0.0194 (14) |
C7 | 0.0441 (18) | 0.0454 (18) | 0.0467 (18) | −0.0006 (14) | 0.0033 (14) | −0.0277 (16) |
C5 | 0.0456 (19) | 0.052 (2) | 0.062 (2) | 0.0000 (15) | −0.0057 (17) | −0.0362 (19) |
C4 | 0.060 (2) | 0.055 (2) | 0.089 (3) | −0.0164 (19) | 0.013 (2) | −0.044 (2) |
C2 | 0.077 (3) | 0.0425 (19) | 0.0419 (19) | 0.0118 (18) | −0.0065 (18) | −0.0170 (16) |
C3 | 0.090 (3) | 0.0377 (19) | 0.058 (2) | −0.005 (2) | 0.015 (2) | −0.0182 (18) |
S1A | 0.0626 (6) | 0.0600 (6) | 0.0567 (5) | 0.0088 (4) | −0.0195 (5) | −0.0307 (5) |
N1A | 0.0558 (17) | 0.0300 (13) | 0.0342 (13) | −0.0024 (11) | −0.0031 (12) | −0.0109 (11) |
O2A | 0.0572 (15) | 0.0322 (11) | 0.0461 (13) | 0.0045 (10) | −0.0083 (11) | −0.0164 (10) |
C2A | 0.087 (3) | 0.048 (2) | 0.0381 (19) | 0.008 (2) | 0.002 (2) | −0.0083 (17) |
O3A | 0.0721 (19) | 0.0615 (17) | 0.0503 (15) | 0.0130 (14) | −0.0267 (14) | −0.0235 (14) |
O1A | 0.0694 (19) | 0.0522 (17) | 0.085 (2) | −0.0193 (14) | 0.0006 (17) | −0.0263 (16) |
C6A | 0.0432 (17) | 0.0291 (14) | 0.0382 (15) | 0.0040 (12) | 0.0009 (13) | −0.0152 (13) |
C7A | 0.0486 (19) | 0.0440 (18) | 0.053 (2) | −0.0005 (15) | −0.0009 (16) | −0.0268 (17) |
C8A | 0.065 (2) | 0.0266 (14) | 0.0405 (17) | 0.0064 (14) | −0.0084 (16) | −0.0107 (13) |
C1A | 0.055 (2) | 0.0383 (17) | 0.0373 (16) | 0.0094 (15) | −0.0017 (15) | −0.0150 (14) |
C5A | 0.050 (2) | 0.0458 (19) | 0.058 (2) | −0.0030 (15) | 0.0010 (17) | −0.0256 (18) |
C9A | 0.0370 (16) | 0.0314 (14) | 0.0358 (15) | −0.0042 (11) | −0.0051 (12) | −0.0114 (12) |
C3A | 0.087 (3) | 0.044 (2) | 0.057 (3) | −0.008 (2) | 0.023 (2) | −0.0100 (19) |
C4A | 0.059 (2) | 0.048 (2) | 0.084 (3) | −0.0146 (18) | 0.019 (2) | −0.033 (2) |
Cd1—O5A | 2.392 (2) | C12—H12C | 0.9700 |
Cd1—O5 | 2.415 (2) | C12—H12D | 0.9700 |
Cd1—O6A | 2.449 (2) | C11A—C10A | 1.481 (5) |
Cd1—N2A | 2.465 (2) | C11A—H11C | 0.9700 |
Cd1—O4A | 2.470 (2) | C11A—H11D | 0.9700 |
Cd1—N2 | 2.475 (3) | C10A—H10C | 0.9700 |
Cd1—O6 | 2.476 (3) | C10A—H10D | 0.9700 |
Cd1—O4 | 2.478 (2) | S1—C1 | 1.750 (4) |
O6A—C14A | 1.413 (4) | S1—C7 | 1.772 (4) |
O6A—H6A | 0.856 (9) | O2—C9 | 1.234 (4) |
O5A—C12A | 1.416 (4) | O3—C9 | 1.256 (4) |
O5A—H5A | 0.871 (10) | N1—C7 | 1.368 (5) |
O5—C12 | 1.422 (4) | N1—C6 | 1.384 (4) |
O5—H5 | 0.872 (10) | N1—C8 | 1.453 (4) |
O4—C10 | 1.420 (4) | O1—C7 | 1.213 (5) |
O4—H4 | 0.866 (9) | C6—C5 | 1.381 (5) |
