research communications
fac-aquatricarbonyl[(S)-valinato-κ2N,O]rhenium(I)
ofaDepartment of Inorganic Chemistry, Ukrainian State University of Chemical Technology, Gagarin Ave. 8, Dnipropetrovsk 49005, Ukraine, and bInorganic Chemistry Department, National Taras Shevchenko University of Kyiv, Volodymyrska Street 64/13, Kyiv 01601, Ukraine
*Correspondence e-mail: ksenijapiletska@gmail.com
In the molecule of the title compound, [Re(C5H10NO2)(CO)3(H2O)], the ReI atom adopts a distorted octahedral coordination sphere defined by one aqua and three carbonyl ligands as well as one amino N and one carboxylate O atom of the chelating valinate anion. The carbonyl ligands are arranged in a fac-configuration around the ReI ion. In the crystal, an intricate hydrogen-bonding system under participation of two O—H, two N—H and one C—H donor groups and the carboxylate and carbonyl O atoms as acceptor groups contribute to the formation of a three-dimensional supramolecular network.
Keywords: crystal structure; rhenium carbonyl complex; valine.
CCDC reference: 1469075
1. Chemical context
The syntheses of metal–organic compounds, which are capable of visualization of biomolecules, is receiving growing interest in biocoordination chemistry (Coogan & Fernández-Moreira, 2014). For the labeling of biomolecules, octahedral fac-tricarbonyl complexes of Tc and Re are the most promising compounds (Alberto, 2007; Coogan et al., 2014). The compact M(CO)3-core (M = Tc, Re) allows labeling of low molecular weight substrates under retention of activity and specificity. In this context, Re(CO)3+ compounds are of interest as the closest non-radioactive analogs of 99mTc-based systems, which could be particularly important for visualization and immunotherapy. Studies of the cytotoxicity of rhenium carbonyl complexes also suggest their specific anticancer activity (Leonidova & Gasser, 2014).
Most of the known Re(CO)3+ complexes with biologically essential substrates comprise tridentate co-ligands, e.g. histidinato-O,N,N′ (Alberto et al., 1999), methioninato-N,O,S (He et al., 2005), 2,3-diaminopropionato-N,N′,O (Liu et al., 2006), completing the coordination octahedra of the central ions. At the same time, coordinatively unsaturated complexes of bidentate aminocarboxylates could be suited for interactions with additional ligands, such as guanine bases (Zobi et al. 2005a), thus allowing an attractive scenario for the assembly of mixed-ligand systems.
In this communication, we report the synthesis and 3+ complex with valine and water as co-ligands. Following the findings of Zobi et al. (2005b), sufficient reactivity of this compound towards DNA may be anticipated.
of a novel Re(CO)2. Structural commentary
In the molecule of the title compound (Fig. 1), the Re1 ion resides in a slightly distorted octahedral coordination environment, with a facial arrangement of three nearly equidistant carbonyl ligands [Re1—C bond lengths are in the range 1.881 (7)–1.909 (7) Å]. The compound crystallizes in the P212121, with the S-enantiomer of the valinate anion present in the selected crystal. The anion coordinates in a bidentate-chelating fashion through the amino N and one carboxylate O atoms, with Re1—N1 and Re1—O4 bond lengths of 2.195 (5) and 2.122 (4) Å, respectively. The five-membered chelate ring [bite angle N1—Re1—O4 = 74.62 (18)°] has the expected with the atoms of the Re1—O4—C4—C5 fragment being coplanar within 0.035 (3) Å and the N1 flap atom deviating from the given mean plane by 0.547 (6) Å. The Re1—O6 bond involving the aqua ligand [2.175 (5) Å] is slightly longer than the one with the carboxyl O atom. The CO ligands coordinate in an almost linear fashion, with O—C—Re bond angles spanning a range from 175.5 (7) to 179.9 (8)°, while the corresponding C—Re1—C angles are within 87.1 (3)–89.8 (2)°. All other bond length and angles are comparable to those found for related ReI complexes (Rajendran et al., 2000).
