research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the salt bis­­(tri­ethano­lamine-κ4N,O,O′,O′′)cadmium bis­[2-(2-oxo-2,3-di­hydro-1,3-benzo­thia­zol-3-yl)acetate]

CROSSMARK_Color_square_no_text.svg

aInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str. 83, Tashkent 700125, Uzbekistan
*Correspondence e-mail: atom.uz@mail.ru

Edited by M. Weil, Vienna University of Technology, Austria (Received 7 March 2016; accepted 16 March 2016; online 22 March 2016)

The reaction of 2-(2-oxo-2,3-di­hydro-1,3-benzo­thia­zol-3-yl)acetic acid (NBTA) and tri­ethano­lamine (TEA) with Cd(CH3OO)2 resulted in the formation of the title salt, [Cd(C6H15NO3)2](C9H6NO3S)2. In its crystal structure, the complex cation [Cd(TEA)2]2+ and two independent NBTA units with essentially similar geometries and conformations are present. In the complex cation, each TEA mol­ecule behaves as an N,O,O′,O′′-tetra­dentate ligand, giving rise to an eight-coordinate CdII ion with a bicapped trigonal–prismatic configuration. All ethanol groups of each TEA mol­ecule form three five-membered chelate rings around the CdII ion. The Cd—O and Cd—N distances are in the ranges 2.392 (2)–2.478 (2) and 2.465 (2)–2.475 (3) Å, respectively. O—H⋯O hydrogen bonds between the TEA hy­droxy groups and carboxyl­ate O atoms connect cationic and anionic moieties into chains parallel to [110]. Each NBTA anion is additionally linked to a symmetry-related anion through ππ stacking inter­actions between the benzene and thia­zoline rings [minimum centroid-to-centroid separation = 3.604 (2) Å]. Together with additional C—H⋯O inter­actions, these establish a double-layer polymeric network parallel to (001).

1. Chemical context

Tri­ethano­lamine (TEA) is a potential ligand for the incorporation of metals into metal-ion-containing supra­molecular frameworks, and many compounds constructed from TEA have been reported in the last decade (Haukka et al., 2005[Haukka, M., Kirillov, A. M., Kopylovich, M. N. & Pombeiro, A. J. L. (2005). Acta Cryst. E61, m2746-m2748.]; Topcu et al., 2001[Topcu, Y., Andac, O., Yilmaz, V. T. & Harrison, W. T. A. (2001). Acta Cryst. E57, m82-m84.]; Ucar et al., 2004[Ucar, I., Yesilel, O. Z., Bulut, A., Icbudak, H., Olmez, H. & Kazak, C. (2004). Acta Cryst. E60, m322-m324.]). TEA is also used as a corrosion inhibitor in metal-cutting fluids, as a curing agent for ep­oxy and rubber polymers, adhesives, anti­static agents or as a pharmaceutical inter­mediate and an ointment emulsifier. However, TEA has no specific physiological effects (Beyer et al., 1983[Beyer, K. H., Bergfeld, W. F., Berndt, W. O., Boutwell, R. K., Carlton, W. W., Hoffmann, D. K. & Schroeder, A. L. (1983). J. Am. Coll. Toxicol. 2, 183-235.]; Knaak et al., 1997[Knaak, J. B., Leung, H. W., Stott, W. T., Busch, J. & Bilsky, J. (1997). Rev. Environ. Contam. Toxicol. 149, 1-86.]), with exception of its low anti­bacterial action. Benzo­thia­zoles are bicyclic ring systems and their derivatives have been studied and found to have various chemical reactivities and biological activities. For example, benzo­thia­zole is a precursor for rubber accelerators, a component of cyanine dyes, is used as a slimicide in the paper and pulp industry, or in the production of certain fungicides, herbicides, pharmaceuticals (Bellavia et al., 2000[Bellavia, V., Natangelo, M., Fanelli, R. & Rotilio, D. (2000). J. Agric. Food Chem. 48, 1239-1242.]; Seo et al., 2000[Seo, K. W., Park, M., Kim, J. G., Kim, T. W. & $ Kim, H. J. (2000). J. Appl. Toxicol. 20, 427-30.]), anti-allergic (Musser et al., 1984[Musser, J. H., Brown, R. E., Loev, B., Bailey, K., Jones, H., Kahen, R., Huang, F. C., Khandwala, A., Leibowitz, M., Sonnino-Goldman, P. & Donigi-Ruzza, D. (1984). J. Med. Chem. 27, 121-125.]), anti­tumor (Yoshida et al., 2005[Yoshida, M., Hayakawa, I., Hayashi, N., Agatsuma, T., Oda, Y., Tanzawa, F., Iwasaki, S., Koyama, K., Furukawa, H., Kurakata, S. & Sugano, Y. (2005). Bioorg. Med. Chem. Lett. 15, 3328-3332.]) or anti-diabetic (Pattan et al., 2005[Pattan, S. R., Suresh, C., Pujar, V. D., Reddy, V. V. K., Rasal, V. P. & Kotti, B. C. (2005). Indian J. Chem. 4B, 2404-2408.]) substances.