O4A—C10A | 1.436 (5) | C6—C1 | 1.396 (5) |
O4A—H4A | 0.870 (10) | C1—C2 | 1.375 (5) |
N2A—C15A | 1.475 (4) | C9—C8 | 1.533 (4) |
N2A—C11A | 1.477 (4) | C8—H8A | 0.9700 |
N2A—C13A | 1.480 (4) | C8—H8B | 0.9700 |
N2—C15 | 1.478 (4) | C5—C4 | 1.385 (6) |
N2—C11 | 1.482 (4) | C5—H5B | 0.9300 |
N2—C13 | 1.490 (4) | C4—C3 | 1.374 (7) |
O6—C14 | 1.415 (5) | C4—H4B | 0.9300 |
O6—H6 | 0.848 (9) | C2—C3 | 1.376 (7) |
C13A—C12A | 1.502 (5) | C2—H2 | 0.9300 |
C13A—H13A | 0.9700 | C3—H3 | 0.9300 |
C13A—H13B | 0.9700 | S1A—C1A | 1.743 (4) |
C15A—C14A | 1.509 (4) | S1A—C7A | 1.781 (4) |
C15A—H15A | 0.9700 | N1A—C7A | 1.362 (5) |
C15A—H15B | 0.9700 | N1A—C6A | 1.389 (4) |
C14—C15 | 1.495 (5) | N1A—C8A | 1.446 (4) |
C14—H14A | 0.9700 | O2A—C9A | 1.235 (4) |
C14—H14B | 0.9700 | C2A—C1A | 1.373 (6) |
C12A—H12A | 0.9700 | C2A—C3A | 1.384 (8) |
C12A—H12B | 0.9700 | C2A—H2A | 0.9300 |
C14A—H14C | 0.9700 | O3A—C9A | 1.249 (4) |
C14A—H14D | 0.9700 | O1A—C7A | 1.216 (5) |
C15—H15C | 0.9700 | C6A—C5A | 1.376 (5) |
C15—H15D | 0.9700 | C6A—C1A | 1.406 (5) |
C13—C12 | 1.492 (4) | C8A—C9A | 1.522 (4) |
C13—H13C | 0.9700 | C8A—H8AA | 0.9700 |
C13—H13D | 0.9700 | C8A—H8AB | 0.9700 |
C10—C11 | 1.498 (6) | C5A—C4A | 1.388 (6) |
C10—H10A | 0.9700 | C5A—H5AA | 0.9300 |
C10—H10B | 0.9700 | C3A—C4A | 1.386 (8) |
C11—H11A | 0.9700 | C3A—H3A | 0.9300 |
C11—H11B | 0.9700 | C4A—H4AA | 0.9300 |
O5A—Cd1—O5 | 75.23 (8) | H13C—C13—H13D | 108.0 |
O5A—Cd1—O6A | 97.23 (9) | O4—C10—C11 | 111.8 (3) |
O5—Cd1—O6A | 74.12 (7) | O4—C10—H10A | 109.2 |
O5A—Cd1—N2A | 70.99 (8) | C11—C10—H10A | 109.2 |
O5—Cd1—N2A | 124.88 (8) | O4—C10—H10B | 109.2 |
O6A—Cd1—N2A | 68.58 (8) | C11—C10—H10B | 109.2 |
O5A—Cd1—O4A | 100.09 (9) | H10A—C10—H10B | 107.9 |
O5—Cd1—O4A | 159.22 (8) | N2—C11—C10 | 112.5 (3) |
O6A—Cd1—O4A | 126.65 (8) | N2—C11—H11A | 109.1 |
N2A—Cd1—O4A | 70.34 (8) | C10—C11—H11A | 109.1 |
O5A—Cd1—N2 | 130.03 (8) | N2—C11—H11B | 109.1 |
O5—Cd1—N2 | 70.57 (8) | C10—C11—H11B | 109.1 |
O6A—Cd1—N2 | 106.90 (8) | H11A—C11—H11B | 107.8 |
N2A—Cd1—N2 | 158.75 (9) | O5—C12—C13 | 107.1 (3) |
O4A—Cd1—N2 | 99.33 (9) | O5—C12—H12C | 110.3 |
O5A—Cd1—O6 | 75.81 (9) | C13—C12—H12C | 110.3 |
O5—Cd1—O6 | 88.12 (10) | O5—C12—H12D | 110.3 |
O6A—Cd1—O6 | 162.13 (10) | C13—C12—H12D | 110.3 |
N2A—Cd1—O6 | 122.59 (9) | H12C—C12—H12D | 108.6 |
O4A—Cd1—O6 | 71.14 (10) | N2A—C11A—C10A | 113.0 (3) |