3. Supramolecular features
In the crystal, the packing of the molecules is governed by an intricate system of hydrogen bonds, including classical O—H⋯O and N—H⋯O bonds and weaker C—H⋯O interactions (Table 1). Two rather strong and nearly linear O—H⋯O bonds are observed between the aqua ligand and the non-coordinating carboxylate O atoms of two symmetry-related neighbouring molecules. The amino group forms two weaker N—H⋯O bonds to carbonyl O atom acceptor groups of two neighbouring molecules. Each non-coordinating carboxylate O atom accepts two such bonds, yielding hydrogen-bonded chains parallel to the a-axis direction (Fig. 2), whereas the N—H⋯O bonds expand the hydrogen-bonding system into a three-dimensional network. Additional C—H⋯O interactions consolidate this arrangement (Fig. 3). The combination of O—H⋯O and C—H⋯O (involving the chiral C5 atom) bonds may be important for the observed enantioselective packing of the chiral moieties (Petkova et al., 2001).
4. Synthesis and crystallization
To a solution of DL-valine (0.116 g, 0.984 mmol) in 5 ml of water, a solution of triaquatricarbonylrhenium(I) bromide (0.100 g, 0.246 mmol) in 10 ml of methanol was added. The reaction mixture was heated and stirred at 343 K under a steady stream of argon for 4 h. After cooling to room temperature, the solution was left to evaporate in air for a period of a few days. After removal of the methanol co-solvent, a colourless crystalline product formed. The precipitate was collected by suction filtration, washed with water and then with a 50 ml portion of petroleum ether and dried (yield: 0.068 g, 68%). Suitable single crystals were obtained by slow diffusion of hexane vapor into a methanol solution of the complex. IR (KBr, cm−1): νas(CO) 2028 (s), νs(CO) 1905 (s).
5. Refinement
Crystal data, data collection and structure . C-bound hydrogen atoms were placed geometrically and refined using a riding model, with C—H = 0.97 Å and Uiso(H) = 1.5Ueq(C) for methyl and with C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for methine groups. N- and O-bound hydrogen atoms were found from difference maps and refined with N—H = 0.90 Å, O—H = 0.85 Å and Uiso(H) = 1.2Ueq(N,O).
details are summarized in Table 2Supporting information
CCDC reference: 1469075
https://doi.org/10.1107/S2056989016005235/wm5283sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016005235/wm5283Isup2.hkl
Data collection: IPDS Software (Stoe, 2000); cell
IPDS Software (Stoe, 2000); data reduction: IPDS Software (Stoe, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).[Re(C5H10NO2)(CO)3(H2O)] | Dx = 2.287 Mg m−3 |
Mr = 404.39 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 8000 reflections |
a = 7.1229 (5) Å | θ = 2.9–28.0° |