The inter­action of metal ions with TEA results in the formation of complexes in which TEA demonstrates monodentate (Kumar et al., 2014[Kumar, R., Obrai, S., Kaur, A., Hundal, M. S., Meehnian, H. & Jana, A. K. (2014). New J. Chem. 38, 1186-1198.]), bidentate (Kapteijn et al., 1997[Kapteijn, G. M., Baesjou, P. J., Alsters, P. L., Grove, D. M., Koten, G. V., Smeets, W. J. J., Kooijman, H. & Spek, A. L. (1997). Chem. Ber. Recl, 130, 35-44.]; Long et al., 2004[Long, D.-L., Abbas, H., Kögerler, P. & Cronin, L. (2004). J. Am. Chem. Soc. 126, 13880-13881.]), tridentate (Gao et al., 2004[Gao, S., Liu, J.-W., Huo, L.-H. & Ng, S. W. (2004). Acta Cryst. E60, m462-m464.]; Ucar et al., 2004[Ucar, I., Yesilel, O. Z., Bulut, A., Icbudak, H., Olmez, H. & Kazak, C. (2004). Acta Cryst. E60, m322-m324.]; Krabbes et al., 1999[Krabbes, I., Seichter, W., Breuning, T., Otschik, P. & Gloe, K. (1999). Z. Anorg. Allg. Chem. 625, 1562-1565.]; Haukka et al., 2005[Haukka, M., Kirillov, A. M., Kopylovich, M. N. & Pombeiro, A. J. L. (2005). Acta Cryst. E61, m2746-m2748.]; Yeşilel et al., 2004[Yeşilel, O. Z., Bulut, A., Uçar, İ., İçbudak, H., Ölmez, H. & Büyükgüngör, O. (2004). Acta Cryst. E60, m228-m230.]; Mirskova et al., 2013[Mirskova, A. N., Adamovich, S. N., Mirskov, R. G. & Schilde, U. (2013). Chem. Cent. J. 7, 34-38.]) or tetra­dentate binding modes (Zaitsev et al., 2014[Zaitsev, K. V., Churakov, A. V., Poleshchuk, O. Kh., Oprunenko, Y. F., Zaitseva, G. S. & Karlov, S. S. (2014). Dalton Trans. 43, 6605-6609.]; Kazak et al., 2003[Kazak, C., Hamamci, S., Topcu, Y. & Yilmaz, V. T. (2003). J. Mol. Struct. 657, 351-356.]; Yilmaz et al., 2004[Yilmaz, V. T., Senel, E. & Thöne, C. (2004). Transition Met. Chem. 29, 336-342.]; Rickard et al., 1999[Rickard, C. E. F., Roper, W. R., Woodman, T. J. & Wright, L. J. (1999). Chem. Commun. pp. 837-838.]; Maestri & Brown, 2004[Maestri, A. G. & Brown, S. N. (2004). Inorg. Chem. 43, 6995-7004.]; Kovbasyuk et al., 2001[Kovbasyuk, L. A., Vassilyeva, O. Yu., Kokozay, V. N., Chun, H., Bernal, I., Reedijk, J., Albada, G. V. & Skelton, B. W. (2001). Cryst. Eng. 4, 201-213.]; Tudor et al., 2001[Tudor, V., Kravtsov, V., Julve, M., Lloret, F., Simonov, Y. A., Lipkowski, J., Buculei, V. & Andruh, M. (2001). Polyhedron, 20, 3033-3037.]). In some complexes, TEA has bridging properties (Langley et al., 2011[Langley, S. K., Ungur, L., Chilton, N. F., Moubaraki, B., Chibotaru, L. F. & Murray, K. S. (2011). Chem. Eur. J. 17, 9209-9218.]; Atria et al., 2015[Atria, A. M., Parada, J., Garland, M. T. & Baggio, R. (2015). J. Chil. Chem. Soc. 60, 3059-3062.]; Wittick et al., 2006[Wittick, L. M., Jones, L. F., Jensen, P., Moubaraki, B., Spiccia, L., Berry, K. J. & Murray, K. S. (2006). Dalton Trans. pp. 1534-1543.]; Sharma et al., 2014[Sharma, R. P., Saini, A., Venugopalan, P., Ferretti, V., Spizzo, F., Angeli, C. & Calzado, C. J. (2014). New J. Chem. 38, 574-583.]; Yang et al., 2014[Yang, D., Liang, Y., Ma, P., Li, S., Wang, J. & Niu, J. (2014). CrystEngComm, 16, 8041-8046.]; Funes et al., 2014[Funes, A. V., Carrella, L., Rentschler, E. & Alborés, P. (2014). Dalton Trans. 43, 2361-2364.]). In addition, there are metal complexes known in which TEA mol­ecules are uncoordinating (Ilyukhin et al., 2013[Ilyukhin, A. B., Koroteev, P. S., Kiskin, M. A., Dobrokhotova, Z. V. & Novotortsev, V. M. (2013). J. Mol. Struct. 1033, 187-199.]; Manos et al., 2012[Manos, M. J., Moushi, E. E., Papaefstathiou, G. S. & Tasiopoulos, A. J. (2012). Cryst. Growth Des. 12, 5471-5480.]). As an ancillary ligand, TEA may enhance the physiological action of bioactive substances in mixed-ligand metal complexes (Boulsourani et al., 2011[Boulsourani, Z., Geromichalos, G. D., Repana, K., Yiannaki, E., Psycharis, V., Raptopoulou, C. P., Hadjipavlou-Litina, D., Pontiki, E. & Dendrinou-Samara, C. (2011). J. Inorg. Biochem. 105, 839-849.]). We have reported the synthesis of mixed-ligand complexes of Zn, Cd and Cu with TEA and p-nitro­benzoic acid (NBA) and determined the structures of [Cu2(NBA)2TEA](NBA)(5H2O), [Zn(NBA)2TEA] and [Cd(NBA)2TEA] (Ashurov et al., 2015[Ashurov, J. M., Ibragimov, A. B. & Ibragimov, B. T. (2015). Polyhedron, 102, 441-446.]). The cobalt(II) complex [Co(C6H15NO3)2](C9H6NO3S)2, obtained by the reaction of NBTA and TEA with Co(NO3)2, has been reported (Ashurov et al., 2016[Ashurov, J. M., Obidova, N. J., Abdireymov, H. B. & Ibragimov, B. T. (2016). Acta Cryst. E72, 420-423.]). Here, the synthesis and structure of the related title compound, [Cd(C6H15NO3)2](C9H6NO3S)2, (I)[link], is described.

[Scheme 1]

2. Structural commentary

The structure of the mol­ecular entities of (I)[link] is shown in Fig. 1[link]; these consist of a complex cation and two independent NBTA anions. In the cationic complex, the CdII ion is ligated by two neutral TEA mol­ecules, which act as N,O,O′,O′′-tetra­dentate ligands, resulting in a bicapped trigonal–prismatic coordination polyhedron of the type CdN2O6. In the complex, Cd—O and Cd—N distances are in the range 2.392 (2)–2.478 (2) and 2.465 (2)–2.475 (3) Å, respectively. The N—Cd—O bond angles range from 68.58 (8) to 122.59 (10)° and the O—Cd—O angles are in an inter­val of 72.54 (9) to 162.13 (11)°. Both thia­zoline rings (C1/C6/N1/C7/S1 and C1A/C6A/N1A/C7A/S1A) and bicyclic benzo­thia­zole units (N1/S1/C1–C7 and (N1A/S1A/C1A–C7A) are close to planar, the largest deviations from the least-squares planes being 0.002 (2), 0.004 (2) and 0.008 (3), 0.005 (3) Å, respectively. The dihedral angles between the plane of the carboxyl­ate group and the attached benzo­thia­zole ring system are 77.895 (3) and 71.408 (3)° in the two anions.

[Figure 1]
Figure 1
The structures of the mol­ecular moieties in the title salt. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

In the crystal structure of (I)[link], classical inter­molecular O—H⋯O hydrogen bonds are observed (Table 1[link]) which link the complex cations and NBTA anions into a chain structure extending parallel to [110], whereby each cation is surrounded by four NBTA anions. The H atoms of all hydroxyl groups of the TEA ligands form a hydrogen bond with a carboxyl­ate O atom of the NBTA ions. In addition, there is weak hydrogen bond between one –CH2 group and the O1 atom of the NBTA anion, with a C⋯O distance of 3.282 (6)Å (Table 1[link]). The above-mentioned hydrogen bonds give rise to R22(8), R42(12) and R44(16) graph-set motifs (Fig. 2[link]). The NBTA anion layers are not linked by hydrogen bonds, but there are mutual ππ stacking inter­actions between benzene rings (centroid Cg1) and thia­zoline rings (centroid Cg2) of adjacent inversion-related mol­ecules [Cg1⋯Cg2 (2 − x, −y, 1 − z) = 3.604 (2) Å] (Fig. 3[link]). Together, these supra­molecular inter­actions generate a double-layer polymeric network parallel to (001).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O3i 0.87 (3) 1.82 (2) 2.676 (4) 170 (4)
O4A—H4A⋯O2A 0.87 (3) 1.91 (3) 2.748 (4) 161 (3)
O5—H5⋯O2 0.87 (3) 1.81 (3) 2.661 (3) 166 (3)
O5A—H5A⋯O3Aii 0.87 (2) 1.83 (3) 2.640 (4) 154 (2)
O6—H6⋯O3Aii 0.85 (2) 2.04 (2) 2.749 (5) 141 (3)
O6A—H6A⋯O3 0.86 (2) 1.79 (2) 2.640 (4) 172 (2)
C11A—H11D⋯O1iii 0.97 2.47 3.282 (6) 142
Symmetry codes: (i) -x+2, -y, -z+2; (ii) -x+1, -y+1, -z+2; (iii) -x+1, -y, -z+2.
[Figure 2]
Figure 2
Part of the crystal structure with hydrogen bonds shown as dashed lines. For clarity, H atoms not involved in hydrogen bonding are omitted.
[Figure 3]
Figure 3
Packing of structural units in (I)[link]. Hydrogen bonds are indicated as black dashed lines and π-π stacking inter­actions as blue dashed lines.