N2—Cd1—O6 | 67.86 (9) | N2A—C11A—H11C | 109.0 |
O5A—Cd1—O4 | 158.32 (8) | C10A—C11A—H11C | 109.0 |
O5—Cd1—O4 | 118.25 (9) | N2A—C11A—H11D | 109.0 |
O6A—Cd1—O4 | 72.54 (9) | C10A—C11A—H11D | 109.0 |
N2A—Cd1—O4 | 87.39 (8) | H11C—C11A—H11D | 107.8 |
O4A—Cd1—O4 | 73.06 (9) | O4A—C10A—C11A | 108.1 (3) |
N2—Cd1—O4 | 71.65 (9) | O4A—C10A—H10C | 110.1 |
O6—Cd1—O4 | 119.25 (9) | C11A—C10A—H10C | 110.1 |
C14A—O6A—Cd1 | 119.37 (18) | O4A—C10A—H10D | 110.1 |
C14A—O6A—H6A | 106.6 (15) | C11A—C10A—H10D | 110.1 |
Cd1—O6A—H6A | 127.9 (16) | H10C—C10A—H10D | 108.4 |
C12A—O5A—Cd1 | 115.7 (2) | C1—S1—C7 | 92.04 (17) |
C12A—O5A—H5A | 103.9 (15) | C7—N1—C6 | 116.2 (3) |
Cd1—O5A—H5A | 124.9 (17) | C7—N1—C8 | 120.8 (3) |
C12—O5—Cd1 | 109.85 (18) | C6—N1—C8 | 122.6 (3) |
C12—O5—H5 | 103.7 (15) | C5—C6—N1 | 126.8 (3) |
Cd1—O5—H5 | 127.1 (17) | C5—C6—C1 | 120.1 (3) |
C10—O4—Cd1 | 111.1 (2) | N1—C6—C1 | 113.0 (3) |
C10—O4—H4 | 107.2 (16) | C2—C1—C6 | 121.1 (4) |
Cd1—O4—H4 | 131.4 (17) | C2—C1—S1 | 128.9 (3) |
C10A—O4A—Cd1 | 110.41 (18) | C6—C1—S1 | 110.0 (3) |
C10A—O4A—H4A | 105.2 (16) | O2—C9—O3 | 126.3 (3) |
Cd1—O4A—H4A | 130.4 (18) | O2—C9—C8 | 118.3 (3) |
C15A—N2A—C11A | 110.2 (3) | O3—C9—C8 | 115.4 (3) |
C15A—N2A—C13A | 111.4 (2) | N1—C8—C9 | 112.6 (3) |
C11A—N2A—C13A | 109.5 (3) | N1—C8—H8A | 109.1 |
C15A—N2A—Cd1 | 107.07 (18) | C9—C8—H8A | 109.1 |
C11A—N2A—Cd1 | 110.73 (19) | N1—C8—H8B | 109.1 |
C13A—N2A—Cd1 | 107.92 (18) | C9—C8—H8B | 109.1 |
C15—N2—C11 | 109.8 (3) | H8A—C8—H8B | 107.8 |
C15—N2—C13 | 110.8 (3) | O1—C7—N1 | 126.4 (4) |
C11—N2—C13 | 109.0 (3) | O1—C7—S1 | 124.9 (3) |
C15—N2—Cd1 | 108.45 (19) | N1—C7—S1 | 108.7 (3) |
C11—N2—Cd1 | 109.2 (2) | C6—C5—C4 | 118.4 (4) |
C13—N2—Cd1 | 109.68 (18) | C6—C5—H5B | 120.8 |
C14—O6—Cd1 | 119.6 (2) | C4—C5—H5B | 120.8 |
C14—O6—H6 | 111.6 (15) | C3—C4—C5 | 120.8 (4) |
Cd1—O6—H6 | 127.8 (15) | C3—C4—H4B | 119.6 |
N2A—C13A—C12A | 111.9 (3) | C5—C4—H4B | 119.6 |
N2A—C13A—H13A | 109.2 | C1—C2—C3 | 118.1 (4) |
C12A—C13A—H13A | 109.2 | C1—C2—H2 | 120.9 |
N2A—C13A—H13B | 109.2 | C3—C2—H2 | 120.9 |
C12A—C13A—H13B | 109.2 | C4—C3—C2 | 121.4 (4) |
H13A—C13A—H13B | 107.9 | C4—C3—H3 | 119.3 |
N2A—C15A—C14A | 113.5 (3) | C2—C3—H3 | 119.3 |
N2A—C15A—H15A | 108.9 | C1A—S1A—C7A | 91.44 (18) |
C14A—C15A—H15A | 108.9 | C7A—N1A—C6A | 116.3 (3) |
N2A—C15A—H15B | 108.9 | C7A—N1A—C8A | 120.6 (3) |