b = 7.2913 (7) Å | µ = 10.36 mm−1 |
c = 22.6098 (18) Å | T = 213 K |
V = 1174.24 (17) Å3 | Prism, colorless |
Z = 4 | 0.16 × 0.12 × 0.12 mm |
F(000) = 760 |
Stoe Imaging plate diffraction system diffractometer | 2546 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.040 |
φ oscillation scans | θmax = 28.0°, θmin = 2.9° |
Absorption correction: numerical (X-SHAPE and X-RED; Stoe, 2001) | h = −9→9 |
Tmin = 0.288, Tmax = 0.370 | k = −9→9 |
10442 measured reflections | l = −29→29 |
2809 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.022 | H-atom parameters constrained |
wR(F2) = 0.047 | w = 1/[σ2(Fo2) + (0.0254P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.99 | (Δ/σ)max = 0.002 |
2809 reflections | Δρmax = 1.68 e Å−3 |
147 parameters | Δρmin = −0.91 e Å−3 |
0 restraints | Absolute structure: Flack x determined using 990 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013). |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.018 (10) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Re1 | 0.27215 (3) | 0.24317 (4) | 0.36414 (2) | 0.01911 (8) | |
O1 | 0.1402 (9) | −0.1539 (7) | 0.3751 (3) | 0.0475 (16) | |
O2 | −0.0548 (9) | 0.3311 (10) | 0.2820 (3) | 0.059 (2) | |
O3 | 0.4865 (10) | 0.1103 (10) | 0.2566 (3) | 0.0510 (17) | |
O4 | 0.4953 (6) | 0.2146 (6) | 0.42564 (19) | 0.0201 (10) | |
O5 | 0.7729 (7) | 0.3107 (6) | 0.4559 (2) | 0.0296 (11) | |
O6 | 0.1463 (7) | 0.3556 (6) | 0.4439 (2) | 0.0216 (10) | |
H1W | 0.0276 | 0.3449 | 0.4455 | 0.032* | |
H2W | 0.1929 | 0.3046 | 0.4744 | 0.032* | |
N1 | 0.4095 (7) | 0.5125 (7) | 0.3670 (3) | 0.0202 (10) | |
H1N | 0.4012 | 0.5560 | 0.3298 | 0.030* | |
H2N | 0.3545 | 0.5944 | 0.3913 | 0.030* | |
C1 | 0.1826 (10) | −0.0024 (10) | 0.3716 (4) | 0.0300 (15) | |
C2 | 0.0674 (10) | 0.2983 (10) | 0.3127 (3) | 0.0309 (18) | |
C3 | 0.4063 (11) | 0.1628 (11) | 0.2973 (3) | 0.0283 (16) | |
C4 | 0.6284 (10) | 0.3294 (9) | 0.4248 (3) | 0.0215 (14) | |
C5 | 0.6095 (10) | 0.4941 (9) | 0.3839 (3) | 0.0216 (14) | |
H5 | 0.6814 | 0.4668 | 0.3475 | 0.026* | |
C6 | 0.6917 (11) | 0.6706 (9) | 0.4109 (4) | 0.0319 (16) | |
H6 | 0.8235 | 0.6446 | 0.4220 | 0.038* | |
C7 | 0.5880 (13) | 0.7280 (13) | 0.4668 (4) | 0.048 (2) | |
H7A | 0.4638 | 0.7721 | 0.4565 | 0.072* | |
H7B | 0.6574 | 0.8250 | 0.4864 | 0.072* | |
H7C | 0.5768 | 0.6236 | 0.4931 | 0.072* | |
C8 | 0.6942 (12) | 0.8254 (9) | 0.3654 (5) | 0.0424 (19) | |
H8A | 0.5664 | 0.8610 | 0.3561 | 0.064* | |
H8B | 0.7566 | 0.7837 | 0.3298 | 0.064* | |
H8C | 0.7613 | 0.9298 | 0.3816 | 0.064* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Re1 | 0.01711 (11) | 0.02296 (11) | 0.01726 (10) | 0.00198 (16) | −0.00083 (9) | −0.00125 (15) |
O1 | 0.035 (3) | 0.027 (3) | 0.081 (5) | −0.005 (2) | −0.001 (3) | 0.002 (3) |