4. Database survey

A survey of the Cambridge Structural Database (CSD; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) showed that coordination complexes of TEA with many metals including those of the s-, d-, p-, and f-block elements have been reported. Structures containing the [Cd(TEA)2]2+ cation are deposited in the CSD with reference codes EYIPAD, MEVQIN and YOVBIU.

5. Synthesis and crystallization

To an aqueous solution (2.5 ml) of Cd(CH3OO)2 (0.103 g, 0.5 mmol) was slowly added an ethano­lic solution (5 ml) containing TEA (132 µl) and NBT (0.209 g, 1 mmol) under constant stirring. A bright-yellow crystalline product was obtained at room temperature by solvent evaporation after four weeks. Yield: 75%; calculated for C30H42CdN4O12S2: C, 43.56; H, 5.12; N, 6.77, found: C, 43.61; H, 5.15; N, 6.69

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydroxyl H atoms of the TEA ligands were located in a difference-Fourier map and were refined with soft O—H distance restraints of 0.87 Å. The C-bound hydrogen atoms were placed in calculated positions and refined as riding atoms with C—H = 0.93 and 0.97 Å for aromatic and methyl­ene hydrogen atoms, respectively, and with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Cd(C6H15NO3)2](C9H6NO3S)2
Mr 827.20
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 10.7061 (5), 12.2157 (5), 14.6159 (8)
α, β, γ (°) 65.520 (5), 79.600 (4), 82.417 (4)
V3) 1707.59 (14)
Z 2
Radiation type Cu Kα
μ (mm−1) 6.85
Crystal size (mm) 0.6 × 0.3 × 0.2
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Ruby
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD. Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.127, 0.254
No. of measured, independent and observed [I > 2σ(I)] reflections 14752, 7001, 6533
Rint 0.047
(sin θ/λ)max−1) 0.629
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.06
No. of reflections 7001
No. of parameters 461
No. of restraints 18
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.20, −0.67
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD. Oxford Diffraction Ltd, Yarnton, England.]), SHELXS97, SHELXL97 and XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Bis(triethanolamine-κ4N,O,O',O'')cadmium bis[2-(2-oxo-2,3-dihydro-1,3-benzothiazol-3-yl)acetate] top
Crystal data top
[Cd(C6H15NO3)2](C9H6NO3S)2Z = 2
Mr = 827.20F(000) = 852
Triclinic, P1Dx = 1.609 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 10.7061 (5) ÅCell parameters from 10769 reflections
b = 12.2157 (5) Åθ = 3.4–75.7°
c = 14.6159 (8) ŵ = 6.85 mm1
α = 65.520 (5)°T = 293 K
β = 79.600 (4)°Block, bright yellow
γ = 82.417 (4)°0.6 × 0.3 × 0.2 mm
V = 1707.59 (14) Å3
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
7001 independent reflections
Radiation source: fine-focus sealed tube6533 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 10.2576 pixels mm-1θmax = 75.9°, θmin = 3.4°
ω scansh = 1312
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1415
Tmin = 0.127, Tmax = 0.254l = 1718
14752 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0692P)2 + 0.3219P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
7001 reflectionsΔρmax = 1.20 e Å3
461 parametersΔρmin = 0.67 e Å3
18 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00078 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.712574 (17)0.241527 (14)0.997601 (13)0.02746 (9)
O6A0.8300 (3)0.0513 (2)1.00868 (17)0.0434 (5)
H6A0.855 (4)0.0269 (19)0.9608 (12)0.065*
O5A0.5116 (2)0.1940 (2)0.97875 (18)0.0444 (5)
H5A0.4541 (16)0.247 (2)0.947 (2)0.067*
O50.7418 (2)0.24576 (19)0.82842 (16)0.0368 (5)
H50.736 (3)0.186 (2)0.8118 (19)0.055*
O40.9043 (2)0.2228 (2)1.0772 (2)0.0457 (6)
H40.960 (2)0.1633 (14)1.100 (3)0.069*
O4A0.6459 (3)0.3096 (2)1.13739 (19)0.0462 (6)
H4A0.668 (4)0.3705 (16)1.1455 (16)0.069*
N2A0.6329 (2)0.0713 (2)1.15330 (18)0.0310 (5)
N20.8509 (2)0.4053 (2)0.8822 (2)0.0333 (5)
O60.5915 (3)0.4392 (3)0.9324 (3)0.0594 (7)
H60.5116 (9)0.453 (2)0.934 (4)0.089*