C14A—C15A—H15B | 108.9 | C6A—N1A—C8A | 123.1 (3) |
H15A—C15A—H15B | 107.7 | C1A—C2A—C3A | 118.4 (4) |
O6—C14—C15 | 108.2 (3) | C1A—C2A—H2A | 120.8 |
O6—C14—H14A | 110.1 | C3A—C2A—H2A | 120.8 |
C15—C14—H14A | 110.1 | C5A—C6A—N1A | 127.0 (3) |
O6—C14—H14B | 110.1 | C5A—C6A—C1A | 120.8 (3) |
C15—C14—H14B | 110.1 | N1A—C6A—C1A | 112.2 (3) |
H14A—C14—H14B | 108.4 | O1A—C7A—N1A | 126.9 (4) |
O5A—C12A—C13A | 108.3 (3) | O1A—C7A—S1A | 123.9 (3) |
O5A—C12A—H12A | 110.0 | N1A—C7A—S1A | 109.2 (3) |
C13A—C12A—H12A | 110.0 | N1A—C8A—C9A | 115.5 (3) |
O5A—C12A—H12B | 110.0 | N1A—C8A—H8AA | 108.4 |
C13A—C12A—H12B | 110.0 | C9A—C8A—H8AA | 108.4 |
H12A—C12A—H12B | 108.4 | N1A—C8A—H8AB | 108.4 |
O6A—C14A—C15A | 109.3 (2) | C9A—C8A—H8AB | 108.4 |
O6A—C14A—H14C | 109.8 | H8AA—C8A—H8AB | 107.5 |
C15A—C14A—H14C | 109.8 | C2A—C1A—C6A | 120.6 (4) |
O6A—C14A—H14D | 109.8 | C2A—C1A—S1A | 128.5 (3) |
C15A—C14A—H14D | 109.8 | C6A—C1A—S1A | 110.9 (3) |
H14C—C14A—H14D | 108.3 | C6A—C5A—C4A | 118.4 (4) |
N2—C15—C14 | 113.1 (3) | C6A—C5A—H5AA | 120.8 |
N2—C15—H15C | 108.9 | C4A—C5A—H5AA | 120.8 |
C14—C15—H15C | 108.9 | O2A—C9A—O3A | 125.5 (3) |
N2—C15—H15D | 108.9 | O2A—C9A—C8A | 120.0 (3) |
C14—C15—H15D | 108.9 | O3A—C9A—C8A | 114.5 (3) |
H15C—C15—H15D | 107.8 | C2A—C3A—C4A | 121.2 (4) |
N2—C13—C12 | 111.6 (3) | C2A—C3A—H3A | 119.4 |
N2—C13—H13C | 109.3 | C4A—C3A—H3A | 119.4 |
C12—C13—H13C | 109.3 | C3A—C4A—C5A | 120.6 (5) |
N2—C13—H13D | 109.3 | C3A—C4A—H4AA | 119.7 |
C12—C13—H13D | 109.3 | C5A—C4A—H4AA | 119.7 |
O5A—Cd1—O6A—C14A | −75.5 (3) | C15A—N2A—C13A—C12A | −162.3 (3) |
O5—Cd1—O6A—C14A | −147.9 (3) | C11A—N2A—C13A—C12A | 75.6 (3) |
N2A—Cd1—O6A—C14A | −9.3 (2) | Cd1—N2A—C13A—C12A | −45.0 (3) |
O4A—Cd1—O6A—C14A | 32.8 (3) | C11A—N2A—C15A—C14A | −173.5 (3) |
N2—Cd1—O6A—C14A | 148.7 (2) | C13A—N2A—C15A—C14A | 64.7 (4) |
O6—Cd1—O6A—C14A | −141.2 (3) | Cd1—N2A—C15A—C14A | −53.0 (3) |
O4—Cd1—O6A—C14A | 84.9 (3) | Cd1—O6—C14—C15 | −22.1 (4) |
O5—Cd1—O5A—C12A | 148.5 (2) | Cd1—O5A—C12A—C13A | −40.0 (4) |
O6A—Cd1—O5A—C12A | 77.1 (2) | N2A—C13A—C12A—O5A | 57.6 (4) |
N2A—Cd1—O5A—C12A | 12.7 (2) | Cd1—O6A—C14A—C15A | −14.3 (4) |
O4A—Cd1—O5A—C12A | −52.3 (2) | N2A—C15A—C14A—O6A | 45.6 (4) |
N2—Cd1—O5A—C12A | −163.6 (2) | C11—N2—C15—C14 | −171.7 (3) |
O6—Cd1—O5A—C12A | −119.7 (3) | C13—N2—C15—C14 | 67.9 (4) |
O4—Cd1—O5A—C12A | 17.0 (4) | Cd1—N2—C15—C14 | −52.5 (3) |