O2 | 0.038 (4) | 0.091 (5) | 0.048 (4) | 0.017 (3) | −0.016 (3) | −0.006 (3) |
O3 | 0.060 (5) | 0.061 (4) | 0.032 (3) | 0.016 (3) | 0.012 (3) | −0.006 (3) |
O4 | 0.018 (2) | 0.020 (3) | 0.023 (2) | −0.0010 (17) | −0.0010 (17) | 0.0027 (17) |
O5 | 0.015 (2) | 0.043 (2) | 0.030 (2) | 0.0011 (19) | −0.005 (2) | 0.0118 (19) |
O6 | 0.019 (2) | 0.024 (2) | 0.022 (2) | 0.0027 (18) | 0.0015 (19) | 0.0026 (18) |
N1 | 0.020 (3) | 0.020 (2) | 0.020 (3) | 0.0023 (19) | −0.002 (3) | 0.003 (2) |
C1 | 0.020 (4) | 0.037 (4) | 0.032 (4) | −0.002 (3) | −0.004 (3) | 0.000 (3) |
C2 | 0.023 (4) | 0.043 (5) | 0.026 (4) | 0.011 (3) | −0.010 (3) | −0.010 (3) |
C3 | 0.027 (4) | 0.041 (4) | 0.016 (3) | 0.006 (3) | 0.005 (3) | −0.001 (3) |
C4 | 0.017 (4) | 0.028 (3) | 0.019 (3) | 0.005 (3) | 0.003 (3) | 0.002 (2) |
C5 | 0.017 (3) | 0.025 (3) | 0.023 (3) | 0.002 (2) | 0.000 (2) | 0.000 (2) |
C6 | 0.024 (4) | 0.031 (3) | 0.041 (4) | 0.000 (3) | −0.005 (3) | −0.001 (3) |
C7 | 0.055 (5) | 0.039 (5) | 0.050 (5) | 0.005 (5) | −0.006 (4) | −0.022 (4) |
C8 | 0.033 (5) | 0.027 (3) | 0.066 (6) | −0.007 (3) | −0.002 (5) | 0.004 (4) |
Re1—C3 | 1.881 (7) | N1—H1N | 0.9004 |
Re1—C2 | 1.908 (7) | N1—H2N | 0.9004 |
Re1—C1 | 1.909 (7) | C4—C5 | 1.520 (9) |
Re1—O4 | 2.122 (4) | C5—C6 | 1.539 (9) |
Re1—O6 | 2.175 (5) | C5—H5 | 0.9900 |
Re1—N1 | 2.195 (5) | C6—C7 | 1.523 (11) |
O1—C1 | 1.148 (9) | C6—C8 | 1.526 (11) |
O2—C2 | 1.139 (9) | C6—H6 | 0.9900 |
O3—C3 | 1.148 (9) | C7—H7A | 0.9700 |
O4—C4 | 1.265 (8) | C7—H7B | 0.9700 |
O5—C4 | 1.255 (8) | C7—H7C | 0.9700 |
O6—H1W | 0.8498 | C8—H8A | 0.9700 |
O6—H2W | 0.8503 | C8—H8B | 0.9700 |
N1—C5 | 1.482 (8) | C8—H8C | 0.9700 |
C3—Re1—C2 | 88.0 (3) | O5—C4—O4 | 122.3 (6) |
C3—Re1—C1 | 87.1 (3) | O5—C4—C5 | 119.9 (6) |
C2—Re1—C1 | 89.8 (3) | O4—C4—C5 | 117.8 (6) |
C3—Re1—O4 | 96.6 (3) | N1—C5—C4 | 108.3 (5) |
C2—Re1—O4 | 173.0 (2) | N1—C5—C6 | 113.1 (5) |
C1—Re1—O4 | 95.8 (3) | C4—C5—C6 | 112.8 (6) |
C3—Re1—O6 | 173.2 (3) | N1—C5—H5 | 107.5 |
C2—Re1—O6 | 96.4 (3) | C4—C5—H5 | 107.5 |
C1—Re1—O6 | 98.2 (3) | C6—C5—H5 | 107.5 |
O4—Re1—O6 | 78.61 (18) | C7—C6—C8 | 111.2 (7) |
C3—Re1—N1 | 94.4 (3) | C7—C6—C5 | 111.9 (6) |
C2—Re1—N1 | 99.8 (3) | C8—C6—C5 | 110.9 (7) |
C1—Re1—N1 | 170.4 (3) | C7—C6—H6 | 107.5 |
O4—Re1—N1 | 74.62 (18) | C8—C6—H6 | 107.5 |
O6—Re1—N1 | 79.7 (2) | C5—C6—H6 | 107.5 |
C4—O4—Re1 | 119.1 (4) | C6—C7—H7A | 109.5 |
Re1—O6—H1W | 114.3 | C6—C7—H7B | 109.5 |
Re1—O6—H2W | 110.2 | H7A—C7—H7B | 109.5 |
H1W—O6—H2W | 108.2 | C6—C7—H7C | 109.5 |
C5—N1—Re1 | 110.8 (4) | H7A—C7—H7C | 109.5 |
C5—N1—H1N | 109.6 | H7B—C7—H7C | 109.5 |
Re1—N1—H1N | 105.0 | C6—C8—H8A | 109.5 |
C5—N1—H2N | 108.7 | C6—C8—H8B | 109.5 |
Re1—N1—H2N | 114.7 | H8A—C8—H8B | 109.5 |