C13A0.5318 (3)0.0196 (3)1.1293 (3)0.0405 (7)
H13A0.48510.03371.19210.049*
H13B0.57070.02791.09120.049*
C15A0.7417 (3)0.0170 (3)1.1835 (2)0.0383 (7)
H15A0.71140.08861.24080.046*
H15B0.80140.01701.20560.046*
C140.6569 (4)0.5438 (3)0.8689 (3)0.0474 (8)
H14A0.61880.61170.88450.057*
H14B0.65180.56280.79830.057*
C12A0.4410 (3)0.1157 (3)1.0688 (3)0.0431 (7)
H12A0.37800.07941.05210.052*
H12B0.39730.16041.10790.052*
C14A0.8105 (3)0.0530 (3)1.0995 (2)0.0404 (7)
H14C0.89180.09481.11750.048*
H14D0.76050.10721.09000.048*
C150.7929 (3)0.5198 (3)0.8870 (3)0.0430 (7)
H15C0.84150.58560.83660.052*
H15D0.79790.51780.95330.052*
C130.8646 (4)0.4119 (3)0.7768 (3)0.0445 (8)
H13C0.94430.44650.73940.053*
H13D0.79600.46450.74290.053*
C100.9712 (4)0.3297 (3)1.0288 (3)0.0514 (9)
H10A1.05670.31251.04670.062*
H10B0.92890.38981.05310.062*
C110.9783 (3)0.3794 (3)0.9157 (3)0.0501 (9)
H11A1.02290.45310.88590.060*
H11B1.02700.32190.89090.060*
C120.8618 (3)0.2906 (3)0.7759 (3)0.0405 (7)
H12C0.87220.29680.70660.049*
H12D0.93020.23690.80940.049*
C11A0.5800 (4)0.1123 (3)1.2352 (3)0.0456 (8)
H11C0.58180.04431.30020.055*
H11D0.49180.14091.22860.055*
C10A0.6504 (4)0.2095 (3)1.2338 (3)0.0480 (8)
H10C0.61180.23411.28830.058*
H10D0.73810.18121.24330.058*
S10.71637 (9)0.01677 (10)0.49722 (8)0.0535 (2)
O20.7640 (2)0.05730 (19)0.77831 (17)0.0375 (5)
O30.9143 (3)0.0435 (2)0.87446 (19)0.0475 (6)
N10.8544 (3)0.0361 (2)0.6378 (2)0.0384 (6)
O10.7093 (3)0.1763 (3)0.6719 (3)0.0660 (8)
C60.8954 (3)0.0728 (3)0.5643 (2)0.0362 (6)
C10.8305 (3)0.1163 (3)0.4801 (3)0.0408 (7)
C90.8546 (3)0.0180 (3)0.8009 (2)0.0333 (6)
C80.8983 (4)0.0917 (3)0.7365 (3)0.0463 (8)
H8A0.99060.10070.72690.056*
H8B0.86670.17150.77270.056*
C70.7584 (3)0.0826 (3)0.6175 (3)0.0438 (8)
C50.9898 (4)0.1373 (4)0.5677 (3)0.0493 (8)
H5B1.03240.10990.62400.059*
C41.0196 (4)0.2437 (4)0.4851 (4)0.0646 (12)
H4B1.08390.28770.48560.078*
C20.8590 (5)0.2232 (4)0.3992 (3)0.0555 (10)
H20.81450.25270.34380.067*
C30.9553 (5)0.2852 (4)0.4026 (4)0.0656 (12)
H30.97720.35670.34780.079*
S1A0.79635 (10)0.49886 (10)1.49702 (8)0.0570 (2)
N1A0.6853 (3)0.5582 (2)1.3394 (2)0.0411 (6)
O2A0.7500 (3)0.4620 (2)1.19404 (19)0.0455 (5)
C2A0.6322 (5)0.3091 (4)1.5830 (3)0.0633 (12)
H2A0.66540.27871.64400.076*
O3A0.6440 (3)0.6114 (3)1.0843 (2)0.0602 (7)
O1A0.8392 (3)0.6849 (3)1.3194 (3)0.0691 (8)
C6A0.6268 (3)0.4562 (3)1.4111 (2)0.0378 (7)
C7A0.7774 (4)0.5974 (3)1.3696 (3)0.0474 (8)
C8A0.6497 (4)0.6233 (3)1.2389 (3)0.0456 (8)
H8AA0.68910.69981.20810.055*
H8AB0.55830.64061.24550.055*
C1A0.6771 (4)0.4107 (3)1.5032 (3)0.0456 (8)
C5A0.5312 (4)0.4003 (4)1.3989 (3)0.0508 (9)
H5AA0.49840.43011.33780.061*
C9A0.6860 (3)0.5590 (3)1.1673 (2)0.0353 (6)
C3A0.5362 (5)0.2531 (4)1.5704 (4)0.0703 (14)
H3A0.50550.18381.62340.084*
C4A0.4852 (4)0.2984 (4)1.4801 (4)0.0645 (12)
H4AA0.41950.26031.47390.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03033 (13)0.02172 (12)0.02883 (12)0.00431 (7)0.00164 (8)0.00887 (8)
O6A0.0632 (15)0.0304 (11)0.0320 (11)0.0038 (10)0.0008 (10)0.0131 (9)
O5A0.0400 (12)0.0439 (13)0.0370 (11)0.0092 (10)0.0066 (10)0.0017 (10)
O50.0450 (12)0.0319 (10)0.0331 (10)0.0079 (9)0.0024 (9)0.0143 (9)
O40.0386 (12)0.0331 (11)0.0648 (16)0.0003 (9)0.0148 (11)0.0165 (11)
O4A0.0587 (15)0.0375 (12)0.0485 (13)0.0007 (10)0.0069 (11)0.0247 (11)
N2A0.0339 (12)0.0293 (11)0.0300 (11)0.0041 (9)0.0015 (10)0.0125 (10)
N20.0343 (13)0.0246 (11)0.0431 (14)0.0049 (9)0.0023 (10)0.0159 (10)
O60.0388 (13)0.0431 (14)0.085 (2)0.0025 (11)0.0041 (14)0.0170 (14)
C13A0.0410 (17)0.0305 (14)0.0459 (17)0.0117 (12)0.0052 (14)0.0089 (13)
C15A0.0471 (18)0.0315 (14)0.0336 (15)0.0026 (12)0.0101 (13)0.0100 (12)
C140.050 (2)0.0336 (16)0.053 (2)0.0060 (14)0.0059 (16)0.0144 (15)
C12A0.0325 (15)0.0476 (18)0.0395 (16)0.0104 (13)0.0009 (13)0.0072 (15)
C14A0.0499 (18)0.0283 (14)0.0394 (16)0.0076 (13)0.0077 (14)0.0123 (13)
C150.0494 (19)0.0256 (14)0.0540 (19)0.0066 (12)0.0001 (15)0.0176 (14)
C130.057 (2)0.0291 (15)0.0405 (17)0.0121 (13)0.0104 (15)0.0116 (13)