O5A—Cd1—O5—C12 | 172.1 (2) | O6—C14—C15—N2 | 49.7 (4) |
O6A—Cd1—O5—C12 | −85.8 (2) | C15—N2—C13—C12 | −152.6 (3) |
N2A—Cd1—O5—C12 | −134.39 (19) | C11—N2—C13—C12 | 86.5 (3) |
O4A—Cd1—O5—C12 | 92.7 (3) | Cd1—N2—C13—C12 | −32.9 (3) |
N2—Cd1—O5—C12 | 29.11 (19) | Cd1—O4—C10—C11 | −42.0 (3) |
O6—Cd1—O5—C12 | 96.3 (2) | C15—N2—C11—C10 | 78.3 (3) |
O4—Cd1—O5—C12 | −26.2 (2) | C13—N2—C11—C10 | −160.2 (3) |
O5A—Cd1—O4—C10 | −165.5 (3) | Cd1—N2—C11—C10 | −40.4 (3) |
O5—Cd1—O4—C10 | 69.8 (2) | O4—C10—C11—N2 | 57.5 (4) |
O6A—Cd1—O4—C10 | 130.2 (3) | Cd1—O5—C12—C13 | −56.8 (3) |
N2A—Cd1—O4—C10 | −161.5 (2) | N2—C13—C12—O5 | 60.9 (4) |
O4A—Cd1—O4—C10 | −91.2 (2) | C15A—N2A—C11A—C10A | 82.7 (4) |
N2—Cd1—O4—C10 | 15.0 (2) | C13A—N2A—C11A—C10A | −154.5 (3) |
O6—Cd1—O4—C10 | −35.1 (3) | Cd1—N2A—C11A—C10A | −35.6 (4) |
O5A—Cd1—O4A—C10A | 89.6 (2) | Cd1—O4A—C10A—C11A | −50.9 (3) |
O5—Cd1—O4A—C10A | 164.5 (2) | N2A—C11A—C10A—O4A | 59.1 (4) |
O6A—Cd1—O4A—C10A | −17.3 (3) | C7—N1—C6—C5 | 179.6 (3) |
N2A—Cd1—O4A—C10A | 24.1 (2) | C8—N1—C6—C5 | 7.1 (5) |
N2—Cd1—O4A—C10A | −136.6 (2) | C7—N1—C6—C1 | −0.5 (4) |
O6—Cd1—O4A—C10A | 160.7 (3) | C8—N1—C6—C1 | −173.1 (3) |
O4—Cd1—O4A—C10A | −69.2 (2) | C5—C6—C1—C2 | 0.2 (5) |
O5A—Cd1—N2A—C15A | 137.1 (2) | N1—C6—C1—C2 | −179.7 (3) |
O5—Cd1—N2A—C15A | 81.8 (2) | C5—C6—C1—S1 | −179.6 (2) |
O6A—Cd1—N2A—C15A | 30.95 (18) | N1—C6—C1—S1 | 0.5 (3) |
O4A—Cd1—N2A—C15A | −114.2 (2) | C7—S1—C1—C2 | 179.9 (3) |
N2—Cd1—N2A—C15A | −50.6 (3) | C7—S1—C1—C6 | −0.3 (2) |
O6—Cd1—N2A—C15A | −164.77 (18) | C7—N1—C8—C9 | −106.3 (4) |
O4—Cd1—N2A—C15A | −41.31 (19) | C6—N1—C8—C9 | 66.0 (4) |
O5A—Cd1—N2A—C11A | −102.8 (2) | O2—C9—C8—N1 | 19.0 (5) |
O5—Cd1—N2A—C11A | −158.1 (2) | O3—C9—C8—N1 | −162.7 (3) |
O6A—Cd1—N2A—C11A | 151.1 (2) | C6—N1—C7—O1 | −179.9 (3) |
O4A—Cd1—N2A—C11A | 5.9 (2) | C8—N1—C7—O1 | −7.2 (5) |
N2—Cd1—N2A—C11A | 69.6 (3) | C6—N1—C7—S1 | 0.3 (3) |
O6—Cd1—N2A—C11A | −44.6 (2) | C8—N1—C7—S1 | 173.0 (2) |
O4—Cd1—N2A—C11A | 78.8 (2) | C1—S1—C7—O1 | −179.8 (3) |
O5A—Cd1—N2A—C13A | 17.12 (19) | C1—S1—C7—N1 | 0.0 (2) |
O5—Cd1—N2A—C13A | −38.2 (2) | N1—C6—C5—C4 | 178.5 (3) |
O6A—Cd1—N2A—C13A | −89.0 (2) | C1—C6—C5—C4 | −1.3 (5) |
O4A—Cd1—N2A—C13A | 125.8 (2) | C6—C5—C4—C3 | 1.1 (6) |
N2—Cd1—N2A—C13A | −170.6 (2) | C6—C1—C2—C3 | 1.3 (5) |
O6—Cd1—N2A—C13A | 75.2 (2) | S1—C1—C2—C3 | −179.0 (3) |