H1N—N1—H2N | 107.9 | C6—C8—H8C | 109.5 |
O1—C1—Re1 | 175.5 (7) | H8A—C8—H8C | 109.5 |
O2—C2—Re1 | 179.9 (8) | H8B—C8—H8C | 109.5 |
O3—C3—Re1 | 178.6 (7) | ||
Re1—O4—C4—O5 | −173.0 (5) | O5—C4—C5—C6 | −37.3 (9) |
Re1—O4—C4—C5 | 6.6 (7) | O4—C4—C5—C6 | 143.1 (6) |
Re1—N1—C5—C4 | −31.1 (6) | N1—C5—C6—C7 | 60.3 (8) |
Re1—N1—C5—C6 | −156.7 (5) | C4—C5—C6—C7 | −63.0 (8) |
O5—C4—C5—N1 | −163.1 (6) | N1—C5—C6—C8 | −64.5 (8) |
O4—C4—C5—N1 | 17.2 (8) | C4—C5—C6—C8 | 172.2 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H1W···O5i | 0.85 | 1.85 | 2.693 (5) | 175 |
O6—H2W···O5ii | 0.85 | 1.88 | 2.723 (5) | 175 |
N1—H1N···O3iii | 0.90 | 2.15 | 2.979 (7) | 153 |
N1—H2N···O1iv | 0.90 | 2.41 | 3.103 (6) | 133 |
C5—H5···O2v | 0.99 | 2.59 | 3.527 (7) | 158 |
Symmetry codes: (i) x−1, y, z; (ii) x−1/2, −y+1/2, −z+1; (iii) −x+1, y+1/2, −z+1/2; (iv) x, y+1, z; (v) x+1, y, z. |
Acknowledgements
This work was supported by the fund Grant for Science Research (No. 0111U000111) from the Ministry of Education and Science of Ukraine. We also thank EU COST Action CM 1105 for supporting this study.
References
Alberto, R. (2007). J. Organomet. Chem. 692, 1179–1186. CrossRef CAS Google Scholar
Alberto, R., Schibli, R., Waibel, R., Abram, U. & Schubiger, A. P. (1999). Coord. Chem. Rev. 190–192, 901–919. CrossRef CAS Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Coogan, M. P., Doyle, R. P., Valliant, J. F., Babich, J. W. & Zubieta, J. (2014). J. Label Compd. Radiopharm. 57, 255–261. CrossRef CAS Google Scholar
Coogan, M. P. & Fernández-Moreira, V. (2014). Chem. Commun. 50, 384–399. CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
He, H., Lipowska, M., Xu, X., Taylor, A. T., Carlone, M. & Marzilli, L. G. (2005). Inorg. Chem. 44, 5437–5446. CrossRef PubMed CAS Google Scholar
Leonidova, A. & Gasser, G. (2014). Chem. Biol. 9, 2180–2193. CAS Google Scholar
Liu, Y., Pak, J. K., Schmutz, P., Bauwens, M., Mertens, J., Knight, H. & Alberto, R. (2006). J. Am. Chem. Soc. 128, 15996–15997. CrossRef PubMed CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Petkova, E. G., Lampeka, R. D., Gorichko, M. V. & Domasevitch, K. V. (2001). Polyhedron, 20, 747–753. CrossRef CAS Google Scholar
Rajendran, T., Manimaran, B., Lee, F.-Y., Lee, G.-H., Peng, S.-M., Wang, C.-C. & Lu, K.-L. (2000). Inorg. Chem. 39, 2016–2017. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stoe (2000). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Stoe (2001). X-SHAPE and X-RED. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Zobi, F., Spingler, B. & Alberto, R. (2005a). Dalton Trans. pp. 2859–2865. CrossRef Google Scholar
Zobi, F., Spingler, B. & Alberto, R. (2005b). ChemBioChem, 6, 1397–1405. CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.