C100.0445 (19)0.0366 (17)0.080 (3)0.0048 (14)0.0231 (18)0.0240 (18)
C110.0341 (17)0.0399 (18)0.079 (3)0.0053 (13)0.0051 (17)0.0273 (18)
C120.0480 (18)0.0344 (15)0.0383 (16)0.0075 (13)0.0055 (14)0.0171 (13)
C11A0.054 (2)0.0467 (19)0.0336 (16)0.0024 (15)0.0053 (14)0.0181 (14)
C10A0.061 (2)0.051 (2)0.0403 (17)0.0004 (16)0.0052 (16)0.0282 (16)
S10.0509 (5)0.0601 (5)0.0625 (6)0.0047 (4)0.0210 (4)0.0347 (5)
O20.0419 (12)0.0328 (10)0.0408 (11)0.0018 (9)0.0047 (9)0.0193 (9)
O30.0560 (15)0.0518 (14)0.0432 (13)0.0144 (11)0.0160 (11)0.0289 (12)
N10.0504 (16)0.0363 (13)0.0308 (12)0.0019 (11)0.0050 (11)0.0173 (11)
O10.0657 (18)0.0528 (17)0.075 (2)0.0178 (14)0.0162 (16)0.0277 (15)
C60.0397 (16)0.0364 (15)0.0368 (15)0.0057 (12)0.0037 (13)0.0219 (13)
C10.0475 (18)0.0391 (16)0.0410 (16)0.0087 (13)0.0073 (14)0.0240 (14)
C90.0407 (16)0.0286 (13)0.0306 (14)0.0007 (11)0.0009 (12)0.0139 (11)
C80.067 (2)0.0382 (17)0.0354 (16)0.0153 (15)0.0129 (16)0.0194 (14)
C70.0441 (18)0.0454 (18)0.0467 (18)0.0006 (14)0.0033 (14)0.0277 (16)
C50.0456 (19)0.052 (2)0.062 (2)0.0000 (15)0.0057 (17)0.0362 (19)
C40.060 (2)0.055 (2)0.089 (3)0.0164 (19)0.013 (2)0.044 (2)
C20.077 (3)0.0425 (19)0.0419 (19)0.0118 (18)0.0065 (18)0.0170 (16)
C30.090 (3)0.0377 (19)0.058 (2)0.005 (2)0.015 (2)0.0182 (18)
S1A0.0626 (6)0.0600 (6)0.0567 (5)0.0088 (4)0.0195 (5)0.0307 (5)
N1A0.0558 (17)0.0300 (13)0.0342 (13)0.0024 (11)0.0031 (12)0.0109 (11)
O2A0.0572 (15)0.0322 (11)0.0461 (13)0.0045 (10)0.0083 (11)0.0164 (10)
C2A0.087 (3)0.048 (2)0.0381 (19)0.008 (2)0.002 (2)0.0083 (17)
O3A0.0721 (19)0.0615 (17)0.0503 (15)0.0130 (14)0.0267 (14)0.0235 (14)
O1A0.0694 (19)0.0522 (17)0.085 (2)0.0193 (14)0.0006 (17)0.0263 (16)
C6A0.0432 (17)0.0291 (14)0.0382 (15)0.0040 (12)0.0009 (13)0.0152 (13)
C7A0.0486 (19)0.0440 (18)0.053 (2)0.0005 (15)0.0009 (16)0.0268 (17)
C8A0.065 (2)0.0266 (14)0.0405 (17)0.0064 (14)0.0084 (16)0.0107 (13)
C1A0.055 (2)0.0383 (17)0.0373 (16)0.0094 (15)0.0017 (15)0.0150 (14)
C5A0.050 (2)0.0458 (19)0.058 (2)0.0030 (15)0.0010 (17)0.0256 (18)
C9A0.0370 (16)0.0314 (14)0.0358 (15)0.0042 (11)0.0051 (12)0.0114 (12)
C3A0.087 (3)0.044 (2)0.057 (3)0.008 (2)0.023 (2)0.0100 (19)
C4A0.059 (2)0.048 (2)0.084 (3)0.0146 (18)0.019 (2)0.033 (2)
Geometric parameters (Å, º) top
Cd1—O5A2.392 (2)C12—H12C0.9700
Cd1—O52.415 (2)C12—H12D0.9700
Cd1—O6A2.449 (2)C11A—C10A1.481 (5)
Cd1—N2A2.465 (2)C11A—H11C0.9700
Cd1—O4A2.470 (2)C11A—H11D0.9700
Cd1—N22.475 (3)C10A—H10C0.9700
Cd1—O62.476 (3)C10A—H10D0.9700
Cd1—O42.478 (2)S1—C11.750 (4)
O6A—C14A1.413 (4)S1—C71.772 (4)
O6A—H6A0.856 (9)O2—C91.234 (4)
O5A—C12A1.416 (4)O3—C91.256 (4)
O5A—H5A0.871 (10)N1—C71.368 (5)
O5—C121.422 (4)N1—C61.384 (4)
O5—H50.872 (10)N1—C81.453 (4)
O4—C101.420 (4)O1—C71.213 (5)
O4—H40.866 (9)C6—C51.381 (5)
O4A—C10A1.436 (5)C6—C11.396 (5)
O4A—H4A0.870 (10)C1—C21.375 (5)
N2A—C15A1.475 (4)C9—C81.533 (4)
N2A—C11A1.477 (4)C8—H8A0.9700
N2A—C13A1.480 (4)C8—H8B0.9700
N2—C151.478 (4)C5—C41.385 (6)
N2—C111.482 (4)C5—H5B0.9300
N2—C131.490 (4)C4—C31.374 (7)
O6—C141.415 (5)C4—H4B0.9300
O6—H60.848 (9)C2—C31.376 (7)
C13A—C12A1.502 (5)C2—H20.9300
C13A—H13A0.9700C3—H30.9300
C13A—H13B0.9700S1A—C1A1.743 (4)
C15A—C14A1.509 (4)S1A—C7A1.781 (4)
C15A—H15A0.9700N1A—C7A1.362 (5)
C15A—H15B0.9700N1A—C6A1.389 (4)
C14—C151.495 (5)N1A—C8A1.446 (4)
C14—H14A0.9700O2A—C9A1.235 (4)
C14—H14B0.9700C2A—C1A1.373 (6)
C12A—H12A0.9700C2A—C3A1.384 (8)
C12A—H12B0.9700C2A—H2A0.9300
C14A—H14C0.9700O3A—C9A1.249 (4)
C14A—H14D0.9700O1A—C7A1.216 (5)
C15—H15C0.9700C6A—C5A1.376 (5)
C15—H15D0.9700C6A—C1A1.406 (5)
C13—C121.492 (4)C8A—C9A1.522 (4)
C13—H13C0.9700C8A—H8AA0.9700
C13—H13D0.9700C8A—H8AB0.9700
C10—C111.498 (6)C5A—C4A1.388 (6)
C10—H10A0.9700C5A—H5AA0.9300
C10—H10B0.9700C3A—C4A1.386 (8)
C11—H11A0.9700C3A—H3A0.9300
C11—H11B0.9700C4A—H4AA0.9300
O5A—Cd1—O575.23 (8)H13C—C13—H13D108.0
O5A—Cd1—O6A97.23 (9)O4—C10—C11111.8 (3)
O5—Cd1—O6A74.12 (7)O4—C10—H10A109.2
O5A—Cd1—N2A70.99 (8)C11—C10—H10A109.2