O4—Cd1—N2A—C13A | −161.29 (19) | C5—C4—C3—C2 | 0.4 (6) |
O5A—Cd1—N2—C15 | 74.1 (2) | C1—C2—C3—C4 | −1.6 (6) |
O5—Cd1—N2—C15 | 123.6 (2) | C7A—N1A—C6A—C5A | 179.6 (3) |
O6A—Cd1—N2—C15 | −170.6 (2) | C8A—N1A—C6A—C5A | 1.5 (5) |
N2A—Cd1—N2—C15 | −96.4 (3) | C7A—N1A—C6A—C1A | −1.0 (4) |
O4A—Cd1—N2—C15 | −37.6 (2) | C8A—N1A—C6A—C1A | −179.1 (3) |
O6—Cd1—N2—C15 | 27.5 (2) | C6A—N1A—C7A—O1A | −179.2 (4) |
O4—Cd1—N2—C15 | −106.2 (2) | C8A—N1A—C7A—O1A | −1.1 (6) |
O5A—Cd1—N2—C11 | −166.3 (2) | C6A—N1A—C7A—S1A | 1.1 (4) |
O5—Cd1—N2—C11 | −116.8 (2) | C8A—N1A—C7A—S1A | 179.2 (2) |
O6A—Cd1—N2—C11 | −51.1 (2) | C1A—S1A—C7A—O1A | 179.6 (4) |
N2A—Cd1—N2—C11 | 23.2 (3) | C1A—S1A—C7A—N1A | −0.7 (3) |
O4A—Cd1—N2—C11 | 81.9 (2) | C7A—N1A—C8A—C9A | 111.3 (4) |
O6—Cd1—N2—C11 | 147.1 (2) | C6A—N1A—C8A—C9A | −70.7 (4) |
O4—Cd1—N2—C11 | 13.4 (2) | C3A—C2A—C1A—C6A | −0.2 (6) |
O5A—Cd1—N2—C13 | −47.0 (2) | C3A—C2A—C1A—S1A | −179.7 (3) |
O5—Cd1—N2—C13 | 2.5 (2) | C5A—C6A—C1A—C2A | 0.3 (5) |
O6A—Cd1—N2—C13 | 68.3 (2) | N1A—C6A—C1A—C2A | −179.2 (3) |
N2A—Cd1—N2—C13 | 142.5 (2) | C5A—C6A—C1A—S1A | 179.9 (3) |
O4A—Cd1—N2—C13 | −158.7 (2) | N1A—C6A—C1A—S1A | 0.4 (3) |
O6—Cd1—N2—C13 | −93.5 (2) | C7A—S1A—C1A—C2A | 179.7 (4) |
O4—Cd1—N2—C13 | 132.8 (2) | C7A—S1A—C1A—C6A | 0.1 (3) |
O5A—Cd1—O6—C14 | −147.9 (3) | N1A—C6A—C5A—C4A | 179.8 (3) |
O5—Cd1—O6—C14 | −72.6 (3) | C1A—C6A—C5A—C4A | 0.4 (5) |
O6A—Cd1—O6—C14 | −79.0 (4) | N1A—C8A—C9A—O2A | −5.2 (5) |
N2A—Cd1—O6—C14 | 156.2 (3) | N1A—C8A—C9A—O3A | 173.6 (3) |
O4A—Cd1—O6—C14 | 106.0 (3) | C1A—C2A—C3A—C4A | −0.6 (7) |
N2—Cd1—O6—C14 | −2.9 (3) | C2A—C3A—C4A—C5A | 1.4 (7) |
O4—Cd1—O6—C14 | 49.0 (3) | C6A—C5A—C4A—C3A | −1.3 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O3i | 0.87 (3) | 1.82 (2) | 2.676 (4) | 170 (4) |
O4A—H4A···O2A | 0.87 (3) | 1.91 (3) | 2.748 (4) | 161 (3) |
O5—H5···O2 | 0.87 (3) | 1.81 (3) | 2.661 (3) | 166 (3) |
O5A—H5A···O3Aii | 0.87 (2) | 1.83 (3) | 2.640 (4) | 154 (2) |
O6—H6···O3Aii | 0.85 (2) | 2.04 (2) | 2.749 (5) | 141 (3) |
O6A—H6A···O3 | 0.86 (2) | 1.79 (2) | 2.640 (4) | 172 (2) |
C11A—H11D···O1iii | 0.97 | 2.47 | 3.282 (6) | 142 |
Symmetry codes: (i) −x+2, −y, −z+2; (ii) −x+1, −y+1, −z+2; (iii) −x+1, −y, −z+2. |
Acknowledgements
This work was supported by a Grant for Fundamental Research from the Center of Science and Technology, Uzbekistan (No. FPFI T.2–16).