O5—Cd1—N2A124.88 (8)O4—C10—H10B109.2
O6A—Cd1—N2A68.58 (8)C11—C10—H10B109.2
O5A—Cd1—O4A100.09 (9)H10A—C10—H10B107.9
O5—Cd1—O4A159.22 (8)N2—C11—C10112.5 (3)
O6A—Cd1—O4A126.65 (8)N2—C11—H11A109.1
N2A—Cd1—O4A70.34 (8)C10—C11—H11A109.1
O5A—Cd1—N2130.03 (8)N2—C11—H11B109.1
O5—Cd1—N270.57 (8)C10—C11—H11B109.1
O6A—Cd1—N2106.90 (8)H11A—C11—H11B107.8
N2A—Cd1—N2158.75 (9)O5—C12—C13107.1 (3)
O4A—Cd1—N299.33 (9)O5—C12—H12C110.3
O5A—Cd1—O675.81 (9)C13—C12—H12C110.3
O5—Cd1—O688.12 (10)O5—C12—H12D110.3
O6A—Cd1—O6162.13 (10)C13—C12—H12D110.3
N2A—Cd1—O6122.59 (9)H12C—C12—H12D108.6
O4A—Cd1—O671.14 (10)N2A—C11A—C10A113.0 (3)
N2—Cd1—O667.86 (9)N2A—C11A—H11C109.0
O5A—Cd1—O4158.32 (8)C10A—C11A—H11C109.0
O5—Cd1—O4118.25 (9)N2A—C11A—H11D109.0
O6A—Cd1—O472.54 (9)C10A—C11A—H11D109.0
N2A—Cd1—O487.39 (8)H11C—C11A—H11D107.8
O4A—Cd1—O473.06 (9)O4A—C10A—C11A108.1 (3)
N2—Cd1—O471.65 (9)O4A—C10A—H10C110.1
O6—Cd1—O4119.25 (9)C11A—C10A—H10C110.1
C14A—O6A—Cd1119.37 (18)O4A—C10A—H10D110.1
C14A—O6A—H6A106.6 (15)C11A—C10A—H10D110.1
Cd1—O6A—H6A127.9 (16)H10C—C10A—H10D108.4
C12A—O5A—Cd1115.7 (2)C1—S1—C792.04 (17)
C12A—O5A—H5A103.9 (15)C7—N1—C6116.2 (3)
Cd1—O5A—H5A124.9 (17)C7—N1—C8120.8 (3)
C12—O5—Cd1109.85 (18)C6—N1—C8122.6 (3)
C12—O5—H5103.7 (15)C5—C6—N1126.8 (3)
Cd1—O5—H5127.1 (17)C5—C6—C1120.1 (3)
C10—O4—Cd1111.1 (2)N1—C6—C1113.0 (3)
C10—O4—H4107.2 (16)C2—C1—C6121.1 (4)
Cd1—O4—H4131.4 (17)C2—C1—S1128.9 (3)
C10A—O4A—Cd1110.41 (18)C6—C1—S1110.0 (3)
C10A—O4A—H4A105.2 (16)O2—C9—O3126.3 (3)
Cd1—O4A—H4A130.4 (18)O2—C9—C8118.3 (3)
C15A—N2A—C11A110.2 (3)O3—C9—C8115.4 (3)
C15A—N2A—C13A111.4 (2)N1—C8—C9112.6 (3)
C11A—N2A—C13A109.5 (3)N1—C8—H8A109.1
C15A—N2A—Cd1107.07 (18)C9—C8—H8A109.1
C11A—N2A—Cd1110.73 (19)N1—C8—H8B109.1
C13A—N2A—Cd1107.92 (18)C9—C8—H8B109.1
C15—N2—C11109.8 (3)H8A—C8—H8B107.8
C15—N2—C13110.8 (3)O1—C7—N1126.4 (4)
C11—N2—C13109.0 (3)O1—C7—S1124.9 (3)
C15—N2—Cd1108.45 (19)N1—C7—S1108.7 (3)
C11—N2—Cd1109.2 (2)C6—C5—C4118.4 (4)
C13—N2—Cd1109.68 (18)C6—C5—H5B120.8
C14—O6—Cd1119.6 (2)C4—C5—H5B120.8
C14—O6—H6111.6 (15)C3—C4—C5120.8 (4)
Cd1—O6—H6127.8 (15)C3—C4—H4B119.6
N2A—C13A—C12A111.9 (3)C5—C4—H4B119.6
N2A—C13A—H13A109.2C1—C2—C3118.1 (4)
C12A—C13A—H13A109.2C1—C2—H2120.9
N2A—C13A—H13B109.2C3—C2—H2120.9
C12A—C13A—H13B109.2C4—C3—C2121.4 (4)
H13A—C13A—H13B107.9C4—C3—H3119.3
N2A—C15A—C14A113.5 (3)C2—C3—H3119.3
N2A—C15A—H15A108.9C1A—S1A—C7A91.44 (18)
C14A—C15A—H15A108.9C7A—N1A—C6A116.3 (3)
N2A—C15A—H15B108.9C7A—N1A—C8A120.6 (3)
C14A—C15A—H15B108.9C6A—N1A—C8A123.1 (3)
H15A—C15A—H15B107.7C1A—C2A—C3A118.4 (4)
O6—C14—C15108.2 (3)C1A—C2A—H2A120.8
O6—C14—H14A110.1C3A—C2A—H2A120.8
C15—C14—H14A110.1C5A—C6A—N1A127.0 (3)
O6—C14—H14B110.1C5A—C6A—C1A120.8 (3)
C15—C14—H14B110.1N1A—C6A—C1A112.2 (3)
H14A—C14—H14B108.4O1A—C7A—N1A126.9 (4)
O5A—C12A—C13A108.3 (3)O1A—C7A—S1A123.9 (3)
O5A—C12A—H12A110.0N1A—C7A—S1A109.2 (3)
C13A—C12A—H12A110.0N1A—C8A—C9A115.5 (3)
O5A—C12A—H12B110.0N1A—C8A—H8AA108.4
C13A—C12A—H12B110.0C9A—C8A—H8AA108.4
H12A—C12A—H12B108.4N1A—C8A—H8AB108.4
O6A—C14A—C15A109.3 (2)C9A—C8A—H8AB108.4
O6A—C14A—H14C109.8H8AA—C8A—H8AB107.5
C15A—C14A—H14C109.8C2A—C1A—C6A120.6 (4)
O6A—C14A—H14D109.8C2A—C1A—S1A128.5 (3)
C15A—C14A—H14D109.8C6A—C1A—S1A110.9 (3)
H14C—C14A—H14D108.3C6A—C5A—C4A118.4 (4)
N2—C15—C14113.1 (3)C6A—C5A—H5AA120.8
N2—C15—H15C108.9C4A—C5A—H5AA120.8
C14—C15—H15C108.9O2A—C9A—O3A125.5 (3)
N2—C15—H15D108.9O2A—C9A—C8A120.0 (3)
C14—C15—H15D108.9O3A—C9A—C8A114.5 (3)
H15C—C15—H15D107.8C2A—C3A—C4A121.2 (4)
N2—C13—C12111.6 (3)C2A—C3A—H3A119.4
N2—C13—H13C109.3C4A—C3A—H3A119.4
C12—C13—H13C109.3C3A—C4A—C5A120.6 (5)
N2—C13—H13D109.3C3A—C4A—H4AA119.7
C12—C13—H13D109.3C5A—C4A—H4AA119.7
O5A—Cd1—O6A—C14A75.5 (3)C15A—N2A—C13A—C12A162.3 (3)
O5—Cd1—O6A—C14A147.9 (3)C11A—N2A—C13A—C12A75.6 (3)
N2A—Cd1—O6A—C14A9.3 (2)Cd1—N2A—C13A—C12A45.0 (3)
O4A—Cd1—O6A—C14A32.8 (3)C11A—N2A—C15A—C14A173.5 (3)
N2—Cd1—O6A—C14A148.7 (2)C13A—N2A—C15A—C14A64.7 (4)
O6—Cd1—O6A—C14A141.2 (3)Cd1—N2A—C15A—C14A53.0 (3)
O4—Cd1—O6A—C14A84.9 (3)Cd1—O6—C14—C1522.1 (4)