References
Ashurov, J. M., Ibragimov, A. B. & Ibragimov, B. T. (2015). Polyhedron, 102, 441–446. Web of Science CSD CrossRef CAS Google Scholar
Ashurov, J. M., Obidova, N. J., Abdireymov, H. B. & Ibragimov, B. T. (2016). Acta Cryst. E72, 420–423. CSD CrossRef IUCr Journals Google Scholar
Atria, A. M., Parada, J., Garland, M. T. & Baggio, R. (2015). J. Chil. Chem. Soc. 60, 3059–3062. CrossRef CAS Google Scholar
Bellavia, V., Natangelo, M., Fanelli, R. & Rotilio, D. (2000). J. Agric. Food Chem. 48, 1239–1242. Web of Science CrossRef PubMed CAS Google Scholar
Beyer, K. H., Bergfeld, W. F., Berndt, W. O., Boutwell, R. K., Carlton, W. W., Hoffmann, D. K. & Schroeder, A. L. (1983). J. Am. Coll. Toxicol. 2, 183–235. CAS Google Scholar
Boulsourani, Z., Geromichalos, G. D., Repana, K., Yiannaki, E., Psycharis, V., Raptopoulou, C. P., Hadjipavlou-Litina, D., Pontiki, E. & Dendrinou-Samara, C. (2011). J. Inorg. Biochem. 105, 839–849. CSD CrossRef CAS PubMed Google Scholar
Funes, A. V., Carrella, L., Rentschler, E. & Alborés, P. (2014). Dalton Trans. 43, 2361–2364. Web of Science CSD CrossRef CAS PubMed Google Scholar
Gao, S., Liu, J.-W., Huo, L.-H. & Ng, S. W. (2004). Acta Cryst. E60, m462–m464. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Haukka, M., Kirillov, A. M., Kopylovich, M. N. & Pombeiro, A. J. L. (2005). Acta Cryst. E61, m2746–m2748. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ilyukhin, A. B., Koroteev, P. S., Kiskin, M. A., Dobrokhotova, Z. V. & Novotortsev, V. M. (2013). J. Mol. Struct. 1033, 187–199. Web of Science CSD CrossRef CAS Google Scholar
Kapteijn, G. M., Baesjou, P. J., Alsters, P. L., Grove, D. M., Koten, G. V., Smeets, W. J. J., Kooijman, H. & Spek, A. L. (1997). Chem. Ber. Recl, 130, 35–44. CSD CrossRef CAS Web of Science Google Scholar
Kazak, C., Hamamci, S., Topcu, Y. & Yilmaz, V. T. (2003). J. Mol. Struct. 657, 351–356. Web of Science CSD CrossRef CAS Google Scholar
Knaak, J. B., Leung, H. W., Stott, W. T., Busch, J. & Bilsky, J. (1997). Rev. Environ. Contam. Toxicol. 149, 1–86. CAS PubMed Google Scholar
Kovbasyuk, L. A., Vassilyeva, O. Yu., Kokozay, V. N., Chun, H., Bernal, I., Reedijk, J., Albada, G. V. & Skelton, B. W. (2001). Cryst. Eng. 4, 201–213. Web of Science CSD CrossRef CAS Google Scholar
Krabbes, I., Seichter, W., Breuning, T., Otschik, P. & Gloe, K. (1999). Z. Anorg. Allg. Chem. 625, 1562–1565. CrossRef CAS Google Scholar
Kumar, R., Obrai, S., Kaur, A., Hundal, M. S., Meehnian, H. & Jana, A. K. (2014). New J. Chem. 38, 1186–1198. Web of Science CSD CrossRef CAS Google Scholar
Langley, S. K., Ungur, L., Chilton, N. F., Moubaraki, B., Chibotaru, L. F. & Murray, K. S. (2011). Chem. Eur. J. 17, 9209–9218. CSD CrossRef CAS PubMed Google Scholar
Long, D.-L., Abbas, H., Kögerler, P. & Cronin, L. (2004). J. Am. Chem. Soc. 126, 13880–13881. Web of Science CSD CrossRef PubMed CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Maestri, A. G. & Brown, S. N. (2004). Inorg. Chem. 43, 6995–7004. Web of Science CSD CrossRef PubMed CAS Google Scholar
Manos, M. J., Moushi, E. E., Papaefstathiou, G. S. & Tasiopoulos, A. J. (2012). Cryst. Growth Des. 12, 5471–5480. Web of Science CSD CrossRef CAS Google Scholar
Mirskova, A. N., Adamovich, S. N., Mirskov, R. G. & Schilde, U. (2013). Chem. Cent. J. 7, 34–38. Web of Science CSD CrossRef CAS PubMed Google Scholar
Musser, J. H., Brown, R. E., Loev, B., Bailey, K., Jones, H., Kahen, R., Huang, F. C., Khandwala, A., Leibowitz, M., Sonnino-Goldman, P. & Donigi-Ruzza, D. (1984). J. Med. Chem. 27, 121–125. CrossRef CAS PubMed Google Scholar
Oxford Diffraction (2009). CrysAlis PRO CCD. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Pattan, S. R., Suresh, C., Pujar, V. D., Reddy, V. V. K., Rasal, V. P. & Kotti, B. C. (2005). Indian J. Chem. 4B, 2404–2408. Google Scholar
Rickard, C. E. F., Roper, W. R., Woodman, T. J. & Wright, L. J. (1999). Chem. Commun. pp. 837–838. Web of Science CSD CrossRef Google Scholar
Seo, K. W., Park, M., Kim, J. G., Kim, T. W. & $ Kim, H. J. (2000). J. Appl. Toxicol. 20, 427–30. Google Scholar
Sharma, R. P., Saini, A., Venugopalan, P., Ferretti, V., Spizzo, F., Angeli, C. & Calzado, C. J. (2014). New J. Chem. 38, 574–583. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Topcu, Y., Andac, O., Yilmaz, V. T. & Harrison, W. T. A. (2001). Acta Cryst. E57, m82–m84. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tudor, V., Kravtsov, V., Julve, M., Lloret, F., Simonov, Y. A., Lipkowski, J., Buculei, V. & Andruh, M. (2001). Polyhedron, 20, 3033–3037. Web of Science CSD CrossRef CAS Google Scholar
Ucar, I., Yesilel, O. Z., Bulut, A., Icbudak, H., Olmez, H. & Kazak, C. (2004). Acta Cryst. E60, m322–m324. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wittick, L. M., Jones, L. F., Jensen, P., Moubaraki, B., Spiccia, L., Berry, K. J. & Murray, K. S. (2006). Dalton Trans. pp. 1534–1543. Web of Science CSD CrossRef Google Scholar
Yang, D., Liang, Y., Ma, P., Li, S., Wang, J. & Niu, J. (2014). CrystEngComm, 16, 8041–8046. Web of Science CSD CrossRef CAS Google Scholar
Yeşilel, O. Z., Bulut, A., Uçar, İ., İçbudak, H., Ölmez, H. & Büyükgüngör, O. (2004). Acta Cryst. E60, m228–m230. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yilmaz, V. T., Senel, E. & Thöne, C. (2004). Transition Met. Chem. 29, 336–342. Web of Science CSD CrossRef CAS Google Scholar
Yoshida, M., Hayakawa, I., Hayashi, N., Agatsuma, T., Oda, Y., Tanzawa, F., Iwasaki, S., Koyama, K., Furukawa, H., Kurakata, S. & Sugano, Y. (2005). Bioorg. Med. Chem. Lett. 15, 3328–3332. CrossRef PubMed CAS Google Scholar
Zaitsev, K. V., Churakov, A. V., Poleshchuk, O. Kh., Oprunenko, Y. F., Zaitseva, G. S. & Karlov, S. S. (2014). Dalton Trans. 43, 6605–6609. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.