O5—Cd1—O5A—C12A148.5 (2)Cd1—O5A—C12A—C13A40.0 (4)
O6A—Cd1—O5A—C12A77.1 (2)N2A—C13A—C12A—O5A57.6 (4)
N2A—Cd1—O5A—C12A12.7 (2)Cd1—O6A—C14A—C15A14.3 (4)
O4A—Cd1—O5A—C12A52.3 (2)N2A—C15A—C14A—O6A45.6 (4)
N2—Cd1—O5A—C12A163.6 (2)C11—N2—C15—C14171.7 (3)
O6—Cd1—O5A—C12A119.7 (3)C13—N2—C15—C1467.9 (4)
O4—Cd1—O5A—C12A17.0 (4)Cd1—N2—C15—C1452.5 (3)
O5A—Cd1—O5—C12172.1 (2)O6—C14—C15—N249.7 (4)
O6A—Cd1—O5—C1285.8 (2)C15—N2—C13—C12152.6 (3)
N2A—Cd1—O5—C12134.39 (19)C11—N2—C13—C1286.5 (3)
O4A—Cd1—O5—C1292.7 (3)Cd1—N2—C13—C1232.9 (3)
N2—Cd1—O5—C1229.11 (19)Cd1—O4—C10—C1142.0 (3)
O6—Cd1—O5—C1296.3 (2)C15—N2—C11—C1078.3 (3)
O4—Cd1—O5—C1226.2 (2)C13—N2—C11—C10160.2 (3)
O5A—Cd1—O4—C10165.5 (3)Cd1—N2—C11—C1040.4 (3)
O5—Cd1—O4—C1069.8 (2)O4—C10—C11—N257.5 (4)
O6A—Cd1—O4—C10130.2 (3)Cd1—O5—C12—C1356.8 (3)
N2A—Cd1—O4—C10161.5 (2)N2—C13—C12—O560.9 (4)
O4A—Cd1—O4—C1091.2 (2)C15A—N2A—C11A—C10A82.7 (4)
N2—Cd1—O4—C1015.0 (2)C13A—N2A—C11A—C10A154.5 (3)
O6—Cd1—O4—C1035.1 (3)Cd1—N2A—C11A—C10A35.6 (4)
O5A—Cd1—O4A—C10A89.6 (2)Cd1—O4A—C10A—C11A50.9 (3)
O5—Cd1—O4A—C10A164.5 (2)N2A—C11A—C10A—O4A59.1 (4)
O6A—Cd1—O4A—C10A17.3 (3)C7—N1—C6—C5179.6 (3)
N2A—Cd1—O4A—C10A24.1 (2)C8—N1—C6—C57.1 (5)
N2—Cd1—O4A—C10A136.6 (2)C7—N1—C6—C10.5 (4)
O6—Cd1—O4A—C10A160.7 (3)C8—N1—C6—C1173.1 (3)
O4—Cd1—O4A—C10A69.2 (2)C5—C6—C1—C20.2 (5)
O5A—Cd1—N2A—C15A137.1 (2)N1—C6—C1—C2179.7 (3)
O5—Cd1—N2A—C15A81.8 (2)C5—C6—C1—S1179.6 (2)
O6A—Cd1—N2A—C15A30.95 (18)N1—C6—C1—S10.5 (3)
O4A—Cd1—N2A—C15A114.2 (2)C7—S1—C1—C2179.9 (3)
N2—Cd1—N2A—C15A50.6 (3)C7—S1—C1—C60.3 (2)
O6—Cd1—N2A—C15A164.77 (18)C7—N1—C8—C9106.3 (4)
O4—Cd1—N2A—C15A41.31 (19)C6—N1—C8—C966.0 (4)
O5A—Cd1—N2A—C11A102.8 (2)O2—C9—C8—N119.0 (5)
O5—Cd1—N2A—C11A158.1 (2)O3—C9—C8—N1162.7 (3)
O6A—Cd1—N2A—C11A151.1 (2)C6—N1—C7—O1179.9 (3)
O4A—Cd1—N2A—C11A5.9 (2)C8—N1—C7—O17.2 (5)
N2—Cd1—N2A—C11A69.6 (3)C6—N1—C7—S10.3 (3)
O6—Cd1—N2A—C11A44.6 (2)C8—N1—C7—S1173.0 (2)
O4—Cd1—N2A—C11A78.8 (2)C1—S1—C7—O1179.8 (3)
O5A—Cd1—N2A—C13A17.12 (19)C1—S1—C7—N10.0 (2)
O5—Cd1—N2A—C13A38.2 (2)N1—C6—C5—C4178.5 (3)
O6A—Cd1—N2A—C13A89.0 (2)C1—C6—C5—C41.3 (5)
O4A—Cd1—N2A—C13A125.8 (2)C6—C5—C4—C31.1 (6)
N2—Cd1—N2A—C13A170.6 (2)C6—C1—C2—C31.3 (5)
O6—Cd1—N2A—C13A75.2 (2)S1—C1—C2—C3179.0 (3)
O4—Cd1—N2A—C13A161.29 (19)C5—C4—C3—C20.4 (6)
O5A—Cd1—N2—C1574.1 (2)C1—C2—C3—C41.6 (6)
O5—Cd1—N2—C15123.6 (2)C7A—N1A—C6A—C5A179.6 (3)
O6A—Cd1—N2—C15170.6 (2)C8A—N1A—C6A—C5A1.5 (5)
N2A—Cd1—N2—C1596.4 (3)C7A—N1A—C6A—C1A1.0 (4)
O4A—Cd1—N2—C1537.6 (2)C8A—N1A—C6A—C1A179.1 (3)
O6—Cd1—N2—C1527.5 (2)C6A—N1A—C7A—O1A179.2 (4)
O4—Cd1—N2—C15106.2 (2)C8A—N1A—C7A—O1A1.1 (6)
O5A—Cd1—N2—C11166.3 (2)C6A—N1A—C7A—S1A1.1 (4)
O5—Cd1—N2—C11116.8 (2)C8A—N1A—C7A—S1A179.2 (2)
O6A—Cd1—N2—C1151.1 (2)C1A—S1A—C7A—O1A179.6 (4)
N2A—Cd1—N2—C1123.2 (3)C1A—S1A—C7A—N1A0.7 (3)
O4A—Cd1—N2—C1181.9 (2)C7A—N1A—C8A—C9A111.3 (4)
O6—Cd1—N2—C11147.1 (2)C6A—N1A—C8A—C9A70.7 (4)
O4—Cd1—N2—C1113.4 (2)C3A—C2A—C1A—C6A0.2 (6)
O5A—Cd1—N2—C1347.0 (2)C3A—C2A—C1A—S1A179.7 (3)
O5—Cd1—N2—C132.5 (2)C5A—C6A—C1A—C2A0.3 (5)
O6A—Cd1—N2—C1368.3 (2)N1A—C6A—C1A—C2A179.2 (3)
N2A—Cd1—N2—C13142.5 (2)C5A—C6A—C1A—S1A179.9 (3)
O4A—Cd1—N2—C13158.7 (2)N1A—C6A—C1A—S1A0.4 (3)
O6—Cd1—N2—C1393.5 (2)C7A—S1A—C1A—C2A179.7 (4)
O4—Cd1—N2—C13132.8 (2)C7A—S1A—C1A—C6A0.1 (3)
O5A—Cd1—O6—C14147.9 (3)N1A—C6A—C5A—C4A179.8 (3)
O5—Cd1—O6—C1472.6 (3)C1A—C6A—C5A—C4A0.4 (5)
O6A—Cd1—O6—C1479.0 (4)N1A—C8A—C9A—O2A5.2 (5)
N2A—Cd1—O6—C14156.2 (3)N1A—C8A—C9A—O3A173.6 (3)
O4A—Cd1—O6—C14106.0 (3)C1A—C2A—C3A—C4A0.6 (7)
N2—Cd1—O6—C142.9 (3)C2A—C3A—C4A—C5A1.4 (7)
O4—Cd1—O6—C1449.0 (3)C6A—C5A—C4A—C3A1.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3i0.87 (3)1.82 (2)2.676 (4)170 (4)
O4A—H4A···O2A0.87 (3)1.91 (3)2.748 (4)161 (3)
O5—H5···O20.87 (3)1.81 (3)2.661 (3)166 (3)
O5A—H5A···O3Aii0.87 (2)1.83 (3)2.640 (4)154 (2)
O6—H6···O3Aii0.85 (2)2.04 (2)2.749 (5)141 (3)
O6A—H6A···O30.86 (2)1.79 (2)2.640 (4)172 (2)
C11A—H11D···O1iii0.972.473.282 (6)142
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y+1, z+2; (iii) x+1, y, z+2.
 

Acknowledgements

This work was supported by a Grant for Fundamental Research from the Center of Science and Technology, Uzbekistan (No. FPFI T.2–16).

References

First citationAshurov, J. M., Ibragimov, A. B. & Ibragimov, B. T. (2015). Polyhedron, 102, 441–446.  Web of Science CSD CrossRef CAS Google Scholar
First citationAshurov, J. M., Obidova, N. J., Abdireymov, H. B. & Ibragimov, B. T. (2016). Acta Cryst. E72, 420–423.  CSD CrossRef IUCr Journals Google Scholar
First citationAtria, A. M., Parada, J., Garland, M. T. & Baggio, R. (2015). J. Chil. Chem. Soc. 60, 3059–3062.  CrossRef CAS Google Scholar
First citationBellavia, V., Natangelo, M., Fanelli, R. & Rotilio, D. (2000). J. Agric. Food Chem. 48, 1239–1242.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBeyer, K. H., Bergfeld, W. F., Berndt, W. O., Boutwell, R. K., Carlton, W. W., Hoffmann, D. K. & Schroeder, A. L. (1983). J. Am. Coll. Toxicol. 2, 183–235.  CAS Google Scholar
First citationBoulsourani, Z., Geromichalos, G. D., Repana, K., Yiannaki, E., Psycharis, V., Raptopoulou, C. P., Hadjipavlou-Litina, D., Pontiki, E. & Dendrinou-Samara, C. (2011). J. Inorg. Biochem. 105, 839–849.  CSD CrossRef CAS PubMed Google Scholar
First citationFunes, A. V., Carrella, L., Rentschler, E. & Alborés, P. (2014). Dalton Trans. 43, 2361–2364.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGao, S., Liu, J.-W., Huo, L.-H. & Ng, S. W. (2004). Acta Cryst. E60, m462–m464.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHaukka, M., Kirillov, A. M., Kopylovich, M. N. & Pombeiro, A. J. L. (2005). Acta Cryst. E61, m2746–m2748.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIlyukhin, A. B., Koroteev, P. S., Kiskin, M. A., Dobrokhotova, Z. V. & Novotortsev, V. M. (2013). J. Mol. Struct. 1033, 187–199.  Web of Science CSD CrossRef CAS Google Scholar
First citationKapteijn, G. M., Baesjou, P. J., Alsters, P. L., Grove, D. M., Koten, G. V., Smeets, W. J. J., Kooijman, H. & Spek, A. L. (1997). Chem. Ber. Recl, 130, 35–44.  CSD CrossRef CAS Web of Science Google Scholar
First citationKazak, C., Hamamci, S., Topcu, Y. & Yilmaz, V. T. (2003). J. Mol. Struct. 657, 351–356.  Web of Science CSD CrossRef CAS Google Scholar
First citationKnaak, J. B., Leung, H. W., Stott, W. T., Busch, J. & Bilsky, J. (1997). Rev. Environ. Contam. Toxicol. 149, 1–86.  CAS PubMed Google Scholar
First citationKovbasyuk, L. A., Vassilyeva, O. Yu., Kokozay, V. N., Chun, H., Bernal, I., Reedijk, J., Albada, G. V. & Skelton, B. W. (2001). Cryst. Eng. 4, 201–213.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrabbes, I., Seichter, W., Breuning, T., Otschik, P. & Gloe, K. (1999). Z. Anorg. Allg. Chem. 625, 1562–1565.  CrossRef CAS Google Scholar
First citationKumar, R., Obrai, S., Kaur, A., Hundal, M. S., Meehnian, H. & Jana, A. K. (2014). New J. Chem. 38, 1186–1198.  Web of Science CSD CrossRef CAS Google Scholar
First citationLangley, S. K., Ungur, L., Chilton, N. F., Moubaraki, B., Chibotaru, L. F. & Murray, K. S. (2011). Chem. Eur. J. 17, 9209–9218.  CSD CrossRef CAS PubMed Google Scholar
First citationLong, D.-L., Abbas, H., Kögerler, P. & Cronin, L. (2004). J. Am. Chem. Soc. 126, 13880–13881.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMaestri, A. G. & Brown, S. N. (2004). Inorg. Chem. 43, 6995–7004.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationManos, M. J., Moushi, E. E., Papaefstathiou, G. S. & Tasiopoulos, A. J. (2012). Cryst. Growth Des. 12, 5471–5480.  Web of Science CSD CrossRef CAS Google Scholar
First citationMirskova, A. N., Adamovich, S. N., Mirskov, R. G. & Schilde, U. (2013). Chem. Cent. J. 7, 34–38.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMusser, J. H., Brown, R. E., Loev, B., Bailey, K., Jones, H., Kahen, R., Huang, F. C., Khandwala, A., Leibowitz, M., Sonnino-Goldman, P. & Donigi-Ruzza, D. (1984). J. Med. Chem. 27, 121–125.  CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO CCD. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPattan, S. R., Suresh, C., Pujar, V. D., Reddy, V. V. K., Rasal, V. P. & Kotti, B. C. (2005). Indian J. Chem. 4B, 2404–2408.  Google Scholar
First citationRickard, C. E. F., Roper, W. R., Woodman, T. J. & Wright, L. J. (1999). Chem. Commun. pp. 837–838.  Web of Science CSD CrossRef Google Scholar
First citationSeo, K. W., Park, M., Kim, J. G., Kim, T. W. & $ Kim, H. J. (2000). J. Appl. Toxicol. 20, 427–30.  Google Scholar
First citationSharma, R. P., Saini, A., Venugopalan, P., Ferretti, V., Spizzo, F., Angeli, C. & Calzado, C. J. (2014). New J. Chem. 38, 574–583.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTopcu, Y., Andac, O., Yilmaz, V. T. & Harrison, W. T. A. (2001). Acta Cryst. E57, m82–m84.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTudor, V., Kravtsov, V., Julve, M., Lloret, F., Simonov, Y. A., Lipkowski, J., Buculei, V. & Andruh, M. (2001). Polyhedron, 20, 3033–3037.  Web of Science CSD CrossRef CAS Google Scholar
First citationUcar, I., Yesilel, O. Z., Bulut, A., Icbudak, H., Olmez, H. & Kazak, C. (2004). Acta Cryst. E60, m322–m324.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWittick, L. M., Jones, L. F., Jensen, P., Moubaraki, B., Spiccia, L., Berry, K. J. & Murray, K. S. (2006). Dalton Trans. pp. 1534–1543.  Web of Science CSD CrossRef Google Scholar
First citationYang, D., Liang, Y., Ma, P., Li, S., Wang, J. & Niu, J. (2014). CrystEngComm, 16, 8041–8046.  Web of Science CSD CrossRef CAS Google Scholar
First citationYeşilel, O. Z., Bulut, A., Uçar, İ., İçbudak, H., Ölmez, H. & Büyükgüngör, O. (2004). Acta Cryst. E60, m228–m230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYilmaz, V. T., Senel, E. & Thöne, C. (2004). Transition Met. Chem. 29, 336–342.  Web of Science CSD CrossRef CAS Google Scholar
First citationYoshida, M., Hayakawa, I., Hayashi, N., Agatsuma, T., Oda, Y., Tanzawa, F., Iwasaki, S., Koyama, K., Furukawa, H., Kurakata, S. & Sugano, Y. (2005). Bioorg. Med. Chem. Lett. 15, 3328–3332.  CrossRef PubMed CAS Google Scholar
First citationZaitsev, K. V., Churakov, A. V., Poleshchuk, O. Kh., Oprunenko, Y. F., Zaitseva, G. S. & Karlov, S. S. (2014). Dalton Trans. 43, 6605–6609.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds